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Abstract. Let AL2
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1. Introduction and statement of main result

Let D be the unit disc in C and dλ be its Lebesgue measure. For a subharmonic
function φ : D → R, let L2

φ(D) be the Hilbert space of measurable functions f on
D such that

‖f‖L2
φ

:=
(∫

D

|f |2e−2φdλ
) 1

2
< +∞

Let AL2
φ(D) be the closed subspace of L2

φ(D) consisting of analytic functions. Let
Pφ be the orthogonal projection of L2

φ(D) onto AL2
φ(D) :

Pφg(z) :=
∫

D

Kφ(z, w)g(w)e−2φ(w)dλ

where Kφ is the reproduced kernel of Pφ. Let L∞
φ (D) be the space of measurable

functions f on D such that e−φf ∈ L∞(D) and H∞
φ (D) be the subspace of L∞(D)
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consisting of analytic functions. Given f ∈ L2(D), it is possible to define, for some
weights φ, the Hankel operator Hf on H∞

φ (D) by

Hfg = fg − Pφ(fg)

For certain subharmonic functions φ on D, already defined on C by Oleinik[14]
and Oleinik-Perel’man [15], Lin and Rochberg [7] find necessary and sufficient
conditions involving f such that the Hankel operator Hf is bounded or compact
on AL2

φ(D). Our aim is to estimate the essential norm of Hf :

‖Hf‖e := inf{‖Hf −K‖ : K compact operator}
The first estimate was established by Hartman-Adamyan-Arov-Krein for the Hardy
space (see [2]).

Theorem 1.1. Let f ∈ L∞(∂D) and Hf be the Hankel operator defined on the
Hardy space H2(D) by Hfg = fg − S(fg) where S is the Szegö projection on
L2(∂D) onto H2(D). Then

‖Hf‖e = inf{‖Hf −K‖ : K compact Hankel operator}
= distL∞(∂D)(f, C(∂D) +H∞(D))

Later Lin and Rochberg [6] proved similar results for the Hankel operator on the
weighted Bergman space AL2(D, (1 − |z|2)sdλ), s > −1.

Theorem 1.2. Let f ∈ L2(D). Then
(1) ‖Hf‖e ∼ inf{‖Hf −K‖ : K is compact Hankel operator}
(2) ‖Hf‖e∼distBDA(f, V DA), where distBDA(f, V DA)=infh∈VDA ‖f−h‖BDA.

Similar results for the Hankel operator on the Bergman space of strongly pseudo-
convex domains in Cn were proved in [1].

The subject of this paper is to prove the corresponding version for Hankel
operator on the Bergman space AL2

φ(D) for some class of subharmonic functions
φ on D introduced by Oleinik [14] and Oleinik-Perel’man [15].

Definition 1.3. For φ ∈ C2(D) and ∆φ > 0 put τ(z) := (∆φ(z))−1/2 where ∆ is
the Laplace operator. We call φ ∈ D if the following conditions hold.
(1) ∃ C1 > 0 such that |τ(z) − τ(w)| ≤ C1|z − w| ∀z, w ∈ D

(2) ∃ C2 > 0 such that τ(z) ≤ C2(1 − |z|) ∀z ∈ D

(3) ∃ 0 < C3 < 1 and a > 0 such that τ(z) ≤ τ(w)+C3 |z−w| for |z−w| > aτ(w).

Some examples of functions in class D are as follows :
(i) φ1(z) = −A

2 log(1−|z|2), A > 2. The corresponding weight e−2φ1 is the standard
weight (1 − |z|2)A for A > 2.
(ii) φ2(z) = 1

2

(−A log(1−|z|2)+ B
(1−|z|2)

)
, A ≥ 0, B > 0. The corresponding weight

e−2φ2 is the exponential weight (1 − |z|2)Ae−B/(1−|z|2), A ≥ 0, B > 0.
(iii) φ1 + h and φ2 + h where φ1 and φ2 are as in (i) and (ii) respectively and
h ∈ C2(D) can be any harmonic function on D. Let α ∈]0, 1

16 min(C−1
1 , C−1

2 )[
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fixed. For z ∈ D and f measurable on D, let

Fα(z) := inf
{( 1

|D(ατ(z))|)
∫

D(ατ(z))

|f − k|2dλ
)1/2

: k analytic on D(ατ(z))
}

where D(ατ(z)) := {w ∈ D, |w− z| ≤ ατ(z)} and |D(ατ(z))| = λ(D(ατ(z))). The
function space BDAα(D), bounded distance to analytic, is defined by

BDAα(D) = {f : sup
z∈D

Fα(z) < +∞}

The function space VDAα(D), vanishing distance to analytic, is defined by

VDAα(D) = {f : lim sup
|z|→1

Fα(z) = 0}

In theorem 1.2 the function spaces BDA and VDA are defined with respect to
hyperbolic discs D(z) with fixed raduis. For f ∈ BDAα(D) let ‖f‖BDAα :=
supz∈D

Fα(z). The main result is the following theorem.

Theorem 1.4 (Main Theorem). Let f ∈ L2(D) and φ ∈ D. Suppose that H∞
φ (D)

is dense on AL2
φ(D). Let Hf defined on H∞

φ (D) by Hfg = fg − Pφ(fg). Then

(1) ‖Hf‖e ∼ inf{‖Hf −K‖ : K compact Hankel operator},
(2) ‖Hf‖e ∼ infh∈V DAα ‖f − h‖BDAα for some α ∈]0, 1

16 min(C−1
1 , C−1

2 )[.

On Bergman space with weight φs(z) = s
2 log(1 − |z|2) (s > 2), the explicit

formula of the reproduced kernel or its local behaviour play a crucial role in the
estimates . Generally in AL2

φ(D) the reproduced kernel Kφ(z, w) is not explicit.
Using Hörmander’s estimates for ∂̄ operator on L2

φ(D) [4], Lin and Rochberg [7]
constructed an extremal function kw(z) ∈ AL2

φ(D) which play role of Kφ(z, w)
in local estimates and have the same behaviour as Kφ(z, w) at the boundary. In
our case, we will modify this construction to obtain a family (kw)w∈∂D for which
kw(z) converge to zero at each point z ∈ D as w goes to ∂D. Instead of the
usual Hörmander’s estimates for ∂̄ operator we use the L2 estimates for ∂̄ ◦ µ for
some function µ, introduced by Ohsawa-Takegoshi [9] and generalized by Ohsawa
[10,11,12,13]. In the sequel the letter C design a constant which may change values
in estimates but independently of main variables.

2. Preliminary results

Let µ be a locally finite nonnegative Borel measure on the unit disk D, dλ
be the area measure on D and φD → R be subharmonic function. Let L2

φ,µ(D) be
the space of all measurable functions f on D such that

‖f‖φ,µ =
(∫

D

|f |2e−2φdµ
)1/2

<∞

Let L2
φ(D) denote L2

φ,dλ(D) and AL2
φ(D) be the closed subspace of L2

φ(D) consisting
of analytic functions.
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Definition 2.1. µ is called a Carleson measure on AL2
φ(D) if the inclusion map

from AL2
φ(D) to L2

φ,µ(D) is a bounded linear map.

Definition 2.2. µ is called a vanishing Carleson measure on AL2
φ(D) if the inclusion

map from AL2
φ(D) to L2

φ,µ(D) is a compact linear map.

Necessary and sufficient conditions for which µ is a Carleson measure or a vanishing
Carleson measure are given by the following theorems.

Theorem 2.3. Let φ ∈ D. Then µ is a Carleson measure if and only if there are
C > 0 and α ∈]0, 1

16 min(C−1
1 , C−1

2 )[ such that

sup
w∈D

1
τ(w)2

µ{z ∈ D : |z − w| ≤ ατ(w)} ≤ C

Proof. See Theorem 2.4 of [7]. �

Theorem 2.4. Let φ ∈ D. Then µ is a vanishing Carleson measure if and only if
there exists a constant α ∈]0, 1

16 min(C−1
1 , C−1

2 )[ such that

lim sup
|w|→1

1
τ(w)2

µ{z ∈ D : |z − w| ≤ ατ(w)} = 0

Proof. See Theorem 2.9 in [7]. �

Lemma 2.5. Let φ ∈ D. There exists a sequence (zj) ⊂ D such that

(1) zj /∈ D(ατ(zk)), j �= k,
(2) ∪jD(ατ(zj)) = D,
(3) D̃(ατ(zj) ⊂ D(3ατ(zj)), where

D̃(ατ(zj) = ∪z∈D(ατ(zj))D(ατ(z)), j = 1, 2, . . .

(4) {D(3ατ(zj))} is a covering of D with multiplicity N .

Proof. See Lemma of covering in [14]. �

Lemma 2.6. Let Ω be a domain in complex plane. Let φ be a real valued function
in C2(Ω) such that ∆φ > 0. Then for every measurable function f on Ω satisfying
the condition ∫

Ω

|f |2
∆φ

e−2φdλ <∞

there exists u ∈ L2
φ(Ω) such that ∂̄u = f and

∫

Ω

|u|2e−2φdλ ≤
∫

Ω

|f |2
∆φ

e−2φdλ.

Proof. See Theorem 2.2.1
′
in [4]. �

The key Lemma for estimates of the essential norm of Hf is the following.
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Lemma 2.7 (Key Lemma). Let φ ∈ D and suppose that H∞
φ (D) is dense in AL2

φ(D).
Then for each w ∈ D, there exists an analytic function kw(z) ∈ H∞

φ (D) satisfying
the following conditions.

(1) ‖kw‖L2
φ
≤ C,

(2) kw(z) → 0 as |w| → 1 for every z ∈ D,
(3) there exists γ0 ∈]0, 1/8[ such that

|kw(z)|2e−2φ(z) ≥ C

τ(w)2
, for |z − w| ≤ γ0βτ(w),

where β = min(C−1
1 , C−1

2 )/2 and the constants C’s in (1) and (3) are independent
of w.

The existence of analytic functions satisfying (1) and (3) of lemma 2.7 was proved
in [14] for C and in [7] for D using L2 estimates of ∂̄ operator (lemma 2.4). The key
point for the proof of lemma 2.5 is the replacement, in the ∂̄-equation, of ∂̄ by ∂̄
composed with a scalar function on the right. These are the famous L2-estimates
of Ohsawa-Takegoshi [9] for ∂̄ ◦ µ operator. They introduced a way of producing
the curvature term without the contribution of the metric. This is impossible by
the usual L2-estimates of Hörmander for ∂̄ operator. This fact is explained by Siu
in [16]. Here, we state the L2 existence theorem for ∂̄ ◦ µ operator on Ω ⊂⊂ C.

Proposition 2.8. Let Ψ and η are C2 functions on Ω, equipped with the usual
metric, such that η > 0 and bounded on Ω. Suppose that

η∆Ψ − ∆η − η−1|dη|2 ≥ c(z)

everywhere on Ω for some positive measurable function c(z) on Ω. Then for every
function f ∈ L2

Ψ(Ω) there exists g ∈ L2
Ψ(Ω) such that ∂̄(

√
ηg) = f and

∫

Ω

|g|2e−2Ψdλ ≤
∫

Ω

|f |2
c(z)

e−2Ψdλ

provided that the right integral is finite.

Proof. See Theorem 1.7 in [11] or Proposition 3.1 in [3]. �

For the proof of key lemma 2.7 we need the following two lemmas.

Lemma 2.9. Let φ ∈ D. Let β = min(C−1
1 , C−1

2 )/2 where C1 and C2 are the
constants of φ in Definition 1.3. For any fixed w ∈ D, let ρ(w) = βτ(w) and Φ
be a function analytic in |z − w| ≤ ρ(w) and continuous to the boundary such
that u := ReΦ = φ on the circle |z − w| = ρ(w). Then 0 ≤ u(z) − φ(z) ≤ β2 for
|z − w| ≤ ρ(w).

Proof. See Lemma 1 and lemma 2 of [15]. �
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Lemma 2.10. Let φ ∈ D. For z and w in D let ηw(z) = δ2ρ(w)2 + |z − w|2 where
ρ(w) = βτ(w). There exist δ > 0 and C > 0 such that if φw(z) := φ(z)− 5

4 log ηw(z)
then for all z, w in D we have

ηw(z)∆φw(z) − ∆ηw(z) − |dηw(z)|2
ηw(z)

≥ C.

Proof. An easy computation shows that
5ηw
4

∆c log ηw =
5δ2ρ(w)2

4ηw
,∆cηw = 1 and

|∂ηw|2
ηw

=
|z − w|2
ηw

where ∆c =
∂2

∂z∂̄z
is the complex Laplacian. Hence

5ηw
4

∆c log ηw + ∆cηw +
|∂ηw|2
ηw

=
5δ2ρ(w)2

4ηw
+ 1 +

|z − w|2
ηw

=
δ2ρ(w)2

4ηw
+ 2 ≤ 9

4

Let b > max(a, 9β−1(1 − C2
3 )−1/2) and δ > 3(1 + bC1β)β−1. If |z − w| > bρ(w),

|z − w|2∆cφ(z) =
|z − w|2

4
∆φ(z)

≥ |z − w|2
4(τ(w) + C3|z − w|)2

≥ 1
4(b−1β−1 + C3)2

≥ 1

4(9b−2β−2 + C2
3

9 )
>

9
4

hence

ηw∆cφw − ∆cηw − |∂ηw|2
ηw

≥ ηw∆cφ− 9
4

≥ |z − w|2∆cφ− 9
4

≥ 1

4(9b−2β−2 + C2
3

9 )
− 9

4
> 0

Now if |z − w| ≤ bρ(w),

δ2ρ(w)2∆cφ(z) =
δ2ρ(w)2

4
∆φ(z)

≥ δ2ρ(w)2

4(τ(w) + C1|z − w|)2

≥ δ2β2

4(1 + bC1β)2
>

9
4
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hence

ηw∆cφw − ∆cηw − |∂ηw|2
ηw

≥ ηw∆cφ− 9
4

≥ δ2ρ(w)2∆cφ− 9
4

≥ δ2β2

4(1 + bC1β)2
− 9

4
> 0

Since ∆ = 4∆c and |dη| = 2|∂ηw|, the lemma follows. �

2.1. Proof of the Key lemma

Proof. For any fixed w ∈ D, let the function γ(z) = θ(|z − w|/ρ(w)), where θ ∈
C∞(R), 0 ≤ θ(t) ≤ 1, θ(t) = 1 for 0 ≤ t ≤ 1/2, θ(t) = 0 for t ≥ 1 and |θ′

(t)| ≤ 3.
Let us consider the function the function

Fw(z) = γ(z)eΦ(z) − (z − w)
√
ηw(z)gw(z)

where ηw(z) = δ2ρ(w)2 + |z − w|2 and Φ as in Lemma 2.9. The function gw is
chosen in such manner that ∂̄Fw = 0 on D. For gw we obtain the ∂̄ ◦√ηw equation

∂(
√
ηwgw)
∂z̄

(z) = (z − w)−1 ∂γ(z)
∂z̄

eΦ(z) ≡ h(z) (2.1)

It’s clear that h is a smooth function with support in Iw := {ρ(w)/2 ≤ |z − w| ≤
ρ(w)}. Let δ be as in Lemma as in Lemma 2.10 and for z ∈ D let

φw(z) = φ(z) − 5
4

log ηw(z)

Then by lemma 2.10 there exists constant C > 0 such that

ηw(z)∆φw(z) − ∆ηw(z) − |dηw(z)|2
ηw(z)

≥ C (2.2)

Now applying Proposition 2.8 for φw, we obtain a solution gw of (2.1) such that
∫

D

|gw(z)|2e−2φw(z)dλ(z) ≤ 1
C

∫

D

|h(z)|2e−2φw(z)dλ(z)

≤ C

∫

Iw

|(z − w)−1 ∂γ

∂z̄
(z)eΦ(z)|2e−2φw(z)dλ(z)

≤ C

∫

Iw

1
ρ(w)4

ρ(w)5e2u−2φdλ

≤ Cρ(w)3, since u− φ ≤ β2.
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Now let us bound the L2
φ norm of Fw.

‖Fw‖2
L2

φ
=

∫

D

|Fw(z)|2e−2φ(z)

≤ 2
(∫

D

γ2(z)e2u(z)−2φ(z)dλ+
∫

D

|(z − w)|2ηw(z)|gw(z)|2e−2φ(z)dλ
)

≤ 2
(∫

|z−w|≤ρ(w)

γ2(z)e2u(z)−2φ(z)dλ+
∫

D

η2
w(z)|gw(z)|2e−2φ(z)dλ

)

≤ Cρ(w)2 + 2
∫

D

η−1/2
w (z)|gw(z)|2e−2φw(z)dλ

≤ Cρ(w)2 +
2

δρ(w)

∫

D

|gw(z)|2e−2φw(z)dλ

≤ Cρ(w)2.

Now let us bound |Fw(z)| below on |z −w| ≤ γρ(w) for some γ > 0 which will be
chosen later. If |z − w| ≤ ρ(w)/2, then γ(z) ≡ 1, therefore

|Fw(z)|2 = e2u(z)|1 − (z − w)
√
ηwgw(z)e−Φ(z)|2

Consequently, it is sufficient to bound |(z − w)
√
ηwgw(z)e−Φ(z)| above with an

upper bound less than 1. Since h ≡ 0 for |z−w| ≤ ρ(w)/2, the function η1/2
w gwe

−Φ

is analytic in |z − w| ≤ ρ(w)/2. Put Iz := {ξ ∈ D : 2ρ(w)/8 ≤ |ξ − z| ≤ 3ρ(w)/8}.
For γ0 ∈]0, 1

8 [ and |z − w| ≤ γ0ρ(w), apply the Cauchy formula to η1/2
w gwe

−Φ on
the circle |ξ − z| = t and then integrate both side with respect to t from 2ρ(w)/8
to 3ρ(w)/8, we obtain

|η1/2
w gwe

−Φ|(z) ≤ 8
ρ(w)

.
1
2π

∫

Iz

∣∣∣η
1/2
w (ξ)gw(ξ)e−Φ(ξ)

ξ − z

∣∣∣dλ(ξ)

≤ 8
ρ(w)

.1
2
π
.

8
2ρ(w)

∫

Iz

|η1/2
w (ξ)gw(ξ)e−Φ(z)|dλ(ξ)

=
16

πρ(w)2

∫

Iz

1
|ξ − w| |(ξ − w)η1/2

w (ξ)gw(ξ)|e−u(ξ)dλ(ξ)

≤ 16
πρ(w)2

.
8

ρ(w)

∫

Iz

|(ξ − w)η1/2
w (ξ)gw(ξ)|e−u(ξ)dλ(ξ)

≤ 48√
πρ(w)2

(∫

Iz

|(ξ − w)η1/2
w (ξ)gw(ξ)|2e−2u(ξ)dλ(ξ)

)1/2

≤ 48√
πρ(w)2

(∫

Iz

η2
w(ξ)|gw(ξ)|2e−2u(ξ)dλ(ξ)

)1/2

.
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Thus

|η1/2
w gwe

−Φ|(z) ≤ 48√
πρ(w)2

(∫

Iz

η2
w(ξ)|gw(ξ)|2e−2φ(ξ)dλ(ξ)

)1/2

(since φ− u ≤ 0)

≤ 48√
πρ(w)2

.
√
Cρ(w)

=
48

√
C√
π

.
1

ρ(w)
.

Now choose γ0 ∈]0, 1/8[ such that 48
√
Cγ0√
π

< 1. Then for |z−w| ≤ γ0ρ(w) we have

|(z − w)
√
ηw(z)gw(z)e−Φ(z)| ≤ γ0ρ(w)

48
√
C√
π

.
1

ρ(w)
< 1.

Therefore for |z − w| ≤ γ0ρ(w) = γ0βτ(w), we have

|Fw(z)|2e−2φ(z) ≥ Ce2u(z)−2φ(z) ≥ C

since u− φ ≥ 0 by Lemma 2.9.

For w ∈ D fixed and z ∈ D let

fw(z) =
Fw(z)
ρ(w)

.

Then fw satisfies the properties
(i) ‖fw‖L2

φ
≤ C,

(ii) ∃ γ0 ∈]0, 1/8[ such that |fw(z)|2e−2φ(z) ≥ C/ρ(w)2 for |z − w| ≤ γ0βτ(w).

Now we show that fw(z) → 0 as |w| → 1 at each z ∈ D. Since

fw(z) =
1

ρ(w)
θ(
|z − w|
ρ(w)

)eΦ(z) − (z − w)
√
δ2ρ(w)2 + |z − w|2 gw(z)

ρ(w)

and |z−w| > ρ(w) if |w| ∼ 1, then θ( |z−w|
ρ(w) ) = 0. Hence we need only to show that

lim
|w|→1

gw(z)
ρ(w)

= 0
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Since
√
ηwgw is analytic near z and ηw has an uniform upper bound in z and w,

by mean value inequality

|η1/2
w (z)gw(z)| ≤ C

τ(z)2

∫

D(z,τ(z)/4C1)

|η1/2
w (ξ)g(ξ)|dλ(ξ)

≤ C

τ(z)2
(∫

D(z,τ(z)/4C1)

|gw(ξ)|2e−2φw(ξ)dλ(ξ)
)1/2

×
(∫

D(z,τ(z)/4C1)

e2φ(ξ)

ηw(ξ)5/2
dλ(ξ)

)1/2

≤ C

τ(z)2
ρ(w)

√
ρ(w)

(∫

D(z,τ(z)/4C1)

e2φ(ξ)

|ξ − w|5 dλ(ξ)
)1/2

≤ C

τ(z)2
ρ(w)

√
ρ(w)τ(z)−3/2 sup

ξ∈D(z,τ(z)/4C1)

e2φ(ξ)

since the two inequalities |ξ−w| ≥ ||ξ−z|−|z−w|| and C1|z−w| ≥ |τ(z)−τ(w)| ≥
τ(z)/2 if |w| ∼ 1 show |ξ−w| ≥ τ(z)/4C1. Since η1/2

w (z) ≥ |z−w| for all w, z ∈ D

we conclude that τ(w)−1gw(z) → 0 as |w| → 1. Thus fw(z) → 0 as |w| → 1.

Finally we show that we can choose fw in H∞
φ (D). Since H∞

φ (D) is dense in
AL2

φ(D), for any fixed w there exists a sequence fnw ∈ H∞
φ (D) such that ‖fnw −

fw‖L2
φ
→ 0 as n→ ∞. Since φ is continuous in D by the mean value theorem and

the Hölder inequality, fnw(z) → fw(z) uniformly on compact subset of D. Then
there exists a constant N1(w) > 0 such that when n > N1(w) we have

|e−φ(z)fnw(z) − e−φ(z)fw(z)| < 1
2
(

C

τ(w)2
)1/2 for|z − w| ≤ γ0βτ(w),

where C and γ0 are constants as in (ii). Hence

|e−φ(z)fnw(z)| ≥ |e−φ(z)fw(z)| − 1
2
(

C

τ(w)2
)1/2

=
1
2
(

C

τ(w)2
)1/2 forn > N1(w) and |z − w| ≤ γ0βτ(w).

Also, since ‖fnw − fw‖L2
φ
→ 0 as n→ ∞, there exists another constant N2(w) > 0

such that when n > N2(w) we have

‖fnw − fw‖L2
φ
≤ τ(w)

Let N(w) = max(N1(w), N2(w)) + 1. We define kw(z) by

kw(z) = fN(w)
w (z)
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Then kw ∈ H∞
φ (D) and satisfies the condition (1) and (3) of Lemma 2.5. By the

mean value theorem and Cauchy-Schwarz inequality we obtain

|fN(w)
w (z) − fw(z)| ≤ C

τ(z)2

∫

D(z,τ(z)/4)

|fN(w)
w (ξ) − fw(ξ)|dλ(ξ)

≤ C(z)τ(w) sup
ξ∈D(z,τ(z)/4)

eφ(ξ)

Hence |kw(z)| ≤ B(z)τ(w)+ |fw(z)| and it’s follows that lim|w|→1 kw(z) = 0. Thus
kw satisfies the condition (2) of Lemma 2.7. This completes the proof. �

3. The essential norm of Hankel operator on the weighted
Bergman space

The following theorem is our first result about essential norm of Hf .

Theorem 3.1. Let φ ∈ D and suppose that H∞
φ (D) is dense on AL2

φ(D). Let f ∈
L2(D) and Hf defined on H∞

φ (D) by Hfg = fg−Pφ(fg). The following quantities
are equivalent.
(1) ‖Hf‖e,
(2) lim sup

|w|→1

‖Hf(kw)‖L2
φ

where (kw)w∈D as in Lemma 2.5,

(3) lim sup
|w|→1

Fα(w) for some α ∈]0, 1
16 min(C−1

1 , C−1
2 )[ where

Fα(z) := inf
{( 1

|D(ατ(z))|)
∫

D(ατ(z))

|f − h|2dλ
)1/2

: h analytic on D(ατ(z))
}
,

(4) inf
f=f1+f2,f2∈C1(D)

[
lim sup
|w|→1

(Gα(w) + (∆φ(w))−1/2 |∂̄f2(w)|)] for some

α ∈]0, 1
16 min(C−1

1 , C−1
2 )[ where Gα(w) =

(
1

|D(ατ(w))|
∫
D(ατ(w))

|f1|2dλ
)1/2

.

Proof. The proof of theorem follows the cycle

(a) : (1) ≥ C(2), (b) : (2) ≥ C(3)

(c) : (3) ≥ C(4), (d) : (4) ≥ C(1).

Proof of (a). Let (kw)w∈D be the sequence of functions of lemma 2.7 and K :
AL2

φ(D) → L2
φ(D) be a compact operator. Then

‖Hf(kw)‖L2
φ
− ‖K(kw)‖L2

φ
≤ ‖(Hf −K)(kw)‖L2

φ

≤ ‖kw‖L2
φ
‖Hf −K‖

≤ C‖Hf −K‖
Since kw → 0 weakly as |w| → 1 and K is a compact operator, we have

lim sup
|w|→1

‖Hf(kw)‖L2
φ
≤ C‖Hf‖e.
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Proof of (b). By lemma 2.7, the functions kw and 1
kw

are analytic on D(ατ(w)).
This implies

‖Hf (kw)‖2
L2

φ
=

∫

D

|fkw − Pφ(fkw)|2e−2φdλ

≥
∫

D(ατ(w))

|f − Pφ(fkw)
kw

|2|kw|2e−2φdλ

≥ C

τ(w)2

∫

D(ατ(w))

|f − Pφ(fkw)
kw

|2dλ

≥ CF 2
α(w)

Thus

lim sup
|w|→1

‖Hf (kw)‖L2
φ
≥ C lim sup

|w|→1

Fα(w)

Proof of (c). By the proof of (2) ⇒ (3) in theorem 4.1 in [7]( see also [8]), there is
a decomposition f = f1 + f2 of f with f2 ∈ C1(D) such that for w ∈ D :

Gα(w) =
1

|D(ατ(w))|
∫

D(ατ(w))

|f1|2dλ ≤ C sup{Fα(z)2 : z ∈ D(3ατ(w))}

|∂̄f2(w)|2
∆φ(w)

≤ C sup{Fα(z)2 : z ∈ D(3ατ(w))}

Hence

lim sup
|w|→1

[
Gα(w) + (∆φ(w))−1/2 |∂̄f2(w)|

]
≤ C lim sup

|w|→1

Fα(w)

Proof of (d). Let f = f1 + f2 be a decomposition of f with f2 ∈ C1(D). Then

‖Hf‖e = ‖Hf1+f2‖e ≤ ‖Hf1‖e + ‖Hf2‖e
So we need to prove :

‖Hf1‖e ≤ C lim sup
|w|→1

Gα(w)

‖Hf2‖e ≤ C lim sup
|w|→1

(∆φ(w))−1/2 |∂̄f2(w)|

We may suppose that lim sup|w|→1Gα(w) and lim sup|w|→1(∆φ(w))−1/2 |∂̄f2(w)|
are finite. Since Gα(w) and (∆φ(w))−1/2 |∂̄f2(w)| are continuous on D, then Gα(w)
and (∆φ(w))−1/2 |∂̄f2(w)| are bounded on D. Let r ∈]0, 1[ and χr be the character-
istic function of Dr = {z ∈ D : |z| < r}.We consider the operator of multiplication
Mχrf1 from AL2

φ(D) to L2
φ(D) defined by Mχrf1(g) = χrf1g. Since χrf1 has com-

pact support and Gα is bounded, Mχrf1 is compact : let (gn) ⊂ AL2
φ be a sequence

tending weakly to zero. Then ‖gn‖L2
φ

is bounded and gn converge uniformly to zero

on compact sets in D. Then ∀ε > 0, ∃N > 0 such that e−φ(z)|gn(z)| < ε, ∀z ∈ Dr
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and n > N :

‖Mχrf1gn‖2
L2

φ
=

∫

D

|χrf1|2|g2
ne

−2φdλ

≤ ε2
∫

Dr

|f1|2dλ

≤ ε2
Nr∑
j=0

∫

Dr∩D(3ατ(zj)

|f1|2dλ ((zj)as in lemma 2.5)

≤ ε2
Nr∑
j=0

|D(3ατ(zj)|
( 1
|D(3ατ(zj))|

∫

D(3ατ(zj))

|f1|2dλ
)

≤ ε2α2C2
2Nr sup

w∈D

G2
α(w)

Hence limn→∞ ‖Mχrf1gn‖2
L2

φ
= 0. Since Hχrf1 = (I − Pφ)Mχrf1 , the operator

Hχrf1 is compact and
‖Hf1‖e ≤ ‖H(1−χr)f1‖

So we need only to give an upper bound of ‖H(1−χr)f1‖2. Let g ∈ AL2
φ, then

‖H(1−χr)f1g‖2
L2

φ
= ‖(I − P )M(1−χrf1g‖2

L2
φ

≤
∫

D

|g|2|(1 − χr)f1|2e−2φdλ

≤ C sup
w∈D

( 1
|D(ατ(w))|

∫

D(ατ(w))

|(1 − χr)f1|2dλ
) ∫

D

|g|2e−2φdλ

since |(1−χr)f1|2dλ is a Carleson measure on AL2
φ ( |f1|2dλ is a Carleson measure

by Theorem 2.3). Since τ(w) ≤ C2(1 − |w|) and αC2 < 1, we have

‖H(1−χr)f1‖2 ≤ C sup
r−αC2
1−αC2

<|w|<1

( 1
|D(ατ(w))|

∫

D(ατ(w))

|f1|2dλ
)

≤ C sup
s(r)<|w|<1

(Gα(w))2

and then
‖Hf1‖e ≤ C lim sup

|w|→1

Gα(w)

For f2 ∈ C1(D) and g ∈ AL2
φ : Hf2g = f2g − Pφ(f2g) is the solution of ∂̄u = g∂̄f2

with minimal L2
φ norm. We can write

Hf2g =
∫

D

Sφ(z, w)g(w)∂̄f2(w)e−2φ(w)dλ

=
∫

D

Sφ(z, w)χrg∂̄f2e−2φdλ+
∫

D

Sφ(z, w)(1 − χr)g∂̄f2e−2φdλ

= T1g + T2g
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where Sφ(z, w) is the reproduced kernel of L2
φ minimal solution. The operator

T1 is compact : let (gn) ⊂ AL2
φ be a sequence tending weakly to zero. Then

‖gn‖L2
φ

is bounded and gn converge uniformly to zero on compact sets in D. Then

∀ε > 0, ∃N > 0 such that e−φ(z)|gn(z)| < ε for |z| ≤ r. Then

‖T1gn‖2
L2

φ
=

∥∥∥
∫

D

Sφ(z, w)χrg∂̄f2e−2φdλ
∥∥∥

2

L2
φ

Since
∫

D
Sφ(z, w)χrgn∂̄f2e−2φdλ is the minimal solution of ∂̄u = χrgn∂̄f2, by

lemma 2.6, there exists a solution Un of ∂̄u = χrgn∂̄f2 such that∫

D

|Un|2e−2φdλ ≤ C

∫

Dr

|gn|2|∂̄f2|2/∆φe−2φdλ

This implies

‖T1gn‖L2φ
≤ ‖Un‖L2

φ
≤ Cε sup

w∈D

|∂̄f2|
∆φ(w)1/2

Hence limn→∞ ‖T1gn‖L2
φ

= 0 i.e T1 is compact. By definition of essential norm we
have

‖Hf2‖e = ‖T2‖e ≤ ‖T2‖
Since

T2g =
∫

D

Sφ(z, w)(1 − χr)g∂̄f2e−2φdλ

is the minimal solution of ∂̄u = (1 − χr)∂̄f2, by lemma 2.6 there exists a solution
V of ∂̄u = (1 − χr)∂̄f2 such that

∫

D

|V |2e−2φdλ ≤ C

∫

D

(1 − χr)2|g|2 |∂̄f2|
2

∆φ
e−2φdλ

Hence

‖T2g‖2
L2

φ
≤ C

∫

D

(1 − χr)2|g|2 |∂̄f2|
2

∆φ
e−2φdλ

≤ C sup
r<|w|<1

|∂̄f2|2
∆φ(w)

‖g‖2
L2

φ

Thus

‖Hf2‖e ≤ C lim sup
|w|→1

|∂̄f2|
∆φ(w)1/2

Combining above inequalities, we have

‖Hf‖e ≤ ‖Hf1‖e + ‖Hf2‖e ≤ C lim sup
|w|→1

[
Gα(w) + (∆φ(w))−1/2 |∂̄f2(w)|

]
. �

As a consequence of Theorem 3.1 is the following compactness criteria of
Hankel operator on AL2

φ(D) [7].
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Theorem 3.2. Let φ ∈ D and f ∈ L2(D). Suppose that H∞
φ (D) is dense in AL2

φ(D).
Then the following properties are equivalent.

(a) Hf is (extend to) a compact operator from AL2
φ to L2

φ.
(b) Fα(w) → 0 as |w| → 1 for some α ∈]0, 1

16 min(C−1
1 , C−1

2 )[.
(c) There is a decomposition f = f1 + f2 with f2 ∈ C1(D) such that Gα(w) → 0

and (∆φ(w))−1/2|∂̄f2(w)| → 0 as |w| → 1 for some α ∈]0, 1
16 min(C−1

1 , C−1
2 )[.

When we have Theorem 3.1, we can go further to get the corresponding
Lin-Rochberg theorem ( stated in section 1) for the Hankel operator on AL2

φ(D).

Theorem 3.3. Let f ∈ L2(D) and φ ∈ D. Suppose that H∞
φ (D) is dense on AL2

φ(D).
Let Hf defined on H∞

φ (D) by Hfg = fg − Pφ(fg). Then

(1) ‖Hf‖ess ∼ inf{‖Hf −K‖ : K compact Hankel operator},
(2) ‖Hf‖ess ∼ dα(f,VLDAα(D)) for some α ∈]0, 1

16 min(C−1
1 , C−1

2 )[.

Proof. (1) By the definition of essential norm, it is obvious that

‖Hf‖ess ≤ inf{‖Hf −K‖ : K compact Hankel operator}
So we need to prove

inf{‖Hf −K‖ : K compact Hankel operator} ≤ C‖Hf‖ess
By theorem 3.1, we have

‖Hf‖ess ∼ inf
f=f1+f2,f2∈C(D)

(lim sup
|w|→1

Gα(w) + lim sup
|w|→1

(∆φ(w))−1/2 |∂̄f2(w)|)

where Gα(w) =
(

1
|D(ατ(w))|

∫
D(ατ(w))

|f1|2dλ(w)
)1/2

. So we only need to prove :

inf{‖Hf −K‖ : Kcompact Hankel operator}
≤ C inf

f=f1+f2,f2∈C(D)
(lim sup

|w|→1

Gα(w) + lim sup
|w|→1

(∆φ(w))−1/2|∂̄f2(w)|) (3.1)

We will prove (3.1) by proving that there is a constant C such that for any de-
composition f = f1 + f2 with f2 ∈ C1(D) the following is true

inf{‖Hf −K‖ : K compact Hankel operator}
≤ C(lim sup

|w|→1

Gα(w) + lim sup
|w|→1

(∆φ(w))−1/2|∂̄f2(w)|)

To prove (3.1), as before we may assume that lim sup|w|→1Gα(w) < +∞ and
lim sup|w|→1(∆φ(w))−1/2|∂̄f2(w)| < +∞ and this implies that sup

D
Gα < +∞

and sup
D
(∆φ)−1/2|∂̄f2| < +∞ since both Gα and (∆φ)−1/2|∂̄f2| are continuous

in D.
For f1, ∀r ∈]0, 1[, let χr be the characteristic function of the set {z : |z| ≤ r}. Since
χrf1 has compact support and sup

D
Gα is finite, the operator Hχrf1 is compact

(see the proof of Theorem 3.1 (d)). Now for f2 ∈ C1(D), ∀r ∈]0, 1[ let σr ∈ C∞
0 (D)
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such that σr = 1 on {z : |z| ≤ r}. Let ψr ∈ C1(D) such that ∂̄ψr = σr∂̄f2. Since
ψr ∈ C1(D) the operator Hψr is compact ( see Zhu’s book [17]). Hence

inf{‖Hf −K‖ : K compact Hankel operator} ≤ ‖Hf1+f2 −Hχrf1+ψr‖
≤ ‖Hf1 −Hχrf1‖ + ‖Hf2 −HΨr‖

By the proof of Theorem 3.1(d), we have

‖Hf1 −Hχrf1‖ ≤ sup
s(r)<|w|<1

Gα(w),

where s(r) → 1 as r → 1. Also the operator Hf2−ψr is bounded and

‖Hf2 −Hψr‖ ≤ C sup
w∈D

(∆φ(w))−1/2|∂̄(f2 − ψr)(w)|

≤ C sup
w∈D

(∆φ(w))−1/2(1 − σr(w))|∂̄f2|

≤ C sup
r<|w|<1

(∆φ(w))−1/2 |∂̄f2|

Thus for any decomposition f = f1 + f2 with f2 ∈ C1(D) and sup
D
Gα < ∞ we

have

inf{‖Hf −K‖ : K compact Hankel operator}
≤ C(lim sup

|w|→1

Gα(w) + lim sup
|w|→1

(∆φ(w))−1/2|∂̄f2(w)|)

Hence
inf{‖Hf −K‖ : K compact Hankel operator} ≤ C‖Hf‖ess

This completes the proof. �

4. Remarks

The Theorem 3.1 can be extended to any bounded domain Ω with C1 boundary
in the complex plane. In the definition 1.3 of D we replace the condition (2)
τ(z) ≤ C2(1 − |z|) by (2) τ(z) ≤ C2d(z,C \ Ω). For w ∈ Ω, let D(ατ(w)) = {z ∈
Ω : |z − w| ≤ ατ(w)} and BDAα and V DAα are the corresponding spaces. The
method employed in the proof of Theorem 2.2 works without change to prove the
corresponding theorem for AL2

φ(Ω) : the covering Lemma 2.5 is valid in this case
[14] and all Lemmas 2.9, 2.10 are true for Ω as stated for the unit disc. Hence the
key Lemma 2.5 is true in this case. Following [8] (theorem 5) and [7] (theorem 3.1)
we have

Theorem 4.1. Let Ω be a bounded domain in the complex plane with C1 boundary.
Let φ ∈ D. Let Pφ denote the projection from L2

φ(Ω) to AL2
φ(Ω). Suppose that

H∞
φ (Ω) is dense in AL2

φ(Ω). Let f ∈ L2(Ω) and let Hf be defined on H∞
φ (Ω) by

Hfg = fg − Pφ(fg). Then the following are equivalent:
(1) Hf is bounded in the L2

φ norm.
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(2) The function Fα(w) defined by

Fα(w)2 = inf
{ 1
|D(ατ(w))

∫

D(ατ(w))

|f − h|2dλ : h analytic in D(ατ(w))
}

is bounded for some α ∈]0,min(C−1
1 , C−1

2 )/16[.
(3) f admits a decomposition f = f1 + f2 where f2 ∈ C1(Ω) and satisfies

∂̄f2
(∆φ)1/2

∈ L∞(Ω),

while f1 satisfies the following condition : the function Gα(w) defined by

Gα(w)2 =
1

|D(ατ(w))

∫

D(ατ(w))

|f1|2dλ

is bounded for some α ∈]0,min(C−1
1 , C−1

2 )/16[.

For the essential norm of Hf we have

Theorem 4.2. Let Ω be a bounded domain in the complex plane with C1 boundary.
Let φ ∈ D. Let Pφ denote the projection from L2

φ(Ω) to AL2
φ(Ω). Suppose that

H∞
φ (Ω) is dense in AL2

φ(Ω). Let f ∈ L2(Ω) and let Hf be defined on H∞
φ (Ω) by

Hfg = fg − Pφ(fg). Then
(1) ‖Hf‖ess ∼ inf{‖Hf −K‖ : K compact Hankel operator},
(2) ‖Hf‖e ∼ infh∈V DAα ‖f − h‖BDAα for some α ∈]0, 1

16 min(C−1
1 , C−1

2 )[.
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[4] L.Hörmander, L2 estimates and existence theorems for the ∂̄ operator. Acta.Math.
113 (1965), 89–152.
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