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Abstract. We revisit the boundedness of Hankel and Toeplitz operators acting
on the Hardy space H' and give a new proof of the old result stating that
the Hankel operator H, is bounded if and only if a has bounded logarithmic
mean oscillation. We also establish a sufficient and necessary condition for H,
to be compact on H'. The Fredholm properties of Toeplitz operators on H*
are studied for symbols in a Banach algebra similar to C + H* under mild
additional conditions caused by the differences in the boundedness of Toeplitz
operators acting on H' and H?.
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1. Introduction and main results

Let D = {z € C : |z| < 1} be the unit disk of the complex plane C and T = 9D =
{¢ € C : |¢] =1} be the unit circle. The usual Lebesgue spaces for T are denoted
by LP = LP(T) and we write

+oo
O~ Y flnxn

n=—oo
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for the Fourier series of a function f in L!. The Hardy spaces for T are defined by

Hp:{fELp:f(n)=Oforn<O}

and their variants by H} = {f eLp: f(n) =0forn < 0}. We also define the
spaces HP = {f S f(n) =0 for n > O} and the corresponding variants H_g =

{fGLp : f(n):OfornZO}.
The M. Riesz Theorem says that the Riesz projection P, defined by
Too ~
P~ > fn)¢"
n=0
for every f(¢) ~ :zo_oo f(n)(”, is a bounded operator LP — HP when 1 < p <
o0o; note, however, that the operator P is not bounded either on L' or L>®. We
also define a related operator Py : LP — H{ by Py f({) ~ Ii'i A(n)C" and denote
the complementary projection of P by @ : LP — H_g, Qf(¢) ~ ;i_oo f(n)C”
We say that Pf is the analytic part and @ f is the antianalytic part of f.
The Toeplitz operator T, with symbol a € L? is defined by

T.f = Plaf)
and the Hankel operator H, by

Haf = P(aJf),
where J is the “flip operator” defined by

+oo
JHQO=CFO~ Y Flen—1)¢"
n=—oo
Both operators T, and H, are obviously well defined for analytic polynomials, i.e.
for finite sums f(¢) = ZnN:O f(n)¢™. The set of analytic polynomials is dense in
each HP (1 < p < +00) and there are classical results which specify, for every
particular value of p, the necessary and sufficient conditions on the symbol a so
that these operators are extended as bounded or even compact operators on HP.
It is easy to see that T, is not compact whenever a is not the zero function. The
situation is described by the following Theorems 1.1-1.5.

Theorem 1.1. Let 1 < p < +o00. Then Ty, is bounded on HP if and only if a € L.

Theorem 1.2. (Nehari, forp=2) Let 1 < p < +oo. Then H, is bounded on H? if
and only if Pra € BMO.

Theorem 1.3. (Hartman, for p=2) Let 1 < p < +o0. Then H, is compact on HP
if and only if Pra € VMO.

In the case of the space H! the results are slightly more complicated.
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Theorem 1.4. (Stegenga, 1976, for real or antianalytic a; Janson-Peetre-Semmes,
1984; Tolokonnikov, 1987; Cima-Stegenga, 1987) The Toeplitz operator T, with
symbol a is bounded on H' if and only if a € L* and Qa € BMOg.

Theorem 1.5. (Janson-Peetre-Semmes, 1984; Tolokonnikov, 1987; Cima-Stegenga,
1987) The Hankel operator H, is bounded on H' if and only if Pra € BMO)y.

The purpose of the first part of the article is to give a new proof of Theo-
rem 1.5 together with a precise estimate of the operator norm of H, and to prove
the analogous result about the compactness of H,, that is, we prove the following
two theorems.

Theorem 1.6. The Hankel operator H, is bounded on H' if and only if Pia €
BMOieg, in which case

[Hollmi—mr < | PrallBMOy,

where A < B means that there are two positive numerical constants ¢1 and ca so
that ¢ < % < ¢o for all values of the independent variables in A and B.

Theorem 1.7. The Hankel operator H, is compact on H' if and only if Pia €
VMOieg.-

The second part of this article deals with spectral properties of Toeplitz
operators. The case of continuous symbols was recently studied in [14]. Here we
consider symbols that are not necessarily continuous. The motivation comes from
the well-known result on the Fredholm properties of Toeplitz operators on H?
(1 < p < oo) with @ € C + H>, due to Douglas [6] when p = 2. This suggests
the following theorem, which is indeed the best we can hope for because of the
differences in boundedness and compactness of the operators determined by the
underlying spaces H' and HP.

Theorem 1.8. Let a € V + H>® N BMOyog := V + (H> N BMOjg), where V =
C N VMOyg. Then the following conditions are equivalent:
(1) T, is Fredholm on H*, that is, ker T, and coker T, are both of finite dimen-

ston;
(2) a is invertible in the algebra V + H* N BMO)og;
(3) a is bounded away from zero, that is, there are € >0 and 6 > 0 such that
la(z)] > € forl—0<]z| <1,

where a(z) for z € D is defined via the harmonic extension—see (1) below; in this
case for any 1 —d <r <1

Ind T, := dimker T, — dim coker T, = —ind a,

where a,(¢) = a(r¢) for all { € T and ind a, is the winding number of the function
.
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2. Preliminaries

In this section we consider some (known) results from harmonic analysis. The
Poisson extension of f € L' at z € D is given by

g2
)= o [0 (1)

and the Szego projection of f at z by
L[ Q)
P = — .
/) 271 /11‘ ¢— zdc

For 1 < p < 400 and every f € LP the limit lim,_1_ f(r{) = f({) holds for
almost every ¢ € T and also in the L? sense. Since f(z) is a harmonic function of
z € D, it is also called the harmonic extension of f in D.

On the other hand, for 1 < p < 400 and every f € LP, the limit

Jim P f(rC)

exists for almost every ¢ € T and, when 1 < p < 400, this limit is equal to Pf(¢)
(where P is the Riesz projection) in both the almost everywhere sense and in
the LP sense. In the case p = 1, the limit Pf(¢) = lim,_,;_ Pf(r({) serves as the
definition of the function Pf which, as is well known, belongs to the space L'
of weak-L! functions. In all cases Pf(z) is an analytic function of z € D.

If1 <p<+4ooand f € LP, the Poisson extension of Pf € LP at every z € D

is equal to Pf(z2):
|Z|2
- 5 [ PrO =l
while if 1 <p < 400 and f € H?, then (obv10usly) Pf(() = f(¢) and

PIG) = 16) = o= [ 10Dl = o= [ L4

for every z € D.
We next consider the space of functions of bounded mean oscillation and its
important (logarithmic) subspaces. A function f is in BMO if f € L! and

11l = supﬁ / 1£(C) — frlldc] < +oo,

where the supremum is taken over all arcs I of T, f; = |[| J; £(Q)ld¢] and |I] is
the length of I. The space BMO is a Banach space under the norm ||f||pmo =
|7(0)] 4| |- We also have the space BMOA of analytic functions in BMO, defined
as BMOA = BMONH! = {f € BMO : f(n) = 0 for n < 0}.

It is well known that L> C BMO C LP for every p < +oo and that for every
f € BMO

- u Y o1 —z]? z
1= (sup [ 170 = FP = glacl) )
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The subspace VMO of BMO contains by definition all functions f € L! for
which )
tim sup = [17(0) = pliacl = o.
I

6—=0+71 |1<6

We also define VMOA = VMO NH'. The space VMO is the closure in the space
BMO of the set of all polynomials (or, equivalently, of all continuous functions).
Also, f € BMO belongs to VMO if and only if lim,_1_ || fr — f|lsmo = 0, where
the function f, is defined by f,.(¢) = f(r().

Somewhat less known are the spaces BMOj,z and VMO, and their variants
BMOA|yg and VMOA|,,. These are defined as follows. A function f is in BMOjeg
if f e L' and
log %

A 170 = fillact < +oe.

where, again, the supremum is taken over all arcs I of T. The space BMOjqg is a

o~

Banach space under the norm || f||Bmo,,, = [f(0)] + [|f||«x. We define BMOA)o; =
BMOog NH.
It is obvious that BMO,,g; € BMO. The following estimate

_ 5 2 1— |z 3
e = (suptor? = [ 170 = sIP=2glac)” @)

where f € BMO)q, requires a similar consideration as in the case of the space
BMO, starting with the analogue of the John-Nirenberg theorem. The proofs do
not seem to have been recorded anywhere but they are almost straightforward
and, in any case, these facts have been used many times in the literature.

The logarithmic Lipschitz space Lipiog is defined by

[[f[l4x = sup
I

Lipiog =< f:T—C : sup 10g%|f(§)—f(77)| <00y,
¢,meT I —nl

This is a space of continuous functions under the norm

~

4
171, = 1FO) + sup tog 1= 1£(C) — £l

¢,meT |<_ |

The space Lipiog is continuously imbedded in BMO),s and the main result of 9]
is:

BMOioe = {f+Pg : f,g € Lipiog} . (4)
In particular, if A € BMO)qg, there are f,g € Lipiog such that h = f 4+ Pg and

Hf”Liplog + ||g||Lip10g < CHh”BMOlog :

where c is a positive numerical constant.
The subspace VMO)os of BMO),, contains by definition all functions f € Lt
for which

4

log 7]
|

lim sup
0—=0+71 |11<5 |/

/I F(C) = filldc| = o.
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We also define VMOA|,; = VMO10g NH L. The following two results will be needed
several times.

Theorem 2.1. For the logarithmic VMO space, we have the following characteri-
zation:

VMOioe = {f+ Pg : f,g € lipiog}, (5)
where lipiog stands for the so-called vanishing logarithmic Lipschitz space defined
by

lipiog = {f € Lipiog : lim  sup 1ogL If(Q) = f(n)l = 0}-

6=0+|cpl<s  |C—n]
Theorem 2.2. For f € BMOyqg, the following conditions are equivalent:
(1) f € VMOiog;
(2) limn—>l HTnf - f”BMolog =0, where Tnf(C) = f(Cﬁ) forn,¢ € T;
(3) limy—q1— ||fr — fHBMolog =0, where f.(¢) = f(r¢) for ¢ € T.

The following descriptions are also useful:
{a € L : Qa € BMO\og} = Lipiog +H™ (6)

and
{a € L : Qa € VMOyog} = lipiog +H™. (7)

These can be verified by means of the characterizations in (4) and (5); for example,
ifa=14+h € lipiog +H>, then a € L™ and Qa = QI € VMO, and conversely if
a € L and Qa € VMO, then Qa = f + Pg for some f, g € lipiog, so Qa = Qf,
which implies that a — f € H* and we can write a = f + (a — f) € lipiog +H>.

For each arc I we define S(I) ={zeD:0<1—|z| < %, o € I}, called
the Carleson “square” with base I. A positive Borel measure p in D is called a
Carleson measure if

n(S(1))

sup ————=
r
where the supremum is taken over all arcs I of T. It is known that u is a Carleson
measure if and only if there is a constant ¢ so that

< 409,

[ [irerae) < o [iroma. rer ®)
and that, if ¢ is the smallest constant for which this inequality holds,
I
o up MED) )
r

In this connection, we have a function f € L! in BMO if and only if the Borel
measure |V f(2)[2(1 — |z]?)dm(z), where dm is the area measure, is a Carleson

measure and
1

1 = (s [ [ I9HERQ = Ryim) " (10)
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Similarly, f € L' is in VMO if and only if

lim sup |I|//9(I)|Vf 21— |2|)dm(z) = o0. (11)

6—=0+ 1 111<5

Of course, in the case of f € H! we may replace Vf(z) by f/(z) in the above
characterizations of BMO and VMO.

Analogously, for functions f in BMOg, we have

2471'

_ L :
e = (s 5[] wr@pa - Eane) oo

Note also that there exists a positive numerical constant ¢ so that for every f €
BMOA and every z € D

G < elflovolos =1 (13)

Conversely, there exists a positive numerical constant ¢ so that for every z € D
there exists an f € BMOA with

[fllBvMo = 1, |f(2)|

Also, if f € VMOA then

Y

clog (14)

2
1— |z

e, 1)

|z|—1— 10g ﬁ
Finally, we shall use the inequality

|<f, gl < clflallgllsymoa,

where the binary form (-,-) is defined by

(f.g) = lim — / 1(Qe@lde| = tim / FrO)g@)TdC.

r—1—

The Fefferman-Stein duality which is induced by this binary form says that BMOA
is isomorphic to (H')*. It is also true that, under the same binary form, H'! is
isomorphic to (VMOA)*.

3. Proof of Theorem 1.6

Proof. Before proceeding to the proof, note that the part a — Pya of a plays no
role in the Hankel operator H,. Indeed, for all analytic polynomials f the function
(a — Pya)J f is antianalytic and, hence, H,f = Hp,,f. We may thus suppose in
all that follows that ¢ = Pja or in other words that

a(n) =0, n <0. (16)
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We recall that BMOA is isomorphic to the dual space of H' and it is easy to
see that, formally at least, the dual operator to H, on H' is H, on BMOA. This
means that

(Haf,9) = (f,Hag)

for all analytic polynomials f and all g € BMOA. Hence, we need to prove that
H, is bounded on BMOA if and only if a € BMO),z and that

~

|HallBMoa—BMOA < |lalBMO,,,

under the assumption (16).
Sufficiency. Let a € BMOj,, satisfy (16) and take an arbitrary f € BMOA.
Then

1 [aQU@, L [H95Q
/ s

27i de = (—=z

Haf(z): C_Z _2_7”

where we set b(¢) = Ca(¢) and g(¢) = f(¢). It is obvious that b € BMOA,, with
[bllBMOL, = llallByoy, and that g € BMOA with [|lg]lsmo = [|f]|Bumo-

Throughout, the symbol ¢ denotes a numerical constant, not necessarily the
same at each occurrence. We have

(Haf)(s) = — /T b(¢)g(¢)

2mi Jp (¢ — 2)?

dg

_ 1 [(¢)(9(€) —g(2) proa il b(¢)
- 2m'/T ooz At )2m'/ﬂ~(§—z)2d<
1 [ Q GO iy,

2mi (C—2)?
Applying the Cauchy-Schwarz inequality together with (2) and (3), we get
b(¢) — b(2)|? g(¢) — g(2)|?
P < o [ POy [0 ) 4 gyt o)
T [¢—2] L (1
1
(1 —[2[2)2log” =

T[22

A

< cfplZlgll +clg(2) |’ (2)]*.

This, for every arc I of T, implies

! "(2)]2(1 — |2|?)dm(z
m//S(I)I(Haf) (2)2(1 — |2[2)dm(z)

1 // 1
— dm(z)
1) Jsay (1= |21?) log® 1=

1

1 2) — g(zn) PV (2)]2(1 — |2*)dm(z
+C|I|//9(I)|g() g(zn)[F 16 (2)|°(1 — |2|?)dm(2)

< bl gl

2i "(2)2(1 = |2|?)dm(z
+elgGol gy [ [ WERA P
—A+B+C, (17)
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where z; is the point in the middle of the internal side of S(I), defined by 1—|z7| =

% and ‘Zfl =midpoint of I.

Let us first estimate the term A. A direct calculation of the integral, using
polar coordinates, gives

1
A < e Il
1]
1

¢ —4 llallEuo, |1/ o (18)
lo m

I
—
o

Observing that |1 — z7z| =< |I| for all z € S(I) and considering the Borel measure
du(z) which is equal to |b/(2)|?(1—|z|?)dm(z) on S(I) and equal to zero on D\ S(I),
we find using (8) and (9) that

B o< dilf / |1_ZZ|2" BP0 e)dm(:)

19(¢) — g(=0)P?
< dltjsup ) [ 1 —z—<|2 acl
M(S(J))/ 21—
< esup——— [ [9(¢) —g(z1)| |dC]
VR P [¢—=?
w(S(J
< clg|2sup MOV (19)
g
Estimating (Iﬁi])) = ”(S(‘]‘)JTS(I))7 we observe that we need only consider arcs J
having nonempty intersection with 7. In the case |J| > |I|, & ‘(“])) < w8U)

1]
|J| < |I|, then J C 3I, where 3] is the arc with the same midpoint as I and with

length three times the length of I. Hence, in both cases we get using (12)

w(S(7)) ’
sup M < sup|J|// V()1 — [2)dm(2)

J JC3I

< CSuUp oo
JC3I 1og2 |4}’| I
1
<
< el
Therefore (19) implies
B < e—pp bl2lol?
log il
1
S CoTm lallBno,, 1/ 1 Bao- (20)

7
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Finally, (12) and (13) imply

¢ < clblillglEmo
< cllalBaon, I fIEmo- (21)

Now, estimates (18), (20) and (21) together with (17) imply
1
o [ Y @F Q- ) < clalyo,, | o
1) Js

and, taking the supremum over all arcs I and using (10),

[Hofll« < cllallBmoy,llflBMmo-

On the other hand,

TAOF < o [ HAQP) = ¢ [ @R
< o fra@tac)”( [ i)’
< cllalByolIvo < laluon, |7l

The last two estimates show that

[HofllBMo < cllallBmoy, I flIBMO

and hence

|HallBMOA—BMOA < cllallBMOy, -

Necessity, step 1. Here we make the a priori assumption that a € BMOjog (and,
that a satisfies (16)) and we set b(¢) = Ca(() as before.
If [b(0)| > 5]t Basoy,, then

Y

|HolllBrmo = |bllBmo
~ 1
> [b(0)] = §||b||BMolog

> cllal|Bro,,-

|Hal|BMMOA—BMOA

\%

If [5(0)] < 216l B0, > then [[b]l« > 3[|bl|Baro., and based on (12) we find an
arc I such that
2 4

log™ 17
el < cllbvo. <~ [ [ WEPO-lPne). 02

Through (14) we find an f € BMOA and the corresponding g(¢) = f(¢) so that

47

[fllemo = 1, clog —
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The trivial variant of inequality (17) together with the estimates (18), (20), (22)
and (23) imply

| HallBmoa—nmoa = I1Haf I3mo

= "(2)2(1 = |2|*)dm(z
i) L eGP Ryim)

Y

Y

1
= Ir os
log 7]
Hence, if |I] is smaller than a certain positive numerical constant we find that

|HallBMOA—BMOA > cllallBmo,, -

On the other hand, if |I] is larger than the same positive numerical constant, then

[ HollBmos—pmoa = [Hallldmo = bllEmo
1
> e [ [ WEPQ EPn)
1] S(I)
log? 4=
> e & 1]

[ [, R )

> cllalfyo,,-
We conclude that if a is assumed to be in BMOj,, and satisfy (16) then
|HallBMOA—BMOA > cllallBMmo,,,
and, by the usual duality,
[Hollm—m = cllallBymon,-

Lemma 3.1. If H, is bounded on H', then for every f € H' and all » < 1 we have
Ho, f=r(Hafr)r

Proof. The operator H,, is bounded on H! since a, is smooth. Verifying the
equality involves a straightforward calculation using Fourier series. O

Necessity, step 2. Applying the a priori estimate of step 1 to the functions a, we
have

[Ha, | = cllar]Broy,- (24)
The lemma of Fatou with (12) implies that

lallBmoy,, < liminf [|a,|Bymo,,,- (25)
r—1—

Now, Lemma 3.1 implies that for all f € H*

”Harf”Hl < THHafrHHl
< |\ Hallm g1 frllm
< | Hallar =gl £l
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and hence
[Ho Ml < |Halli—mn (26)
Relations (24), (25) and (26) complete the necessity part of Theorem 1.6. O

4. Proof of Theorem 1.7

Proof. Let a € VMO, satisfy (16). Let r < 1 and take f, € H' with || f,|| g2 < 1.
Choosing a subsequence, we may assume that there is a function f € H! so that
(fu)r — f in H'. Since H, is bounded, we get H,(fn), — H,f in H' and,
hence, H,, fn = T(Ha(fn)r)r — r(Huf), in H'. Therefore, H, is compact on
H'. Finally, ||H,, — Ho|l g~ < cllar — allBmo,,, — 0 as 7 — 1— and, hence, H,
is compact on H'.

Let a € BMOy,, satisfy (16). It is a consequence of the proof of Theorem 1.6
that H, is bounded on VMOA. Indeed, taking any f € VMOA, (17) together with
(12), (15), (18) and (20) imply that

— [2]*)dm(z
11<5|I|//5(1) (Haf)' (2)P(1 — [2[*)dm(z)

< ez lalvion, I IBo + clalvio,, sup Gl
log <5~ ¢ * 1.|1j<s log” {7y

— 0

as 0 — 0+. Therefore, (11) implies that H,f € VMOA.

Now, if we assume that H, is compact on H' then it is also compact on
VMOA, since H' is isomorphic to (VMOA)*. To get a contradiction we suppose
that a does not belong to VMOoe. Then there exist some 6 > 0 and r, — 1—
such that

lar, —allBmo,,, = 9.
This implies

IIH.

Qrp,

— Hy|lBmoy,, > <0

and we can choose f,, € H' with || f,.|| g2 < 1, so that
¢ < ||Ha,, fo—Hafnllm

ra (Ha(fa)r,),., = Hafallm

[(Hao(fa)r,),, — Hafallm +o(1)

”( (fn)rn) (Hafn)rnHHl + H(Hafn>Tn - HafTLHH1 + 0(1)
[Ha(fr)r, — HaanHl +[(Hafn)r, = Hafnllmr + o(1).

INIAN
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Taking a subsequence, if necessary, we may assume that there is a v € H' so that
H,f, — v in H'. Therefore

cd < NHa((fa)rn = )l + |(Hafn)r, = vr, L + [vr, — vll#n
+v = Hafnllar +o(1)

[Hao((fn)r, = fa)llar +o(1).

If we choose h,, € VMOA with ||h,|BmMoa = 1 and

CHHa((fn)Tn - fn)”Hl < <Ha((fn)rn - f’n«)vhn>7

we have

co

IN

(Ha((fa)ra = fn) hn) +0(1)
= ((fu)rn = fr, Hahn) +o(1)
= <fn7(Hahn)rn _Hahn> +0(1)

Since H, is compact on VMOA, taking a subsequence once more we see that there
is a w € VMOA so that H,h,, — w in VMOA. Hence

cd < (fo, (Hahn)r, —wyp,) + (fo, wr, —w) + (fn,w — Hohp) + o(1)
< cl(Hahn)r, — wr, [[BMO + cf|wr, —wl[Bmo + ¢llw — Hohn MO + 0(1)
< dlwr, —wllBmo + o(1)
= o(l).
This is false and hence a € VMOqg. O

5. Fredholmness of Toeplitz operators

We start by proving the equivalence of the criteria (2) and (3) for Fredholmness
in Theorem 1.8. We use the symbol y,, for the functions

xn(€) =¢", CeT.
Lemma 5.1. The functions in V + H>®° NBMOog can be approzimated in the space
L NBMOog by functions of the form xnh with n >0 and h € H>° N BMO)q,.

Proof. Let v+b €V + H>° NBMOjq,. According to (3) of Theorem 2.2, there are
trigonometric polynomials py such that ||v — ]91c||L°°ﬁBMolog — 0. Since
pr+0be {th :n >0, hEH‘X’ﬁBMO]Og},

the proof is complete. O

Proposition 5.2. Let a € V + H>* N BMOos. Then a is invertible in V + H> N
BMOyeg if and only if a is bounded away from zero, that is, there are € > 0 and
0 > 0 such that

la(z)| > € forl—4§<|z| <1.
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Proof. If a is invertible in V + H> N BMO),g, then it is obviously invertible in
C + H*> and thus bounded away from zero according to [7, Theorem 6.45].

By the preceding lemma, there are N — +o0o and corresponding hy €
H>® N BMOjog such that |la — xnhn|L>~rBMO,, — 0. By [7, Theorem 6.45],
hy is invertible in H> with N sufficiently large. As hy € BMOjg, so is its in-
verse. Thus, xnyhy is invertible in V + H N BMOieg. Now X—NhN_l —a lin
L>* NBMO),e and so a™! is in the closed space V + H> N BMOg. O

It remains to show that the two conditions above are indeed sufficent and
necessary for Fredholmness. This follows from Theorem 5.6 and Proposition 5.9
below.

Let us first consider two basic results for quite general symbols that are
needed in what follows.

Proposition 5.3. Let a,b € L>° N BMOos. Then

Tap =TTy + HaHE y (27>
Hap = ToHy + HaTE y (28>
where b(¢) = b(1/¢), ¢ € T.
Proof. See, e.g., [3, Proposition 2.14]. O

The next theorem gives a necessary condition for Fredholmness—cf. the well-
known theorem of Simonenko in the case of 1 < p < oc.

Theorem 5.4. Let a € L™ NBMOog. If T, is Fredholm, then
essinfeer [a(Q)] > 0;
in particular, the symbol is invertible in L N BMOjg.

Proof. Suppose that T, is Fredholm but essinfcer |a(¢)| = 0.

We consider a small € > 0 and decompose a = u+ tv into real and imaginary
parts. Define u. = max(u, €) + min(u, —e) and v, by the analogous formula. Now
the function a. = ue + ive is equal to 0 on a set of positive measure and |ja —
ac|lL>nBMO,, — 0 as € — 0+4. This implies that || T, — Ty, | — 0 as € — 0+ and,
hence, that T, is Fredholm if € is small enough.

If T,.f = P(acf) =0, then Q(acf) = acf — P(acf) = 0 on a set of positive
measure and, hence, Q(acf) = 0. Therefore, a.f = 0 and, if ¢ is small enough
(so that a. # 0) we find that f = 0 on a set of positive measure. This implies
that f = 0 and we conclude that T, is one-to-one. The same is true for the dual
operator (T, )* = Tj.. Therefore, T, is invertible.

Since T,, is invertible, there is some f so that T, f = P(acf) = 1. Then
Q(acf) = acf—Placf) = —1 on a set of positive measure and, hence, Q(a.f) = —1
which is clearly impossible. O
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Remark 5.5. We do not know whether Fredholmness of T,, when a € L*> and
Qa € BMOyg, implies invertibility of the symbol in this symbol class, which is
optimal in the sense of boundedness.

We next turn our attention to the relation between the symbol class V +
H> N BMOye and the space

A ={a € L®NBMOog : H, € K(H')}
according to the following result.
Theorem 5.6. A =V + H> N BMO),g.
Proof. If a = v + h for some v € V and h € H>® N BMOjg, then
H,=H, + Hj, = Hy,

which is compact according to Theorem 1.7. On the other hand, if H, is compact,
then Pra € VMO, according to Theorem 1.7. Therefore, (7) implies that

a € liplog +H>* NBMOjpg €V + H>* NBMO)gg . O
Proposition 5.7. The space Al is a closed subalgebra of L> N BMOqg.

Proof. The fact that the space is an algebra follows from Proposition 5.3. Suppose
that a, — a in L> N BMO,, with a, € Al. Then

”Ha — H,, ” = ”Ha—an || <c ”Pl (a - an)HBMolog -0
(see Theorem 1.6). Thus, H, is compact. 0
Corollary 5.8. The space V + H> N BMO\g is a Banach algebra.

Proof. This is immediate from the preceding two results. It can also be proved
directly. O

The proof of the following theorem is based on an argument of Bottcher and
Silberman [2, ch. IV] when 1 < p < co.

Proposition 5.9. Let a € A'. Then T, is Fredholm on H' if and only if a is
invertible in A".

Proof. If a is invertible, then formula (27) shows that T,-1 is a regularizer of Ty,
and so T, is Fredholm.

If T, is Fredholm, then Theorem 5.4 implies that a is invertible in L N
BMOjeg. Since T, has a regularizer, say R, we can write

RT,=1+K,
where K is compact. Therefore, by (28),
0=H -1 =T, Hy-1 + H,T5-1.
This implies
H,-+=-KH,—+ — RH,T;-

and, hence, a~! € AL O
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6. Index formula

For analytic symbols, the Fredholm properties of Toeplitz operators on H' are
well understood:

Theorem 6.1. For a € H>, the Toeplitz operator T, on H' is Fredholm if and
only if a is bounded away from zero, in which case

IndT, = —inda,.
Proof. See [15, Theorem 10]. O

Our aim in this section is to show that the preceding formula also holds for
invertible symbols in the algebra V + H> N BMO,. We start with a preliminary
lemma.

Lemma 6.2. If v €V and f € L°*° N BMO\qg, then
H(Uf>r - 'Urfr”L“’ﬂBMOlog —0 (29>
asr — 1.
Proof. From Lemma 2.61 of [3] it follows that ||(vf), — v fr| ., — 0. Therefore, it
is enough to show that ||(vf), — UTfTHBMObg — 0. Also, since
H(vf)r - v”‘f"‘”** — ||('Uf) ’Uf"‘”** + var - UTfTH** ?
and |jv — vr||BMOlOg — 0 according to Theorem 2.2, it is sufficient to prove that
[(f)r —vfell = 0.
For a function g : T — C, we write
gn(C) = 9(CM)
when ¢, € T. Then
1 1—r2
(f)r(Q) = (wfr)(C) = -
™

and we need to estimate the expression

(vy(€) = v(€)) fn(O)ldn]

T [1 =772

10g|1|
- / 0)r(Q) = W) = (0f)r — vf)1] ldC]

B logm
1]

1 1— 72
Ir|1_7"ﬁ|2

~i77 ) = o) 1,0l o]

logu/ /2” 1 1—r2
- 1 Jp2w [1]J; U=

~ (wy(0) v(9))fn(9)‘|d9||dnlldé“l-

((vn@) —o(C)fa(0)

(vy (€) = v(€)).fn(C)
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Write

(05 () = () f(C) — (%(9) ( ) fn(0)
)] + [ Un —v Ifn(C) - (vn - U)Ifn(9>]
+ [(Un — ) fy(0 ) (v (0) = v(0)) f(0)] = J1 + Jo+ J5.  (30)

k’gm i - J J. Js|)|dO||dn||d
- /277/ 1 |1 Ty (1l 12l + 1)) ld6l dnlldc]

Let us first consider J;. We have

log 4= 2r
og 111
Ju| 1d6||dn]|d
1] /2#/ 1] |1 —|2| 1] [db]|dn]|d]
£l / 1—12 1og7/
<o - [0g(€) = 0(C) — (v — v) 1] 1dc] ]
2r Jo 1= 1] ;" n
I£] /2” 1—¢2
< e.o) d
= 21 Jo |1—r@2 vy =2l |dnl
/1 / 12
= o ———5 llv =], ldn]
21 Jocponi<s 1—r72 "

4 e / 1—7°
7=z llvn — vl dnl.
21 Js<1—yl<2 |1 —r7? !

Now given € > 0, there is § > 0 (according to Theorem 2.2) and r < 1 such that
the above sum of two integrals can be estimated above by

£l oo Hfll
2w 2m

52 |vll..

Similarly the part made of J3 can be shown to be as small as we wish provided
that r is sufficiently close to 1.
It remains to consider J5. Note that

(vg = 0)1f5(C) = (v — v)1f4(0)
= (vy = 0)1(f5(Q) = (fy)1r) + (vy = v)1((fo)1 — [(9))

and that it is sufficient to consider only one of the terms in the equality above.
Since, by the choice of § > 0 and r < 1,

L2 192 log {17
— — dc||d
57 | T ol =i 1O = (il
L.,/ 1
< e Ly — ol il
2m 0<|1—n\<6|1_7°77|2 ! !

1—172
wf e ol
s<|i—n<2 1 —rm2 " !
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can be made arbitrarily small, the proof is complete. O
Theorem 6.3. If a,b €V + H>* N BMOjg, then

[(ab), — arbT”meBMolog —0asr—1

Proof. The statement follows easily from the preceding lemma and the fact (hg), =
hrgr for h,g € H*>. O

Proof of the index formula. According to Lemma 5.1 and the general theory of
Fredholm operators, there is a function y,h (n > 0 and h € H>) that has the
same index as a and generates a Toeplitz operator that is Fredholm of the same
index as Ty,. Using Theorems 6.1 and 6.3, and well-known properties of the index
(of Fredholm operators and of continuous functions), and [14, Lemma 5] saying

that Ind T}, = —n, we can conclude that for r sufficiently close to 1, we have
IndTy,p =IndT),, +IndT; (Atkinson)

= —n —indh,

= —ind((xn)rhr)

= —ind(xnh),

= —inda,. O
Proof of Theorem 1.8. Indeed this is an immediate consequence of Propositions 5.2
and 5.9, Theorem 5.6, and the preceding proof of the index formula. O
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