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Abstract. We study eigenvalues of positive definite kernels of L2 integral op-
erators on unbounded real intervals. Under the assumptions of integrability
and uniform continuity of the kernel on the diagonal the operator is compact
and trace class. We establish sharp results which determine the eigenvalue
distribution as a function of the smoothness of the kernel and its decay rate
at infinity along the diagonal. The main result deals at once with all possible
orders of differentiability and all possible rates of decay of the kernel. The
known optimal results for eigenvalue distribution of positive definite kernels
in compact intervals are particular cases. These results depend critically on a
2-parameter differential family of inequalities for the kernel which is a conse-
quence of positivity and is a differential generalization of diagonal dominance.
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1. Introduction and definitions

Given an interval I ⊂ R, a linear operator K : L2(I) → L2(I) is integral if there
exists a measurable function k(x, y) on I × I such that for all φ ∈ L2(I)

φ �−→ K(φ) =
∫

I

k(x, y)φ(y) dy (1.1)

almost everywhere. The function k(x, y) is called the kernel of K. If k(x, y) =
k(y, x) a.e. in I2 then K is self-adjoint. If in addition K satisfies the condition∫

I

∫
I

k(x, y)φ(y)φ(x) dx dy ≥ 0 (1.2)

for all φ ∈ L2(I), then it is a positive operator and the corresponding kernel k(x, y)
is called a positive definite kernel .
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This paper shall deal exclusively with positive integral operators and the
corresponding positive definite kernels. Its purpose is the study of the asymptotic
behavior of eigenvalues of K in the case where I is unbounded.

The case where I is a compact interval has been thoroughly studied. We next
describe what is known in this case.

Integral operators with L2(I2) kernels are compact. For self-adjoint operators
standard spectral methods yield the bilinear expansion for the kernel

k(x, y) =
∑
n≥1

λn φn(x)φn(y), (1.3)

where λn ∈ R are the eigenvalues of K repeated according to multiplicity, ordered
non-increasingly by absolute value and accumulating only at 0. The {φn}n≥1 are
the corresponding L2(I)-orthonormal eigenfunctions spanning the range of K and
equality is in the L2(I) sense. If the operator is positive, k(x, y) is a positive definite
kernel and λn ≥ 0, so the eigenvalue sequence {λn}n≥1 is non-increasing.

The asymptotic behavior of the eigenvalue sequence {λn}n≥1 is closely re-
lated to smoothness properties of the kernel k(x, y). If k is continuous, the classical
theorem of Mercer (see e.g. [22]) asserts that eigenfunctions are continuous, con-
vergence of the series (1.3) is absolute and uniform and the operator K is trace
class with

tr (K) =
∫

I

k(x, x) dx =
∑
n≥1

λn (1.4)

from which the basic eigenvalue estimate λn = o(1/n) is derived.
For general (not necessarily positive definite) kernels it was shown by Weyl

[23] that if k(x, y) is C1 then λn = o(1/n3/2). This estimate may be improved
when k is a positive definite kernel, as shown by Reade [16], to λn = o(1/n2). It
may also be shown that if a positive definite kernel k, in addition to continuity,
satisfies a Lipschitz condition of order α, 0 < α ≤ 1, then λn = O(1/n1+α),
and that this estimate is best possible as a power of n. More generally, positive
definite Cp kernels satisfy λn = o(1/np+1) [18]. In fact the optimal estimates are
slightly sharper: λn = o(1/np+1) for odd p and

∑∞
1 npλn < +∞ for even p; see

Ha [10] and Reade [19]. Cochran and Lukas [8] and Chang and Ha [7] derive the
corresponding results for the decay rate of eigenvalues when a suitable higher-order
derivative is Lipα.

Comparatively with the case where I is compact, little is known about eigen-
values of positive definite kernels in unbounded domains. There are fundamental
reasons for this: integral operators in unbounded domains are in general non-
compact, so there will be no pure eigenvalue spectrum but in general also a con-
tinuous part.

The abstract theory of eigenvalue distribution for integral operators uses op-
erator ideals and interpolation between Besov spaces; see e.g. Birman and Solomyak
[1], Gohberg-Krein [9], König [12], Pietsch [15] and references therein. While this
approach allows for more precise estimation of eigenvalue asymptotics (determin-
ing Lorentz space summability of {λn}), its results are not directly applicable
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to our context. In fact, most of the results are valid only in bounded domains;
for unbounded domains compactness of the operators must be externally forced.
Thus Pietsch [15] and Birman and Solomyak [1] achieve this with parametrically
weighted kernels. If the weights are sufficiently strong to ensure that the resulting
kernel and its derivatives decay sufficiently fast at ∞, eigenvalue estimates may
be derived.

It should however be noted that there are no results in this theory specifically
for positive definite kernels in unbounded domains. From what has been described
for the compact case, it is to be expected that restriction to this class of kernels
yields results which improve on the general estimates. Indeed, although a straight-
forward comparison is much more delicate than in the compact case (see, e.g.,
Pietsch’s 10-parameter eigenvalue theorem in [15]), this paper shows that one can
say much more in this case than follows from the general theory. For instance, we
show below that under very mild assumptions (integrability on the diagonal), pos-
itivity is sufficient to ensure compactness of the operator, thus totally dispensing
weight factors.

2. Preliminaries: classes Sn and An

The purpose of this paper is the study of the eigenvalue distribution of positive
integral operators in the case where I is an unbounded interval in R. For this
purpose, it will be essential to restrict to the following classes of kernels. Note first
of all that if k(x, y) is a continuous positive definite kernel then ∀x ∈ I k(x, x) ≥ 0
and ∀x, y ∈ I |k(x, y)|2 ≤ k(x, x)k(y, y); we refer to this property as the diagonal
dominance inequality for positive definite kernels.

In all this section I ⊂ R is only assumed to be a topologically closed interval;
the definitions and results below apply whether I is bounded or not.

Definition 2.1. A function k(x, y) : I2 → C is said to belong to class A0(I) if:
1. k(x, y) is continuous in I2;
2. k(x, x) ∈ L1(I);
3. k(x, x) is uniformly continuous in I.

Remark 2.2. If I is compact, a kernel is in A0(I) if and only if it is continuous in
I2. Less obviously, if I is unbounded then a positive definite kernel k ∈ A0(I) if and
only if k(x, y) is continuous in I2, k(x, x) ∈ L1(I) and k(x, x) → 0 as |x| → +∞;
see [2].

The following summarizes the essential properties of A0(I) positive definite
kernels. For compact I these follow from the classical Mercer theorem (see e.g.
[22]); for unbounded I they are proved in [2].

If k(x, y) is a positive definite kernel in class A0(I), then the associated
integral operator K defined by (1.1) is Hilbert-Schmidt, therefore compact, so it
has a pure eigenvalue spectrum {λn}n≥1 with λn ≥ 0 forming a non-increasing
sequence converging to 0. Eigenfunctions φn associated with nonzero eigenvalues
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are uniformly continuous and so vanish at infinity in I is unbounded. Moreover,
Mercer’s theorem holds in this wider context: the bilinear eigenseries (1.3) for the
kernel is absolutely and uniformly convergent and the operator K : L2(I) → L2(I)
is trace class with trace given by (1.4), whence the eigenvalue sequence satisfies
λn = o(1/n).

Class A0(I) seems to be the most general class of positive definite kernels
(in bounded or unbounded domains) for which Mercer’s theorem holds; see coun-
terexamples in [2] as well as more general results in Novitskii [13]. It is therefore
natural to adopt it as the starting point for the study of eigenvalue distribution of
positive definite kernels in unbounded domains.

Remark 2.3. Throughout this paper the diagonal {(x, y) ∈ I2 : y = x} will play a
prominent role in determining the behavior of k(x, y). We abbreviate reference to
this set simply as “the diagonal”.

The following definitions are useful in the study of properties arising from
differentiability of the kernel k. If x is a boundary point of I, a limit at x will mean
the one-sided limit as y → x with x ∈ I.

Definition 2.4. Let I ⊂ R be an interval. A function k : I2 → C is said to be of class
Sn(I) if, for every m1 = 0, 1, . . . n and m2 = 0, 1, . . . n, the partial derivatives
∂m1+m2

∂ym2∂xm1
k(x, y) exist and are continuous in I2.

Definition 2.5. Let n ≥ 1 be an integer. A function k : R2 → C is said to belong
to class An(I) if k ∈ Sn(I) and

k(x, y),
∂2

∂y∂x
k(x, y), . . .

∂2n

∂yn∂xn
k(x, y)

are in class A0(I).

Remark 2.6. Observe, in analogy with Remark 2.2, that if I is compact Sn(I) ⊂
An(I).

If I is compact the contents of Theorem 2.7 below are essentially proved by
Kadota [11]; the extension to unbounded I is proved in [5]. Here Hn(I) denotes
the Sobolev Hilbert space Wn,2(I).

Theorem 2.7. Let k(x, y) be a positive definite kernel in An(I) with eigenseries
expansion (1.3). Then the following statements hold.

1. If λi 	= 0, φi is in Cn(I) ∩Hn(I);
2. each km is a positive definite kernel in class An−m(I) and

km(x, y) =
∂2mk

∂ym∂xm
(x, y) =

∑
i≥1

λiφ
(m)
i (x)φ(m)

i (y) (2.1)

uniformly and absolutely in I2 for each m = 0, 1, . . . , n;
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3. the L2(I) integral operator Km with kernel km is trace class with

tr(Km) = Km =
∫

I

km(x, x) dx. (2.2)

Particular attention will be devoted, in § 4, to positive definite kernels in class
A0(I)∩Sn(I). Observe that, trivially from the definitions, An(I) ⊂ A0(I)∩Sn(I).

3. Preparatory results

We next present methods introduced by Ha [10] and Reade [16]. Although adap-
tations of these methods have been developed in [6] to the context of integral
operators defined in unbounded domains, in this paper we will only need results
relative to operators defined in the compact interval [0, L]. Proofs may be found
in these papers and will be omitted.

3.1. Best approximations

Let k be a continuous positive definite kernel in [0, L]2 and K be the associated
positive integral operator. It follows from the general theory of compact operators
in Hilbert space that, if R is the operator with kernel

∑N
n=1 λn φn(x)φn(y), then

R is the best approximation to K in the operator norm by symmetric operators of
rank ≤ N , the minimum distance being ‖K −R‖op = λn+1 (see e.g. Gohberg and
Krein [9], Theorem III.6.1). Also

∑N
n=1 λn φn(x)φn(y) is the best approximation

to k(x, t) by L2([0, L]) symmetric kernels of rank ≤ N which generate compact
integral operators, the minimum distance being (

∑∞
n=N+1 λ

2
n)1/2 (see [22] for a

version for integral operators or [9] for linear operators in Hilbert space).

Lemma 3.1. If k(x, y) is continuous in [0, L]2, then
∑N

n=1 λn φn(x)φn(y) is the best
approximation in the trace norm by L2([0, L]) symmetric kernels of rank ≤ N .

3.2. Square roots

Any positive operator K in Hilbert space has a unique positive square root S
[21]. This fact implies that if K is a positive operator with continuous kernel
k satisfying the bilinear eigenfunction expansion (1.3), the corresponding square
root operator S is an L2([0, L]) positive integral operator. Since K is trace class,
standard arguments imply that the positive definite kernel s(x, y) of S satisfies the
bilinear expansion

s(x, y) =
∑
n≥1

λ1/2
n φn(x)φn(y), (3.1)

where the last equality is in the sense of L2 convergence. In general, of course,
s(x, y) will not be continuous, so the corresponding operator S will not be trace
class. However, the following holds.
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Lemma 3.2. If k(x, y) is continuous in [0, L] and s(x, y) is the kernel of the corre-
sponding positive square root operator, then for any f ∈ L2([0, L])

Sf(x) =
∫ L

0

s(x, y)f(y) dy

is a continuous function of x.

3.3. A class of finite rank operators

We now define a class of finite rank operators to be used in the approximation of a
positive operator K with continuous kernel k defined in the interval [0, L], L > 0.

Let N > 0 be an integer and L > 0 be a positive real number. We define
RN,L to be the L2([0, L]) operator with kernel

rN,L(u, v) =
N

L

N∑
n=1

ψN,L
n (u)ψN,L

n (v),

where

ψN,L
n (x) =

{
1 if (n− 1) L

N < x ≤ n L
N

0 otherwise.

Clearly,RN,L is an orthogonal projection in L2([0, L]). It is thus a positive operator
of rank N with 0 ≤ RN,L ≤ I. Its spectrum is {0, 1}, the eigenvalue 1 having
multiplicity N and the corresponding orthogonal (unnormalized) eigenfunctions
being the ψN,L

n .
Given an operator K ∈ L2([0, L]) with continuous kernel k and square root

S, it follows that 0 ≤ SRN,LS ≤ K; since by Lemma 3.2 ([16], Lemma 3) SRN,LS
has a continuous kernel, it is trace class. It then follows (see [16], [6] for details)
that

‖K − SRN,LS‖tr =
N∑

n=1

N

L

∫ n L
N

(n−1) L
N

∫ n L
N

(n−1) L
N

(k(u, u) − k(u, v)) du dv (3.2)

=
N∑

n=1

N

L

∫ n L
N

(n−1) L
N

∫ n L
N

(n−1) L
N

(
k(u, u)− k(u, v) − k(v, u) + k(v, v)

2

)
du dv (3.3)

Equations (3.2) and (3.3) will be used in § 4 in the proof of our main results.

Remark 3.3. Since self-adjointness of the operator K implies conjugate symmetry
of the kernel, it is immediate to conclude that the contribution of the imaginary
part of k to the integral

∫ L

0

∫ L

0 rN,L(u, v)k(v, u) du dv is zero. The same observation
obviously applies to integration in any square symmetric with respect to the diag-
onal. Consequently, we may regard k(u, v) in (3.2) and (3.3) as being real-valued
without any loss of generality.
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3.4. Eigenvalues of symmetric derivatives

The evaluation of the rate of decay of eigenvalues of the operatorsKm,m a positive

integer, whose kernels are the symmetric derivatives km(x, y) =
∂2m

∂ym∂xm
k(x, y)

of the class Sm([0, L]) positive definite kernel k plays a key role in the study of
the eigenvalues of the operator K with kernel k (see e.g. [8], [10]). Recall that,
according to Theorem 2.7, km is a continuous positive definite kernel defined on
the compact set [0, L]2. Conventions and properties, in particular Mercer’s theorem
described in § 1, are thus applicable to km. A straightforward adaptation of a
result of Ha [10] for positive definite kernels defined in [0, 1]2 yields the following
upper bound for the eigenvalues of an operator K with positive definite kernel in
Sm([0, L]):

Lemma 3.4. Let k : [0, L]2 → C be a positive definite kernel in class Sm([0, L]),
m ≥ 1. Let {λn(k)}n∈N (resp. {λn(km)}n∈N) be the sequence of eigenvalues of the
integral operator with kernel k (resp. km). Then

λ2n(k) ≤ L2m

(
4
π2

)
λn(km)

(2n− 4m− 1)2m

for every n ≥ 2m+ 1.

Given a trace class kernel k, we define its N -tail Tk(N) =
∑∞

n=N+1 λn(k).
We now state and prove a useful consequence of Lemma 3.4.

Corollary 3.5. Let k : [0, L]2 → C be a positive definite kernel in class Sm([0, L]),
m ≥ 1. Then there exists N0 ∈ N and a real positive constant C such that

Tk(2N + 1) ≤ C

(
L

N

)2m

Tkm(N)

for N > N0.

Proof. According to Lemma 3.4 we may write, for every n > N0 = 2m+ 1,

λ2n(k) ≤ n2m

(2n− 4m− 1)2m
L2m 4

π2

λn(km)
n2m

≤ 1
4m

(
L

n

)2m 4
π2
λn(km)

=
C

2

(
L

n

)2m

λn(km),
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where C =
8

4mπ2
depends only on m. Since λn(k) and λn(km) are positive non-

increasing sequences, using the above inequalities we obtain

Tk(2N + 1) =
∞∑

n=2N+2

λn(k)

=
∞∑

n=N+1

λ2n(k) + λ2n+1(k) ≤ 2
∞∑

n=N+1

λ2n(k)

≤ 2
∞∑

n=N+1

C

2

(
L

n

)2m

λn(km)

= C L2m
∞∑

n=N+1

λn(km)
n2m

≤ C
L2m

N2m

∞∑
n=N+1

λn(km)

= C

(
L

N

)2m

Tkm(N)

for N > N0. This finishes the proof. �

4. Asymptotic distribution of eigenvalues

This section is devoted to the proof of our main results. We take without loss
of generality I = [0,+∞[ as our model unbounded interval; the adaptations to
other types of unbounded intervals are trivial. We mention however that the case
I = R is particularly significant in view of Fourier transforms, see Remark 4.19
and Corollary 4.20.

We begin by establishing some basic lemmas and definitions. Suppose k is a
positive definite kernel in class A0([0,+∞[). Let L > 0 and consider the restriction
kL of k to the compact square [0, L]2. In view of the definition of class A0(I), both
k and kL are positive definite kernels associated with trace class operators on the
corresponding intervals. Using the notation introduced in 3.4, we have:

Lemma 4.1. Let k ∈ A0([0,+∞[) and kL be the restriction of k to [0, L]2. Then
there is N0 ∈ N such that, for N > N0, we have

Tk(N) ≤ TkL(N) +
∫ ∞

L

k(x, x) dx.
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Proof. Since both K and KL are trace class operators we have by (1.4)
∞∑

n=1

λn(k) =
∫ ∞

0

k(x, x) dx =
∫ L

0

k(x, x) dx +
∫ ∞

L

k(x, x) dx

=
∞∑

n=1

λn(kL) +
∫ ∞

L

k(x, x) dx.

(4.1)

Suppose
∫ ∞

L k(x, x) dx = 0. Since k is continuous and non-negative along the
diagonal it follows that k(x, x) ≡ 0 for x ≥ L. Since k is positive definite, we have
by diagonal dominance |k(x, y)|2 ≤ k(x, x)k(y, y), and therefore the support of k
is contained in [0, L]2. Direct calculation then shows that the restriction to [0, L]
determines a mapping ϕn → ϕL

n from the set of eigenfunctions of k to the set of
eigenfunctions of kL which is one-to-one and preserves the associated eigenvalues
λn(k). Hence k and kL have the same spectrum (including multiplicities) and
Tk(N) = TkL(N) for allN . The same conclusion may be derived using the principle
of related operators ([12], [14]), since inclusion and truncation in this case act as a
relation between the operators K : L2([0,∞[) → L2([0,∞[) and KL : L2([0, L]) →
L2([0, L]), both of which are compact.

Suppose now
∫ ∞

L
k(x, x) dx > 0. Then (4.1) implies that

∑∞
n=1 λn(k) >∑∞

n=1 λn(kL). Thus there exists N0 ∈ N such that, for N > N0,
N∑

n=1

λn(k) ≥
N∑

n=1

λn(kL). (4.2)

From (4.1) and (4.2) we conclude that for N > N0

Tk(N) ≤ TkL(N) +
∫ ∞

L

k(x, x) dx,

finishing the proof. �
The following result is a central tool in the study of the decay rate of eigen-

values of a positive definite kernel k in class A0([0,+∞[) ∩ Sn([0,+∞[).

Lemma 4.2. Let β > 1, q > 0, A > 0, B > 0, x0 > 0, δ > 0 be real numbers.
Suppose f : [0,+∞[→ [0,+∞[ is a continuous function satisfying the condition∫ ∞

L f(x) dx ≤ B

Lβ−1
for L ≥ x0. Let R(L,N) be defined by

R(L,N) = A

(
L

N

)q

L+
∫ ∞

L

f(x) dx (4.3)

whenever
L

N
< δ and write γ =

(q + 1)β
q + β

. Then there exist N0 ∈ N, D > 0 and an

increasing sequence L(N) → +∞ such that L(N)/N is decreasing and convergent
to zero and such that the inequality

R(L(N), N) ≤ D

Nγ−1
(4.4)
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holds for N ≥ N0.

Proof. Define L(N) = Nθ with θ =
q

q + β
. Observe that, since 0 < θ < 1, L(N)

in an increasing sequence converging to +∞ and
L(N)
N

is a decreasing sequence

converging to 0. Choose N0 such that Nθ
0 = L(N0) > x0 and Nθ−1

0 =
L(N0)
N0

< δ.

Then L(N) > x0,
L(N)
N

< δ and
∫ ∞

L(N)
f(x) dx ≤ B

L(N)β−1
whenever N ≥ N0.

Thus, according to (4.3) we may write

R(L(N), N) = A

(
L(N)
N

)q

L(N) +
∫ ∞

L(N)

f(x) dx (4.5)

≤ AN (θ−1)q+θ +BNθ(1−β). (4.6)

Performing the corresponding calculations we derive from (4.6) that, for D =
A+B,

R(L(N), N) ≤ D

Nγ−1

for N ≥ N0, proving the statement. �
The optimality of the estimate provided by Lemma 4.2 is the issue of the

next result.

Proposition 4.3. Suppose that
∫ ∞

L f(x) dx ∼ 1/Lβ−1 as L→ +∞ while keeping the
remaining hypotheses of Lemma 4.2. Then, for any positive sequence L(N) such
that L(N)/N < δ, there exists a subsequence L(N ′) and constants N0, C > 0 such

that R(L(N ′), N ′) ≥ C

(N ′)γ−1
for N ′ ≥ N0. In particular, the exponent γ in (4.4)

cannot be improved for any such sequence L(N).

Proof. The assertion is trivially verified if L(N) does not converge to ∞. In this
case, L(N) admits a bounded subsequence L(N ′) < L0 for some L0 > 0 and we
have

R(L(N ′), N ′) = A

(
L(N ′)
N ′

)q

L(N ′) +
∫ ∞

L(N ′)
f(x) dx

≥
∫ ∞

L0

f(x) dx ≡ C > 0 (4.7)

since f is, by hypothesis, a non-negative continuous function and C = 0 would
imply f(x) = 0 for all x > L0, contradicting the hypothesis

∫ ∞
L f(x) dx ∼ 1/Lβ−1.

Since γ > 1, from (4.7) we immediately derive

R(L(N ′), N ′) ≥ C

(N ′)γ−1
for N ′ ≥ 1.

Suppose now that L(N) → +∞. From the hypothesis we derive, in particular,

that there exist constants b > 0, x0 > 0 such that
∫ ∞

L f(x) dx ≥ b

Lβ−1
whenever
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L ≥ x0. Since L(N) → +∞, we have L(N) > x0 for sufficiently large N and hence,
from (4.3),

R(L(N), N) = A

(
L(N)
N

)q

L(N) +
∫ ∞

L(N)

f(x) dx

≥ A

(
L(N)
N

)q

L(N) +
b

L(N)β−1
. (4.8)

Recalling the definition of θ and γ, we rewrite (4.8) in the form

Nγ−1R(L(N), N) ≥ A

(
L(N)
Nθ

)q+1

+ b

(
Nθ

L(N)

)β−1

. (4.9)

Suppose L(N ′) is a subsequence of L(N) such that
L(N ′)
(N ′)θ

converges either

to 0 or to +∞. Then from (4.9) we conclude that (N ′)γ−1R(L(N ′), N ′) → +∞,
which implies the assertion of the proposition. On the other hand, if L(N) does not

admit such a subsequence it follows that C1 <
L(N)
Nθ

< C2 for some C1, C2 > 0

and all sufficiently large N . From (4.9) we then derive that for sufficiently large N ,

say N ≥ N0, R(L(N), N) ≥ C

Nγ−1
for C = ACq+1

1 +b
(

1
C2

)β−1

, which completes

the proof. �

Remark 4.4. Notice that the condition
∫ ∞

L f(x) dx ≤ B

Lβ−1
for some B > 0 and

every L ≥ x0 > 0 is implied by the somewhat less general requirement f(x) ≤ B′

xβ

for all x ≥ x0 with B′ = B (β − 1). The hypothesis of Lemma 4.2 may thus be
seen as a generalized condition on the rate of decay of f(x) as x→ +∞. A similar
observation applies to the comparison of the hypothesis of Proposition 4.3 with

the condition f(x) ∼ 1
xβ

.

The following uniform continuity and Lipschitz conditions will be useful in
the sequence.

Definition 4.5. Let k : [0,+∞[→ C. We say that k(x, y) is uniformly continuous
with respect to y on the diagonal if for every ε > 0 there is δ > 0 such that
|k(x, x) − k(x, y)| < ε whenever |x− y| < δ.

Definition 4.6. Let k : [0,+∞[→ C and α ∈ ]0, 1]. We say that k(x, y) is α-Lipschitz
(written Lipα) with respect to y on the diagonal if there is a positive constant A
such that |k(x, x) − k(x, y)| ≤ A|x− y|α for every (x, y) ∈ [0,+∞[2.

Remark 4.7. It is clear that if k is Lipα with respect to y on the diagonal then it
is uniformly continuous with respect to y on the diagonal. It is also clear that each
of these conditions is implied by their respective counterpart on the plane. More
specifically, uniform continuity on [0,+∞[2 implies the condition in definition 4.5
and Lipα on [0,+∞[2 implies the condition in definition 4.6.
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Remark 4.8. If k is a positive definite kernel in class A0([0,+∞[), standard argu-
ments together with diagonal dominance and the fact that k(x, x) → 0 as x→ +∞
easily show that k is uniformly continuous on the diagonal [2] and, in particular,
satisfies the condition in definition 4.5.

Remark 4.9. It is easily seen that functions satisfying conjugate symmetry k(x, y)=
k(y, x) on [0,+∞[2 and the conditions of definitions 4.5 or 4.6 will automatically
satisfy the analogues of these with respect to the variable x. Properties of this kind

for the partial derivatives
∂k

∂x
,
∂k

∂y
can also be seen to arise from conjugate sym-

metry of k. Incidentally, none of these will play any relevant part in the sequence.

We are now ready to prove our main results. They describe how, for a kernel
in class A0([0,+∞[) ∩ Sn([0,+∞[) — and, in particular, in class An([0,+∞[) —
uniform continuity or Lipα continuity on the diagonal together with the rate of
decay of k(x, x) at infinity allow us to control the rate of decay of the eigenvalues.

Theorem 4.10. Let m ≥ 0 and suppose k(x, y) is a positive definite kernel in class
A0([0,+∞[) ∩ Sm([0,+∞[). Let {λn}n∈N be the sequence of eigenvalues of the
integral operator with kernel k. Then the following statements hold.
1.1 Suppose km(x, y) is uniformly continuous with respect to y on the diagonal.

Then:
i) If β > 1,

∫ ∞
L k(x, x) dx =O

(
1/Lβ−1

)
(resp.

∫ ∞
L k(x, x)dx = o

(
1/Lβ−1

)
)

as L → +∞ and γ =
(2m+ 1)β
2m+ β

, then λn = O (1/nγ) (resp. λn =

o(1/nγ)).
ii) If

∫ ∞
L
k(x, x) dx = O

(
1/Lβ−1

)
as L → +∞ for all β > 1, then λn =

o (1/nγ) for all γ < 2m+ 1.
iii) If k(x, x) has compact support, then λn = o

(
1/n2m+1

)
.

1.2 Suppose km(x, y) is Lipα with respect to y on the diagonal. Then:

i) If β>1,
∫ ∞

L k(x, x)dx = O
(
1/Lβ−1

)
as L→∞ and γ =

(2m+α+1)β
2m+ α+ β

,

then λn = O (1/nγ).
ii) If

∫ ∞
L
k(x, x) dx = O

(
1/Lβ−1

)
as L → +∞ for all β > 1, then λn =

o (1/nγ) for all γ < 2m+ α+ 1.
iii) If k(x, x) has compact support, then λn = O

(
1/n2m+α+1

)
.

2.1 Suppose km(x, y) is continuously differentiable with respect to x and that
∂km

∂x
is uniformly continuous with respect to y on the diagonal. Then:

i) If β>1,
∫ ∞

L
k(x, x)dx = o

(
1/Lβ−1

)
(resp.

∫ ∞
L
k(x, x) dx = o

(
1/Lβ−1

)
)

as L → +∞ and γ =
(2m+ 2)β
2m+ 1 + β

, then λn = O (1/nγ) (resp. λn =

o(1/nγ)).
ii) If

∫ ∞
L k(x, x) dx = O

(
1/Lβ−1

)
as L → +∞ for all β > 1, then λn =

o (1/nγ) for all γ < 2m+ 2.
iii) If k(x, x) has compact support, then λn = o

(
1/n2m+2

)
.
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2.2 Suppose km(x, y) is continuously differentiable with respect to x and that
∂km

∂x
is Lipα with respect to y on the diagonal. Then:

i) If β>1,
∫ ∞

L k(x, x)dx = O
(
1/Lβ−1

)
as L→∞ and γ =

(2m+α+2)β
2m+α+1+β

,

then λn = O (1/nγ).
ii) If

∫ ∞
L k(x, x) dx = O

(
1/Lβ−1

)
as L → +∞ for all β > 1, then λn =

o (1/nγ) for all γ < 2m+ α+ 2.
iii) If k(x, x) has compact support, then λn = O

(
1/n2m+α+2

)
.

Proof. Let m ≥ 0 and suppose k is a positive definite kernel in class A0([0,+∞[)∩
Sm([0,+∞[). Let kL be the restriction of k to the interval [0, L]2. By Lemma 4.1
there exists N0 ∈ N such that, for N > N0, we have

Tk(N) ≤ TkL(N) +
∫ ∞

L

k(x, x) dx. (4.10)

In particular, we may write

Tk(2N + 1) ≤ TkL(2N + 1) +
∫ ∞

L

k(x, x) dx. (4.11)

According to Corollary 3.5, inequality (4.11) implies, for m ≥ 1,

Tk(2N + 1) ≤ C

(
L

N

)2m

TkL
m

(N) +
∫ ∞

L

k(x, x) dx (4.12)

for some C > 0 and sufficiently large N .
For m ≥ 0 we now use the results of § 3 in the approximation of the operator

KL
m with kernel kL

m by finite rank operators. Let S be the square root of KL
m.

Defining RN,L as in § 3.3 and recalling (3.2) and (3.3), we have according to
Lemma 3.1

TkL
m

(N) ≤ ‖KL
m − SRN,LS‖tr

=
N∑

n=1

N

L

∫ n L
N

(n−1) L
N

∫ n L
N

(n−1) L
N

(
kL

m(u, u) − kL
m(u, v)

)
du dv (4.13)

=
1
2

N∑
n=1

N

L

∫ n L
N

(n−1) L
N

∫ n L
N

(n−1) L
N

(
kL

m(u, u) − kL
m(u, v) − kL

m(v, u) + kL
m(v, v)

)
du dv

(4.14)

where, according to Remark 3.3, we may without loss of generality regard kL
m as

being real valued.
We are now ready to prove statement 1.1 i). If m = 0 we have by hypothesis

γ = 1 and the assertion reduces to the already known fact that, for a kernel k in
class A0, λn(k) = o(1/n).

Suppose that m ≥ 1. Since by hypothesis km is in class A0([0,+∞[) ∩
Sm([0,+∞[) and is uniformly continuous with respect to y on the diagonal, for ev-
ery ε > 0 there exists δ > 0, independent of L, such that |kL

m(u, u)− kL
m(u, v)| < ε



32 Buescu and Paixão IEOT

for all u, v ∈ [0, L] satisfying |v − u| < δ. For every positive L and every posi-
tive integer N such that L/N < δ we then have, after performing the relevant
calculations from (4.13),

TkL
m

(N) ≤ ‖KL
m − SRN,LS‖tr ≤ N · N

L

(
L

N

)2

ε = L ε. (4.15)

Therefore, according to (4.12), we derive for N sufficiently large that

Tk(2N + 1) ≤ ε C

(
L

N

)2m

L+
∫ ∞

L

k(x, x) dx. (4.16)

We now use the hypothesis on the decay rate of k(x, x) at infinity. Suppose
there exist β > 1, B > 0, x0 > 0 such that

∫ ∞
L
k(x, x) dx ≤ B/Lβ−1 whenever

L ≥ x0. We recall Lemma 4.2 setting q = 2m and A = ε C and define a sequence of
finite rank operators SRN,LS by setting L = L(N) = Nθ with θ = 2m

2m+β . Recall,
from Lemma 4.2, that L(N) is an increasing sequence with L(N) → +∞ and such
that L(N)/N is decreasing and convergent to 0. Therefore, there exists N0 such
that L(N) > x0 and L(N)/N < δ for every N > N0. Therefore we derive from
(4.16) and Lemma 4.2 that, for sufficiently large N ,

Tk(2N + 1) ≤ ε C +B

Nγ−1
=

D

Nγ−1

where γ =
(2m+ 1)β
2m+ β

.

Now, if
∫ ∞

L
k(x, x) dx ≤ B/Lβ−1 whenever L ≥ x0, the above condition is

verified for some fixed D > 0, which implies that λn = O(1/nγ). If
∫ ∞

L
k(x, x) dx =

o(1/Lβ−1) as L→ ∞, the same condition holds for arbitrary D > 0 and we derive
in this case the stronger conclusion that λn = o(1/nγ). This finishes the proof of
statement 1.1 i).

Consider now the hypothesis of statement 1.2 i). Suppose km is Lipα with
respect to y on the diagonal. Choose L > 0 and N ∈ N. Then |u − v| < L/N for
all u, v ∈ [(n− 1) L

N , n L
N ]. Since km is Lipα, (4.13) implies

TkL
m

(N) ≤ ‖KL
m − SRN,LS‖tr ≤ A

(
L

N

)α

L. (4.17)

In the case m = 0, we derive from (4.10) and (4.17) that, for sufficiently large N ,

Tk(N) ≤ TkL(N) +
∫ ∞

L

k(x, x) dx

≤ A

(
L

N

)α

L+
∫ ∞

L

k(x, x) dx. (4.18)

Similarly, if m ≥ 1, we derive from (4.11), (4.12) and (4.17), for sufficiently large
N ,

Tk(2N + 1) ≤ AC

(
L

N

)2m+α

L+
∫ ∞

L

k(x, x) dx. (4.19)
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To use the hypothesis on the decay rate of k(x, x) at infinity we suppose, as in the
previous case, that there exist β > 1, B > 0 and x0 > 0 such that

∫ ∞
L k(x, x) dx ≤

B/Lβ−1 whenever L ≥ x0. We recall Lemma 4.2 taking q = 2m + α, δ = ∞,
and A replaced with AC in the case m > 1. As in the proof of 1.1 i), define a
sequence of finite rank operators SRN,LS taking L ≡ L(N) = Nθ, where in this
case θ = 2m+α

2m+α+β . According to Lemma 4.2 we then derive from (4.18) and (4.19)
that, for sufficiently large N ,

Tk(N) ≤ A+B

Nγ−1
if m = 0

and

Tk(2N + 1) ≤ AC +B

Nγ−1
if m ≥ 1,

where γ =
(2m+ α+ 1)β
2m+ α+ β

for m ≥ 0. These conditions together imply λn =

O(1/nγ), completing the proof of statement 1.2 i).
To prove statements 2.1. i) and 2.2 i) we start by rewriting the integrand in

(4.14) in a more convenient way. Suppose km is continuously differentiable with
respect to x in [0,+∞[2. We set

g(u, v) = kL
m(u, u) − kL

m(u, v) − kL
m(v, u) + kL

m(v, v). (4.20)

For u, v, t ∈ [0, L] define ϕ(t) = kL
m(t, v) − kL

m(t, u). Notice that ϕ is in C1([0, L])
and that g(u, v) = ϕ(v) − ϕ(u). Hence there exists t0 between u and v such that

g(u, v) = ϕ′(t0)(v − u)

=
(
∂kL

m

∂x
(t0, v) − ∂kL

m

∂x
(t0, u)

)
(v − u)

=
(
∂kL

m

∂x
(t0, v) − ∂kL

m

∂x
(t0, t0)

)
(v − u) +

(
∂kL

m

∂x
(t0, t0) − ∂kL

m

∂x
(t0, u)

)
(v − u)

(4.21)

We now prove statement 2.1 i). Suppose
∂km

∂x
is uniformly continuous with

respect to y on the diagonal. Then, for every ε > 0 there exists δ > 0, independent
of L, such that ∣∣∣∣∂k

L
m

∂x
(t0, v) − ∂kL

m

∂x
(t0, t0)

∣∣∣∣ < ε

for all t0, v ∈ [0, L] satisfying |v − t0| < δ. Then, for every positive L and every
N ∈ N such that L/N < δ, we derive from (4.21) that if |v − u| < L/N we have
g(u, v) ≤ 2 ε L/N , whence from (4.14)

TkL
m

(N) ≤ ε
L2

N
. (4.22)
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Therefore, it follows from (4.10), (4.11) and (4.22) that

Tk(N) ≤ TkL(N) +
∫ ∞

L

k(x, x) dx

≤ ε
L2

N
+

∫ ∞

L

k(x, x) dx, (4.23)

Tk(2N + 1) ≤ C

(
L

N

)2m

TkL
m

(N) +
∫ ∞

L

k(x, x) dx

≤ ε C

(
L

N

)2m+1

L+
∫ ∞

L

k(x, x) dx

(4.24)

for some C > 0, N sufficiently large and m ≥ 1.
Using the hypothesis on the decay rate of k(x, x) we now proceed as in the

proof of statement 1.1 i). Suppose there exist β > 1, B > 0, x0 > 0 such that∫ ∞
L k(x, x) dx ≤ B/Lβ−1 whenever L ≥ x0. Recall Lemma 4.2 with q = 2m + 1,
A = ε if m = 0, A = ε C if m ≥ 1. Define a sequence of finite rank operators
SRN,LS by setting L = L(N) = Nθ, where θ = 2m+1

2m+1+β . According to Lemma 4.2
we then derive from (4.23) and (4.24) that, for sufficiently large N ,

Tk(N) ≤ ε+B

Nγ−1
=

D1

Nγ−1
if m = 0

and

Tk(2N + 1) ≤ ε C +B

Nγ−1
=

D2

Nγ−1
if m ≥ 1

where γ =
(2m+ 2)β
2m+ 1 + β

.

Finally observe that if
∫ ∞

L
k(x, x) dx = O(1/Lβ−1) as L → +∞, the above

conditions are satisfied for fixed D1 and D2, which implies λn = O(1/nγ). If∫ ∞
L k(x, x) dx = o(1/Lβ−1) as L → +∞, the same conditions hold for arbitrary
D1 and D2, implying λn = o(1/nγ). This finishes the proof of statement 2.1 i).

We now focus on the proof of statement 2.2 i). Suppose
∂km

∂x
is continuous

on [0,+∞[2 and Lipα with respect to y on the diagonal, α ∈ ]0, 1]. Choose L ∈ R+

and N ∈ N. Then |u−v| < L/N for all u, v in [(n−1) L
N , n

L
N ], n = 1, . . . , N . Since

∂km

∂x
is Lipα with respect to y on the diagonal we derive from (4.20) and (4.21)

that

g(u, v) ≤ A

(
L

N

)1+α

and, from (4.14),

TkL
m

(N) ≤ A

(
L

N

)1+α

L. (4.25)
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Therefore, according to (4.10), (4.12) and (4.25) we have

Tk(N) ≤ TkL(N) +
∫ ∞

L

k(x, x) dx

≤ A

(
L

N

)1+α

L+
∫ ∞

L

k(x, x) dx, (4.26)

Tk(2N + 1) ≤ C

(
L

N

)2m

TkL
m

(N) +
∫ ∞

L

k(x, x) dx

≤ A

(
L

N

)2m+α+1

L+
∫ ∞

L

k(x, x) dx.

(4.27)

We proceed as in the proof of the previous statements. Using the hipothesis
on the decay rate of k(x, x) at infinity and taking q = 2m + α + 1 and replacing
A by AC if m ≥ 1, δ = ∞ in Lemma 4.2, we define the sequence of finite rank
operators SRN,LS by setting L = L(N) = Nθ, where θ = 2m+1+α

2m+1+α+β . Then, from
Lemma 4.2, (4.26) and (4.27), it follows that for sufficiently large N

Tk(N) ≤ A+B

Nγ−1
if m = 0

and

Tk(2N + 1) ≤ AC +B

Nγ−1
= if m ≥ 1

where γ =
(2m+ 1 + α)β
2m+ 1 + α+ β

. Both conditions imply λn = O(1/nγ), completing the

proof of statement 2.2 i).
We now prove statements 1.1 ii), 1.2 ii), 2.1 ii) and 2.2 ii). Notice that the

hypothesis on the decay rate of k(x, x), namely
∫ ∞

L k(x, x) dx = O(1/Lβ−1) as
L → +∞ for all β > 1, is common to these four statements. We concentrate on
the proof of 1.1 ii), which is based on the contents of statement 1.1 i). Suppose km

is uniformly continuous with respect to y on the diagonal and that
∫ ∞

L
k(x, x) dx =

O(1/Lβ−1) as L→ +∞ for all β > 1. Then, according to 1.1 i), λn = O(1/nγ) for
all γ < 2m+1. This fact actually implies the stronger statement that λn = o(1/nγ)
for every γ < 2m+ 1. In fact, if there were γ0 < 2m+ 1 such that nγ0λn → C for
some C > 0, then λn would not be O(1/nγ) for γ0 < γ < 2m+1, contradicting the
previous result. Thus under this hypothesis λn = o(1/nγ) for every γ < 2m + 1,
proving statement 1.1. ii).

The proofs of statements 1.2 ii), 2.1 ii) and 2.2 ii) are derived in the exact
same way respectively from 1.2 i), 2.1 i) and 2.2 i), so details are omitted.

Finally, we prove statements 1.1 iii), 1.2 iii), 2.1 iii) and 2.2 iii). Notice that the
hypothesis that k(x, x) has compact support is common to these four statements.
We concentrate on the proof of 1.1 iii). For m = 0 we have γ = 1 and the common
assertion reduces to the already known fact that for a positive definite kernel
k in A0([0,+∞[), λn(k) = o(1/n). Let then m ≥ 1. Choose L > 0 such that
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supp k(x, x) ⊂ [0, L]; with this choice we obviously have
∫ +∞

L
k(x, x) dx = 0. Fix

L and proceed as in the proof of 1.1 i), considering (4.11), (4.12), (4.13), (4.15),
(4.16). From this last equation we derive in this case that

Tk(2N + 1) ≤ ε C

(
L

N

)2m

L

for sufficiently large N . Since L and C are fixed and ε > 0 is arbitrary, this
implies Tk(2N + 1) = o(1/N2m) as N → +∞. For m ≥ 0 it then follows that
λn = o(1/n2m+1), as asserted.

To prove 1.2 iii) we fix L as above and proceed as in the proof of 1.2 i),
writing (4.10), (4.11), (4.12), (4.13), (4.17), (4.18) and (4.19). From the last two
equations we derive in this case that

Tk(N) ≤ A

(
L

N

)α

L,

Tk(2N + 1) ≤ AC

(
L

N

)2m+α

L

for N sufficiently large and m ≥ 1. Since A, C and L are fixed, it follows that
λn = O(1/n2m+α+1) for m ≥ 0, as asserted.

The proof of 2.1. iii) follows along the same lines. We fix L as above and
proceed as in the proof of 2.1 i), considering (4.10), (4.11), (4.12),(4.14), (4.20),
(4.21), (4.22), (4.23) and (4.24). The last two equations yield in this case

Tk(N) ≤ ε
L2

N
,

Tk(2N + 1) ≤ ε C

(
L

N

)2m+1

L

for N sufficiently large and m ≥ 1. Since C and L are fixed and ε is arbitrary this
implies that λn = o(1/n2m+α+1), for m ≥ 0, as asserted.

Finally, to prove 2.2.iii) we fix L as above and proceed as in the proof of
2.2.i), writing (4.10), (4.11), (4.12),(4.14), (4.20), (4.21), (4.25), (4.26) and (4.27).
The last two equations yield

Tk(N) ≤ A

(
L

N

)1+α

L,

Tk(2N + 1) ≤ AC

(
L

N

)2m+α+1

L

for N sufficiently large and m ≥ 1. Since A, C and L are fixed, it follows that
λn = O(1/n2m+α+2) for m ≥ 0, as asserted. This finishes the proof. �

Corollary 4.11. Suppose k(x, y) is a positive definite kernel in A0([0,+∞[). Sup-
pose furthermore that k is of class C∞([0,∞[2) and that km is uniformly con-
tinuous with respect to y on the diagonal for every m ∈ N. Let {λn}n∈N be
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the sequence of eigenvalues of the integral operator with kernel k. If β > 1 and∫ ∞
L
k(x, x) dx = O(1/Lβ−1) as L→ +∞, then λn = o (1/nγ) for all γ < β.

Proof. According to statement 1.1 i) of Theorem 4.10, λn = o (1/nγ) for every γ

of the form γ =
(2m+ 1)β
2m+ β

with m ≥ 0. Since, for fixed β, lim
m→∞

(2m+ 1)β
2m+ β

= β,

an argument similar to the one used in the proof of statement 1.1 ii) implies that
λn = o (1/nγ) for all γ < β. �
Remark 4.12. Observe that Corollary 4.11 cannot be improved, since its assertion
is not true for γ = β even in the weaker form λn = O

(
1/nβ

)
, as the counterexample

λn = log n/nγ shows. A similar observation can be applied to statements 1.1 ii),
1.2 ii), 2.1 ii) and 2.2 ii) of Theorem 4.10.

Remark 4.13. As a consequence of Remark 4.8 it is immediate to recognize that
the assertion of Corollary 4.11 is valid, in particular, for positive definite kernels
lying in class Am for all m ≥ 0.

Corollary 4.14. Let k(x, y) be a positive definite kernel in class A0([0,+∞[). Sup-
pose k is of class Cp in [0,+∞[2 and that the partial derivatives up to order p
are uniformly continuous with respect to y on the diagonal, and let {λn}n∈N be
the sequence of eigenvalues of the integral operator with kernel k. If β > 1 and∫ ∞

L
k(x, x) dx = O(1/Lβ−1) (resp.

∫ ∞
L
k(x, x) dx = o(1/Lβ−1)) as L→ +∞, then

λn = O (1/nγ) (resp. λn = o (1/nγ) ) for γ =
(p+ 1)β
p+ β

.

Proof. For p even (resp. p odd) the hypotheses are easily seen to imply those of
statement 1.1 i) (resp. 1.2.i)) of Theorem 4.10. Setting p = 2m (resp. p = 2m+ 1)
yields the result. �
Corollary 4.15. Let k(x, y) be a positive definite kernel in class A0([0,+∞[). Sup-
pose k is of class Cp in [0,+∞[2 and that the partial derivatives up to order
p are satisfy an α-Lipschitz condition with respect to y on the diagonal and let
{λn}n∈N be the sequence of eigenvalues of the integral operator with kernel k. If
β > 1 and

∫ ∞
L k(x, x) dx = O(1/Lβ−1) as L → +∞, then λn = O (1/nγ) for

γ =
(p+ 1 + α)β
p+ α+ β

.

Proof. For p even (resp. p odd) the hypotheses are easily seen to imply those of
statements 2.1 i) and 2.2 i) in Theorem 4.10. Setting p = 2m (resp. p = 2m + 1)
yields the result. �
Remark 4.16. A few interesting observations can be made from the study of lim-
iting cases in the formulas for the exponent γ given by Theorem 4.10.

Suppose m and α are fixed and consider the parameter β which controls the
rate of decay of the kernel k along the diagonal for 1 < β < +∞.

If β → +∞, the limiting values obtained for γ from formulas in items i)
of statements 1.1, 1.2, 2.1 and 2.2 of Theorem 4.10 coincide with the exponent
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determining the bound for the decay rate of eigenvalues given in items ii) and
iii) of the corresponding statements. These values ultimately reflect the fact that,
in the case of kernels decaying rapidly on the diagonal and, in particular, in the
case of kernels with compact support, the regularity assumed for k determines the
upper bound for the decay rate exponent of eigenvalues.

The limiting case m → +∞ is the subject of corollary 4.11 and is, in a way,
symmetric to the case above. It shows that operators with indefinitely differen-
tiable kernels have eigenvalue distributions whose decay rate exponent bound is
determined by the decay rate exponent of k along the diagonal.

For fixed m and β we finally observe that, in consonance with the interpre-
tation of α as an index of intermediate differentiability, the limiting cases α = 0
and α = 1 in statements 1.2 and 2.2 produce the corresponding expected upper
bounds for the decay rate exponent γ given by statements 1.1 and 2.1.

Remark 4.17. Some observations are relevant to the discussion of the hypothesis
of Theorem 4.10.

We first note that, as indeed in the definition of class A0, the essential require-
ments on the behavior of k in the hypothesis of Theorem 4.10 may be restricted
to the diagonal with no consequence on the proofs, a fact which is not apparent
in the previous literature.

Secondly, observe that, in view of Remark 4.9 and conjugate symmetry of
kernel k(x, y), the hypothesis on uniform and Lipschitz continuity with respect to
y on the diagonal assumed for partial derivatives of k could have been replaced
with similar hypothesis with respect to x on the diagonal for conveniently chosen
partial derivatives of k. Stronger conditions not specifying the variable x or y can
naturally be imposed but with no advantage to the proofs.

Finally we note that uniform continuity requirements, which trivially derive
from the Sn condition in the compact domain case, must be explicitly imposed in
the case of unbounded domains.

Remark 4.18. Clearly, the last assertions (items iii)) of statements 1.1, 1.2, 2.1
and 2.2 in Theorem 4.10 bear a direct connection to the formally identical results
known for positive trace class operators defined on a compact interval, namely
those which apply to Cp or Cp+α kernels described in § 1. In fact, if transcribed to
the case of kernels defined on compact domains, these assertions require somewhat
weaker (yet sufficient) versions of the above referred conditions (see Remark 4.17).

The first part of the proof of Lemma 4.1 clarifies this connection by estab-
lishing the equivalence of the study of eigenvalues of the operator with compactly
supported kernel k defined on [0,∞[2 and the operator whose kernel is the restric-
tion of k to a square [0, L]2 containing the support of k. The fact that the steps
taken in our proofs of the referred assertions collapse into (a combination of) the
proofs in [16], [8] and [7] can be seen as a consequence of this equivalence.

On the other hand, the same authors show that the results obtained in this
case are optimal. This is done by explicitly constructing kernels verifying the re-
quired assumptions of differentiability and Lipschitz continuity whose eigenvalues
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attain the bounds for decay rate established by the theorems. The results in The-
orem 4.10 are thus known to be optimal in the limit cases corresponding to com-
pactly supported kernels. These facts and the contents of Proposition 4.3 strongly
suggest that the remaining statements in Theorem 4.10 are also optimal.

Remark 4.19. Our results are stated and proved for the unbounded interval I =
[0,+∞[ for convenience only. They are valid, with the obvious rephrasing, for L2(I)
integral operators K and respective positive definite kernels k(x, y) for the other
types of unbounded intervals in R.

Of particular significance (see below) is the case where I = R. In this case we
are dealing with L2(R) positive definite kernels; class A0(R) kernels are continuous
in R2, with k(x, x) ∈ L1(R) and k(x, x) → 0 as |x| → +∞. All the results and
proofs carry through simply by replacing the required asymptotic behavior of
k(x, x) as x→ +∞ by the corresponding requirement as |x| → +∞.

There is a close connection between positive definiteness of a continuous
L2(R) kernel k(x, y) and that of its Fourier transform k̂(ν1, ν2). More specifically,
it is possible to show that if k is in class A0(R) as defined in Remark 4.19, then its
“rotated” Fourier transform k̃(ν1, ν2) = k̂(ν1,−ν2) is a positive definite kernel with
the same eigenvalues λn as k and whose associated eigenfunctions are the Fourier
transforms of the corresponding eigenfunctions of k. Moreover, if k1/2(x, x) ∈
L1(R) then the L2(R) integral operator K̃ with kernel k̃ is trace class with the
same trace as K; see [3] for details.

If k is in class A0(R), a sufficient condition for k1/2(x, x) ∈ L1(R) may be
formulated in terms of the asymptotic behavior of k(x, x) as k(x, x) = O(1/xβ)
for some β > 2. The following result is an immediate consequence of Corollaries
4.14 and 4.15 and Remark 4.4.

Corollary 4.20. Suppose k(x, y) is a positive definite kernel in class A0(R) with
k(x, x) = O(1/xβ) as |x| → +∞ for some β > 1 and let {λn}n∈N be the sequence
of eigenvalues of the integral operator with kernel k with associated eigenfunctions
φn. Let k̂(ν1, ν2) be the double Fourier transform of k(x, y), k̃(ν1, ν2) = k̂(ν1,−ν2)
and φ̂n be the Fourier transform of φn. Then the following statements hold.

(i) k̃ is a positive definite kernel with L2(R) eigenfunction expansion

k̃(ν1, ν2) =
∑
n≥1

λn φ̂n(ν1) φ̂n(ν2). (4.28)

(ii) If k is of class Cp(R) and the partial derivatives up to order p are uniformly

continuous on the diagonal, then λn = O(1/nγ), where γ =
(p+ 1)β
p+ β

.

(iii) If k is of class Cp(R) and the partial derivatives up to order p satisfy an α-

Lipschitz condition on the diagonal, then λn = O(1/nγ) with γ =
(p+1+α)β
p+α+β

.

If β > 2 we have, in addition, that k̃ is in class A0(R), the series (4.28) is abso-
lutely and uniformly convergent and the operator K̃ : L2(R) → L2(R) with kernel
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k̃ is trace class with

tr K̃ = tr K =
∫ +∞

−∞
k(x, x) dx =

∫ +∞

−∞
k̃(ν, ν) dν =

∑
n≥1

λn.

Proof. The hypothesis imply that k is a Mercer-like kernel. Then statements i), ii)
and iii) follow, in view of remark 4.4, from corollaries 4.14 and 4.15 and propositions
4.1 and 4.2 in [3]. The hypothesis that k(x, x) = O(1/|x|β) for some β > 2 implies,
in addition, that k1/2(x, x) ∈ L1(R), from which the last statement derives by
direct application of theorem 4.4 in [3].

Remark 4.21. It is clearly seen that all conclusions in corollary 4.20 still hold if
the hypothesis that k : R2 → C be a continuous positive definite kernel satisfying
k(x, x) = O(1/|x|β) as |x| → +∞ for some β > 1 is replaced with the assumption
that k is a Mercer-like kernel defined on R2 satisfying

∫ ∞
L
k(x, x) dx = O

(
1/Lβ−1

)
for some β > 1 and if condition β > 2 is replaced with the hypothesis that
k1/2(x, x) ∈ L1(R) or, more generally, that k(x, y) ∈ L1(R2). Once again the
version presented, although somewhat weaker, underlines how the behavior of the
kernel on the diagonal controls events.
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