Mean Oscillation and Hankel Operators on the Segal-Bargmann Space

Wolfram Bauer

Abstract. For the Segal-Bargmann space of Gaussian square integrable entire functions on \mathbb{C}^m we consider Hankel operators H_f with symbols in $f \in \mathcal{T}(\mathbb{C}^m)$. We completely characterize the functions in $\mathcal{T}(\mathbb{C}^m)$ for which the operators H_f and $H_{\bar{f}}$ are simultaneously bounded or compact in terms of the mean oscillation of f. The analogous description holds for the commutators $[M_f, P]$ where M_f denotes the "multiplication by f" and P is the Toeplitz projection. These results are already known in case of bounded symmetric domains Ω in \mathbb{C}^m (see [BBCZ] or [C]). In the present paper we combine some techniques of [BBCZ] and [BC1]. Finally, we characterize the entire function $f \in \mathcal{H}(\mathbb{C}^m) \cap$ $\mathcal{T}(\mathbb{C}^m)$ and the polynomials p in z and \bar{z} for which the Hankel operators $H_{\bar{f}}$ and H_p are bounded (resp. compact).

Mathematics Subject Classification (2000). Primary 47B10, 47B32, 47B35. Keywords. Hankel operators, Segal-Bargmann space, Mean oscillation.

1. Introduction

Throughout this paper let $m \in \mathbb{N}$ be fixed. Let μ denote the Gaussian measure on the complex space \mathbb{C}^m defined by $d\mu(z) = \pi^{-m} \exp(-||z||^2) dV(z)$, where V is the usual Lebesgue measure on \mathbb{C}^m . The Segal-Bargmann space $H^2(\mathbb{C}^m, \mu)$ is the closed subspace of $L^2(\mathbb{C}^m, \mu)$ of all square integrable holomorphic functions on \mathbb{C}^m . If P denotes the orthogonal projection from $L^2(\mathbb{C}^m, \mu)$ onto $H^2(\mathbb{C}^m, \mu)$ then for a function $f \in \mathcal{T}(\mathbb{C}^m)$ (for definition see section 2) the Hankel operator

$$H_f: \mathcal{D}(H_f) \subset H^2(\mathbb{C}^m, \mu) \longrightarrow H^2(\mathbb{C}^m, \mu)^{\perp}$$

is the densely defined (and in general unbounded) operator $H_f g = (I-P)M_f g$ for all $g \in \mathcal{D}(H_f)$ where M_f denotes the multiplication by f. Moreover, for $f \in \mathcal{T}(\mathbb{C}^m)$ the *commutator* of M_f and P given by $[M_f, P] := M_f P - PM_f$ is a densely defined

This work was supported by a fellowship of the "Deutscher akademischer Austauschdienst", (DAAD).

operator on $L^2(\mathbb{C}^m, \mu)$. It is easy to verify that $[M_f, P]$ is bounded (resp. compact) if and only if both *Hankel operators* H_f and $H_{\bar{f}}$ are simultaneously bounded (resp. compact).

The authors of [BC1] prove that for bounded symbols $f \in L^{\infty}(\mathbb{C}^m)$ the Hankel operator H_f is compact if and only if $H_{\bar{f}}$ is compact (see also [S1]). Moreover, they determine the largest *-algebra Q in $L^{\infty}(\mathbb{C}^m)$ such that H_f and $H_{\bar{f}}$ are compact for symbols $f \in Q$. The functions in Q are characterized by a condition of oscillation at infinity.

In general, if we deal with unbounded symbols f in $\mathcal{T}(\mathbb{C}^m)$ also the question arises whether the *Hankel operator* H_f is bounded. Our main aim in this paper is to prove that

(A) For $f \in \mathcal{T}(\mathbb{C}^m)$ the commutator $[M_f, P]$ is bounded if and only if the symbol f has bounded mean oscillation.

We also completely characterize the compact commutators $[M_f, P]$ for symbols $f \in \mathcal{T}(\mathbb{C}^m)$ in terms of the *mean oscillation* of f.

(B) The commutator $[M_f, P]$ is compact if and only if the symbol f has vanishing mean oscillation at infinity.

The analogous results are already known for *Bergman spaces of bounded sym*metric domains Ω in \mathbb{C}^m (see [BBCZ] and [C]) and it was a conjecture in [C] that both (A) and (B) above hold in the unbounded setting of the *Segal-Bargmann* space.

Finally, we determine the space of all entire functions in $\mathcal{T}(\mathbb{C}^m)$ as well as the space of all polynomials in z and \overline{z} for which $[M_f, P]$ is bounded or compact.

2. Preliminaries

For $j = (j_1, \dots, j_m) \in \mathbb{N}_0^m$ define $j! := j_1! \dots j_m!$ and $|j| := j_1 + \dots + j_m$. If $z \in \mathbb{C}^m$ then write $z^j := z_1^{j_1} \dots z_m^{j_m}$. Throughout this paper $\langle \cdot, \cdot \rangle$ denotes the usual Euclidian scalar product and $\|\cdot\|$ the Euclidian norm in \mathbb{C}^m . For R > 0 and $a \in \mathbb{C}^m$ let B(a, R) denote the ball in \mathbb{C}^m with radius R centered in a. Further, we write $\langle \cdot, \cdot \rangle_2$ for the $L^2(\mathbb{C}^m, \mu)$ -scalar product and $\|\cdot\|_2$ for the $L^2(\mathbb{C}^m, \mu)$ -norm.

Because each point evaluation is a continous functional on $H^2(\mathbb{C}^m, \mu)$ the Segal-Bargmann space is a Hilbert space with kernel function $K(z, w) := \exp(\langle z, w \rangle)$ for $z, w \in \mathbb{C}^m$. We also use the normalized kernel function defined by

$$k_w(z) := K(z, w) \|K(\cdot, w)\|_2^{-1} = \exp\left(\langle z, w \rangle - \frac{1}{2} \|w\|^2\right), \quad \forall z, w \in \mathbb{C}^m.$$

For $z, w \in \mathbb{C}^m$ let τ_z denote the *z*-shift on \mathbb{C}^m given by $\tau_z(w) := z + w$. Define the linear space

$$\mathcal{T}(\mathbb{C}^m) := \{ g \in L^2(\mathbb{C}^m, \mu) : g \circ \tau_x \in L^2(\mathbb{C}^m, \mu), \ \forall \ x \in \mathbb{C}^m \}.$$

It is easy to verify that a measurable function f on \mathbb{C}^m belongs to $\mathcal{T}(\mathbb{C}^m)$ if and only if the functions $\lambda \mapsto f(\lambda)K(\lambda, x)$ belong to $L^2(\mathbb{C}^m, \mu)$ for every $x \in \mathbb{C}^m$.

Because the linear span of the set of all kernel functions $\{K(\cdot, x) : x \in \mathbb{C}^m\}$ is dense in the Segal-Bargmann space

$$\mathcal{D}(M_f) = \mathcal{D}(H_f) := \{ h \in H^2(\mathbb{C}^m, \mu) : fh \in L^2(\mathbb{C}^m, \mu) \}$$

is a dense, linear subspace of $H^2(\mathbb{C}^m, \mu)$ whenever $f \in \mathcal{T}(\mathbb{C}^m)$. For $f \in \mathcal{T}(\mathbb{C}^m)$ define the *Berezin transform* \tilde{f} of f by

$$\tilde{f}(\lambda) = \int_{\mathbb{C}^m} f \circ \tau_{\lambda}(u) d\mu(u) = \langle fk_{\lambda}, k_{\lambda} \rangle_2, \qquad \forall \ \lambda \in \mathbb{C}^m.$$

Clearly from this definition we have $\tilde{\tilde{f}} = \tilde{\tilde{f}}$ and $\tilde{f} \circ \tau_{\lambda} = \widetilde{f \circ \tau_{\lambda}}$.

Let $\mathcal{BC}(\mathbb{C}^m)$ be the space of all bounded continuous functions on \mathbb{C}^m and denote by $\mathcal{C}_0(\mathbb{C}^m)$ the subalgebra in $\mathcal{BC}(\mathbb{C}^m)$ of all continuous functions vanishing at infinity. For $f \in \mathcal{BC}(\mathbb{C}^m)$ define the oscillation of f in $z \in \mathbb{C}^m$ by

$$Osc_z(f) := \sup\{|f(z) - f(w)| : ||z - w|| < 1\}.$$

Then $z \mapsto \operatorname{Osc}_z(f)$ also is a continuus function on \mathbb{C}^m . Now, we say f is of bounded oscillation [write $f \in \mathcal{BO}(\mathbb{C}^m)$] if $\operatorname{Osc}_z(f)$ is in $\mathcal{BC}(\mathbb{C}^m)$ as a function of z. We say the function f is of vanishing oscillation [write $f \in \mathcal{VO}(\mathbb{C}^m)$] if $\operatorname{Osc}_z(f) \to 0$ as $z \to \infty$. For $f \in \mathcal{T}(\mathbb{C}^m)$ the quantity

$$\mathrm{MO}(f,z) := \widetilde{|f|^2}(z) - |\tilde{f}(z)|^2$$

is a continuus function on \mathbb{C}^m and $\mathrm{MO}(f, \cdot)$ is called the *mean oscillation of* f. We say f is of bounded mean oscillation on \mathbb{C}^m and write $f \in \mathcal{BMO}(\mathbb{C}^m)$ if

$$||f||_{BMO} := \sup\{MO(f, z)^{\frac{1}{2}} : z \in \mathbb{C}^m\} < \infty$$

We say f is of vanishing mean oscillation and we write $f \in \mathcal{VMO}(\mathbb{C}^m)$ if

$$\lim_{z \to \infty} \mathrm{MO}(f, z) = 0.$$

For all $f, g \in \mathcal{T}(\mathbb{C}^m)$ and all $\lambda \in \mathbb{C}^m$ it is easy to verify that

$$0 \leq \mathrm{MO}(g+h,\lambda)^2 \leq 2 \left[\mathrm{MO}(g,\lambda)^2 + \mathrm{MO}(h,\lambda)^2\right].$$

Thus $\mathcal{BMO}(\mathbb{C}^m)$ as well as $\mathcal{VMO}(\mathbb{C}^m)$ are linear spaces. For $S \subset \mathbb{C}^m$ and each $f \in \mathcal{T}(\mathbb{C}^m)$ we write

$$||f||_{BMO(S)} := \sup\{MO(f, z)^{\frac{1}{2}} : z \in S\}$$

Let $\mathbb{P}[z, \bar{z}]$ be the space of complex polynomials on \mathbb{C}^m in the complex variables z and \bar{z} . Each $p \in \mathbb{P}[z, \bar{z}]$ has the form

$$p(z,\bar{z}) = \sum_{l,j \in \mathbb{N}_0^m} a_{l,j} z^l \bar{z}^j, \quad \text{where} \quad a_{l,j} \in \mathbb{C}.$$

$$(2.1)$$

For $p \in \mathbb{P}[z, \overline{z}]$ with (2.1) define the integer

$$\rho(p) := \max\{|l+j| : l, j \in \mathbb{N}_0^m, \ a_{l,j} \neq 0\} \in \mathbb{N}_0$$

Bauer

Lemma 2.1. Let $R(z, \bar{z}) := z^l \bar{z}^j$ with $l, j \in \mathbb{N}_0^m$ be a monomial in z and \bar{z} on \mathbb{C}^m . Then \tilde{R} has the form $(*) : \tilde{R}(z, \bar{z}) = z^l \bar{z}^j + r(z, \bar{z})$, where $r \in \mathbb{P}[z, \bar{z}]$ with $\rho(r) < \rho(R) = |l+j|$.

Proof. It follows from the definition of the *Berezin transform* that \tilde{R} has the form

$$\widetilde{R}(z,\overline{z}) = \prod_{k=1}^{m} \widetilde{R_k}(z_k,\overline{z_k}),$$

where $R_k : \mathbb{C} \to \mathbb{C}$ is defined by $R_k(z_k, \overline{z_k}) := z_k^{l_k} \overline{z_k}^{j_k}$ for $k = 1, \cdots, m$. Moreover,

$$\widetilde{R_k}(z_k,\overline{z_k}) = \frac{1}{\pi} \int_{\mathbb{C}} (z_k + w)^{l_k} \overline{(z_k + w)}^{j_k} \exp(-|w|^2) dV(w) = z_k^{l_k} \overline{z_k}^{j_k} + r_k(z_k,\overline{z_k})$$

with $\rho(r_k) < l_k + j_k$. From this the decomposition (*) of \tilde{R} follows.

Corollary 2.2. Let $p \in \mathbb{P}[z, \overline{z}]$ be as in (2.1). Define $A(p) := \{(l, j) \in \mathbb{N}_0^{2m} : |(l, j)| = \rho(p)\}$ and

$$Q_p(z,\bar{z}) := \sum_{(l,j)\in A(p)} a_{l,j} z^l \bar{z}^j$$

 $Then \ it \ holds \ \tilde{p}(z,\bar{z}) = Q_p(z,\bar{z}) + r(z,\bar{z}) \ where \ r \in \mathbb{P}[z,\bar{z}] \ with \ \rho(r) < \rho(p).$

Proof. This directly follows from Lemma 2.1 and the linearity of the *Berezin transform*. $\hfill \Box$

Corollary 2.3. Let $p \in \mathbb{P}[z, \overline{z}] \subset \mathcal{T}(\mathbb{C}^m)$ be a non-constant polynomial. Then we have $MO(p, \cdot) \in \mathbb{P}[z, \overline{z}]$ and $\rho(MO(p, \cdot)) < \rho(|p|^2) - 1 = 2\rho(p) - 1$.

Proof. Using Corollary 2.2 we conclude that $Q_{|p|^2} = Q_{|\tilde{p}|^2} = Q_{|\tilde{p}|^2}$ and by the definition of $MO(p, \cdot)$ it follows that

$$\rho(\mathrm{MO}(p,\cdot)) < \rho(|p|^2) = 2\rho(p).$$

Because of $\operatorname{MO}(p, \lambda) \ge 0$ for all $\lambda \in \mathbb{C}^m$ and $\rho(p) > 0$ we have $\rho(\operatorname{MO}(p, \cdot)) \ne 2\rho(p) - 1$ and Corollary 2.3 follows.

Lemma 2.4. Let $a, u \in \mathbb{C}^m$ and define $S_a \in \mathcal{T}(\mathbb{C}^m)$ by $S_a(u) := \langle u, a \rangle$. Then it follows that $\widetilde{S_a} = S_a$ and $MO(S_a, z) = ||a||^2$ for all $z \in \mathbb{C}^m$.

Proof. The function S_a is holomorphic and so we have $\widetilde{S_a} = S_a$. Define for $t \in \mathbb{R}$ the function $F : \mathbb{R} \longrightarrow \mathbb{R}$ by

$$F(t) := \int_{\mathbb{C}^m} \langle u, a \rangle \exp\left(\langle u, z \rangle + \langle ta + z, u \rangle\right) d\mu(u) = \langle ta + z, a \rangle \exp\left(\langle ta + z, z \rangle\right).$$
(2.2)

It follows that (*) $F'(0) = \exp(||z||^2)[||a||^2 + |\langle a, z \rangle|^2]$ and differentiation of (2.2) under the integral sign in t = 0 together with (*) now shows that

$$|S_a|^2 = ||a||^2 + |S_a|^2 = ||a||^2 + |\tilde{S}_a|^2.$$

The inclusion $L^{\infty}(\mathbb{C}^m, \mu) \subset \mathcal{BMO}(\mathbb{C}^m)$ is valid but there are also unbounded functions in $\mathcal{BMO}(\mathbb{C}^m)$. Consider a linear polynomial $p = a_0 + \langle \cdot, b \rangle + \langle c, \cdot \rangle \in \mathbb{P}[z, \overline{z}]$ where $a_0 \in \mathbb{C}$ and $b, c \in \mathbb{C}^m$. Using Corollay 2.3 it follows that $\rho(\mathrm{MO}(p, \cdot)) < 1$ and so $\mathrm{MO}(p, \cdot)$ is constant. We conclude that $p \in \mathcal{BMO}(\mathbb{C}^m)$.

Lemma 2.5. For $g \in \mathcal{T}(\mathbb{C}^m)$, $h \in \mathcal{BMO}(\mathbb{C}^m)$ and $\lambda \in \mathbb{C}^m$ we have

(a) $MO(g,\lambda) = \|g \circ \tau_{\lambda} - \tilde{g}(\lambda)\|_2^2 = (|g - \tilde{g}(\lambda)|^2)(\lambda),$

- (b) $MO(g,\lambda) \le \|(I-P)(g \circ \tau_{\lambda})\|_{2}^{2} + \|(I-P)(\bar{g} \circ \tau_{\lambda})\|_{2}^{2}$
- (c) $||h||_{BMO} \le \sqrt{2} \max\{||H_h||, ||H_{\bar{h}}||\}.$

Proof. (a) easy computation.

(b) The *Berezin symbol* of g can be written in the following form:

$$\tilde{g}(\lambda) = \langle g \circ \tau_{\lambda}, 1 \rangle_2 = \overline{\langle \bar{g} \circ \tau_{\lambda}, K(\cdot, 0) \rangle}_2 = \overline{P(\bar{g} \circ \tau_{\lambda})(0)} = P(\overline{P(\bar{g} \circ \tau_{\lambda})}).$$

This yields the inequality

$$\begin{aligned} \|P[g \circ \tau_{\lambda}] - \tilde{g}(\lambda)\|_{2}^{2} &= \|P[g \circ \tau_{\lambda}] - P[\overline{P(\bar{g} \circ \tau_{\lambda})}]\|_{2}^{2} \\ &\leq \|g \circ \tau_{\lambda} - \overline{P(\bar{g} \circ \tau_{\lambda})}\|_{2}^{2} = \|(I - P)(\bar{g} \circ \tau_{\lambda})\|_{2}^{2}. \end{aligned}$$
(2.3)

From $\|g \circ \tau_{\lambda}\|_{2}^{2} = \|(I-P)(g \circ \tau_{\lambda})\|_{2}^{2} + \|P(g \circ \tau_{\lambda})\|_{2}^{2}$ and $\langle P(g \circ \tau_{\lambda}), \tilde{g}(\lambda) \rangle_{2} = |\tilde{g}(\lambda)|^{2}$ it follows that

 $||P[g \circ \tau_{\lambda}] - \tilde{g}(\lambda)||_{2}^{2} + ||(I - P)(g \circ \tau_{\lambda})||_{2}^{2} = ||g \circ \tau_{\lambda}||_{2}^{2} - |\tilde{g}(\lambda)|^{2} = \mathrm{MO}(g, \lambda).$

This together with (2.3) imply (b).

(c) Follows from $\|(I-P)(h \circ \tau_{\lambda})\|_{2} = \|H_{h}k_{\lambda}\|_{2} \leq \|H_{h}\|$ for all $\lambda \in \mathbb{C}^{m}$ together with standard estimates from (b).

The following Theorem is an analog to Theorem F in [BBCZ] in the case of bounded symmetric domains Ω in \mathbb{C}^m . The Bergman metric is replaced by the Euclidian metric on \mathbb{C}^m .

Theorem 2.6. For any smooth curve $\gamma : I := [0, 1] \longrightarrow \mathbb{C}^m$ and any $f \in \mathcal{BMO}(\mathbb{C}^m)$ we have

$$\left|\frac{d}{dt}\tilde{f}\circ\gamma(t)\right| \le 2\|f\|_{BMO(\gamma(I))} \left\|\frac{d}{dt}\gamma(t)\right\|, \quad \forall t\in I$$

If s = s(t) denotes the arclength of γ then $\frac{d}{dt}s(t) = \|\frac{d}{dt}\gamma(t)\|$.

Proof. Let $t \in I$. Then we differentiate under the integral sign in the definition of the *Berezin transform* \tilde{f} .

$$\frac{d}{dt}\tilde{f}\circ\gamma(t) = \int_{\mathbb{C}^m} f(u)\frac{d}{dt}|k_{\gamma(t)}(u)|^2d\mu(u)$$

$$= 2\int_{\mathbb{C}^m} f(u)\Re\left\{\left(\frac{d}{dt}k_{\gamma(t)}(u)\right)\overline{k_{\gamma(t)}(u)}\right\}d\mu(u)$$

$$= 2\int_{\mathbb{C}^m} \left(f(u) - \tilde{f}\circ\gamma(t)\right)\Re\left[G_t(u)\right]d\mu(u)$$
(2.4)

where $G_t(u) := \left[\frac{d}{dt}k_{\gamma(t)}(u) - \left\langle \frac{d}{dt}k_{\gamma(t)}, k_{\gamma(t)} \right\rangle_2 k_{\gamma(t)}(u) \right] \overline{k_{\gamma(t)}(u)}$. Here we have used $2\Re \left\langle \frac{d}{dt} k_{\gamma(t)}, k_{\gamma(t)} \right\rangle_2 = \frac{d}{dt} \left\langle k_{\gamma(t)}, k_{\gamma(t)} \right\rangle_2 = \frac{d}{dt} 1 = 0.$

For $u \in \mathbb{C}^m$ and $t \in I$ one easily computes

$$\frac{d}{dt}k_{\gamma(t)}(u) = \left[\left\langle u, \frac{d}{dt}\gamma(t)\right\rangle - \Re\left\langle\gamma(t), \frac{d}{dt}\gamma(t)\right\rangle\right]k_{\gamma(t)}(u)$$

and it follows that

$$\frac{d}{dt}k_{\gamma(t)}(u) - \left\langle \frac{d}{dt}k_{\gamma(t)}, k_{\gamma(t)} \right\rangle_2 k_{\gamma(t)}(u) = \left\langle u - \gamma(t), \frac{d}{dt}\gamma(t) \right\rangle k_{\gamma(t)}(u).$$
(2.5)

If we use the the equalities (2.4) and (2.5) as well as the Cauchy-Schwarz *inequality* we conclude that

$$\begin{aligned} & \left| \frac{d}{dt} \tilde{f} \circ \gamma(t) \right| \\ = & 2 \left| \int_{\mathbb{C}^m} \left(f(u) - \tilde{f} \circ \gamma(t) \right) \Re \left\{ \left\langle u - \gamma(t), \frac{d}{dt} \gamma(t) \right\rangle |k_{\gamma(t)}(u)|^2 \right\} d\mu(u) \right| \\ \leq & 2 \left[\left(|f - \tilde{f} \circ \gamma(t)|^2 \right) \circ \gamma(t) \right]^{\frac{1}{2}} \left[\left(|\Gamma_t - \widetilde{\Gamma_t} \circ \gamma(t)|^2 \right) \circ \gamma(t) \right]^{\frac{1}{2}} \end{aligned}$$

where $\Gamma_t \in \mathcal{T}(\mathbb{C}^m)$ is defined by $\Gamma_t(u) := \left\langle u, \frac{d}{dt}\gamma(t) \right\rangle$. An application of Lemma 2.5(a) and Lemma 2.4 yields

$$\left|\frac{d}{dt}\tilde{f}\circ\gamma(t)\right| \leq 2\|f\|_{\mathrm{BMO}(\gamma(I))}\mathrm{MO}(\Gamma_t,\gamma(t))^{\frac{1}{2}} = 2\|f\|_{\mathrm{BMO}(\gamma(I))} \left\|\frac{d}{dt}\gamma(t)\right\|.$$

this the desired result follows.

From this the desired result follows.

Corollary 2.7. For $f \in \mathcal{BMO}(\mathbb{C}^m)$ and $a, b \in \mathbb{C}^m$ we have the Lipschitz-inequality $\tilde{f}(1) < \Omega \| f \|$ ш

$$|f(a) - f(b)| \le 2||f||_{BMO}||a - b||.$$

In particular, $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ and $\|Osc_z(\tilde{f})\|_{\infty} \leq 2\|f\|_{BMO}$.

Proof. Choose $\gamma_a^b: I := [0,1] \to \mathbb{C}^m$ with $\gamma_a^b(t) := a + t(b-a)$ and apply Theorem 2.6.

Corollary 2.8. Let $f \in \mathcal{VMO}(\mathbb{C}^m)$. For each $\varepsilon > 0$ there is a number r > 0 such that the inequality (*): $|\tilde{f}(a) - \tilde{f}(b)| < \varepsilon ||a - b||$ is valid for all $a, b \in A_r :=$ $\mathbb{C}^m \setminus B(0,r)$. In particular, $\tilde{f} \in \mathcal{VO}(\mathbb{C}^m)$.

Proof. Fix $r_0 > 0$ and $a, b \in A_{r_0}$ with $a \neq b$. Define $z_1 := \frac{1}{2}(a+b)$ and $z_2 :=$ $\frac{1}{2}(a-b)$. Choose $z_3 \in \mathbb{C}^m$ with $z_3 \perp z_2$ and $||z_3|| = ||z_2||$ and consider the arcs $\gamma_1, \gamma_2: I \to \mathbb{C}^m$ given by

$$\gamma_1(t) := z_1 + z_2 \cos \pi t + z_3 \sin \pi t, \qquad \gamma_2(t) := z_1 + z_2 \cos \pi (1+t) + z_3 \sin \pi (t+1).$$

We have $\gamma_1(0) = \gamma_2(1) = a$ and $\gamma_1(1) = \gamma_2(0) = b$. Because $a, b \in A_{r_0}$ it easy to check that either $\gamma_1(I) \subset A_{r_0}$ or $\gamma_2(I) \subset A_{r_0}$. Assume $\gamma_1(I) \subset A_{r_0}$ and apply Theorem 2.6

$$\begin{split} |\tilde{f}(a) - \tilde{f}(b)| &\leq \int_{0}^{1} \left| \frac{d}{dt} \tilde{f} \circ \gamma_{1}(t) \right| dt \\ &\leq 2 \|f\|_{\mathrm{BMO}(A_{r_{0}})} \int_{0}^{1} \left\| \frac{d}{dt} \gamma_{1}(t) \right\| dt = \pi \|f\|_{\mathrm{BMO}(A_{r_{0}})} \|a - b\|. \end{split}$$

Finally choose $r_0 > 0$ such that $||f||_{BMO(A_{r_0})} < \frac{\varepsilon}{\pi}$.

3. The spaces $\mathcal{BMO}(\mathbb{C}^m)$ and $\mathcal{VMO}(\mathbb{C}^m)$

In this section we give a description of the space $\mathcal{BMO}(\mathbb{C}^m)$ [resp. $\mathcal{VMO}(\mathbb{C}^m)$]. We show in which sense they are related to $\mathcal{BO}(\mathbb{C}^m)$ [resp. $\mathcal{VO}(\mathbb{C}^m)$].

Theorem 3.1. Let $f \in \mathcal{T}(\mathbb{C}^m)$.

(a) The Berezin transform $|f|^2$ is a bounded continuus function if and only if $M_f P$ is bounded. Moreover, there is a constant C > 0 such that

(*):
$$|||f|^2||_{\infty} \le ||M_f P||^2 \le C |||f|^2||_{\infty}$$

where $||g||_{\infty} := \sup\{|g(z)| : z \in \mathbb{C}^m\}$ for all $g \in \mathcal{BC}(\mathbb{C}^m)$.

(b) The operator $M_f P$ is compact if and only if $|f|^2(\lambda) \longrightarrow 0$ as $\lambda \to \infty$.

Proof. (a) An analogous computation as in [BC1] Lemma 14 shows that there is a constant C > 0 such that

$$\| [f]^2 \|_{\infty} \le \| PM_{|f|^2} P \| \le C \| [f]^2 \|_{\infty}$$

Using $||PM_{|f|^2}P|| = ||(M_fP)^*(M_fP)|| = ||M_fP||^2$ the inequality (*) follows. (b) Let M_fP be compact. Then the operator $PM_{|f|^2}P = (M_fP)^*(M_fP)$ is compact and because $k_{\lambda} \to 0$ weakly in $H^2(\mathbb{C}^m, \mu)$ as $\lambda \to \infty$ it follows that

$$\widehat{|f|^2}(\lambda) = \langle PM_{|f|^2}Pk_{\lambda}, k_{\lambda}\rangle_2 \le \|PM_{|f|^2}Pk_{\lambda}\|_2 \longrightarrow 0, \qquad (\lambda \to \infty).$$

Let $\widetilde{|f|^2}(\lambda) \to 0$ as $\lambda \to \infty$ and let χ_R be the characteristic function of B(0, R). It is easy to verify that $M_{f\chi_R}P$ is of *Hilbert-Schmidt* type. Hence, it is sufficient to show that

$$\|M_f P - M_{f\chi_R} P\| = \|M_{f(1-\chi_R)} P\| \longrightarrow 0, \qquad (R \to \infty)$$

According to (a) there is a constant C > 0 such that

$$\|M_{f(1-\chi_R)}P\|_2^2 \le C \sup_{u \in \mathbb{C}^m} \int_{\|z\| \ge R} |f(z)|^2 |k_u(z)|^2 d\mu(z).$$
(3.1)

Bauer

Let $\varepsilon > 0$, then choose r > 0 with $\widetilde{|f|^2}(z) < \frac{\epsilon}{C}$ for all $z \in \mathbb{C}^m \setminus B(0,r)$. It follows that

$$\sup_{\|u\|>r} \int_{\|z\|\ge R} |f(z)|^2 |k_u(z)|^2 d\mu(z) \le \sup_{\|u\|>r} \widetilde{|f|^2}(u) < \frac{\varepsilon}{C}.$$
 (3.2)

On $\overline{B(0,r)}$ the function $F_R : u \mapsto \int_{||z|| \ge R} |f(z)|^2 |k_u(z)|^2 d\mu(z)$ converges monotonely to 0 as $R \to \infty$. Using *Dini's theorem* there is $R_0 > 0$ such that with $R > R_0$

$$\sup_{\|u\| \le r} \int_{\|z\| \ge R} |f(z)|^2 |k_u(z)|^2 d\mu(z) < \frac{\varepsilon}{C}.$$
(3.3)

The inequalities (3.1), (3.2) and (3.3) prove that $||M_{f(1-\chi_R)}P||_2^2 < \varepsilon$ for each $R > R_0$.

Definition 3.2. In the following we use the spaces \mathcal{F} and \mathcal{I} defined by

$$\mathcal{F} := \left\{ f \in \mathcal{T}(\mathbb{C}^m) : |\widetilde{f}|^2 \in \mathcal{BC}(\mathbb{C}^m) \right\}, \qquad \mathcal{I} := \left\{ f \in \mathcal{T}(\mathbb{C}^m) : |\widetilde{f}|^2 \in \mathcal{C}_0(\mathbb{C}^m) \right\}.$$

Corollary 3.3. For $f \in \mathcal{F}$ the Hankel operator H_f is bounded and there is a constant C > 0 such that $||H_f||^2 \leq C||\widetilde{|f|^2}||_{\infty}$. Moreover, for $f \in \mathcal{I}$ the Hankel operator H_f is compact.

Proof. This follows from Theorem 3.1 with $H_f = (I - P)M_f P$.

Lemma 3.4. Let $f \in \mathcal{BO}(\mathbb{C}^m)$ and fix $r \ge 0$. Then for all $z, w \in \mathbb{C}^m \setminus B(0, r)$ we have the inequality $|f(z) - f(w)| \le C(f, r) (1 + \pi ||z - w||)$ where C(f, r) := $\sup \{|Osc_z(f)| : ||z|| \ge r - 1\}.$

Proof. Let $z, w \in \mathbb{C}^m \setminus B(0, r)$. Then choose $\gamma : I = [0, 1] \to \mathbb{C}^m \setminus B(0, r)$ connecting z and w as in the proof of Corollary 2.8. Let $n \in \mathbb{N}$ be the greatest integer in $\pi ||z - w||$ then divide $\gamma(I)$ into n + 1 segments $[\gamma(t_i), \gamma(t_{i+1})]$ of equal length.

Because of $B(\gamma(t_i), 1) \subset \{z \in \mathbb{C}^m : ||z|| \ge r-1\}$ and $||\gamma(t_i) - \gamma(t_{i+1})|| < 1$ for $i = 0, \dots, n$, it follows that

$$|f(z) - f(w)| \le (1+n)C(f,r) \le C(f,r) \left(1 + \pi \|z - w\|\right).$$

From this we obtain Lemma 3.4.

Lemma 3.5. We have $\mathcal{BO}(\mathbb{C}^m) \subset \mathcal{BMO}(\mathbb{C}^m)$ and the following statements are equivalent

- (a) $f \in \mathcal{BO}(\mathbb{C}^m)$,
- (b) there is a constant C > 0 with $|f(z) f(w)| \le C (1 + ||z w||)$ for all $z, w \in \mathbb{C}^m$,
- (c) the function $z \mapsto ||f(z) f \circ \tau_z||_2$ is in $\mathcal{BC}(\mathbb{C}^m)$.

Proof. The conclusion $(a) \Rightarrow (b)$ follows from Lemma 3.4 with r = 0. Suppose (b) holds and $z \in \mathbb{C}^m$. Then

$$\|f(z) - f \circ \tau_z\|_2^2 = \int_{\mathbb{C}^m} |f(z) - f(z+w)|^2 d\mu(w) \le C^2 \int_{\mathbb{C}^m} [1+\|w\|]^2 d\mu(w) < \infty.$$

Mean Oscillation and Hankel Operators

Finally suppose (c) holds. It is easy to check that

$$\|f(z) - f \circ \tau_z\|_2^2 = \mathrm{MO}(f, z) + |f(z) - \tilde{f}(z)|^2.$$
(3.4)

Because the left hand side of the equality (3.4) is bounded we conclude that $f \in \mathcal{BMO}(\mathbb{C}^m)$ and

$$f - \tilde{f} \in \mathcal{BC}(\mathbb{C}^m) \subset \mathcal{BO}(\mathbb{C}^m).$$

It follows from Corollary 2.7 that $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ and so we obtain $f = (f - \tilde{f}) + \tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$.

Lemma 3.6. We have $\mathcal{VO}(\mathbb{C}^m) \subset \mathcal{VMO}(\mathbb{C}^m)$ and the following statements are equivalent

- (a) $f \in \mathcal{VO}(\mathbb{C}^m)$,
- (b) for each $\varepsilon > 0$ there is r > 0 such that $|f(z) f(w)| \le \varepsilon(1 + ||z w||)$ for all $z, w \in \mathbb{C}^m \setminus B(0, r)$,
- (c) the function $z \mapsto ||f(z) f \circ \tau_z||_2$ is in $\mathcal{C}_0(\mathbb{C}^m)$.

Proof. The conclusion $(a) \Rightarrow (b)$ follows from Lemma 3.4 together with the convergence

$$\lim_{r \to 0} C(f, r) = 0.$$

Now, suppose (b) holds. Then fix $\varepsilon>0$ and choose R>0 such that for all $z\in\mathbb{C}^m$

$$\int_{\|w\|>R} |f(z) - f(z+w)|^2 d\mu(w) \le C(f,0)^2 \int_{\|w\|>R} [1+\pi\|w\|]^2 d\mu(w) < \frac{\varepsilon}{2}.$$
 (3.5)

Define $M := \int_{\mathbb{C}^m} [1 + ||w||]^2 d\mu(w) > 0$ and choose a radius r > 0 such that for all $z, w \in \mathbb{C}^m \setminus B(0, r)$

$$|f(z) - f(w)|^2 \le \frac{\varepsilon}{2M} (1 + ||z - w||)^2.$$
(3.6)

If ||z|| > r + R then we have ||z + w|| > r for all $w \in B(0, R)$ and it follows with the inequalities (3.5) and (3.6) that

$$\begin{split} \|f(z) - f \circ \tau_z\|_2^2 \\ = \int_{\|w\| \le R} |f(z) - f(z+w)|^2 d\mu(w) + \int_{\|w\| > R} |f(z) - f(z+w)|^2 d\mu(w) \\ \le &\frac{\varepsilon}{2M} \int_{\|w\| \le R} [1 + \|w\|]^2 d\mu(w) + \frac{\varepsilon}{2} < \varepsilon \end{split}$$

and (c) follows.

Finally suppose (c) holds. Then the identity (3.4) shows that $f \in \mathcal{VMO}(\mathbb{C}^m)$ as well as $\tilde{f} - f \in \mathcal{C}_0(\mathbb{C}^m) \subset \mathcal{VO}(\mathbb{C}^m)$ and using Corollary 2.8 we conclude that $\tilde{f} \in \mathcal{VO}(\mathbb{C}^m)$. This together proves that $f = \tilde{f} - (\tilde{f} - f) \in \mathcal{VO}(\mathbb{C}^m)$. Corollary 3.7. Using the notations above we have

(i)
$$\mathcal{BMO}(\mathbb{C}^m) = \mathcal{BO}(\mathbb{C}^m) + \mathcal{F},$$
 (ii) $\mathcal{VMO}(\mathbb{C}^m) = \mathcal{VO}(\mathbb{C}^m) + \mathcal{I}.$

Moreover, the decompositions in (i) and (ii) are given by $f = \tilde{f} + (f - \tilde{f})$ for $f \in \mathcal{BMO}(\mathbb{C}^m)$ [resp. $f \in \mathcal{VMO}(\mathbb{C}^m)$].

Proof. (i) The inclusion " \supset " follows from Lemma 3.5 and $\mathcal{F} \subset \mathcal{BMO}(\mathbb{C}^m)$.

Let $f \in \mathcal{BMO}(\mathbb{C}^m)$. Then we conclude that $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ from Corollary 2.7 and it is enough to show that $f - \tilde{f} \in \mathcal{F}$

$$(|f - \tilde{f}|^2)(z) = \|(f - \tilde{f}) \circ \tau_z\|_2^2 \le 2 \left[\|f \circ \tau_z - \tilde{f}(z)\|_2^2 + \|\tilde{f}(z) - \tilde{f} \circ \tau_z\|_2^2 \right]$$
$$= 2 \left[\operatorname{MO}(f, z) + \|\tilde{f}(z) - \tilde{f} \circ \tau_z\|_2^2 \right].$$
(3.7)

Because of $f \in \mathcal{BMO}(\mathbb{C}^m)$ the function $\mathrm{MO}(f, \cdot)$ is bounded. Moreover, Lemma 3.5 together with $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ shows that also $z \mapsto \|\tilde{f}(z) - \tilde{f} \circ \tau_z\|_2^2$ is bounded and we conclude that $f - \tilde{f} \in \mathcal{F}$.

(ii) The inclusion " \supset " follows from Lemma 3.6 and $\mathcal{I} \subset \mathcal{VMO}(\mathbb{C}^m)$.

Let $f \in \mathcal{VMO}(\mathbb{C}^m)$. Then we conclude that $\tilde{f} \in \mathcal{VO}(\mathbb{C}^m)$ from Corollary 2.8 and it is enough to show that $f - \tilde{f} \in \mathcal{I}$. An application of Lemma 3.6 together with $\tilde{f} \in \mathcal{VO}(\mathbb{C}^m)$ yields

$$\|\tilde{f}(z) - \tilde{f} \circ \tau_z\|_2^2 \longrightarrow 0, \qquad (z \to \infty).$$
(3.8)

Finally, because of $f \in \mathcal{VMO}(\mathbb{C}^m)$ the inequalities (3.7) and (3.8) show that $f - \tilde{f} \in \mathcal{I}$.

4. Bounded Hankel operators

We will prove (A) in section 1 (see Theorem 4.3). The main ingrediant for the proof is the decomposition $\mathcal{BMO}(\mathbb{C}^m) = \mathcal{BO}(\mathbb{C}^m) + \mathcal{F}$ of the space of all functions of bounded mean oscillation and the estimate in Theorem 4.1 between the norm of an Hankel operator and the oscillation of its symbol.

Theorem 4.1. Let $f \in \mathcal{BO}(\mathbb{C}^m)$ then H_f is bounded with $||H_f|| \leq C ||Osc_z(f)||_{\infty}$ where C is a constant given by $C := \frac{1}{\pi^m} \int_{\mathbb{C}^m} [\pi ||w|| + 1] \exp(-\frac{1}{2} ||w||^2) dV(w)$.

Proof. For $f \in \mathcal{BMO}(\mathbb{C}^m)$ the operator $(I - P)M_fP$ is an integral operator on $H^2(\mathbb{C}^m, \mu)$ defined by

$$[(I-P)M_f Pg](w) := \int_{\mathbb{C}^m} [f(w) - f(z)] \exp\left(\langle w, z \rangle\right) g(z) d\mu(z), \qquad \forall w \in \mathbb{C}^m.$$

Because of $f \in \mathcal{BO}(\mathbb{C}^m)$ Lemma 3.4 with r = 0 shows for all $z, w \in \mathbb{C}^m$ that

$$|f(z) - f(w)| \le \|\operatorname{Osc}_z(f)\|_{\infty}(1 + \pi \|z - w\|).$$
(4.1)

Define $p(z) := \exp(\frac{1}{2} ||z||^2)$. Then a translation by $w \in \mathbb{C}^m$ with C defined as above shows that

$$\int_{\mathbb{C}^m} [1 + \pi \|z - w\|] \exp\left(\Re \langle w, z \rangle\right) p(z) d\mu(z) = C p(w).$$
(4.2)

After combining the inequalities (4.1) and (4.2) we conclude that

$$\int_{\mathbb{C}^m} |f(w) - f(z)| \exp\left(\Re\langle w, z\rangle\right) p(z) d\mu(z) \le C \|\operatorname{Osc}_z(f)\|_{\infty} p(w)$$
(4.3)

and an application of *Schur's lemma* (see [HS] or [S1]) together with the inequality (4.3) now show that $||H_f|| = ||(I-P)M_fP|| \le C ||Osc_z(f)||_{\infty}$.

Theorem 4.2. Let $f \in \mathcal{BMO}(\mathbb{C}^m)$. Then the Hankel operator H_f is bounded and there is a constant D > 0, independent of f, such that $||H_f|| \leq D||f||_{BMO}$.

Proof. For $f \in \mathcal{BMO}(\mathbb{C}^m)$ Corollary 3.7 shows that $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ and $f - \tilde{f} \in \mathcal{F}$. Using Corollary 2.7 and Theorem 4.1 we conclude that $H_{\tilde{f}}$ is bounded and there is C > 0 independent of f such that

$$\|H_{\tilde{f}}\| \le C \|\operatorname{Osc}_{z}(\tilde{f})\|_{\infty} \le 2C \|f\|_{\operatorname{BMO}}.$$
(4.4)

Now, using Corollary 2.7 again, it follows for all $z \in \mathbb{C}^m$ that

$$\|\tilde{f}(z) - \tilde{f} \circ \tau_z\|_2 = \left[\int_{\mathbb{C}^m} |\tilde{f}(z) - \tilde{f}(z+w)|^2 d\mu(w)\right]^{\frac{1}{2}} \le 2\|f\|_{\text{BMO}} \left[\int_{\mathbb{C}^m} \|w\|^2 d\mu(w)\right]^{\frac{1}{2}} = C_1 \|f\|_{\text{BMO}}$$

where $C_1 := 2 \left[\int_{\mathbb{C}^m} \|w\|^2 d\mu(w) \right]^{\frac{1}{2}}$. This together with (3.7) shows that

$$(|f - \tilde{f}|^2)(z) \le 2 \left[\text{MO}(f, z) + C_1^2 ||f||_{\text{BMO}}^2 \right] \le 2(1 + C_1^2) ||f||_{\text{BMO}}^2.$$
(4.5)

Using (4.5) and Corollary 3.3 there are constants $C_2, C_3 > 0$ such that

$$\|H_{f-\tilde{f}}\| \le C_2 \|(|f-\tilde{f}|^2)\|_{\infty}^{\frac{1}{2}} \le C_3 \|f\|_{\text{BMO}}.$$
(4.6)

Finally, (4.4) together with (4.6) show $||H_f|| \leq ||H||_{\tilde{f}} + ||H_{f-\tilde{f}}|| \leq D||f||_{\text{BMO}}$ where D > 0 is a constant independent of f.

Theorem 4.3. For $f \in \mathcal{T}(\mathbb{C}^m)$ the following are equivalent

- (a) H_f and $H_{\bar{f}}$ are bounded operators,
- (b) $f \in \mathcal{BMO}(\mathbb{C}^m) = \mathcal{BO}(\mathbb{C}^m) + \mathcal{F}$. In particular, we have $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ and $f \tilde{f} \in \mathcal{F}$.

Whenever (a) and (b) hold the quantities $||[M_f, P]||$, $\max\{||H_f||, ||H_{\bar{f}}||\}$ and $||f||_{BMO}$ are equivalent.

Proof. Suppose (a) holds. Then Lemma 2.5, (c) shows that

 $||f||_{BMO} \le \sqrt{2} \max \{ ||H_f||, ||H_{\bar{f}}|| \}$

and (b) follows.

Suppose (b) holds. Then we conclude $\bar{f} \in \mathcal{BMO}(\mathbb{C}^m)$ and using Theorem 4.2 we find $D_1, D_2 > 0$ with $||H_f|| \leq D_1 ||f||_{BMO} < \infty$ and

$$||H_{\bar{f}}|| \le D_2 ||\bar{f}||_{BMO} = D_2 ||f||_{BMO} < \infty$$

and from this (a) follows. Moreover, $||f||_{BMO}$ and $\max\{||H_f||, ||H_{\bar{f}}||\}$ are equivalent.

Finally, the formulas

$$[M_f, P] = H_f - H_{\bar{f}}^*, \qquad (I - P)[M_f, P] = H_f, \qquad [M_f, P](I - P) = -H_{\bar{f}}^* (4.7)$$

show that $\|[M_f, P]\|$ and max $\{\|H_f\|, \|H_{\bar{f}}\|\}$ are equivalent. \Box

Corollary 4.4. Let $f \in \mathcal{T}(\mathbb{C}^m)$ be an entire function on \mathbb{C}^m . Then the following are equivalent

- (a) There is $a_0 \in \mathbb{C}$ and $b \in \mathbb{C}^m$ such that $f(z) = a_0 + \langle z, b \rangle$,
- (b) the Hankel operator $H_{\bar{f}}$ is bounded.

Proof. Suppose (a) holds. Then using Corollary 2.3 we conclude that

$$\rho(\mathrm{MO}(f,\cdot)) = 0$$

and it follows that $\bar{f} \in \mathcal{BMO}(\mathbb{C}^m)$. Theorem 4.3 shows that $H_{\bar{f}}$ is bounded.

Suppose (b) holds, so $H_{\bar{f}}$ is bounded. Because of $H_f = 0$ Theorem 4.3 proves that f is in $\mathcal{BMO}(\mathbb{C}^m)$. Applying Corollary 3.7 we now obtain with $\tilde{f} = f$ that $f \in \mathcal{BO}(\mathbb{C}^m)$. It follows with Lemma 3.5 that there is a constant C > 0 such that

$$|f(z) - f(w)| \le C(1 + ||z - w||), \qquad \forall \ z, w \in \mathbb{C}^m.$$
(4.8)

Assume $f(z) = \sum_{j \in \mathbb{N}_0^m} b_j z^j$. Then the *Cauchy estimates* show for any r > 0 and $j \in \mathbb{N}_0^m$ that

$$|b_j| = \frac{|[D^j f](0)|}{j!} \le \frac{1}{r^{|j|}} \sup\{|f(z)| : z \in P(0, \mathbf{r})\}.$$
(4.9)

Here, $P(0, \mathbf{r})$ is the polydisc in \mathbb{C}^m with multiradius $\mathbf{r} := (r, \dots, r)$ and center 0. It is easy to check that the inclusion $P(0, \mathbf{r}) \subset B(0, r\sqrt{m+1})$ holds and we obtain from (4.9) and (4.8)

$$|b_j| \le \frac{1}{r^{|j|}} \sup\{|f(z)| : z \in B(0, r\sqrt{m+1})\} \le \frac{1}{r^{|j|}} \{|f(0)| + C(1 + r\sqrt{m+1})\}.$$

Because r > 0 was arbitrary we conclude that $b_j = 0$ for $j \in \mathbb{N}_0^m$ such that |j| > 1 and (b) follows.

Corollary 4.5. For $p \in \mathbb{P}[z, \overline{z}]$ the statements (a) and (b) are equivalent:

- (a) There is $a_0 \in \mathbb{C}$ and $c, d \in \mathbb{C}^m$ such that $p(z, \bar{z}) = a_0 + \langle z, c \rangle + \langle d, z \rangle$,
- (b) the Hankel operators H_p and $H_{\bar{p}}$ are bounded.

Proof. Suppose (a) holds. Then using Corollary 2.2 we conclude that

$$\rho(\mathrm{MO}(p,\cdot)) = 0$$

and it follows that $p \in \mathcal{BMO}(\mathbb{C}^m)$. Theorem 4.3 shows that H_p and $H_{\bar{p}}$ are bounded.

Suppose (b) holds, so H_p and $H_{\bar{p}}$ are bounded. Then Theorem 4.3 shows that $p \in \mathcal{BMO}(\mathbb{C}^m)$ and according to Corollary 3.7 we have $\tilde{p} \in \mathcal{BO}(\mathbb{C}^m)$. Using Corollary 2.2 it follows with the above defined set $A(p) := \{(l, j) \in \mathbb{N}_0^{2m} : |(l, j)| = \rho(p)\}$ that

$$\tilde{p}(z,\bar{z}) = Q_p(z,\bar{z}) + r(z,\bar{z}), \text{ where } Q_p(z,\bar{z}) := \sum_{(l,j) \in A(p)} a_{l,j} z^l \bar{z}^j$$
(4.10)

and $\rho(r) < \rho(p)$. Choose $a \in \mathbb{C}^m$ with $Q_p(a, \bar{a}) \neq 0$. Because of $\tilde{p} \in \mathcal{BO}(\mathbb{C}^m)$ Lemma 3.5 shows that there is a constant C > 0 such that

$$|\tilde{p}(z,\bar{z})| \le |\tilde{p}(0,0)| + C(1+||z||).$$

Using (4.10) we obtain for all t > 0

$$t^{\rho(p)}|Q_p(a,\bar{a})| \le |\tilde{p}(ta,t\bar{a})| + |r(ta,t\bar{a})| \le |\tilde{p}(0,0)| + C[1+t||a||] + |r(ta,t\bar{a})|.$$

Because of $\rho(r) < \rho(p)$ this leads to a contradiction for $\rho(p) > 1$.

5. Compact Hankel operators

Finally, we prove (B) in section 1 about compact commutators $[M_f, P]$ with $f \in \mathcal{T}(\mathbb{C}^m)$. We use the decomposition $\mathcal{VMO}(\mathbb{C}^m) = \mathcal{VO}(\mathbb{C}^m) + \mathcal{I}$ which was proven in Corollary 3.7 and the fact that the *Hankel operator* $H_{\tilde{f}}$ is compact for all $f \in \mathcal{VMO}(\mathbb{C}^m)$ (see Theorem 5.2). We show that there are no non-constant holomorphic symbols f such that $H_{\tilde{f}}$ is compact.

Lemma 5.1. For r > 0 consider a function $f : A_r := \mathbb{C}^m \setminus B(0, r) \to \mathbb{C}$ with

$$|f(z) - f(w)| \le C ||z - w||, \qquad \forall z, w \in A_r,$$

where C > 0 is independent of f. Then there is $F : \mathbb{C}^m \to \mathbb{C}$ such that

(a)
$$f(z) = F(z), \quad \forall (z \in A_r),$$
 (b) $|F(z) - F(w)| \le 2C ||z - w||.$

for all $z, w \in \mathbb{C}^m$.

Proof. If f is real-valued, then define $F(z) := \inf\{f(w) + C || z - w || : w \in A_r\}$. We conclude that (a) holds from $f(z) \le f(w) + C || z - w ||$ for all $z, w \in A_r$. Moreover, from

$$\begin{split} f(w)+C\|z_1-w\|&\leq f(w)+C\|z_2-w\|+C\|z_1-z_2\|, \qquad \forall \ z_1,z_2\in\mathbb{C}^m, \quad w\in A_r\\ \text{it follows that } |F(z_1)-F(z_2)|&\leq C\|z_1-z_2\|. \text{ If } f \text{ is complex-valued, then write }\\ f&=f_1+if_2, \text{ where } f_1 \text{ and } f_2 \text{ are real-valued. Choose } F_1 \text{ and } F_2 \text{ with} \end{split}$$

$$f_j(z) = F_j(z), \quad \forall \ z \in A_r, \qquad |F_j(z) - F_j(w)| \le C ||z - w||, \quad \forall \ z, w \in \mathbb{C}^m$$

Bauer

for j = 1, 2. Then (a) and (b) in Lemma 5.1 immediately follow with $F := F_1 + iF_2$ and the triangle inequality.

Theorem 5.2. Let $f \in \mathcal{VMO}(\mathbb{C}^m)$. Then the Hankel operator $H_{\tilde{f}}$ is compact.

Proof. Let $\varepsilon > 0$. Applying Corollary 2.8 there is a number r > 0 such that for the *Berezin transform* \tilde{f} and all $z, w \in A_r := \mathbb{C}^m \setminus B(0, r)$ the inequality $|\tilde{f}(z) - \tilde{f}(w)| < \varepsilon ||z - w||$ holds. Due to Lemma 5.1 there is a function $F : \mathbb{C}^m \to \mathbb{C}$ such that

(i)
$$F(z) = \tilde{f}(z) \quad \forall z \in A_r,$$
 (ii) $|F(z) - F(w)| < 2\varepsilon ||z - w|| \quad \forall z, w \in \mathbb{C}^m.$

Using Theorem 4.1 and (*ii*) we conclude that H_F is bounded and there is a constant C > 0 such that $||H_F|| < 2\varepsilon C$. The function $\tilde{f} - F$ has compact support and so $H_{\tilde{f}-F}$ is compact. Because $\varepsilon > 0$ was arbitrary and with $||H_{\tilde{f}} - H_{\tilde{f}-F}|| = ||H_F|| \le 2\varepsilon C$ we conclude that $H_{\tilde{f}}$ is compact. \Box

Theorem 5.3. For $f \in \mathcal{T}(\mathbb{C}^m)$ the following are equivalent

- (a) The commutator $[M_f, P]$ is compact,
- (b) H_f and $H_{\bar{f}}$ are compact operators,

(c)
$$f \in \mathcal{VMO}(\mathbb{C}^m) = \mathcal{VO}(\mathbb{C}^m) + \mathcal{I}$$
. In particular, $f \in \mathcal{VO}(\mathbb{C}^m)$ and $f - f \in \mathcal{I}$.

Proof. The equivalence $(a) \Leftrightarrow (b)$ follows from the equations in (4.7). Suppose (b) holds. Then using Lemma 2.5, (b) we conclude that

$$|\mathrm{MO}(f,z)| \le ||H_{f\circ\tau_z}1||^2 + ||H_{\bar{f}\circ\tau_z}||^2 = ||H_fk_z||^2 + ||H_{\bar{f}}k_z||^2 \longrightarrow 0, \qquad (z \to \infty)$$

because $k_z \to 0$ weakly in $H^2(\mathbb{C}^m, \mu)$ as $z \to \infty$. The second part of (c) follows from Corollary 3.7.

Suppose (c) holds. Then $f = \tilde{f} + (f - \tilde{f})$ where $\tilde{f} \in \mathcal{VO}(\mathbb{C}^m)$ and $f - \tilde{f} \in \mathcal{I}$. Due to Corollary 3.3 the Hankel operator $H_{f-\tilde{f}}$ is compact. Because $f \in \mathcal{VMO}(\mathbb{C}^m)$ we conclude from Theorem 5.2 that $H_{\tilde{f}}$ is compact and so $H_f = H_{\tilde{f}} - H_{f-\tilde{f}}$ is compact.

For a function $f \in \mathcal{VMO}(\mathbb{C}^m)$ we also have $\overline{f} \in \mathcal{VMO}(\mathbb{C}^m)$ and the same argument shows that $H_{\overline{f}}$ is compact.

Example. Let $f \in \mathcal{T}(\mathbb{C}^m)$ be an entire function such that $H_{\bar{f}}$ is compact. Then by Corollary 4.4 we have $f(z) = a_0 + \langle \cdot, b \rangle$ where $b \in \mathbb{C}^m$. It follows that $H_{\bar{f}} = H_{\langle b, \cdot \rangle}$ and using Lemma 2.4 we obtain with $\langle b, \cdot \rangle = \langle b, \cdot \rangle$

$$\mathrm{MO}(\langle b, \cdot \rangle, \lambda) = |\widetilde{\langle b, \cdot \rangle}|^2(\lambda) - |\langle b, \lambda \rangle|^2 = ||b||^2.$$

Applying Theorem 5.3 we conclude that b = 0 and so $f \equiv a_0$ is constant.

Remark 5.4. A similar argument shows that for $p \in \mathbb{P}[z, \bar{z}]$ the Hankel operator H_p is compact if and only if p is holomorphic. In this case we obtain $H_p = 0$.

Acknowledgement

I thank Professor Lewis A. Coburn for calling my attention to the problems above as well as for many useful hints and discussions.

References

- [Bar] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Communications on Pure and Applied Mathematics 14 (1961), 187-214.
- [Bau] W. Bauer, *Hilbert-Schmidt Hankel operators on the Segal-Bargmann space*, preprint 2002, to appear in the Proceedings of AMS.
- [Be1] F. A. Berezin, Covariant and contravariant symbols of operators, Math. USSR-Izv. 6 (1972), 1117-1151.
- [BBCZ] D. Békollé, C. A. Berger, L. A. Coburn and K. H. Zhu, BMO in the Bergman Metric on Bounded Symmetric Domains, Journal of functional analysis 93, No. 2, (1990), 310-350.
- [BC1] C. A. Berger, L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), 813-829.
- [BCZ] C. A. Berger, L. A. Coburn and K. H. Zhu, *Toeplitz operators and function theory in n-dimensions* Lecture notes in Math. Vol. 1256, Springer, (1987).
- [C] L. A. Coburn, Toeplitz Operators, Quantum Mechanics and Mean Oscillation in the Bergman Metric, Proceedings of Symposia in Pure Mathematics 51, Part 1 (1990), 97-104.
- [HS] P. R. Halmos, V. S. Sunder, Bounded integral operators on L^2 -spaces, Springer, Berlin, (1978).
- [S1] K. Stroethoff, Hankel and Toeplitz operators on the Fock Space, Michigan Math. J. 39 (1992), 3-16.
- [S2] K. Stroethoff, Compact Hankel operators on the Bergman space, Illinois J. Math. 34 (1990), 159-174.
- [X] J. Xia, Hankel operators on the Bergman space and Schatten p-classes: the case 1 , Proc. Amer. Math. Soc. 129 (2001), 3559-3567.
- [XZ] J. Xia, D. Zheng, Standard deviation and Schatten class Hankel operators on the Segal-Bargmann space, preprint 2000.
- [Z1] K. H. Zhu, Schatten class Hankel operators on the Bergman space of the unit ball, Amer. J. Math. 113, No. 1 (1991), 147-167.
- [Z2] K. H. Zhu, Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc. 109, No. 3 (1990), 721-730.
- [Z3] K. H. Zhu, Hankel operators on the Bergman space of bounded symmetric domains, Trans. Amer. Math. Soc. 324 (1991), 707-730.

Wolfram Bauer Fachbereich Mathematik und Informatik Staudinger Weg 9 D-55128 Mainz Germany e-mail: BauerWolfram@web.de

Submitted: March 31, 2003 Revised: October 31, 2003