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The Spectrum of the Wavelet Galerkin
Operator

Dorin Ervin Dutkay

Abstract. We give a complete description of spectrum of the wavelet Galerkin
operator

Rugmaf () = 3¢ 3 Imof® (w)f(w), (=€)

associated to a a low-pass filter mg and a scale N, in the Banach spaces C(T)
and L? (T), 1 < p < 0.

1. Introduction

We begin with a short motivation of our study. For more background on wavelets
and their connection to the wavelet Galerkin operator we refer the reader to
[Dau92], [BraJo] or [HeWe]. The wavelet analysis studies functions v € L? (R)
with the property that

{2%¢ (272 — k) |4,k € Z}

is an orthonormal basis for L? (R). Such functions are called wavelets. The scale
(2 here) can be also any integer N > 2. One way to construct wavelets is by
multiresolutions. A multiresolution is a nest of subspaces (V;)jez of L? (R) with
the following properties:

(i) V; C Vi, for all j € Z;

(i) f e V;ifand only if f(Nz) € Vjy1,(j € Z);

(i)
Vi ={0};
JEZ
(iv) -
Uvi=r"®;

JEL
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(v) There exists a function ¢ € V; such that {¢(x —k) |k € Z} is an orthonormal
basis for Vj.

To build such a multiresolution one needs the function ¢ called scaling func-
tion (or father function or refinable function). The scaling function satisfies a
scaling equation:

T

(%)
—p|(—=) = arp(x — k), (xe€R),
77 (§) =L aete -0, wem)
ay, being some complex coefficients. The Fourier transform of the scaling equation
is:

VNB(NE) = mo(€)P(6), (€ €R),

where mo(§) = >z are~ "¢ i a 2m-periodic function called low-pass filter.
Thus, the scaling functions ¢ are determined by the low-pass filters mgy and
the construction of scaling functions has the low-pass filters as the starting point.
The multiresolution theory has shown that many of the properties of the
scaling function ¢ can be expressed in terms of the wavelet Galerkin operator
associated to the filter mg:

Rgmof () = = 3 Imof* (w)f(w), (=€),
wN=z
T is the unit circle, f is some measurable function on T, and we will identify
functions on T with 27-periodic functions on R.
For example, one needs the integer translates of the scaling function p(z —k),
k € Z, to be orthonormal. To obtain this, a neccesary condition is the quadrature
mirror filter condition:

© 3 moffw) =1, (zem)
wN=z

which can be rewritten as Ry, m,1 = 1. In [Law9la] it is proved that the integer
translates of the scaling function form an orthonormal set if and only if the con-
stants are the only continuous functions that satisfy R,,,m,h = h. So 1 has to
be a simple eigenvalue for the operator R,,, m, : C(T) — C(T). Also, the regu-
larity of the scaling function can be determined by the spectrum of Ry, m, (see
[Str96],[RoSh]).

We will impose some restrictions on myg, restrictions that are custom in the
setting of compactly supported wavelets:

myg is a Lipschitz function; (

myg has only a finite number of zeroes; (
mo(0) = \/N; (1.

Ry mel = 1. (

In fact, for compactly supported wavelets, myq is a trigonometric polynomial, but
for our purpose we can assume more generally that mg is Lipschitz.
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The wavelet Galerkin operator Ry, m, bears several other names in the lit-
erature. It is also called the Ruelle operator because there are connections with
the Ruelle-Perron-Frobenius theory for positive operators (see[Bal00]), or transfer
operator. We will use these names in the sequel. The existence of fixed points and
periodic points for Perron-Frobenius operators is also treated in [Nus01].

An extensive study of the spectral properties of the Ruelle operator can be
found in [BraJo]. We will gather some results from [BraJo],[Dutb] and add some
new ones to give a complete picture of the spectrum of this Ruelle operator in the
Banach spaces C(T) and LP(T), 1 < p < oo, answering in this way some questions
posed in [BralJo].

2. The Spectrum of R, ..,

In this section we present the results. We consider an integer N > 2 and a function
mg on T that satisfies (1.1)-(1.4). To mg we associate the Ruelle operator Ry, m,
defined by

Rongmo f(2) = 52 3 Imol* () f(w), (= €T),
wN=z
where f is a measurable function on T. We will see that R,,, m, is an operator on
the spaces C(T), LP(T) where 1 < p < 0o, and we will describe the spectrum and
the eigenvalue spectrum of this operator on these spaces.

Before we give the results, some definitions and notations are needed. We
denote by R = Ry, m,- For a function f on T and p € T

ap(f)(z) = flpz), (z€T).
For ¢ € L' (R),
Per(yp)(x) = Z o(x +2kn), (z€R).

keZ
We call a set {z1,...,2,} a cycle of length p, and denote this by 21 — --- —
zp — 21, if 2V = 29,2l = 23,...,211)\[_1 = zp,zlj,v = z; and the points z1,..., %
are distinct. We call z; — .-+ — 2, — 2z an mg-cycle if |mg|(z;) = VN for
ie{l,...,p}.

For a complex function f on T and a positive integer n,

FOE) = Ff () (BT, e,
Theorem 2.1 (The spectrum of R on C(T')). Let mg be a function satisfying (1.1)—
(1.4).

(i) The spectral radius of the operator R : C(T) — C(T) is equal to 1.
(ii) Fach point A € C with |\ < 1 is an eigenvalue for R, having infinite multi-
plicity and the spectrum of R on C(T) is the unit disk {\ € C||\| < 1}.
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(iii) (The peripheral spectrum) Let C1,...,C, be the mg-cycles,
Ci:ZIi_)"'_)Zpii_)Zlia (ZE{L,H})

Let N € C, |\| = 1. Then X is an eigenvalue for R if and only if \Pi =1 for
some i € {1,...,n}. The multiplicity of such a A equals the cardinality of the
set
{ie{l,...,n}| P =1}.
A basis for the eigenspace corresponding to X is obtained as follows:
Forie{l,...,n} and k € {1,...,p;} define

e P, (m(()pi)) (Ngfm)

i(x) = , (zeR),
where
i _ mo(z1:)  mo(2pi)
Imol(z1:) " Imol(zp,i)
Then

Gri = @, (Per |gpik|2) .
The basis for the eigenspace corresponding to the eigenvalue X is
Pi
O N F g i€ {1,...,n} with AP = 1}.
k=1

Moreover, the functions in this basis are Lipschitz (or trigonometric polyno-
mials when mg is one).

Proof. (i) Take f € C(T) and z € T.
[RF(2) < < > Imo(w)|f(w)l

17l 3 Imo()l” = 7]
wN=z
Therefore | Rf|, < ||f|l so the spectral radius is less then 1. But condition (1.4)
implies that 1 is an eigenvalue for R so the spectral radius is 1.
(ii) We begin with a lemma

Lemma 2.2. If zg — -+ — 2,1 — %o 15 a cycle with p large enough, then there
exists a continuous function f # 0 with Rf = 0, such that f(20) =1, f(z;) =0

forie{l,...,p—1}.

Proof. To be able to produce such a function, we will need some conditions on the
cycle. We will need zy and e%zo to be outside the set of zeroes of mg. Because mg
has only finitely many zeros, this can be achieved as long as p is big enough. We
will also need e %" 2 # z forl € {1,...,p— 1}, but this is true because, otherwise,

AN
z] = (621\’ zo> = 2N = 241 forsome l € {1,...,p—1}.
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So, when the cycle is long enough we have that zo, e N zo are outside the set
of zeroes of mg and also e~ z #z foralll e {1,...,p—1}. Then we can choose
a small interval [a,b] (on T) centered at zp, such that

[a,b] U [e%a, e%b] contains no zeroes of my; (2.1)
[a,b] U [e%me%b] contains no z;,l € {1,...,p—1}; (2.2)
The intervals [e%T”a, e%Tﬂib], ke€{0,...,N — 1} are disjoint. (2.3)

Define f on [a,b] continuously, to be 1 at zp and 0 at a and b. Define f on
[e%me%b] by

f(z) = _7|m012)|2 Imol? (e$z) f (e%z) , (z€ [eQﬁla,e%l b))
and define f to be 0 everywhere else. f is well defined because of (2.1) and (2.3). f
is continuous because it is 0 at a, b, e a and e¥b. Tt is also clear that f(z0) =1
and f(z;) =0forie {l,...,p— 1} due to (2.2).
Now we check that Rf = 0 which amounts to verifying that

sz |mo|? (e%z) f (e%z) =0, (z€T) (2.4)

k=0
The only interesting case is when for some k,

eFze [a,b] U [e%a,e

2mi
N ]

2kmi

So assume e~ z € [a,b] for some k € {0,..., N — 1}. Then

2(k+1)mi 27 27i
e N z€leNa,eN b

2l

and, using (2.3), f (eTz) =0forle{0,...,N—1}\ {k,k+ 1}. (We use here

notation modulo N that is N = 0, N + 1 = 1 etc.) Having theese, (2.4) follows
from the definition of f.

If
2kmi 27mi 27mi
eN zeeNa,e N
then
2(k—1)mi
N € a,b]
and we can use the same argument as before to obtain (2.4). This concludes the
proof of the lemma. O

We return to the prof of our theorem. Take A € C with |A| < 1. Choose a long
enough cycle zg — - -+ — 2,1 — zp. Lemma (2.2) produces a function f,, € C(T)
with Rf,, =0, fz(2) = dp; for i € {0,...,p—1}.

Define

hay(2) = i A f (ZN) . (zeT).

(For A = 0 we make the convention \° = 1.)
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The series is uniformly convergent because | fx, (an)HOO = ||Iflly for all
n >0 and |A| < 1, so h,, is continuous.

Also, if we use the fact that R (f (:V")) = f (an_l) for n > 1, which is a

consequence of the definition of R and (1.4), we have:

Rh.,(2) = Rf.,(2) + io: AR (f (ZNn))

A i ALy (ZN””) — \hs,
n=1

We evaluate h., at the points of the cycle zg, 21,...,2,—1. Note that

n 1 for n+i=0 modp
N
Fo (Z’ > = Faolonti) = { 0 otherwise
(again, we use notation mod p, z, = 2o, zp+1 = 21, €tc.)
Hence,
> 1
hag(20) = 3 A" = 1,

0

3
I

— —i+m, Apii -
haolsi) = 30N = S (e {1, p— 1)),
m=0

SO

1 1 ype
(P (20)s -+ oy hag (2p-1)) = 1_/\p(1,)\” LP=2 A%

Now we make the same construction but considering the cycle starting from
z. We obtain a function f,, € C(T) satisfying Rf,, =0, f., (zi) = dx; and

he2) = SN, (=)
n=0

has the properties h,, € C(T), Rh,, = Ah,, and, for example, for k = 1 we have
the vector

1 “1 yp
(hay (20)s -+ oy hay (2p-1)) = 1_—M(/\71,AP LAP=2 A%,

Note that this vector is obtained from the previous one (the one corresponding to
20), after a cyclic permutation. In fact the matrix

hZ(J (ZO) hzo (21) s th(Zp_l)
h 1

(1— A7) hay '(ZO) bz (Zl) z (Zp—l)

th71 (ZO) th—l (Zl) s h’zp—l (Zp—l)
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is equal to
1 APLoAP=2 0 A3 )2 A
A 1 AP A3 N2
R U DU I W B
APTL o AP=2 0 Ap=3A2) 1

Our goal is to prove that h, are linearly independent. We can achieve this if
we show that the matrix is nonsingular. For this, look at the entries below the
diagonal. We note that, on each row, the part below the diagonal can be obtained
from the previous row times A. Therefore, if we subtract from the p — 1-st row
A times the p — 2-nd row, substract from the p — 2-nd row A times the p — 3-rd
row,. .., substract from the 1-st row A\ times the 0-th row, we obtain an upper
triangular matrix having 1 — AP on each diagonal entry and which has the same
determinant as the initial one. Since |A| < 1, this matrix will be nonsingular so
hzgshzyy- -y he,_, are linearly independent eigenvectors that correspond to the
eigenvalue A. As p can be chosen as big as we want, the multiplicity of A is infinite.

(iii) See [Dutb]. O

Theorem 2.3 (The spectrum of R on L> (R)). Let mg be a function on T satisfying
(1.1)—(1.4).
(i) The spectral radius of the operator R : L*™° (R) — L*° (R) is equal to 1 and
the spectrum of R is the unit disk {\ € C| |\ < 1}.
(ii) Fach point A € C with |A\| < 1 is an eigenvalue for R of infinite multiplicity.

Proof. (i) The argument used in the proof of theorem 2.1 applies here to obtain
the spectral radius equal to 1 and the fact that the spectrum is the unit disk will
follow from (ii).

(ii) If |A] < 1 then the assertion follows trivialy from theorem 2.1 (ii). It
remains to consider the case |A| = 1. Define

¢ is a well defined, continuous function in L? (R) and Per |p|? is a Lipschitz function
on T (see [BraJo]). Also, Per|¢|?(0) =1, ¢(0) = 1 and

Z

mo (%) (%)
- z R
o) =—x ely) @ER),
(p is the Fourier transform of a scaling function).
Now, consider a function f € L> (R) with the property that f(z) = 1 f (%
a.e. on R, and take hy = Per (f|¢|?). Clearly, |hy(2)| < || f|l Per|p|?(z) for z € T
so hy is an L™ (T) function. We want to prove that

Rhy = Ahy.
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‘We have

hy(x) = fla+ 2km)|¢|*(x + 2kn)
keZ
_Zlf x + 2km i|m 2 x + 2km o2 x + 2km
VAN N ) N0 N v N
keZ
1 Nz: z+2(Nm+ D o ? z+2(Nm+Dr
N N o N

11
A
( Nm+l) >
11
A

N—
Z mal? (50T ) 3 Aol (ST 2

mEZ

so, we have indeed Rhy = Ahy.
Next, we argue why the vector space

{hlrer=@® 1w =11 (5) se o}

is infinite dimensional.
For this, we prove first that if hy = 0 then f = 0. Indeed, if hy = 0 then

F@)efx) == Y fla+2km)ef(z + 2km). (2.5)

kezZ\{0}

We claim that the term on the right converges to 0 as + — 0. We have

> fla+2km) o (2 + 2km)| <
kez\{0}

<lleo D ez +2km) = |If ]l (Per|of*(2) — |0l (2)) — 0,
kez\{0}
because both Per |¢]? and |¢|? are continuous and their value at 0 is 1. Then, using
(2.5), we obtain f(z) — 0 as x — 0. But we know that f(z) = +f (%) a.e. on R.
So for a.e. x we have
x

f (m) =\"f(z), for all n.

This implies that
7 (35)| = lF @] e

and, coupled with the limit of f at 0, it entails that f is constant 0 almost every-
where.
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Having these, we try to construct a set of p linearly independent functions
hy with p € N arbitrary. Take p linearly independent functions gi,...,g, in
L>*([-N,—-1]U[1, N]). Define f;, i € {1,...,p} on R as follows: let f;(z) = g;(z)
on [-N,-1] U1, N] and extend it on R requiring that

1 T
Xfi (N) = fi(z), (z€R).
That is, for x € [— N“ ﬁ]u[ﬁu#]
filz) = N*lgi (N a),

for all [ € Z. Since |A| =1, fi1,..., fp are in L* (R) and they are linearly indepen-
dent because g1,...,gp are. hy ..., hy are linearly independent by the following
argument: if for some complex constants ay, ..., a, we have aihy, +---+ayhy, =0
then ha i 4..va,f, =080 arfi+---+apf, =0and a; = --- = a, = 0 by linear
independence. Since we proved that Rhy, = Ay, ¢ € {1,...,p}, and since p is
arbitrary, it follows that the multiplicity of the eigenvalue A is infinite. O

Theorem 2.4 (The spectrum of R on LP(T)). Let mq be a function on T satisfying
(1.1)-(1.4) and 1 < p < 0.
(i) The spectral radius of the operator R : LP(T) — LP(T) is equal to N7 and
the spectrum of R is the disk {\ € C||\| < N%},
(ii) Fach point A € C with |\| < N7 isan eigenvalue for R of infinite multiplicity.
(iii) There are no eigenvalues of R with |A| = Nw.

Proof. (i) is proved in [BraJo] but we present here a different argument that we
will need for (iii) also. Take f € LP(T).

N-1 p %
1 9 0+ 2km
> imol*s (—N )‘ d9>

RSl = (/02 1 |
([ (3 EmanC2m)) o)

N-1
§ 2 o () =1 @)
=0

and x — 2P is convex, we can use Jensen’s inequality:

1= 0+2km\) 1A~ 0 + 2k
(ﬁgmaﬂﬂ( 2 )) Sy mof P (2

— 1P <9 + ka>
N
k=0

For the last inequality we used the fact that |mg|?> < N which follows from (1.4).

IN

Since

IN
2
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Also, by a change of variable,

(/O%NZ:l|f|p <9+2k7r> ) (Z N/z(k“)w |pd0>

— N} /O 1O db.

Putting together the previous equalities and inequalities we obtain that [[Rf|, <

<=

Nv | fIl,- This implies that the norm and the spectral radius of the operator

R : LP(T) — LP(T) are less than N7. A result of R. Nussbaum (see [BraJo])
shows that every A € C with 1 < |A\| < N v is an eigenvalue of R of infinite
multiplicity. Also theorem 2.3 shows that all A € C with |A] < 1 is an eigenvalue
of R of infinite multiplicity. This establishes (i) and (ii).

It remains to prove that (iii) is valid. Suppose there is a function f € LP(T)
and A € C such that |\ = N7 and Rf =Af. Then [[Rf|, = N7v || f]l, so we have
equalities in all inequalities that we used for proving (i). In particular, we have

27 o N—1
/ 1 Z| o |f|p<9+2k7r) dﬁ—/ Z|f|p<9+2kﬁ) "

|7710|2

and, since < 1 the corresponding terms of the sums must be equal: for
ke{0,...,N -1},

2 Img|? (25T 0 + 2km 0 + 2k
ol ANy ppp _ P
/O - f|( 2 )da /0 |f|( 2 )da

Therefore, utilizing again |mg|? < N,

‘m0|2(6+§kw)‘f|p 0 + 2kr —IfP 0+ 2km
N N N

for almost every 6 € [0,27] and for all k& € {0,. — 1}. But this implies
that =|mol?|f[P = |f|P almost everywhere on T. However myg is continuous and
has ﬁnltely many zeroes and, because Y ~__ |mol*(w) = N for all z € T, this
implies that |mg|?(z) = N for at most finitely many points so f must be 0 almost

everywhere. In conclusion, there are no eigenvalues A of modulus N » and the proof
of the theorem is complete. O
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