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Abstract. On the Hardy space over the bidisk H2(D2), the Toeplitz operators
Tz1 and Tz2 are unilateral shifts of infinite multiplicity. A closed subspace M
is called a submodule if it is invariant for both Tz1 and Tz2 . The two variable
Jordan block (S1, S2) is the compression of the pair (Tz1 , Tz2) to the quotient
H2(D2)�M . This paper defines and studies its defect operators. A number of
examples are given, and the Hilbert-Schmidtness is proved with good general-
ity. Applications include an extension of a Douglas-Foias uniqueness theorem
to general domains, and a study of the essential Taylor spectrum of the pair
(S1, S2). The paper also estabishes a clean numerical estimate for the com-
mutator [S∗

1 , S2] by some spectral data of S1 or S2. The newly-discovered
core operator plays a key role in this study.
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1. Introduction

Let H2(D) be the Hardy space over the unit disk. Multiplication by coordinate
function w on H2(D) is the unilateral shift, and its invariant subspace is of the
form θH2(D), where θ is an inner function. The compression S(θ) of the unilateral
shift to the quotient spaceH2(D)�θH2(D) is called a Jordan block. To be precise,

S(θ)f = Pθwf, f ∈ H2(D) � θH2(D),

where Pθ is the projection from H2(D) onto H2(D) � θH2(D). Study of the
unilateral shift and the Jordan block is a solid foundation for the development of
non-selfadjoint operator theory (cf. [3], [20]). A similar foundation for multivariable
operator theory, on the other hand, has yet to be discovered. One natural approach
in this quest is to study multivariable analogues of the unilateral shift and the
Jordan block, and this usually demands different ideas and techniques for different
settings (cf. [4]). This paper studies a two variable analogue of the Jordan block
in the setting of the Hardy space over the bidisk H2(D2).
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On the Hardy space H2(D2) with coordinate function z = (z1, z2), the
Toeplitz operators Tz1 and Tz2 (or simply denoted by T1 and T2, respectively,)
are unilateral shifts of infinite multiplicity. A closed subspace M ⊂ H2(D2) is
called a submodule over the bidisk algebra A(D2) if it is invariant under multipli-
cation by functions in A(D2), i.e., pf ∈M for every f ∈M and every p ∈ A(D2).
Clearly, M is a submodule if and only if it is invariant for both T1 and T2.

Given a submodule M , its orthogonal complement N = H2(D2)�M also has
a module structure over A(D2), with module action defined by p −→ Sp, where
p ∈ A(D2) and

Spf = PNpf, f ∈ N.

Here PE stands for the orthogonal projection from H2(D2) onto a subspace E.
The pair (Sz1 , Sz2) (denoted by (S1, S2) for simplicity) is a natural two vari-
able analogue of the classical Jordan block, and for this reason we shall call it a
two variable Jordan block in H2(D2). The two variable Jordan block has very rich
structure and, like the one variable case, reveals much information about M . Some
related early work can be found in [8], [9], [15], [27] and the references therein.
This paper is organized as follows.

Section 2 is preparation.
Section 3 defines and studies the defect operators for (S1, S2). The defect

operators are very useful associates of (S1, S2). For example, they can be used
to extend Douglas and Foias’s uniqueness theorem in [8]. The main goal of this
section is to reveal connections between the defect operators and the core operator.

Properties of the defect operators are used in Section 4 to study the essential
Taylor spectrum of (S1, S2). We will show that if the core operator is compact
then σe(S1, S2) is a subset of ∂D2.

In Section 5, based on some spectral data of S1 or S2, a clean estimate of
the Hilbert-Schmidt norm of [S∗

1 , S2] will be established. This work in some way
is reminiscent of the spirit of the Berger-Shaw theorem.

2. Preliminaries

We first fix a few notations and introduce some key elements in the study. Through-
out the paper we let R(A) denote the range of a bounded linear operator A and
let |A|2 denote its Hilbert-Schmidt norm, i.e., |A|22 = trA∗A. It is well-known (cf.
[11]) that for bounded linear operators X and Y ,

|XAY |2 ≤ ‖X‖‖Y ‖|A|2. (2.1)

In this paper, we let σc(A) denote the collection of complex numbers w such that
A−wI either does not have closed range or has infinite dimensional kernel. Clearly,
σc(A) is a subset of the essential spectrum σe(A).
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We let K(λ, z) denote the reproducing kernel 1
(1−λ1z1)(1−λ2z2)

for H2(D2),

and we let kλ(z) =
√

1−|λ1|2
√

1−|λ2|2
(1−λ̄1z1)(1−λ̄2z2)

be the normalized reproducing kernel for
H2(D2). The reproducing kernel for a closed subspace M is denoted by KM (λ, z).
For a submodule M , the core function GM (λ, z) is

GM (λ, z) :=
KM (λ, z)
K(λ, z)

= (1 − λ1z1)(1 − λ2z2)KM (λ, z),

and the core operator on H2(D2) is defined by

CM (f)(z) :=
∫
T 2
GM (λ, z)f(λ)dm(λ), z ∈ D2,

where dm(λ) is the normalized Lebesgue measure on the torus T 2. For simplicity,
we neglect the “M” in our writing of GM and CM when no confusion shall result.
It is known that C = 0 on N , and on M , C is a bounded self-adjoint operator
with ‖C‖ = 1 (cf. [14]).

For a submodule M , we let (R1, R2) denote the restriction of (Tz1 , Tz2) to
M . So it is clear that (R1, R2) is a pair of commuting isometries. One relation
between the core operator and the pair (R1, R2) is displayed in the formula (cf.
[14])

C = 1 −R1R
∗
1 −R2R

∗
2 +R1R2R

∗
1R

∗
2. (2.2)

And it follows from (2.2) (cf. [28]) that C2 is unitarily equivalent to
(

[R∗
1, R1][R∗

2, R2][R∗
1, R1] 0

0 [R∗
2, R1]∗[R∗

2, R1]

)
. (2.3)

Moreover, if C is Hilbert-Schmidt, then (cf. [24])

|[R∗
1, R1][R∗

2, R2]|22 = |[R∗
2, R1]|22 + 1.

For simplicity, we let Σ0 stand for |[R∗
1, R1][R∗

2, R2]|22. By the preceding facts,

Σ0 ≥ 1, and |C|22 = 2Σ0 − 1 ≥ 1.

It is worth pointing out that Σ0 is an invariant for M under unitary equivalence
of submodules.

A submodule M is said to be Hilbert-Schmidt if CM is Hilbert-Schmidt.
It follows from (2.3) and Theorem 2.3 of [24] that if either σc(S1) or σc(S2) is
not the full closed unit disk then M is Hilbert-Schmidt. We will revisit this fact
in Section 5. Almost all known submodules are Hilbert-Schmidt, for example, if
I = (p1, p2, . . . , pn) is an ideal of the polynomial ring C[z], then its closure in
H2(D2) (for which we denote by [p1, p2, . . . , pn]) is a Hibert-Schmidt submodule.
Of course, there are plenty of Hilbert-Schmidt submodules that are not generated
by polynomials.
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Let Aut(D2) be the group of biholomorphic self maps of D2. It is well-known
(cf. [17], [18]) that every x ∈ Aut(D2) is of the form

x(z) =
(
b1
a1 − zσ(1)

1 − a1zσ(1)
, b2

a2 − zσ(2)

1 − a2zσ(2)

)
, (2.4)

for some unique (a1, a2) ∈ D2, (b1, b2) ∈ T 2 and a permutation σ on (1, 2). For the
studies in this paper, it is sufficient to look at the group elements with b1 = b2 = 1
and σ(i) = i, i = 1, 2. For convenience, we let xi(zi) = ai−zi

1−aizi
, i = 1, 2, i.e.,

x(z) = (x1(z1), x2(z2)). One easily checks that x(x(z)) = z.
Now consider the action L of Aut(D2) on H2(D2) defined by

(Lxf)(z) = f(x(z)), x ∈ Aut(D2).

It is well-known that Lx is bounded and invertible. The following property is
proved in [28].

Proposition 2.1. For every submodule M and every x ∈ Aut(D2), Lx(M) is a
submodule and

CLx(M) = LxC
ML∗

x.

Since ka does not vanish on D2, multiplication by ka is an invertible module
action on H2(D2). If we let operator Ux be defined by

Ux(f)(z) := ka(z)f(x(z)), f ∈ H2(D2),

where x and a are as in (2.4), then Ux is a unitary. It is also easy to see that
Ux(M) = Lx(M). Furthermore, since

Ux(H2(D2) �M) = Ux(H2(D2)) � Ux(M) = H2(D2) � Ux(M),

Ux(H2(D2) �M) is a quotient module. Setting M ′ = Ux(M) and N ′ = Ux(N),
one checks easily that

U∗
xPM ′Ux = PM , U∗

xPN ′Ux = PN .

We let the pairs (R1, R2) on M ′ and (S1, S2) on N ′ be denoted by (R′
1, R

′
2) and

(S′
1, S

′
2), respectively, and verify that for every f ∈ H2(D2) �M ,

S′
iUxf = PN ′ (zikaf(x(·)))

= PN ′ (kaxi(xi(zi))f(x(·)))
= PN ′ (Ux(xi(zi)f))

= UxU
∗
xPN ′Ux(xi(zi)f)

= UxPN (xi(zi)f)

= Uxxi(Si)f, i = 1, 2, (2.5)

which means (S′
1, S

′
2) is unitarily equivalent to (x1(S1), x2(S2)).
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Likewise, for every g ∈M ,

R′
iUxg = zika(z)g(x(z))

= ka(z)xi(xi(zi))g(x(z))

= Ux (xi(zi)g)

= Ux (xi(Ri)g) , i = 1, 2, (2.6)

which shows that (R′
1, R

′
2) is unitarily equivalent to (x1(R1), x2(R2)).

We summarize preceding observations in the following lemma. Notations are
as above.

Lemma 2.2. For every x ∈ Aut(D2),
(a) (S′

1, S
′
2) is unitarily equivalent to (x1(S1), x2(S2)).

(b) (R′
1, R

′
2) is unitarily equivalent to (x1(R1), x2(R2)).

Proposition 2.1 and Lemma 2.2 are useful for the rest of the paper.

3. The defect operators for (S1, S2)

For a contraction F acting on a Hilbert space, its defect operators are DF =
(1−F ∗F )1/2 and DF∗ = (1−FF ∗)1/2, and the associated characteristic operator
function is

ΘF (λ) = [−F + λDF∗(1 − λF ∗)−1DF ]|DF , λ ∈ D,

where DF = R(F ). The defect operators and the characteristic operator function
are key elements in functional model theory, in which the characteristic operator
function gives rise to a representation of F by a model that looks like a Jordan
block in a vector-valued Hardy space (cf. [7], [20]). F and ΘF are connected in
many ways. A spectral connection will be used Section 5.

In multivariable settings, however, there is not a universal definition of defect
operator for tuples of operators, and different tuples may demand different defi-
nitions for a meaningful study. For tuples acting on a reproducing kernel Hilber
space, a good definition is through the so-called hereditary functional calculus (cf.
[1]). In H2(D2), since

1
K(λ, z)

= 1 − λ1z1 − λ2z2 + λ1λ2z1z2,

the hereditary functional calculus 1
K (A) of a pair of commuting operators A =

(A1, A2) is given by

∆A :=
1
K

(A) = I −A∗
1A1 − A∗

2A2 +A∗
1A

∗
2A1A2.

So for A∗ = (A∗
1, A

∗
2),

∆A∗ =
1
K

(A∗) = I −A1A
∗
1 −A2A

∗
2 +A1A2A

∗
1A

∗
2.
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In this paper, the operators ∆A and ∆∗
A are called the defect operators for A =

(A1, A2).

Lemma 3.1. If A = (A1, A2) is a pair of commuting contractions, then ∆A is a
contraction.

Proof. Since ∆A is selfadjoint, it is sufficient to show that −I ≤ ∆A ≤ I. In fact,
one checks easily that

I + ∆A = (I −A∗
1A1) + (I −A∗

2A2) +A∗
1A

∗
2A1A2 ≥ 0,

and
I − ∆A = A∗

1A1 +A∗
2(I −A∗

1A1)A2 ≥ 0. �

One observes that when M is a submodule in H2(D2) and R = (R1, R2),
∆R = 0 and ∆R∗ is indeed the core operator of M (cf. (2.2)). For the rest of the
paper, given a nontrivial quotient module N we let φ denote the function PN1.
Clearly, 0 < ‖φ‖ ≤ 1. As a special case of the results in [28], ∆S∗ is always a rank
one operator, and in fact

∆S∗ = φ⊗ φ. (3.1)
(3.1) is a very useful fact. For one example, it gives rise to a very clean proof
of the irreducibility of (S1, S2) (cf. [28]). Here we give another example. In the
study of (S1, S2), a natural question is whether the pair completely determines
the quotient space N on which it is defined. In other words, if (S1, S2) is unitarily
equivalent to (S′

1, S
′
2) on N ′, then how close are N and N ′? In [8] Douglas and

Foias showed (in the polydisk setting) that it is the case only if N = N ′. (3.1)
enables one to give a more concise proof of this fact.

First, one checks that
‖∆S∗‖ = ‖φ‖2.

Moreover,

K(λ, S)∆S∗
φ

‖φ‖ = ‖φ‖K(λ, S)PN1

= ‖φ‖PNK(λ, ·)
= ‖φ‖KN(λ, ·),

so it follows that
|K(λ, S)∆S∗ |22 = ‖φ‖2KN(λ, λ).

If (S1, S2) is unitarily equivalent to (S′
1, S

′
2) on N ′ and φ′ = PN ′1, then above

calculations imply ‖φ‖ = ‖φ′‖ and also KN(λ, λ) = KN ′
(λ, λ), λ ∈ D2, which

concludes that N = N ′ (cf. [10]).

Remark. Clearly, the validity of this argument is not limited to the bidisk. To put
this observation in a general setting, we let Ω be a complex domain in Cn and let
H be a Hilbert space of holomorphic functions over Ω with a reproducing kernel
KH(λ, z). Two additional conditions are needed.
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1. The reciprocal 1/KH is a polynomial.
2. 1 ∈ H, and with action defined by the multiplication of functions, H is a

module over the polynomial ring C[z1, z2, . . . , zn].

Now we let N be a quotient module in H and define

Sif = PNzif, i = 1, 2, . . . , n, f ∈ N,

where PN is the orthogonal projection from H onto N . In this setting, one also
has

∆S∗ :=
1
KH (S∗) = PN1 ⊗ PN1

(cf. Corollary 4.3 of [28]), and it is easy to check that

KH(λ, S)PN1 = KN (λ, ·).
So the above argument applies. We summarize this observation as

Corollary 3.2. With the notations above, (S1, S2, . . . , Sn) on N is unitarily equiv-
alent to (S1, S2, . . . , Sn)′ on N ′ only if N = N ′.

Corollary 3.2 extends Douglas and Foias’s result to a more general domain.
We point out that when Ω is the unit ball Bn and KH(λ, z) = (1− λ̄1z1 − λ̄2z2 −
· · · − λ̄nzn)−1, this fact is implied by Arveson’s dilation theorem (cf. [2]).

Now we continue our study in H2(D2). The operator ∆S , as oppose to ∆S∗ ,
can be of arbitrary rank, and hence contains more information about N . We shall
focus our study on ∆S in the rest of this section. We calculate two examples first.

Example 1. Let p1 and p2 be two one variable inner functions and consider M =
p1(z1)H2(D2) + p2(z2)H2(D2). Then M is a submodule, and on H2(D2) �M ,
S∗

1S2 = S2S
∗
1 (cf. [15]). Moreover, N can be decomposed as

N = (H2(D) � p1H
2(D)) ⊗ (H2(D) � p2H

2(D)),

and with respect to this decomposition,

S1 = S(p1) ⊗ I, S2 = I ⊗ S(p2),

where I stands for the identity operator on the respective spaces. So in this case
the two variable Jordan block is essentially a pair of two classical Jordan blocks.
It is then not hard to check that

∆S = (I − S∗
1S1)(I − S∗

2S2)

= [(T ∗
1 p1)(T ∗

2 p2)] ⊗ [(T ∗
1 p1)(T ∗

2 p2)].

So ∆S in this case is also of rank 1.

∆S can be surjective in other cases.
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Example 2. Consider M = [z2
1 , z1z2, z

2
2 ]. Then H2(D2) �M = span{1, z1, z2},

and with respect to this orthonormal basis,

S1 =


 0 0 0

1 0 0
0 0 0


 , S2 =


 0 0 0

0 0 0
1 0 0


 .

One then easily verifies that

∆S =


 −1 0 0

0 1 0
0 0 1


 .

For an eigenvalue ζ of an operator F , we let Eζ(F ) denote the corresponding
eigenspace. It turns out that E1(∆S) and E−1(∆S) can be readily calculated. If
f ∈ H2(D2) �M such that ∆Sf = f , then

S∗
1S1f + S∗

2 (I − S∗
1S1)S2f = 0,

which implies
S1f = 0, (I − S∗

1S1)1/2S2f = 0.

Multiplying the second equation by (I − S∗
1S1)1/2, we have (I − S∗

1S1)S2f = 0.
Since

ker(I − S∗
1S1) = {g ∈ N | z1g ∈ N},

we get
z1S2f = S1S2f = S2S1f = 0,

from which it follows that S2f = 0. These observations show the inclusionE1(∆S) ⊂
kerS1 ∩ kerS2. Since the inclusion kerS1 ∩ kerS2 ⊂ E1(∆S) is obvious, we prove
the equality

E1(∆S) = kerS1 ∩ kerS2. (3.2)

If f ∈ H2(D2) �M such that ∆Sf = −f , then

(I − S∗
1S1)f + (I − S∗

2S2)f + S∗
1S

∗
2S1S2f = 0,

and this implies that

(I − S∗
1S1)f = 0, (I − S∗

2S2)f = 0, S1S2f = 0,

which means that
z1f ∈ N, z2f ∈ N, z1z2f ∈M.

It is not hard to see that this is true if and only if z1z2f ∈M �M0. In conclusion
we have

E−1(∆S) = {f ∈ N | z1z2f ∈M �M0}. (3.3)
Of course, there are many submodules M for which kerS1 ∩ kerS2 = {0} and
M � M0 contains no nontrivial function with factor z1z2. Other eigenvalues of
∆S , unfortunately, are usually difficult to compute. However, the trace tr∆S is
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easy to determine when N is finite dimensional. From the definition of the defect
operators,

∆S − ∆S∗ = −[S∗
1 , S1] − [S∗

2 , S2] + [(S1S2)∗, (S1S2)],

and hence
tr∆S = tr∆S∗ = ‖φ‖2.

Clearly, ∆S has at least one positive eigenvalue when N is finite dimensional.
Situations are different if N is infinite dimensional, for instance we will see a
submodule in Example 3 for which ∆S ≤ 0.

In general, it is difficult to determine whether ∆S is trace class, let alone
computing its trace. The Hilbert-Schmidtness of ∆S , on the other hand, can be
established for most submodules. The proof makes a good use of the core operator.

For a submodule M , we let Di = PNT
∗
zi
|M , i = 1, 2. Clearly, Di is nontrivial

only on M � ziM . It is indicated in [23, 24] that the following identities hold:

S∗
i Si +DiD

∗
i = I, i = 1, 2, (3.4)

[R∗
2, R1] = D∗

1D2, and [S∗
2 , S1] = −D2D

∗
1 . (3.5)

We then calculate that

∆S = I − S∗
1S1 − S∗

2S2 + S∗
1S

∗
2S1S2

= (I − S∗
1S1)(I − S∗

2S2) + S∗
1 [S∗

2 , S1]S2

= D1D
∗
1D2D

∗
2 + S∗

1 [S∗
2 , S1]S2.

By (3.5),
∆S = D1[R∗

2, R1]D∗
2 − S∗

1D2D
∗
1S2.

Furthermore, D∗
1 is a map from H2(D2)�M into M � z1M , so D∗

1 = [R∗
1, R1]D∗

1

on N ; and D2 is equal to 0 on z2M , so D2 = D2[R∗
2, R2]. Hence we can write

D2D
∗
1 = D2[R∗

2, R2][R∗
1, R1]D∗

1 .

Therefore,

∆S = D1[R∗
2, R1]D∗

2 − S∗
1D2[R∗

2, R2][R∗
1, R1]D∗

1S2. (3.6)

The following corollary follows immediately from (2.3) and (3.6)

Corollary 3.3. For a submodule M ,
(1) if C is finite rank, then so is ∆S, and rank∆S ≤ rankC;
(2) if C is compact, then ∆S is compact;
(3) if C is Hilbert-Schmidt, then ∆S is Hilbert-Schmidt.

Moreover, when C is Hilbert-Schmidt, (3.6) implies an estimate of |∆S |2 by
|C|2. In fact, by (2.1)

|∆S |2 ≤ |[R∗
2, R1]|2 + |[R∗

2, R2][R∗
1, R1]|2

≤
√

2(|[R∗
2 , R1]|22 + |[R∗

2, R2][R∗
1, R1]|22)1/2

=
√

2|C|2. (3.7)
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The next theorem improves the estimate.

Theorem 3.4. If M is a Hilbert-Schmidt submodule, then ∆S is Hilbert-Schmidt
with

tr∆2
S ≤ 2‖φ‖2 + trC2 − 1.

Proof. First of all, for every p ∈ A(D2) and f ∈ N , we have S∗
pf = PN p̄f and

Spf =
∫
T 2
KN(λ, z)p(λ)f(λ)dm(λ).

Then

∆Sf = f − PN (z̄1
∫
T 2
KN(λ, z)λ1f(λ)dm(λ)) − PN (z̄2

∫
T 2
KN(λ, z)λ2f(λ)dm(λ))

+ PN (z1z2
∫
T 2
KN(λ, z)λ1λ2f(λ)dm(λ))

= PN

(∫
T 2
KN (λ, z)(1 − λ1z̄1 − λ2z̄2 + λ1λ2z1z2)f(λ)dm(λ)

)
.

If we let ĜN = KN

K
and for g ∈ L2(T 2) define

ĈNg(z) =
∫
T 2
ĜN (λ, z)g(λ)dm(λ),

then clearly
∆S = PN ĈN |N . (3.8)

We continue to check that on D2 ×D2

|ĜN (λ, z)| =| K
N

K
(λ, z) |

=| K −KM

K
(λ, z) |

= |1 −GM (λ, z)|.
When CM is Hilbert-Schmidt, GM has nontangential boundary value to almost
every point in T 2 and its boundary value function is in L2(T 2 × T 2) (cf. [14]). So
ĜN also has the these properties. Furthermore∫
T 2
|ĜN (λ, z)|2dm(λ)dm(z)=

∫
T 2

|1 −GM (λ, z)|2dm(λ)dm(z)

=
∫
T 2
1−GM(λ, z)−GM (z, λ)+|GM (λ, z)|2dm(λ)dm(z)

= 1 − 2GM (0, 0) + ‖GM‖2
2

= 1 − 2KM(0, 0) + ‖GM‖2
2

= 2(1 − ‖PM1‖2) − 1 + ‖GM‖2
2

= 2‖φ‖2 + ‖GM‖2
2 − 1.



Vol. 56 (2006) On Two Variable Jordan Block (II) 441

Since ĜN is the integral kernel of ĈN , ĈN is Hilbert-Schmidt with

|ĈN |22 = ‖ĜN‖2
2 = 2‖φ‖2 + ‖GM‖2

2 − 1.

So by (3.8) and the fact tr(C)2 = ‖G‖2
2, we have

tr∆2
S ≤ 2‖φ‖2 + trC2 − 1. �

Example 3. If M = ψH2(D2), where ψ is an inner function in H2(D2), then
[R∗

2, R1] = 0 by [12]. So by (3.6) we have

∆S = −S∗
1D2[R∗

2, R2][R∗
1, R1]D∗

1S2.

Since in this case

[R∗
2, R2][R∗

1, R1]f =< f, ψ > ψ, f ∈M,

we have for every g ∈ H2(D2) �M

∆Sg = −S∗
1D2(< D∗

1S2g, ψ > ψ)

= − < g, S∗
2D1ψ > S∗

1D2ψ.

One verifies that
S∗

2D1ψ = S∗
1D2ψ = T ∗

1 T
∗
2ψ,

and concludes that
∆S = −(T ∗

1 T
∗
2ψ) ⊗ (T ∗

1 T
∗
2ψ).

So
tr∆2

S = ‖T ∗
1 T

∗
2 ψ‖4 ≤ (1 − |ψ(0)|2)2.

In this case, trC2 = 1 (cf. [14]) and φ = 1 − ψ(0)ψ, so

2‖φ‖2 + trC2 − 1 = 2(1 − |ψ(0)|2).

4. The essential Taylor spectrum of (S1, S2)

For a classical Jordan block S(θ), the essential spectrum σe(S(θ)) is a subset of T
and the Fredholm index ind(S(θ)) is always equal to 0. For a general two variable
Jordan block (S1, S2), its essential Taylor spectrum σe(S1, S2) may not be a
subset of ∂D2. For instance, there are quotient modules on which (S1, S2) is not a
Fredholm pair. In this section, however, we will show that when the core operator
is compact the essential Taylor spectrum σe(S1, S2) is a subset of ∂D2. This
generalized the work in [21].

Let A = (A1, A2) be a pair of commuting operators acting on a Hilbert space
H . One good way to study the Fredholness of A = (A1, A2) is through the matrix

Â =
(
A1 A2

−A∗
2 A∗

1

)
(4.1)

on H ⊕H . It is well known (cf. [6]) that the pair A is Fredholm if and only if Â
is Fredholm on H ⊕H , and in this case

ind(A1, A2) = indÂ.
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We now use this technique to study the Fredholmness of (S1, S2). First, we
check that

ŜŜ∗ =
(
S1S

∗
1 + S2S

∗
2 0

0 S∗
1S1 + S∗

2S2

)
. (4.2)

Since I − ∆S∗ is a positive Fredholm operator by (3.1) and

S1S
∗
1 + S2S

∗
2 = I − ∆S∗ + S1S2S

∗
1S

∗
2 ,

S1S
∗
1 +S2S

∗
2 is Fredholm. If CM is compact, then the Fredholmness of S∗

1S1+S∗
2S2

follows similarly from Corollary 3.3. Therefore, ŜŜ∗ is Fredholm. It is then clear
that Ŝ has a closed range with a finite codimension. So to prove the Fredholmness
of Ŝ, we only need to check if kerŜ is finite dimensional. It is easy to see from
(4.1) that

kerŜ = {(f1, f2) ∈ N ⊕N | z1f1 + z2f2 ∈M, −z̄2f1 + z̄1f2 ⊥ H2(D2).} (4.3)

For later use, we let B1 be the operator from kerŜ to M which maps (f1, f2) to
z1f1 + z2f2. We now check that B1 is injective. In fact, if B1(f1, f2) = 0, then
f1 = z2g and f2 = −z1g for some g ∈ H2(D2)�M . The fact that −z̄2f1 + z̄1f2 ⊥
H2(D2) then implies g = 0, and hence f1 = f2 = 0.

Multiplying −z̄2f1 + z̄1f2 by z1z2, we have

−z1f1 + z2f2 ∈ H2(D2) � z1z2H
2(D2). (4.4)

(4.4) is equivalent to the existence of g1 and g2 in H2(D) with g1(0) = g2(0) = 0
such that

−z1f1 + z2f2 = g1(z1) + g2(z2). (4.5)

So in fact,
g1(z1) = −z1f1(z1, 0), g2(z2) = z2f2(0, z2). (4.6)

If we set h = z1f1 + z2f2, then g1 = −R(0)h and g2 = L(0)h, and by (4.5) and
(4.6),

2z1f1 = h− L(0)h+R(0)h, 2z2f2 = h+ L(0)h−R(0)h. (4.7)

Since zifi ⊥ ziM, i = 1, 2, we have h− g1(z1) ⊥ z1M, h+ g2 ⊥ z2M , and hence
(I +L(0)+R(0))h is orthogonal to both z1M and z2M . For simplicity, we denote
z1M + z2M by M0. It can be seen from the work in [24] (cf. [24] Section 4) that
when CM is compact M0 is closed, and hence it is a submodule. It follows from
our previous arguments that PM (I + L(0) +R(0))h ∈M �M0.

To continue with the discussion, we consider the operator B0 = PM (I +
L(0) +R(0))PM defined on M . Clearly B0 is selfadjoint. Since for every h ∈M ,

〈B0h, h〉 = 〈(I + L(0) +R(0))h, h〉
= ‖h‖2 + ‖L(0)h‖2 + ‖R(0)h‖2

≥ ‖h‖2,

B is invertible. We summarize these observations in the following lemma.
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Lemma 4.1. The operator B0B1 is an injective map from kerŜ to M �M0.

Therefore, dim(kerŜ) ≤ dim(M �M0). When CM is compact, M �M0 is
finite dimensional by [14] Corollary 3.4, and hence so is kerŜ. We thus obtain the
following fact.

Corollary 4.2. If CM is compact, then (S1, S2) is Fredholm.

To study σe(S1, S2), we need to look further at the Fredholmness of (S1 −
a1I, S2 − a2I) for (a1, a2) ∈ D2. This, in fact, can be easily achieved through the
action of Aut(D2) mentioned in Section 2.

Theorem 4.3. If CM is compact, then σe(S1, S2) ⊂ ∂D2.

Proof. The proof is a routine argument based on Corollary 4.2. For (a1, a2) ∈
D2, we let xi(zi) = ai−zi

1−aizi
, i = 1, 2, and thus x = (x1, x2) ∈ Aut(D2). Let

M ′ = Ux(M). Since CM is compact, so is CM
′

by Proposition 2.1, and hence
by Corollary 4.2 (S′

1, S
′
2) is Fredholm. It then follows from Lemma 2.2(a) that

(x1(S1), x2(S2)) is Fredholm. Since xi(Si) = (1 − āiSi)−1(ai − Si), i = 1, 2,
(S1−a1, S2−a2) is also Fredholm (cf. [6]). This shows that σe(S1, S2) ⊂ C2 \D2.
The theorem then follows from the fact that (S1, S2) is a pair of contractions. �

We point out that in many cases σe(S1, S2) is not a subset of T 2. For ex-
ample it is easy to find quotient modules on which S1 is a strict contraction. The
index of (S1, S2) can be determined with a mild condition. For example, it follows
from [13] that if M contains a bounded function that does not vanish at (0, 0) then
ind(S1, S2) = 0. If we assume CM is Hilbert-Schmidt, then we can also show that
ind(S1, S2) = 0. These facts prompt the following conjecture.

Conjecture. If CM is compact then σe(S1, S2) is a proper subset of ∂D2.

In fact, we suspect σe(S1, S2) has measure 0 in ∂D2. Since for a classical
Jordan block S(θ), the essential spectrum σe(S(θ)) is determined by the inner
function θ, we also suspect that σe(S1, S2) may be an important invariant of the
functions in M .

5. An estimate of trC2 and |[S∗
1 , S2]|2

As indicated by our previous studies, the core operator is connected with many
other key elements, and it is compact in most cases. So an esitmate of its “size”
will certainly be useful. For the two variable Jordan block, the cross commuta-
tor [S∗

1 , S2] is mostly compact, though S1 and S2 themselves are in general not
essentially normal. In fact, the compactness of the core operator implies the com-
pactness of [S∗

1 , S2]. As we have remarked early that if either σc(S1) or σc(S2) is
not the full closed disk, then the core operator is Hilbert-Schmidt. So a challenging
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question is whether one can use some spectral data of S1 or S2 to estimate trC2

and |[S∗
1 , S2]|2.

We first do some preparations. For any bounded linear operator F on a
Hilbert space H , the so-called minimum modulus

γ(F ) := inf{‖Fx‖ : x ∈ (kerF )⊥, ‖x‖ = 1}
measures the norm of F ’s “partial inverse”. Clearly, F has closed range if and only
if γ(F ) > 0. When F is invertible,

γ−1(F ) =
1

inf‖x‖=1 ‖Fx‖

= sup
‖x‖=1

‖x‖
‖Fx‖

= sup
‖x‖=1

‖F−1Fx‖
‖Fx‖

= ‖F−1‖. (5.1)

When F has a closed range, the restriction F : kerF⊥ −→ R(F ) is invertible,
and hence there is an inverse F ′ : R(F ) −→ kerF⊥ such that F ′F = I − PkerF .
Moreover, it follows from (5.1) that ‖F ′‖ = γ−1(F ).

Lemma 5.1. If A and F are bounded linear operators on a Hilbert space H such
that 0 /∈ σc(F ) and FA is Hilber-Schmidt, then A is Hilbert-Schmidt with

|A|22 ≤ γ−2(F )|FA|22 + ‖A‖2dimkerF.

Proof. Using the notations above, we write

A = (F ′F + PkerF )A = F ′FA+ PkerFA.

Since R(F ′) is orthogonal to kerF , for every x ∈ H we have

‖Ax‖2 = ‖F ′FAx‖2 + ‖PkerFAx‖2,

and it follows that

|A|22 = |F ′FA|22 + |PkerFA|22
≤ ‖F ′‖2|FA|22 + ‖A‖2|PkerF |22
= γ−2(F )|FA|22 + ‖A‖2dim(kerF ). �

The following lemma is crucial. Its proof is based on an improvement of some
ideas contained in [24], in particular two key facts will be used. The first is the
equivalence bewteen L(λ)|M�z1M and the characteristic function ΘS1(λ), and the
second is the Hilbert-Schmidtness of L(λ) when restricted to M � z2M . Also, we
ecall that Σ0 stands for |[R∗

1, R1][R∗
2, R2]|22.
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Lemma 5.2. For every submodule,

Σ0 ≤ γ−2(S1) + dim(kerS1).

Proof. The inequality holds trivially if γ(S1) = 0 or S1 has infinite dimensional
kernel. So we assume S1 has a closed range and a finite dimensional kernel. First
of all, it is indicated in [23] that L(λ)|M�z1M is equivalent to the characteristic
operator function ΘS1(λ) for S1 in the sense that there are constant unitaries
U, V,W such that

L(λ)|M�z1M = (UΘS1(λ)V ) ⊕W, (5.2)

where W is nonzero only if M contains nontrivial functions independent of z1.
If S1 has a closed range and a finite dimensional kernel then so is ΘS1(0) with
dim(kerS1) = dim(ΘS1(0)) (cf. [20]), and hence by (5.2) L(0)|M�z1M has a closed
range with

dim(L(0)|M�z1M ) = dim(ΘS1(0)) = dim(kerS1). (5.3)

Since for every f ∈M � z2M ,

L(0)[R∗
1, R1][R∗

2, R2]f = L(0)(f − z1R
∗
1f) = L(0)f,

and L(0) is Hilbert-Schmidt on M � z2M with |L(0)|M�z2M |2 ≤ 1 (cf. [22]),
L(0)[R∗

1, R1][R∗
2, R2] is Hilbert-Schmidt, and

|L(0)[R∗
1, R1][R∗

2, R2]|2 = |L(0)|M�z2M |2 ≤ 1. (5.4)

So it follows from Lemma 5.1

Σ0 ≤ γ−2(L(0)|M�z1M ) + dim(ker(L(0)|M�z1M )). (5.5)

Since
L(0)|M�z1M = UΘS1(0)V ⊕W,

γ(L(0)|M�z1M ) = γ(ΘS1(0)). Using the expressions in the beginning of Section 3,
we have

ΘS1(0) = −S1|DS1
and kerS1 ⊂ DS1 ,

and it follows that

γ(ΘS1(0)) = inf{‖S1f‖ : ‖f‖ = 1, f ∈ DS1 � kerS1} ≥ γ(S1).

Combining the observations above with (5.3), we see that the theorem follows
directly from (5.5). �

A parallel argument based on S2 will prove the same inequality in Lemma
5.2 with S1 replaced by S2.

Theorem 5.3. For every submodule,

(a) trC2 ≤ 2γ−2(S1) + 2dim(kerS1) − 1;
(b) |[S∗

2 , S1]|22 ≤ γ−2(S1) + dim(kerS1).
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Proof. (a) follows directly from Lemma 5.2 and the remarks following (2.3).
For (b), using (3.5) and the remarks leading to (3.6), we have

[S∗
2 , S1] = −D2[R∗

2, R2][R∗
1, R1]D∗

1 .

So
|[S∗

2 , S1]|22 ≤ |[R∗
2, R2][R∗

1, R1]|22 = Σ0,

and the inequality follows from Lemma 5.2. �

Example 4. Let us consider M = [z1 − θ(z2)], where θ is an inner function. It is
shown in [16] that there is a unitary

U : H2(D2) �M −→ (
H2(D) � θH2(D)

) ⊗ L2
a(D),

such that US1 = (I⊗B)U , where B is the Bergman shift on the classical Bergman
space L2

a(D). So γ(S1) = γ(B) = 1√
2
, and by Theorem 5.3

trC2 ≤ 3 and |[S∗
1 , S2]|2 ≤

√
2.

In particular, when θ(z2) = z2, S1 is unitarily equivalent to B and it is known that
in this case (cf. [14])

trC2 =
π2

3
− 1 ≈ 2.29.

Moreover, S1 = S2 in this case and it is easy to see that

|[S∗
1 , S2]|2 = |[B∗, B]|2 ≈ 0.538.

One interesting fact follows directly from Theorem 5.3. If S1 (or S2) is an
isometry, then γ(S1) = 1, and by Theorem 5.3(a), trC2 ≤ 1. So it follows from (2.3)
and the remarks after it that [R∗

2, R1] = 0. This happens only if M = ψH2(D2)
for some inner function ψ (cf. [12]).

Clearly, if S1 is invertible then Theorem 5.3 takes the cleaner form

trC2 ≤ 2‖S−1
1 ‖2 − 1, and |[S∗

1 , S2]|2 ≤ ‖S−1
1 ‖. (5.6)

When working with examples of submodules, one sees that it is not rare that
0 ∈ σc(S1) but instead ζ /∈ σc(S1) for some nonzero ζ ∈ D. In this case, the
following corollary generalizes Theorem 5.3.

Corollary 5.4. Let M be a submodule and ζ ∈ D. Then

(1 − |ζ|)2
(1 + |ζ|)2 |C|

2
2 ≤ 2(1 + |ζ|)2γ−2(S1 − ζI) + 2dim(S1 − ζI) − 1.

Proof. For ζ ∈ D, we let x1(z1) = ζ−z1
1−ζ̄z1 and x2(z2) = z2, then

Ux(f)(z1, z2) :=

√
1 − |ζ|2

1 − ζ̄z1
f(xζ(z1), z2), f ∈ H2(D2),

We let M ′ = Ux(M) (= Lx(M)) and N ′ = H2(D2) �M ′, and denote the core
operator on M ′ by C′. By Theorem 5.3(a),

trC′2 ≤ 2γ−2(S′
1) + 2dim(kerS′

1) − 1,
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and it follows from Proposition 2.1 and (2.5) that

|LxCL∗
x|22 ≤ 2γ−2(x1(S1)) + 2dim(kerx1(S1)) − 1. (5.7)

We now let ψζ =
√

1−|ζ|2
1−ζ̄z1 and let Tψζ

denotes the multiplication by ψζ on H2(D2).
Then Tψζ

Lx is the unitary Ux. So for the left-hand side of (5.7) we have that

|LxCL∗
x|2 =

‖Tψζ
‖|LxCL∗

x|2‖T ∗
ψζ
‖

‖Tψζ
‖2

≥ |UxCU∗
x |2

‖Tψζ
‖2

=
1 − |ζ|
1 + |ζ| |C|2.

For the righ-hand side of (5.7), we first note that x1(S1) = (1 − ζ̄S1)−1(S1 − ζI),
so clearly dim(kerx1(S1)) = dim(S1 − ζI), and moreover

γ(x1(S1)) ≥ γ(S1 − ζI)
‖I − ζ̄S1‖ ≥ γ(S1 − ζI)

1 + |ζ| .

Combining these estimates, we have

(1 − |ζ|)2
(1 + |ζ|)2 |C|

2
2 ≤ 2(1 + |ζ|)2γ−2(S1 − ζI) + 2dim(S1 − ζI) − 1.

�

Clearly, when ζ = 0 we return to Theorem 5.3.
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