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Abstract. A conjugation C is antilinear isometric involution on a complex
Hilbert space H, and T ∈ B(H) is called complex symmetric if T ∗ = CTC for
some conjugation C. We use multiplicity theory to describe all conjugations
commuting with a fixed positive operator. We expand upon a result of Garcia
and Putinar to provide a factorization of complex symmetric operators which
is based on the polar decomposition.
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1. Introduction

An operator T on a complex Hilbert space H is called complex symmetric if T has
a symmetric matrix relative to some orthonormal basis for H. Complex symmet-
ric operators have been studied for many years in the finite dimensional setting.
Recently, S.R. Garcia and M. Putinar have proven interesting results for this class
of operators, primarily in the infinite dimensional case. They show that the class
is surprisingly large and includes the normal operators, the Hankel operators, the
compressed Toeplitz operators, and many integral operators. We refer the reader
to [2, 3, 4] for details, including historical comments and references.

The polar decomposition of a complex symmetric operator is described in
Theorem 2 of [4]. This result gives an outline of a description, up to unitary
equivalence, of all complex symmetric operators. Our main goal in this note is to
use spectral multiplicity theory to complete this description. Our discussion will
emphasize an operator algebraic point of view.

This paper is based in part on the first author’s Master’s Project.
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2. Terminology and preliminary results

Let B(H) be the algebra of bounded linear operators on the separable complex
Hilbert space H. Recall that a map A : H → H is antilinear if

A(αx + βy) = αAx+ βAy

for x, y ∈ H and α, β ∈ C. Let Ba(H) denote the collection of all bounded antilinear
operators on H. We will see in Proposition 2.2 a natural relation between B(H)
and Ba(H).

C is a conjugation if C ∈ Ba(H), C2 = I, and 〈Cx,Cy〉 = 〈y, x〉 ∀x, y ∈ H.
That is, C is an antilinear isometric involution. We say that T ∈ B(H) is C-
symmetric if T ∗ = CTC. (Equivalently, T ∗C = CT , or TC = CT ∗.) Let SC(H) =
{T ∈ B(H) : T ∗ = CTC} denote the collection of C-symmetric operators. T is
complex symmetric provided T ∈ SC(H) for some conjugation C. We note that
this definition agrees with the definition given in the introduction. In fact, (see
[3]), C ∈ Ba(H) is a conjugation iff there is a basis {en} that is fixed by C; so
C(

∑
αnen) =

∑
αnen for (αn) ∈ �2. Thus, if T ∈ B(H) and (Tij) is the matrix of

T relative to this basis, then T ∈ SC(H) iff Tij = Tji ∀i, j.
Remark 2.1. If C1 and C2 are conjugations on H, then there is a unitary operator
U ∈ B(H) so that the map T → UTU−1 carries SC1(H) onto SC2(H). (Thus
SC1(H) and SC2(H) are spatially linearly isomorphic.) In fact, if {en} and {fn} are
bases fixed by C1 and C2, respectively, one can take U to be defined by Uen = fn

∀n.
We now list some elementary structural results for SC(H) and Ba(H). Some

of these results appear at least implicitly in the work of Garcia and Putinar.

Proposition 2.2. If C is a conjugation on H, then Ba(H) = B(H)C. Further, the
map φ : T → TC is a linear isometry of B(H) onto Ba(H) with inverse given by
φ−1 : A→ AC for A ∈ Ba(H) .

Proof. Since C is an isometric bijection, if follows that φ is isometric. Clearly
T ∈ B(H) implies TC ∈ Ba(H). Also, if A ∈ Ba(H), then AC ∈ B(H) and
(AC)C = A, so φ is onto. The linearity of φ is trivial. �
Remark 2.3. Similar arguments show that ψ : T → CT is an antilinear isometry
of B(H) onto Ba(H). Also, note that while B(H) is an algebra, Ba(H) is only a
Banach space. If A,B ∈ Ba(H) then AB ∈ B(H), not Ba(H) .

Proposition 2.4. If C is a conjugation on H, then SC(H) is a weakly closed, *-
closed subspace of B(H) .

Proof. If T ∗ = CTC, then CT ∗C = C(CTC)C = T , so SC(H) is *-closed. Next,
if S, T ∈ SC(H) and β ∈ C, then C(S + βT )C = CSC + βCTC = S∗ + βT ∗

and SC(H) is a subspace. Now let {Tα} be a net in SC(H) so that Tα → T
weakly. For x, y ∈ H, 〈T ∗

αx, y〉 = 〈CTαCx, y〉 = 〈Cy, TαCx〉. Taking limits, we get
that 〈T ∗x, y〉 = 〈CTCx, y〉 = 〈Cy, TCx〉. Thus, T ∈ SC(H) and SC(H) is weakly
closed. �
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Note that if dimH ≥ 2, then SC(H) is not an algebra. To see this fact,
it suffices to choose two symmetric matrices whose product is not symmetric.
However, the next proposition shows that SC(H) does contain many algebras.
Given a family F of operators on B(H), let W(F) denote the weakly closed unital
algebra generated by F .

Proposition 2.5. If F is a commuting family of operators in SC(H), then W(F) ⊂
SC(H) .

Proof. We may as well assume that I ∈ F . Then W(F) is the weakly closed span
of all finite products of elements in F , so it will suffice to show that if A and B
are commuting operators in SC(H), then AB ∈ SC(H). This is easy. Suppose that
AC = CA∗, BC = CB∗ and AB = BA. Then

(BA)C = ABC = ACB∗ = CA∗B∗ = C(BA)∗,

and AB ∈ SC(H). �

We note that the conclusion of this proposition can be stengthened slightly.
Suppose F is as in Proposition 2.5 and let F∗ = {A∗ : A ∈ F}. Then the weak
closure of the subspace W(F)+W(F*) lies in SC(H). That is, the weakly closed, *-
closed subspace generated by W(F) is in SC(H). For the proof, apply Propositions
2.4 and 2.5.

3. Structure of complex symmetric operators

In [4, Theorem 2], the polar decompostion of a complex symmetric operator is
described. This theorem and the discussion following its proof yields the following
structure theorem.

Theorem 3.1. If C is a conjugation on H, then

SC(H) = {CJP : P is a positive operator and J is a conjugation
commuting with P}.

The factorization in Theorem 3.1 is related to polar decomposition as follows.
Garcia and Putinar show that if T ∈ SC(H), then T = CJP , where P is the
positive factor in the polar decomposition of T . If the kernel of T is trivial, then the
partially isometric factor in the polar decomposition of T is the unitary operator
CJ , while in general CJ is a unitary extension of the partially isometric factor.

Our goal now is to give a complete description of the conjugations that com-
mute with a fixed positive operator. We will use spectral multiplicity theory, so
we begin with some brief remarks on normal operators. If N ∈ B(H) is normal,
then there is a compactly supported measure ν and a function φ ∈ L∞(ν) so that
N ∼= Mφ, where Mφ denotes multiplication of φ on L2(ν) and ∼= denotes unitary
equivalence. As noted earlier, N is complex symmetric ([2]). In fact, if K is the
conjugation on L2(ν) given by Kf = f , then Mφ ∈ SK(L2(ν)). The following is
now immediate from Proposition 2.5.
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Corollary 3.2. If N is a normal operator in SC(H), then W({N,N∗, I}), the von
Neumann algebra generated by N , lies in SC(H).

Proof. Take F = {N,N∗, I} in Proposition 2.5. �

Next we describe the antilinear operators that commute with a normal oper-
ator.

Lemma 3.3. Suppose that K is a conjugation and that the normal operator N lies
in SK(H). Then {A ∈ Ba(H) : AN = NA} = {TK : T ∈ B(H) and TN = NT ∗}.
Proof. We apply Proposition 2.2. If A ∈ Ba(H), then A = TK for some T ∈ B(H).
If also AN = NA, then T (N∗K) = T (KN) = N(TK), so TN∗ = NT . Now,
reverse that argument. If T ∈ B(H) and TN∗ = NT , and if A = TK, then
A ∈ Ba(H) and AN = TKN = TN∗K = NTK = NA. �

Proposition 3.4. Suppose that P is a positive operator, that K is a conjugation,
and that P ∈ SK(H). Then J is a conjugation commuting with P iff J ∈ {UK :
U ∈ SK(H), U is unitary, and UP = PU}.
Proof. Suppose that J is a conjugation and that JP = PJ. By Lemma 3.3, J =
UK for some U ∈ B(H) with UP = PU . But then U = JK, so U is unitary. Also,
I = J2 = (UK)2 = U(KUK), so U∗ = KUK and U ∈ SK(H). It is easy to check
that the argument can be reversed to finish the proof. �

The last proposition says that to find the conjugations commuting with a
positive operator P , fix a conjugation K so that P ∈ SK(H) and then find the
unitary operators in SK(H) that commute with P . For this we apply spectral
multiplicity theory to P (see Chapter IX, Section 10 of [1]).

Suppose first that P has multiplicity one. Then there is a Borel measure µ
whose support is the spectrum of P so that P ∼= Pµ on L2(µ), where Pµ : f(t) →
tf(t) is multiplication by the independent variable. Then {Pµ}′, the commutant
of Pµ, is {Mφ : φ ∈ L∞(µ)} [1, Corollary 6.9]. Define the conjugation Kµ on L2(µ)
by Kµf = f , f ∈ L2(µ). Then Pµ ∈ SKµ(L2(µ)). In fact, Corollary 3.2 gives that
{Pµ}′ = W({Pµ}) ⊂ SKµ(L2(µ)). Note that U ∈ {Pµ}′ is unitary iff U = Mφ for
some φ ∈ L∞(µ) with |φ| = 1 µ a.e. Using Proposition 3.4 we see that

{J : JPµ = PµJ} = {MφKµ : φ ∈ L∞(µ) and |φ| = 1 µ a.e.}. (1)

Next we suppose that P has uniform multiplicity n, 1 < n ≤ ∞. Thus there
is a Borel measure µ so that P ∼= P

(n)
µ , where P (n)

µ is the direct sum of n copies of
Pµ, acting on L2(µ)(n), the direct sum of n copies of L2(µ). K(n)

µ is a conjugation
on L2(µ)(n), and P (n)

µ ∈ S
K

(n)
µ

(L2µ(n)). It is well-known (see [1, Proposition 6.1])

and easy to check that {P (n)
µ }′ = Mn({Pµ}′), the n × n matrices with entries in

{Pµ}′.
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Suppose that U ∈ {P (n)
µ }′ is unitary. Then U = (Mφij ), an n × n operator

matrix with φij ∈ L∞(µ) ∀i, j. Also U∗ = (Mφji
). An elementary matrix computa-

tion shows that K(n)
µ UK

(n)
µ = (KµMφijKµ) = (Mφij

). Thus U ∈ S
K

(n)
µ

(L2(µ)(n))

iff U∗ = (Mφij
) iff φji = φij ∀i, j. That is, U has a symmetric operator matrix.

If we now apply Proposition 3.4, we get the following result.

Proposition 3.5. J is a conjugation commuting with P
(n)
µ if and only if J has

the form J = (Mφij )K
(n)
µ , where (Mφij ) is a unitary operator matrix such that

φij = φji ∈ L∞(µ), ∀i, j.
Now consider any positive operator P . Following [1, Theorem 10.20], there

are mutually singular measures µ∞, µ1, µ2, · · · so that, up to unitary equivalence,

P =

( ∞⊕

n=1

P (n)
µn

)

⊕ P (∞)
µ∞ on H =

( ∞⊕

n=1

L2(µn)(n)

)

⊕ L2µ∞(∞) (2)

and

{P}′ =

( ∞⊕

n=1

{P (n)
µn

}′
)

⊕ {P (∞)
µ∞ }′. (3)

Then P ∈ SK(H), where K =
(⊕∞

n=1K
(n)
µn

)
⊕K(∞)

µ∞ . Also, J is a conjugation

commuting with P iff J = (
⊕∞

n=1 Jn) ⊕ J∞ is a direct sum of conjugations. For
each n, Jn = UnK

(n)
µn where Un is a symmetric unitary operator matrix described

in Proposition 3.5..
This completes the description, up to unitary equivalence, of the complex

symmetric operators.

We close with an observation of how the complex symmetric operators sit
between B(H) and the set of normal operators. First note that each unitary U
is the product of conjugations. This follows immediately from Theorem 3.1. So
suppose T ∈ B(H) has polar decomposition T = UP and that U is unitary. (For
example, suppose T is invertible.) Then T = CJP for some conjugations C and
J .

But if T is complex symmetric, Theorem 3.1 shows that the above factoriza-
tion can be achieved with the additional condition that J commutes with P .

If T is normal, we show that we can choose both C and J to commute with
P .

Proposition 3.6. {T ∈ B(H) : T is normal }
= {CJP : P is positive and C and J are conjugations commuting with P }.
Proof. Supose T is normal. If H0 = kerT , then H0 reduces T so if H1 = H⊥

0

and if T1 = T|H1
, then T1 is normal, so we have T1 = C1J1P for conjugations

C1, J1 on H1 with J1 commuting with P . Clearly C1J1 also commutes with P , so
C1PJ1 = C1J1P = PC1J1, and C1 commutes with P . Now extend C1 and J1 to
be conjugations on all of H.
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The other inclusion is trivial to check. �
Thus there is a natural sense in which the complex symmetric operators sit

halfway between the normal operators and B(H).
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