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Integral Equations
and Operator Theory

The Spectrum of the Wavelet Galerkin
Operator

Dorin Ervin Dutkay

Abstract. We give a complete description of spectrum of the wavelet Galerkin
operator

Rm0,m0f(z) =
1

N

∑

wN=z

|m0|2 (w)f(w), (z ∈ T)

associated to a a low-pass filter m0 and a scale N , in the Banach spaces C(T)
and Lp (T), 1 ≤ p ≤ ∞.

1. Introduction

We begin with a short motivation of our study. For more background on wavelets
and their connection to the wavelet Galerkin operator we refer the reader to
[Dau92], [BraJo] or [HeWe]. The wavelet analysis studies functions ψ ∈ L2 (R)
with the property that {

2
j
2ψ
(
2jx− k

) | j, k ∈ Z

}

is an orthonormal basis for L2 (R). Such functions are called wavelets. The scale
(2 here) can be also any integer N ≥ 2. One way to construct wavelets is by
multiresolutions. A multiresolution is a nest of subspaces (Vj)j∈Z of L2 (R) with
the following properties:

(i) Vj ⊂ Vj+1, for all j ∈ Z;
(ii) f ∈ Vj if and only if f(Nx) ∈ Vj+1, (j ∈ Z);
(iii) ⋂

j∈Z

Vj = {0};

(iv)
⋃

j∈Z

Vj = L2 (R) ;
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(v) There exists a function ϕ ∈ V0 such that {ϕ(x−k) | k ∈ Z} is an orthonormal
basis for V0.
To build such a multiresolution one needs the function ϕ called scaling func-

tion (or father function or refinable function). The scaling function satisfies a
scaling equation:

1√
N
ϕ
( x
N

)
=
∑

k∈Z

akϕ(x− k), (x ∈ R),

ak being some complex coefficients. The Fourier transform of the scaling equation
is: √

Nϕ̂(Nξ) = m0(ξ)ϕ̂(ξ), (ξ ∈ R),
where m0(ξ) =

∑
k∈Z

ake
−ikξ is a 2π-periodic function called low-pass filter.

Thus, the scaling functions ϕ are determined by the low-pass filters m0 and
the construction of scaling functions has the low-pass filters as the starting point.

The multiresolution theory has shown that many of the properties of the
scaling function ϕ can be expressed in terms of the wavelet Galerkin operator
associated to the filter m0:

Rm0,m0f(z) =
1
N

∑

wN=z

|m0|2 (w)f(w), (z ∈ T).

T is the unit circle, f is some measurable function on T, and we will identify
functions on T with 2π-periodic functions on R.

For example, one needs the integer translates of the scaling function ϕ(x−k),
k ∈ Z, to be orthonormal. To obtain this, a neccesary condition is the quadrature
mirror filter condition:

1
N

∑

wN=z

|m0|2 (w) = 1, (z ∈ T),

which can be rewritten as Rm0,m01 = 1. In [Law91a] it is proved that the integer
translates of the scaling function form an orthonormal set if and only if the con-
stants are the only continuous functions that satisfy Rm0,m0h = h. So 1 has to
be a simple eigenvalue for the operator Rm0,m0 : C(T) → C(T). Also, the regu-
larity of the scaling function can be determined by the spectrum of Rm0,m0 (see
[Str96],[RoSh]).

We will impose some restrictions on m0, restrictions that are custom in the
setting of compactly supported wavelets:

m0 is a Lipschitz function; (1.1)

m0 has only a finite number of zeroes; (1.2)

m0(0) =
√
N ; (1.3)

Rm0,m01 = 1. (1.4)
In fact, for compactly supported wavelets, m0 is a trigonometric polynomial, but
for our purpose we can assume more generally that m0 is Lipschitz.
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The wavelet Galerkin operator Rm0,m0 bears several other names in the lit-
erature. It is also called the Ruelle operator because there are connections with
the Ruelle-Perron-Frobenius theory for positive operators (see[Bal00]), or transfer
operator. We will use these names in the sequel. The existence of fixed points and
periodic points for Perron-Frobenius operators is also treated in [Nus01].

An extensive study of the spectral properties of the Ruelle operator can be
found in [BraJo]. We will gather some results from [BraJo],[Dutb] and add some
new ones to give a complete picture of the spectrum of this Ruelle operator in the
Banach spaces C(T) and Lp(T), 1 ≤ p ≤ ∞, answering in this way some questions
posed in [BraJo].

2. The Spectrum of Rm0,m0

In this section we present the results. We consider an integer N ≥ 2 and a function
m0 on T that satisfies (1.1)-(1.4). To m0 we associate the Ruelle operator Rm0,m0

defined by

Rm0,m0f(z) =
1
N

∑

wN=z

|m0|2 (w)f(w), (z ∈ T),

where f is a measurable function on T. We will see that Rm0,m0 is an operator on
the spaces C(T), Lp(T) where 1 ≤ p ≤ ∞, and we will describe the spectrum and
the eigenvalue spectrum of this operator on these spaces.

Before we give the results, some definitions and notations are needed. We
denote by R = Rm0,m0 . For a function f on T and ρ ∈ T

αρ(f)(z) = f(ρz), (z ∈ T).

For ϕ ∈ L1 (R),

Per(ϕ)(x) =
∑

k∈Z

ϕ(x+ 2kπ), (x ∈ R).

We call a set {z1, . . . , zp} a cycle of length p, and denote this by z1 → · · · →
zp → z1, if zN

1 = z2, z
N
2 = z3, . . . , z

N
p−1 = zp, z

N
p = z1 and the points z1, . . . , zp

are distinct. We call z1 → · · · → zp → z1 an m0-cycle if |m0|(zi) =
√
N for

i ∈ {1, . . . , p}.
For a complex function f on T and a positive integer n,

f (n)(z) = f(z)f
(
zN
)
. . . f

(
zNn−1

)
, (z ∈ T).

Theorem 2.1 (The spectrum of R on C(T )). Let m0 be a function satisfying (1.1)–
(1.4).

(i) The spectral radius of the operator R : C(T) → C(T) is equal to 1.
(ii) Each point λ ∈ C with |λ| < 1 is an eigenvalue for R, having infinite multi-

plicity and the spectrum of R on C(T) is the unit disk {λ ∈ C | |λ| ≤ 1}.
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(iii) (The peripheral spectrum) Let C1, . . . , Cn be the m0-cycles,

Ci = z1i → · · · → zpii → z1i, (i ∈ {1, . . . , n}).
Let λ ∈ C, |λ| = 1. Then λ is an eigenvalue for R if and only if λpi = 1 for
some i ∈ {1, . . . , n}. The multiplicity of such a λ equals the cardinality of the
set

{i ∈ {1, . . . , n} |λpi = 1}.
A basis for the eigenspace corresponding to λ is obtained as follows:

For i ∈ {1, . . . , n} and k ∈ {1, . . . , pi} define

ϕki(x) =
∞∏

l=1

e−iθiαzki

(
m

(pi)
0

) (
x

Nlpi

)

√
Npi

, (x ∈ R),

where

eiθi =
m0(z1i)
|m0|(z1i)

. . .
m0(zpii)
|m0|(zpii)

.

Then
gki = αz−1

ki

(
Per |ϕik|2

)
.

The basis for the eigenspace corresponding to the eigenvalue λ is

{
pi∑

k=1

λ−k+1gki | i ∈ {1, . . . , n} with λpi = 1}.

Moreover, the functions in this basis are Lipschitz (or trigonometric polyno-
mials when m0 is one).

Proof. (i) Take f ∈ C(T) and z ∈ T.

|Rf(z)| ≤ 1
N

∑

wN=z

|m0(w)|2|f(w)|

≤ ‖f‖∞
1
N

∑

wN=z

|m0(w)|2 = ‖f‖∞

Therefore ‖Rf‖∞ ≤ ‖f‖∞ so the spectral radius is less then 1. But condition (1.4)
implies that 1 is an eigenvalue for R so the spectral radius is 1.

(ii) We begin with a lemma

Lemma 2.2. If z0 → · · · → zp−1 → z0 is a cycle with p large enough, then there
exists a continuous function f 	= 0 with Rf = 0, such that f(z0) = 1, f(zi) = 0
for i ∈ {1, . . . , p− 1}.
Proof. To be able to produce such a function, we will need some conditions on the
cycle. We will need z0 and e

2πi
N z0 to be outside the set of zeroes of m0. Because m0

has only finitely many zeros, this can be achieved as long as p is big enough. We
will also need e

2πi
N z0 	= zl for l ∈ {1, . . . , p−1}, but this is true because, otherwise,

z1 =
(
e

2πi
N z0

)N

= zN
l = zl+1 for some l ∈ {1, . . . , p− 1}.



Vol. 50 (2004) The Wavelet Galerkin Operator 481

So, when the cycle is long enough we have that z0, e
2πi
N z0 are outside the set

of zeroes of m0 and also e
2πi
N z0 	= zl for all l ∈ {1, . . . , p− 1}. Then we can choose

a small interval [a, b] (on T) centered at z0, such that

[a, b] ∪ [e
2πi
N a, e

2πi
N b] contains no zeroes of m0; (2.1)

[a, b] ∪ [e
2πi
N a, e

2πi
N b] contains no zl, l ∈ {1, . . . , p− 1}; (2.2)

The intervals [e
2kπ
N ia, e

2kπ
N ib], k ∈ {0, . . . , N − 1} are disjoint. (2.3)

Define f on [a, b] continuously, to be 1 at z0 and 0 at a and b. Define f on
[e

2πi
N a, e

2πi
N b] by

f(z) = − 1
|m0(z)|2 |m0|2

(
e

−2πi
N z

)
f
(
e

−2πi
N z

)
, (z ∈ [e

2πi
N a, e

2πi
N b])

and define f to be 0 everywhere else. f is well defined because of (2.1) and (2.3). f
is continuous because it is 0 at a, b, e

2πi
N a and e

2πi
N b. It is also clear that f(z0) = 1

and f(zi) = 0 for i ∈ {1, . . . , p− 1} due to (2.2).
Now we check that Rf = 0 which amounts to verifying that

N−1∑

k=0

|m0|2
(
e

2kπi
N z

)
f
(
e

2kπi
N z

)
= 0, (z ∈ T) (2.4)

The only interesting case is when for some k,

e
2kπi

N z ∈ [a, b] ∪ [e
2πi
N a, e

2πi
N b].

So assume e
2kπi

N z ∈ [a, b] for some k ∈ {0, . . . , N − 1}. Then

e
2(k+1)πi

N z ∈ [e
2πi
N a, e

2πi
N b]

and, using (2.3), f
(
e

2lπi
N z

)
= 0 for l ∈ {0, . . . , N − 1} \ {k, k + 1}. (We use here

notation modulo N that is N = 0, N + 1 = 1 etc.) Having theese, (2.4) follows
from the definition of f .

If
e

2kπi
N z ∈ [e

2πi
N a, e

2πi
N b]

then
e

2(k−1)πi
N ∈ [a, b]

and we can use the same argument as before to obtain (2.4). This concludes the
proof of the lemma. �

We return to the prof of our theorem. Take λ ∈ C with |λ| < 1. Choose a long
enough cycle z0 → · · · → zp−1 → z0. Lemma (2.2) produces a function fz0 ∈ C(T)
with Rfz0 = 0, fz0(zi) = δ0i for i ∈ {0, . . . , p− 1}.

Define

hz0(z) =
∞∑

n=0

λnf
(
zNn

)
, (z ∈ T).

(For λ = 0 we make the convention λ0 = 1.)
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The series is uniformly convergent because
∥∥fz0

(
zNn)∥∥

∞ = ‖f‖∞ for all
n ≥ 0 and |λ| < 1, so hz0 is continuous.

Also, if we use the fact that R
(
f
(
zNn))

= f
(
zNn−1

)
for n ≥ 1, which is a

consequence of the definition of R and (1.4), we have:

Rhz0(z) = Rfz0(z) +
∞∑

n=1

λnR
(
f
(
zNn

))

= λ
∞∑

n=1

λn−1f
(
zNn−1

)
= λhz0

We evaluate hz0 at the points of the cycle z0, z1, . . . , zp−1. Note that

fz0

(
zNn

i

)
= fz0(zn+i) =

{
1 for n+ i = 0 mod p
0 otherwise

(again, we use notation mod p, zp = z0, zp+1 = z1, etc.)
Hence,

hz0(z0) =
∞∑

m=0

λmp =
1

1 − λp
,

hz0(zi) =
∞∑

m=0

λp−i+mp =
λp−i

1 − λp
, (i ∈ {1, . . . , p− 1}),

so

(hz0(z0), . . . , hz0(zp−1)) =
1

1 − λp
(1, λp−1, λp−2, . . . , λ2, λ).

Now we make the same construction but considering the cycle starting from
zk. We obtain a function fzk

∈ C(T) satisfying Rfzk
= 0, fzk

(zi) = δki and

hzk
(z) =

∞∑

n=0

λnfzk

(
zNn

)

has the properties hzk
∈ C(T), Rhzk

= λhzk
and, for example, for k = 1 we have

the vector

(hz1(z0), . . . , hz1(zp−1)) =
1

1 − λp
(λ, 1, λp−1, λp−2, . . . , λ2).

Note that this vector is obtained from the previous one (the one corresponding to
z0), after a cyclic permutation. In fact the matrix

(1 − λp)





hz0(z0) hz0(z1) . . . hz0(zp−1)
hz1(z0) hz1(z1) . . . hz1(zp−1)

...
...

...
hzp−1(z0) hzp−1(z1) . . . hzp−1(zp−1)
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is equal to 



1 λp−1 λp−2 . . . λ3 λ2 λ
λ 1 λp−1 . . . λ4 λ3 λ2

...
...

...
...

...
...

λp−2 λp−3 λp−4 . . . λ 1 λp−1

λp−1 λp−2 λp−3 . . . λ2 λ 1





Our goal is to prove that hzk
are linearly independent. We can achieve this if

we show that the matrix is nonsingular. For this, look at the entries below the
diagonal. We note that, on each row, the part below the diagonal can be obtained
from the previous row times λ. Therefore, if we subtract from the p − 1-st row
λ times the p − 2-nd row, substract from the p − 2-nd row λ times the p − 3-rd
row,. . . , substract from the 1-st row λ times the 0-th row, we obtain an upper
triangular matrix having 1 − λp on each diagonal entry and which has the same
determinant as the initial one. Since |λ| < 1, this matrix will be nonsingular so
hz0 , hz1 , . . . , hzp−1 are linearly independent eigenvectors that correspond to the
eigenvalue λ. As p can be chosen as big as we want, the multiplicity of λ is infinite.

(iii) See [Dutb]. �

Theorem 2.3 (The spectrum of R on L∞ (R)). Let m0 be a function on T satisfying
(1.1)–(1.4).

(i) The spectral radius of the operator R : L∞ (R) → L∞ (R) is equal to 1 and
the spectrum of R is the unit disk {λ ∈ C | |λ| ≤ 1}.

(ii) Each point λ ∈ C with |λ| ≤ 1 is an eigenvalue for R of infinite multiplicity.

Proof. (i) The argument used in the proof of theorem 2.1 applies here to obtain
the spectral radius equal to 1 and the fact that the spectrum is the unit disk will
follow from (ii).

(ii) If |λ| < 1 then the assertion follows trivialy from theorem 2.1 (ii). It
remains to consider the case |λ| = 1. Define

ϕ(x) =
∞∏

n=1

m0

(
x

Nn

)
√
N

, (x ∈ R).

ϕ is a well defined, continuous function in L2 (R) and Per |ϕ|2 is a Lipschitz function
on T (see [BraJo]). Also, Per |ϕ|2(0) = 1, ϕ(0) = 1 and

ϕ(x) =
m0

(
x
N

)
√
N

ϕ
( x
N

)
, (x ∈ R),

(ϕ is the Fourier transform of a scaling function).
Now, consider a function f ∈ L∞ (R) with the property that f(x) = 1

λf
(

x
N

)

a.e. on R, and take hf = Per
(
f |ϕ|2). Clearly, |hf (z)| ≤ ‖f‖∞ Per |ϕ|2(z) for z ∈ T

so hf is an L∞ (T) function. We want to prove that

Rhf = λhf .
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We have

hf (x) =
∑

k∈Z

f(x+ 2kπ)|ϕ|2(x+ 2kπ)

=
∑

k∈Z

1
λ
f

(
x+ 2kπ
N

)
1
N

|m0|2
(
x+ 2kπ
N

)
|ϕ|2

(
x+ 2kπ
N

)

=
1
N

1
λ

N−1∑

l=0

∑

m∈Z

f

(
x+ 2(Nm+ l)π

N

)
|m0|2

(
x+ 2(Nm+ l)π

N

)
·

· |ϕ|2
(
x+ 2(Nm+ l)π

N

)

=
1
N

1
λ

N−1∑

l=0

|m0|2
(
x+ 2lπ
N

)∑

m∈Z

f |ϕ|2
(
x+ 2kπ
N

+ 2mπ
)

=
1
λ
Rhf .

so, we have indeed Rhf = λhf .
Next, we argue why the vector space

{
hf | f ∈ L∞ (R) , f(x) =

1
λ
f
( x
N

)
a.e. on R

}

is infinite dimensional.
For this, we prove first that if hf = 0 then f = 0. Indeed, if hf = 0 then

f(x)|ϕ|2(x) = −
∑

k∈Z\{0}
f(x+ 2kπ)|ϕ|2(x+ 2kπ). (2.5)

We claim that the term on the right converges to 0 as x→ 0. We have
∣∣∣∣∣∣

∑

k∈Z\{0}
f(x+ 2kπ)|ϕ|2(x+ 2kπ)

∣∣∣∣∣∣
≤

≤ ‖f‖∞
∑

k∈Z\{0}
|ϕ|2(x+ 2kπ) = ‖f‖∞ (Per |ϕ|2(x) − |ϕ|2(x)) → 0,

because both Per |ϕ|2 and |ϕ|2 are continuous and their value at 0 is 1. Then, using
(2.5), we obtain f(x) → 0 as x→ 0. But we know that f(x) = 1

λf
(

x
N

)
a.e. on R.

So for a.e. x we have

f
( x

Nn

)
= λnf(x), for all n.

This implies that ∣∣∣f
( x

Nn

)∣∣∣ = |f(x)|, (n ∈ N)

and, coupled with the limit of f at 0, it entails that f is constant 0 almost every-
where.
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Having these, we try to construct a set of p linearly independent functions
hf with p ∈ N arbitrary. Take p linearly independent functions g1, . . . , gp in
L∞([−N,−1] ∪ [1, N ]). Define fi, i ∈ {1, . . . , p} on R as follows: let fi(x) = gi(x)
on [−N,−1] ∪ [1, N ] and extend it on R requiring that

1
λ
fi

( x
N

)
= fi(x), (x ∈ R).

That is, for x ∈ [− 1
Nl ,− 1

Nl+1 ] ∪ [ 1
Nl+1 ∪ 1

Nl ]

fi(x) = λl+1gi(N l+1x),

for all l ∈ Z. Since |λ| = 1, f1, . . . , fp are in L∞ (R) and they are linearly indepen-
dent because g1, . . . , gp are. hf1 , . . . , hfp

are linearly independent by the following
argument: if for some complex constants a1, . . . , ap we have a1hf1 + · · ·+aphfp

= 0
then ha1f1+···+apfp

= 0 so a1f1 + · · · + apfp = 0 and a1 = · · · = ap = 0 by linear
independence. Since we proved that Rhfi

= λfi
, i ∈ {1, . . . , p}, and since p is

arbitrary, it follows that the multiplicity of the eigenvalue λ is infinite. �

Theorem 2.4 (The spectrum of R on Lp(T)). Let m0 be a function on T satisfying
(1.1)–(1.4) and 1 ≤ p <∞.

(i) The spectral radius of the operator R : Lp(T) → Lp(T) is equal to N
1
p and

the spectrum of R is the disk {λ ∈ C | |λ| ≤ N
1
p }.

(ii) Each point λ ∈ C with |λ| < N
1
p is an eigenvalue for R of infinite multiplicity.

(iii) There are no eigenvalues of R with |λ| = N
1
p .

Proof. (i) is proved in [BraJo] but we present here a different argument that we
will need for (iii) also. Take f ∈ Lp(T).

‖Rf‖p =

(∫ 2π

0

∣∣∣∣∣
1
N

N−1∑

k=0

|m0|2f
(
θ + 2kπ
N

)∣∣∣∣∣

p

dθ

) 1
p

≤
(∫ 2π

0

(
1
N

N−1∑

k=0

|m0|2|f |
(
θ + 2kπ
N

))p

dθ

) 1
p

Since
1
N

N−1∑

k=0

|m0|2
(
θ + 2kπ
N

)
= 1, (θ ∈ [0, 2π])

and x �→ xp is convex, we can use Jensen’s inequality:
(

1
N

N−1∑

k=0

|m0|2|f |
(
θ + 2kπ
N

))p

≤ 1
N

N−1∑

k=0

|m0|2|f |p
(
θ + 2kπ
N

)

≤
N−1∑

k=0

|f |p
(
θ + 2kπ
N

)

For the last inequality we used the fact that |m0|2 ≤ N which follows from (1.4).
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Also, by a change of variable,
(∫ 2π

0

N−1∑

k=0

|f |p
(
θ + 2kπ
N

)
dθ

) 1
p

=

(
N−1∑

k=0

N

∫ 2(k+1)π
N

2kπ
N

|f(θ)|p dθ
) 1

p

= N
1
p

∫ 2π

0

|f(θ)|p dθ.

Putting together the previous equalities and inequalities we obtain that ‖Rf‖p ≤
N

1
p ‖f‖p. This implies that the norm and the spectral radius of the operator

R : Lp(T) → Lp(T) are less than N
1
p . A result of R. Nussbaum (see [BraJo])

shows that every λ ∈ C with 1 < |λ| < N
1
p is an eigenvalue of R of infinite

multiplicity. Also theorem 2.3 shows that all λ ∈ C with |λ| ≤ 1 is an eigenvalue
of R of infinite multiplicity. This establishes (i) and (ii).

It remains to prove that (iii) is valid. Suppose there is a function f ∈ Lp(T)
and λ ∈ C such that |λ| = N

1
p and Rf = λf . Then ‖Rf‖p = N

1
p ‖f‖p so we have

equalities in all inequalities that we used for proving (i). In particular, we have
∫ 2π

0

1
N

N−1∑

k=0

|m0|2|f |p
(
θ + 2kπ
N

)
dθ =

∫ 2π

0

N−1∑

k=0

|f |p
(
θ + 2kπ
N

)
dθ

and, since |m0|2
N ≤ 1 the corresponding terms of the sums must be equal: for

k ∈ {0, . . . , N − 1},
∫ 2π

0

|m0|2
(

θ+2kπ
N

)

N
|f |p

(
θ + 2kπ
N

)
dθ =

∫ 2π

0

|f |p
(
θ + 2kπ
N

)
dθ

Therefore, utilizing again |m0|2 ≤ N ,

|m0|2
(

θ+2kπ
N

)

N
|f |p

(
θ + 2kπ
N

)
= |f |p

(
θ + 2kπ
N

)

for almost every θ ∈ [0, 2π] and for all k ∈ {0, . . . , N − 1}. But this implies
that 1

N |m0|2|f |p = |f |p almost everywhere on T. However, m0 is continuous and
has finitely many zeroes and, because

∑
wN=z |m0|2(w) = N for all z ∈ T, this

implies that |m0|2(z) = N for at most finitely many points so f must be 0 almost
everywhere. In conclusion, there are no eigenvalues λ of modulus N

1
p and the proof

of the theorem is complete. �
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