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Mean Oscillation and Hankel Operators on the
Segal-Bargmann Space

Wolfram Bauer

Abstract. For the Segal-Bargmann space of Gaussian square integrable entire
functions on C

m we consider Hankel operators Hf with symbols in f ∈ T (Cm).
We completely characterize the functions in T (Cm) for which the operators
Hf and Hf̄ are simultaneously bounded or compact in terms of the mean
oscillation of f . The analogous description holds for the commutators [Mf , P ]
where Mf denotes the “multiplication by f” and P is the Toeplitz projection.
These results are already known in case of bounded symmetric domains Ω in
C

m (see [BBCZ] or [C]). In the present paper we combine some techniques of
[BBCZ] and [BC1]. Finally, we characterize the entire function f ∈ H(Cm) ∩
T (Cm) and the polynomials p in z and z̄ for which the Hankel operators Hf̄

and Hp are bounded (resp. compact).
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1. Introduction

Throughout this paper let m ∈ N be fixed. Let µ denote the Gaussian measure
on the complex space C

m defined by dµ(z) = π−m exp(−‖z‖2)dV (z), where V is
the usual Lebesgue measure on C

m. The Segal-Bargmann space H2(Cm, µ) is the
closed subspace of L2(Cm, µ) of all square integrable holomorphic functions on
C

m. If P denotes the orthogonal projection from L2(Cm, µ) onto H2(Cm, µ) then
for a function f ∈ T (Cm) (for definition see section 2) the Hankel operator

Hf : D(Hf ) ⊂ H2(Cm, µ) −→ H2(Cm, µ)⊥

is the densely defined (and in general unbounded) operator Hfg = (I−P )Mfg for
all g ∈ D(Hf ) where Mf denotes the multiplication by f . Moreover, for f ∈ T (Cm)
the commutator of Mf and P given by [Mf , P ] := MfP −PMf is a densely defined
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operator on L2(Cm, µ). It is easy to verify that [Mf , P ] is bounded (resp. compact)
if and only if both Hankel operators Hf and Hf̄ are simultaneously bounded (resp.
compact).

The authors of [BC1] prove that for bounded symbols f ∈ L∞(Cm) the Hankel
operator Hf is compact if and only if Hf̄ is compact (see also [S1]). Moreover, they
determine the largest ∗-algebra Q in L∞(Cm) such that Hf and Hf̄ are compact for
symbols f ∈ Q. The functions in Q are characterized by a condition of oscillation
at infinity.

In general, if we deal with unbounded symbols f in T (Cm) also the question
arises whether the Hankel operator Hf is bounded. Our main aim in this paper is
to prove that
(A) For f ∈ T (Cm) the commutator [Mf , P ] is bounded if and only if the symbol

f has bounded mean oscillation.
We also completely characterize the compact commutators [Mf , P ] for symbols

f ∈ T (Cm) in terms of the mean oscillation of f .
(B) The commutator [Mf , P ] is compact if and only if the symbol f has vanishing

mean oscillation at infinity.
The analogous results are already known for Bergman spaces of bounded sym-

metric domains Ω in C
m (see [BBCZ] and [C]) and it was a conjecture in [C] that

both (A) and (B) above hold in the unbounded setting of the Segal-Bargmann
space.

Finally, we determine the space of all entire functions in T (Cm) as well as the
space of all polynomials in z and z̄ for which [Mf , P ] is bounded or compact.

2. Preliminaries

For j = (j1, · · · , jm) ∈ N
m
0 define j! := j1! · · · jm! and |j| := j1 + · · · + jm.

If z ∈ C
m then write zj := zj1

1 · · · zjm
m . Throughout this paper 〈·, ·〉 denotes the

usual Euclidian scalar product and ‖ · ‖ the Euclidian norm in C
m. For R > 0 and

a ∈ C
m let B(a,R) denote the ball in C

m with radius R centered in a. Further, we
write 〈·, ·〉2 for the L2(Cm, µ)-scalar product and ‖ · ‖2 for the L2(Cm, µ)-norm.

Because each point evaluation is a continous functional on H2(Cm, µ) the Segal-
Bargmann space is a Hilbert space with kernel function K(z, w) := exp(〈z, w〉) for
z, w ∈ C

m. We also use the normalized kernel function defined by

kw(z) := K(z, w)‖K(·, w)‖−1
2 = exp

(
〈z, w〉 − 1

2
‖w‖2

)
, ∀ z, w ∈ C

m.

For z, w ∈ C
m let τz denote the z-shift on C

m given by τz(w) := z + w. Define
the linear space

T (Cm) := {g ∈ L2(Cm, µ) : g ◦ τx ∈ L2(Cm, µ), ∀ x ∈ C
m}.

It is easy to verify that a measurable function f on C
m belongs to T (Cm) if

and only if the functions λ 
→ f(λ)K(λ, x) belong to L2(Cm, µ) for every x ∈ C
m.
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Because the linear span of the set of all kernel functions {K(·, x) : x ∈ C
m} is

dense in the Segal-Bargmann space

D(Mf ) = D(Hf ) := {h ∈ H2(Cm, µ) : fh ∈ L2(Cm, µ)}
is a dense, linear subspace of H2(Cm, µ) whenever f ∈ T (Cm). For f ∈ T (Cm)
define the Berezin transform f̃ of f by

f̃(λ) =
∫

Cm

f ◦ τλ(u)dµ(u) = 〈fkλ, kλ〉2, ∀ λ ∈ C
m.

Clearly from this definition we have ˜̄f = ¯̃
f and f̃ ◦ τλ = f̃ ◦ τλ.

Let BC(Cm) be the space of all bounded continous functions on C
m and de-

note by C0(Cm) the subalgebra in BC(Cm) of all continous functions vanishing at
infinity. For f ∈ BC(Cm) define the oscillation of f in z ∈ C

m by

Oscz(f) := sup{|f(z) − f(w)| : ‖z − w‖ < 1}.
Then z 
→ Oscz(f) also is a continous function on C

m. Now, we say f is of
bounded oscillation [write f ∈ BO(Cm)] if Oscz(f) is in BC(Cm) as a function
of z. We say the function f is of vanishing oscillation [write f ∈ VO(Cm)] if
Oscz(f) → 0 as z → ∞. For f ∈ T (Cm) the quantity

MO(f, z) := |̃f |2(z) − |f̃(z)|2

is a continous function on C
m and MO(f, ·) is called the mean oscillation of f . We

say f is of bounded mean oscillation on C
m and write f ∈ BMO(Cm) if

‖f‖BMO := sup{MO(f, z)
1
2 : z ∈ C

m} < ∞.

We say f is of vanishing mean oscillation and we write f ∈ VMO(Cm) if

lim
z→∞MO(f, z) = 0.

For all f, g ∈ T (Cm) and all λ ∈ C
m it is easy to verify that

0 ≤ MO(g + h, λ)2 ≤ 2
[
MO(g, λ)2 + MO(h, λ)2

]
.

Thus BMO(Cm) as well as VMO(Cm) are linear spaces. For S ⊂ C
m and each

f ∈ T (Cm) we write

‖f‖BMO(S) := sup{MO(f, z)
1
2 : z ∈ S}.

Let P[z, z̄] be the space of complex polynomials on C
m in the complex variables

z and z̄. Each p ∈ P[z, z̄] has the form

p(z, z̄) =
∑

l,j∈Nm
0

al,jz
lz̄j , where al,j ∈ C. (2.1)

For p ∈ P[z, z̄] with (2.1) define the integer

ρ(p) := max {|l + j| : l, j ∈ N
m
0 , al,j = 0} ∈ N0.
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Lemma 2.1. Let R(z, z̄) := zlz̄j with l, j ∈ N
m
0 be a monomial in z and z̄ on

C
m. Then R̃ has the form (∗) : R̃(z, z̄) = zlz̄j + r(z, z̄), where r ∈ P[z, z̄] with

ρ(r) < ρ(R) = |l + j|.

Proof. It follows from the definition of the Berezin transform that R̃ has the form

R̃(z, z̄) =
m∏

k=1

R̃k(zk, zk),

where Rk : C → C is defined by Rk(zk, zk) := zlk
k zk

jk for k = 1, · · · ,m. Moreover,

R̃k(zk, zk) =
1
π

∫
C

(zk + w)lk(zk + w)
jk exp(−|w|2)dV (w) = zlk

k zk
jk + rk(zk, zk)

with ρ(rk) < lk + jk. From this the decomposition (∗) of R̃ follows. �

Corollary 2.2. Let p ∈ P[z, z̄] be as in (2.1). Define A(p) := {(l, j) ∈ N
2m
0 : |(l, j)| =

ρ(p)} and

Qp(z, z̄) :=
∑

(l,j)∈A(p)

al,jz
lz̄j .

Then it holds p̃(z, z̄) = Qp(z, z̄) + r(z, z̄) where r ∈ P[z, z̄] with ρ(r) < ρ(p).

Proof. This directly follows from Lemma 2.1 and the linearity of the Berezin trans-
form. �

Corollary 2.3. Let p ∈ P[z, z̄] ⊂ T (Cm) be a non-constant polynomial. Then we
have MO(p, ·) ∈ P[z, z̄] and ρ(MO(p, ·)) < ρ(|p|2) − 1 = 2ρ(p) − 1.

Proof. Using Corollary 2.2 we conclude that Q|p|2 = Q|̃p|2 = Q|p̃|2 and by the
definition of MO(p, ·) it follows that

ρ(MO(p, ·)) < ρ(|p|2) = 2ρ(p).

Because of MO(p, λ) ≥ 0 for all λ ∈ C
m and ρ(p) > 0 we have ρ(MO(p, ·)) =

2ρ(p) − 1 and Corollary 2.3 follows. �

Lemma 2.4. Let a, u ∈ C
m and define Sa ∈ T (Cm) by Sa(u) := 〈u, a〉. Then it

follows that S̃a = Sa and MO(Sa, z) = ‖a‖2 for all z ∈ C
m.

Proof. The function Sa is holomorphic and so we have S̃a = Sa. Define for t ∈ R

the function F : R −→ R by

F (t) :=
∫

Cm

〈u, a〉 exp
(
〈u, z〉+〈ta+z, u〉

)
dµ(u) = 〈ta+z, a〉 exp

(
〈ta+z, z〉

)
. (2.2)

It follows that (∗) F
′
(0) = exp

(
‖z‖2

)
[‖a‖2 + |〈a, z〉|2] and differentiation of

(2.2) under the integral sign in t = 0 together with (∗) now shows that

|̃Sa|2 = ‖a‖2 + |Sa|2 = ‖a‖2 + |S̃a|2. �
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The inclusion L∞(Cm, µ) ⊂ BMO(Cm) is valid but there are also unbounded
functions in BMO(Cm). Consider a linear polynomial p = a0+〈·, b〉+〈c, ·〉 ∈ P[z, z̄]
where a0 ∈ C and b, c ∈ C

m. Using Corollay 2.3 it follows that ρ(MO(p, ·)) < 1
and so MO(p, ·) is constant. We conclude that p ∈ BMO(Cm).

Lemma 2.5. For g ∈ T (Cm), h ∈ BMO(Cm) and λ ∈ C
m we have

(a) MO(g, λ) = ‖g ◦ τλ − g̃(λ)‖2
2 = (|g − g̃(λ)|2)̃(λ),

(b) MO(g, λ) ≤ ‖(I − P )(g ◦ τλ)‖2
2 + ‖(I − P )(ḡ ◦ τλ)‖2

2,

(c) ‖h‖BMO ≤
√

2 max {‖Hh‖, ‖Hh̄‖} .

Proof. (a) easy computation.
(b) The Berezin symbol of g can be written in the following form:

g̃(λ) = 〈g ◦ τλ, 1〉2 = 〈ḡ ◦ τλ,K(·, 0)〉2 = P (ḡ ◦ τλ)(0) = P (P (ḡ ◦ τλ)).

This yields the inequality

‖P [g ◦ τλ] − g̃(λ)‖2
2 = ‖P [g ◦ τλ] − P [P (ḡ ◦ τλ)]‖2

2

≤ ‖g ◦ τλ − P (ḡ ◦ τλ)‖2
2 = ‖(I − P )(ḡ ◦ τλ)‖2

2. (2.3)

From ‖g◦τλ‖2
2 = ‖(I−P )(g◦τλ)‖2

2+‖P (g◦τλ)‖2
2 and 〈P (g◦τλ), g̃(λ)〉2 = |g̃(λ)|2

it follows that

‖P [g ◦ τλ] − g̃(λ)‖2
2 + ‖(I − P )(g ◦ τλ)‖2

2 = ‖g ◦ τλ‖2
2 − |g̃(λ)|2 = MO(g, λ).

This together with (2.3) imply (b).
(c) Follows from ‖(I −P )(h◦ τλ)‖2 = ‖Hhkλ‖2 ≤ ‖Hh‖ for all λ ∈ C

m together
with standard estimates from (b). �

The following Theorem is an analog to Theorem F in [BBCZ] in the case
of bounded symmetric domains Ω in C

m. The Bergman metric is replaced by the
Euclidian metric on C

m.

Theorem 2.6. For any smooth curve γ : I := [0, 1] −→ C
m and any f ∈ BMO(Cm)

we have ∣∣∣∣ d

dt
f̃ ◦ γ(t)

∣∣∣∣ ≤ 2‖f‖BMO(γ(I))

∥∥∥∥ d

dt
γ(t)

∥∥∥∥ , ∀ t ∈ I.

If s = s(t) denotes the arclength of γ then d
dts(t) = ‖ d

dtγ(t)‖.

Proof. Let t ∈ I. Then we differentiate under the integral sign in the definition of
the Berezin transform f̃ .

d

dt
f̃ ◦ γ(t) =

∫
Cm

f(u)
d

dt
|kγ(t)(u)|2dµ(u) (2.4)

= 2
∫

Cm

f(u)�
{(

d

dt
kγ(t)(u)

)
kγ(t)(u)

}
dµ(u)

= 2
∫

Cm

(
f(u) − f̃ ◦ γ(t)

)
� [Gt(u)] dµ(u)
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where Gt(u) :=
[

d
dtkγ(t)(u) −

〈
d
dtkγ(t), kγ(t)

〉
2
kγ(t)(u)

]
kγ(t)(u). Here we have used

2�
〈 d

dt
kγ(t), kγ(t)

〉
2

=
d

dt

〈
kγ(t), kγ(t)

〉
2

=
d

dt
1 = 0.

For u ∈ C
m and t ∈ I one easily computes

d

dt
kγ(t)(u) =

[〈
u,

d

dt
γ(t)

〉
−�

〈
γ(t),

d

dt
γ(t)

〉]
kγ(t)(u)

and it follows that
d

dt
kγ(t)(u) −

〈 d

dt
kγ(t), kγ(t)

〉
2
kγ(t)(u) =

〈
u − γ(t),

d

dt
γ(t)

〉
kγ(t)(u). (2.5)

If we use the the equalities (2.4) and (2.5) as well as the Cauchy-Schwarz
inequality we conclude that∣∣∣∣ d

dt
f̃ ◦ γ(t)

∣∣∣∣
=2

∣∣∣∣
∫

Cm

(
f(u) − f̃ ◦ γ(t)

)
�

{〈
u − γ(t),

d

dt
γ(t)

〉
|kγ(t)(u)|2

}
dµ(u)

∣∣∣∣
≤2

[
(|f − f̃ ◦ γ(t)|2)̃ ◦ γ(t)

] 1
2

[
(|Γt − Γ̃t ◦ γ(t)|2)̃ ◦ γ(t)

] 1
2

where Γt ∈ T (Cm) is defined by Γt(u) :=
〈
u, d

dtγ(t)
〉
. An application of Lemma

2.5 (a) and Lemma 2.4 yields∣∣∣∣ d

dt
f̃ ◦ γ(t)

∣∣∣∣ ≤ 2‖f‖BMO(γ(I))MO(Γt, γ(t))
1
2 = 2‖f‖BMO(γ(I))

∥∥∥∥ d

dt
γ(t)

∥∥∥∥ .

From this the desired result follows. �

Corollary 2.7. For f ∈ BMO(Cm) and a, b ∈ C
m we have the Lipschitz-inequality

|f̃(a) − f̃(b)| ≤ 2‖f‖BMO‖a − b‖.

In particular, f̃ ∈ BO(Cm) and ‖Oscz(f̃)‖∞ ≤ 2‖f‖BMO.

Proof. Choose γb
a : I := [0, 1] → C

m with γb
a(t) := a+ t(b− a) and apply Theorem

2.6. �

Corollary 2.8. Let f ∈ VMO(Cm). For each ε > 0 there is a number r > 0 such
that the inequality (∗) : |f̃(a) − f̃(b)| < ε‖a − b‖ is valid for all a, b ∈ Ar :=
C

m \ B(0, r). In particular, f̃ ∈ VO(Cm).

Proof. Fix r0 > 0 and a, b ∈ Ar0 with a = b. Define z1 := 1
2 (a + b) and z2 :=

1
2 (a − b). Choose z3 ∈ C

m with z3 ⊥ z2 and ‖z3‖ = ‖z2‖ and consider the arcs
γ1, γ2 : I → C

m given by

γ1(t) := z1 + z2 cos πt + z3 sin πt, γ2(t) := z1 + z2 cos π(1 + t) + z3 sin π(t + 1).
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We have γ1(0) = γ2(1) = a and γ1(1) = γ2(0) = b. Because a, b ∈ Ar0 it easy
to check that either γ1(I) ⊂ Ar0 or γ2(I) ⊂ Ar0 . Assume γ1(I) ⊂ Ar0 and apply
Theorem 2.6

|f̃(a) − f̃(b)| ≤
∫ 1

0

∣∣∣∣ d

dt
f̃ ◦ γ1(t)

∣∣∣∣ dt

≤ 2‖f‖BMO(Ar0 )

∫ 1

0

∥∥∥∥ d

dt
γ1(t)

∥∥∥∥ dt = π‖f‖BMO(Ar0 )‖a − b‖.

Finally choose r0 > 0 such that ‖f‖BMO(Ar0 ) < ε
π . �

3. The spaces BMO(Cm) and VMO(Cm)

In this section we give a description of the space BMO(Cm) [resp. VMO(Cm)].
We show in which sense they are related to BO(Cm) [resp. VO(Cm)].

Theorem 3.1. Let f ∈ T (Cm).

(a) The Berezin transform |̃f |2 is a bounded continous function if and only if
MfP is bounded. Moreover, there is a constant C > 0 such that

(∗) : ‖|̃f |2‖∞ ≤ ‖MfP‖2 ≤ C‖|̃f |2‖∞
where ‖g‖∞ := sup{|g(z)| : z ∈ C

m} for all g ∈ BC(Cm).
(b) The operator MfP is compact if and only if |̃f |2(λ) −→ 0 as λ → ∞.

Proof. (a) An analogous computation as in [BC1] Lemma 14 shows that there is
a constant C > 0 such that

‖|̃f |2‖∞ ≤ ‖PM|f |2P‖ ≤ C‖|̃f |2‖∞.

Using ‖PM|f |2P‖ = ‖(MfP )∗(MfP )‖ = ‖MfP‖2 the inequality (∗) follows.
(b) Let MfP be compact. Then the operator PM|f |2P = (MfP )∗(MfP ) is

compact and because kλ → 0 weakly in H2(Cm, µ) as λ → ∞ it follows that

|̃f |2(λ) = 〈PM|f |2Pkλ, kλ〉2 ≤ ‖PM|f |2Pkλ‖2 −→ 0, (λ → ∞).

Let |̃f |2(λ) → 0 as λ → ∞ and let χR be the characteristic function of B(0, R).
It is easy to verify that MfχR

P is of Hilbert-Schmidt type. Hence, it is sufficient
to show that

‖MfP − MfχR
P‖ = ‖Mf(1−χR)P‖ −→ 0, (R → ∞).

According to (a) there is a constant C > 0 such that

‖Mf(1−χR)P‖2
2 ≤ C sup

u∈Cm

∫
‖z‖≥R

|f(z)|2|ku(z)|2dµ(z). (3.1)
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Let ε > 0, then choose r > 0 with |̃f |2(z) < ε
C for all z ∈ C

m \ B(0, r). It
follows that

sup
‖u‖>r

∫
‖z‖≥R

|f(z)|2|ku(z)|2dµ(z) ≤ sup
‖u‖>r

|̃f |2(u) <
ε

C
. (3.2)

On B(0, r) the function FR : u 
→
∫
‖z‖≥R

|f(z)|2|ku(z)|2dµ(z) converges mono-
tonely to 0 as R → ∞. Using Dini’s theorem there is R0 > 0 such that with
R > R0

sup
‖u‖≤r

∫
‖z‖≥R

|f(z)|2|ku(z)|2dµ(z) <
ε

C
. (3.3)

The inequalities (3.1), (3.2) and (3.3) prove that ‖Mf(1−χR)P‖2
2 < ε for each

R > R0. �

Definition 3.2. In the following we use the spaces F and I defined by

F :=
{

f ∈ T (Cm) : |̃f |2 ∈ BC(Cm)
}

, I :=
{

f ∈ T (Cm) : |̃f |2 ∈ C0(Cm)
}

.

Corollary 3.3. For f ∈ F the Hankel operator Hf is bounded and there is a constant
C > 0 such that ‖Hf‖2 ≤ C‖|̃f |2‖∞. Moreover, for f ∈ I the Hankel operator Hf

is compact.

Proof. This follows from Theorem 3.1 with Hf = (I − P )MfP . �

Lemma 3.4. Let f ∈ BO(Cm) and fix r ≥ 0. Then for all z, w ∈ C
m \ B(0, r)

we have the inequality |f(z) − f(w)| ≤ C(f, r) (1 + π‖z − w‖) where C(f, r) :=
sup {|Oscz(f)| : ‖z‖ ≥ r − 1}.

Proof. Let z, w ∈ C
m\B(0, r). Then choose γ : I = [0, 1] → C

m\B(0, r) connecting
z and w as in the proof of Corollary 2.8. Let n ∈ N be the greatest integer in
π‖z − w‖ then divide γ(I) into n + 1 segments [γ(ti), γ(ti+1)] of equal length.

Because of B(γ(ti), 1) ⊂ {z ∈ C
m : ‖z‖ ≥ r − 1} and ‖γ(ti) − γ(ti+1)‖ < 1 for

i = 0, · · · , n, it follows that

|f(z) − f(w)| ≤ (1 + n)C(f, r) ≤ C(f, r) (1 + π‖z − w‖) .

From this we obtain Lemma 3.4. �

Lemma 3.5. We have BO(Cm) ⊂ BMO(Cm) and the following statements are
equivalent
(a) f ∈ BO(Cm),
(b) there is a constant C > 0 with |f(z)− f(w)| ≤ C (1 + ‖z − w‖) for all z, w ∈

C
m,

(c) the function z 
→ ‖f(z) − f ◦ τz‖2 is in BC(Cm).

Proof. The conclusion (a) ⇒ (b) follows from Lemma 3.4 with r = 0. Suppose (b)
holds and z ∈ C

m. Then

‖f(z) − f ◦ τz‖2
2 =

∫
Cm

|f(z) − f(z + w)|2dµ(w) ≤ C2

∫
Cm

[1 + ‖w‖]2dµ(w) < ∞.
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Finally suppose (c) holds. It is easy to check that

‖f(z) − f ◦ τz‖2
2 = MO(f, z) + |f(z) − f̃(z)|2. (3.4)

Because the left hand side of the equality (3.4) is bounded we conclude that
f ∈ BMO(Cm) and

f − f̃ ∈ BC(Cm) ⊂ BO(Cm).

It follows from Corollary 2.7 that f̃ ∈ BO(Cm) and so we obtain f = (f − f̃)+
f̃ ∈ BO(Cm). �

Lemma 3.6. We have VO(Cm) ⊂ VMO(Cm) and the following statements are
equivalent

(a) f ∈ VO(Cm),
(b) for each ε > 0 there is r > 0 such that |f(z)− f(w)| ≤ ε(1 + ‖z −w‖) for all

z, w ∈ C
m \ B(0, r),

(c) the function z 
→ ‖f(z) − f ◦ τz‖2 is in C0(Cm).

Proof. The conclusion (a) ⇒ (b) follows from Lemma 3.4 together with the con-
vergence

lim
r→0

C(f, r) = 0.

Now, suppose (b) holds. Then fix ε > 0 and choose R > 0 such that for all
z ∈ C

m

∫
‖w‖>R

|f(z) − f(z + w)|2dµ(w) ≤ C(f, 0)2
∫
‖w‖>R

[1 + π‖w‖]2dµ(w) <
ε

2
. (3.5)

Define M :=
∫

Cm [1 + ‖w‖]2dµ(w) > 0 and choose a radius r > 0 such that for
all z, w ∈ C

m \ B(0, r)

|f(z) − f(w)|2 ≤ ε

2M
(1 + ‖z − w‖)2. (3.6)

If ‖z‖ > r +R then we have ‖z +w‖ > r for all w ∈ B(0, R) and it follows with
the inequalities (3.5) and (3.6) that

‖f(z) − f ◦ τz‖2
2

=
∫
‖w‖≤R

|f(z) − f(z + w)|2dµ(w) +
∫
‖w‖>R

|f(z) − f(z + w)|2dµ(w)

≤ ε

2M

∫
‖w‖≤R

[1 + ‖w‖]2dµ(w) +
ε

2
< ε

and (c) follows.
Finally suppose (c) holds. Then the identity (3.4) shows that f ∈ VMO(Cm)

as well as f̃ − f ∈ C0(Cm) ⊂ VO(Cm) and using Corollary 2.8 we conclude that
f̃ ∈ VO(Cm). This together proves that f = f̃ − (f̃ − f) ∈ VO(Cm). �
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Corollary 3.7. Using the notations above we have

(i) BMO(Cm) = BO(Cm) + F , (ii) VMO(Cm) = VO(Cm) + I.

Moreover, the decompositions in (i) and (ii) are given by f = f̃ + (f − f̃) for
f ∈ BMO(Cm) [resp. f ∈ VMO(Cm)].

Proof. (i) The inclusion “⊃” follows from Lemma 3.5 and F ⊂ BMO(Cm).
Let f ∈ BMO(Cm). Then we conclude that f̃ ∈ BO(Cm) from Corollary 2.7

and it is enough to show that f − f̃ ∈ F

(|f − f̃ |2)̃(z) = ‖(f − f̃) ◦ τz‖2
2 ≤ 2

[
‖f ◦ τz − f̃(z)‖2

2 + ‖f̃(z) − f̃ ◦ τz‖2
2

]

= 2
[
MO(f, z) + ‖f̃(z) − f̃ ◦ τz‖2

2

]
. (3.7)

Because of f ∈ BMO(Cm) the function MO(f, ·) is bounded. Moreover, Lemma
3.5 together with f̃ ∈ BO(Cm) shows that also z 
→ ‖f̃(z) − f̃ ◦ τz‖2

2 is bounded
and we conclude that f − f̃ ∈ F .

(ii) The inclusion “⊃” follows from Lemma 3.6 and I ⊂ VMO(Cm).
Let f ∈ VMO(Cm). Then we conclude that f̃ ∈ VO(Cm) from Corollary 2.8

and it is enough to show that f − f̃ ∈ I. An application of Lemma 3.6 together
with f̃ ∈ VO(Cm) yields

‖f̃(z) − f̃ ◦ τz‖2
2 −→ 0, (z → ∞). (3.8)

Finally, because of f ∈ VMO(Cm) the inequalities (3.7) and (3.8) show that
f − f̃ ∈ I. �

4. Bounded Hankel operators

We will prove (A) in section 1 (see Theorem 4.3). The main ingrediant for the
proof is the decomposition BMO(Cm) = BO(Cm)+F of the space of all functions
of bounded mean oscillation and the estimate in Theorem 4.1 between the norm
of an Hankel operator and the oscillation of its symbol.

Theorem 4.1. Let f ∈ BO(Cm) then Hf is bounded with ‖Hf‖ ≤ C‖Oscz(f)‖∞
where C is a constant given by C := 1

πm

∫
Cm [π‖w‖ + 1] exp(− 1

2‖w‖2)dV (w) .

Proof. For f ∈ BMO(Cm) the operator (I − P )MfP is an integral operator on
H2(Cm, µ) defined by

[(I − P )MfPg](w) :=
∫

Cm

[f(w) − f(z)] exp
(
〈w, z〉

)
g(z)dµ(z), ∀ w ∈ C

m.

Because of f ∈ BO(Cm) Lemma 3.4 with r = 0 shows for all z, w ∈ C
m that

|f(z) − f(w)| ≤ ‖Oscz(f)‖∞(1 + π‖z − w‖). (4.1)
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Define p(z) := exp(1
2‖z‖2). Then a translation by w ∈ C

m with C defined as
above shows that∫

Cm

[1 + π‖z − w‖] exp
(
�〈w, z〉

)
p(z)dµ(z) = Cp(w). (4.2)

After combining the inequalities (4.1) and (4.2) we conclude that∫
Cm

|f(w) − f(z)| exp
(
�〈w, z〉

)
p(z)dµ(z) ≤ C‖Oscz(f)‖∞p(w) (4.3)

and an application of Schur’s lemma (see [HS] or [S1]) together with the inequality
(4.3) now show that ‖Hf‖ = ‖(I − P )MfP‖ ≤ C‖Oscz(f)‖∞. �

Theorem 4.2. Let f ∈ BMO(Cm). Then the Hankel operator Hf is bounded and
there is a constant D > 0, independent of f , such that ‖Hf‖ ≤ D‖f‖BMO.

Proof. For f ∈ BMO(Cm) Corollary 3.7 shows that f̃ ∈ BO(Cm) and f − f̃ ∈ F .
Using Corollary 2.7 and Theorem 4.1 we conclude that Hf̃ is bounded and there
is C > 0 independent of f such that

‖Hf̃‖ ≤ C‖Oscz(f̃)‖∞ ≤ 2C‖f‖BMO. (4.4)

Now, using Corollary 2.7 again, it follows for all z ∈ C
m that

‖f̃(z) − f̃ ◦ τz‖2 =
[∫

Cm

|f̃(z) − f̃(z + w)|2dµ(w)
] 1

2

≤ 2‖f‖BMO

[∫
Cm

‖w‖2dµ(w)
] 1

2

= C1‖f‖BMO

where C1 := 2[
∫

Cm ‖w‖2dµ(w)]
1
2 . This together with (3.7) shows that

(|f − f̃ |2)̃(z) ≤ 2
[
MO(f, z) + C2

1‖f‖2
BMO

]
≤ 2(1 + C2

1 )‖f‖2
BMO. (4.5)

Using (4.5) and Corollary 3.3 there are constants C2, C3 > 0 such that

‖Hf−f̃‖ ≤ C2‖(|f − f̃ |2)̃‖
1
2∞ ≤ C3‖f‖BMO. (4.6)

Finally, (4.4) together with (4.6) show ‖Hf‖ ≤ ‖H‖f̃ + ‖Hf−f̃‖ ≤ D‖f‖BMO

where D > 0 is a constant independent of f . �

Theorem 4.3. For f ∈ T (Cm) the following are equivalent

(a) Hf and Hf̄ are bounded operators,
(b) f ∈ BMO(Cm) = BO(Cm) + F . In particular, we have f̃ ∈ BO(Cm) and

f − f̃ ∈ F .

Whenever (a) and (b) hold the quantities ‖[Mf , P ]‖, max
{
‖Hf‖, ‖Hf̄‖

}
and

‖f‖BMO are equivalent.
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Proof. Suppose (a) holds. Then Lemma 2.5, (c) shows that

‖f‖BMO ≤
√

2 max
{
‖Hf‖, ‖Hf̄‖

}
and (b) follows.

Suppose (b) holds. Then we conlude f̄ ∈ BMO(Cm) and using Theorem 4.2 we
find D1,D2 > 0 with ‖Hf‖ ≤ D1‖f‖BMO < ∞ and

‖Hf̄‖ ≤ D2‖f̄‖BMO = D2‖f‖BMO < ∞
and from this (a) follows. Moreover, ‖f‖BMO and max

{
‖Hf‖, ‖Hf̄‖

}
are equiva-

lent.
Finally, the formulas

[Mf , P ] = Hf −H ∗̄
f , (I −P )[Mf , P ] = Hf , [Mf , P ](I −P ) = −H ∗̄

f (4.7)

show that ‖[Mf , P ]‖ and max
{
‖Hf‖, ‖Hf̄‖

}
are equivalent. �

Corollary 4.4. Let f ∈ T (Cm) be an entire function on C
m. Then the following

are equivalent
(a) There is a0 ∈ C and b ∈ C

m such that f(z) = a0 + 〈z, b〉,
(b) the Hankel operator Hf̄ is bounded.

Proof. Suppose (a) holds. Then using Corollary 2.3 we conclude that

ρ(MO(f̄ , ·)) = 0

and it follows that f̄ ∈ BMO(Cm). Theorem 4.3 shows that Hf̄ is bounded.
Suppose (b) holds, so Hf̄ is bounded. Because of Hf = 0 Theorem 4.3 proves

that f is in BMO(Cm). Applying Corollary 3.7 we now obtain with f̃ = f that
f ∈ BO(Cm). It follows with Lemma 3.5 that there is a constant C > 0 such that

|f(z) − f(w)| ≤ C(1 + ‖z − w‖), ∀ z, w ∈ C
m. (4.8)

Assume f(z) =
∑

j∈Nm
0

bjz
j . Then the Cauchy estimates show for any r > 0

and j ∈ N
m
0 that

|bj | =
|[Djf ](0)|

j!
≤ 1

r|j|
sup{|f(z)| : z ∈ P (0, r)}. (4.9)

Here, P (0, r) is the polydisc in C
m with multiradius r := (r, · · · , r) and center

0. It is easy to check that the inclusion P (0, r) ⊂ B(0, r
√

m + 1) holds and we
obtain from (4.9) and (4.8)

|bj | ≤
1

r|j|
sup{|f(z)| : z ∈ B(0, r

√
m + 1)} ≤ 1

r|j|
{
|f(0)| + C(1 + r

√
m + 1)

}
.

Because r > 0 was arbitrary we conclude that bj = 0 for j ∈ N
m
0 such that

|j| > 1 and (b) follows. �

Corollary 4.5. For p ∈ P[z, z̄] the statements (a) and (b) are equivalent:
(a) There is a0 ∈ C and c, d ∈ C

m such that p(z, z̄) = a0 + 〈z, c〉 + 〈d, z〉,
(b) the Hankel operators Hp and Hp̄ are bounded.
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Proof. Suppose (a) holds. Then using Corollary 2.2 we conclude that

ρ(MO(p, ·)) = 0

and it follows that p ∈ BMO(Cm). Theorem 4.3 shows that Hp and Hp̄ are
bounded.

Suppose (b) holds, so Hp and Hp̄ are bounded. Then Theorem 4.3 shows that p ∈
BMO(Cm) and according to Corollary 3.7 we have p̃ ∈ BO(Cm). Using Corollary
2.2 it follows with the above defined set A(p) := {(l, j) ∈ N

2m
0 : |(l, j)| = ρ(p)}

that

p̃(z, z̄) = Qp(z, z̄) + r(z, z̄), where Qp(z, z̄) :=
∑

(l,j)∈A(p)

al,jz
lz̄j (4.10)

and ρ(r) < ρ(p). Choose a ∈ C
m with Qp(a, ā) = 0. Because of p̃ ∈ BO(Cm)

Lemma 3.5 shows that there is a constant C > 0 such that

|p̃(z, z̄)| ≤ |p̃(0, 0)| + C(1 + ‖z‖).
Using (4.10) we obtain for all t > 0

tρ(p)|Qp(a, ā)| ≤ |p̃(ta, tā)| + |r(ta, tā)| ≤ |p̃(0, 0)| + C [1 + t‖a‖] + |r(ta, tā)|.
Because of ρ(r) < ρ(p) this leads to a contradiction for ρ(p) > 1. �

5. Compact Hankel operators

Finally, we prove (B) in section 1 about compact commutators [Mf , P ] with
f ∈ T (Cm). We use the decomposition VMO(Cm) = VO(Cm) + I which was
proven in Corollary 3.7 and the fact that the Hankel operator Hf̃ is compact for
all f ∈ VMO(Cm) (see Theorem 5.2). We show that there are no non-constant
holomorphic symbols f such that Hf̄ is compact.

Lemma 5.1. For r > 0 consider a function f : Ar := C
m \ B(0, r) → C with

|f(z) − f(w)| ≤ C‖z − w‖, ∀ z, w ∈ Ar,

where C > 0 is independent of f . Then there is F : C
m → C such that

(a) f(z) = F (z), ∀ (z ∈ Ar), (b) |F (z) − F (w)| ≤ 2C‖z − w‖.
for all z, w ∈ C

m.

Proof. If f is real-valued, then define F (z) := inf{f(w) + C‖z − w‖ : w ∈ Ar}.
We conclude that (a) holds from f(z) ≤ f(w) + C‖z − w‖ for all z, w ∈ Ar.
Moreover, from

f(w)+C‖z1 −w‖ ≤ f(w)+C‖z2 −w‖+C‖z1 − z2‖, ∀ z1, z2 ∈ C
m, w ∈ Ar

it follows that |F (z1) − F (z2)| ≤ C‖z1 − z2‖. If f is complex-valued, then write
f = f1 + if2, where f1 and f2 are real-valued. Choose F1 and F2 with

fj(z) = Fj(z), ∀ z ∈ Ar, |Fj(z) − Fj(w)| ≤ C‖z − w‖, ∀ z, w ∈ C
m
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for j = 1, 2. Then (a) and (b) in Lemma 5.1 immediately follow with F := F1 + iF2

and the triangle inequality. �
Theorem 5.2. Let f ∈ VMO(Cm). Then the Hankel operator Hf̃ is compact.

Proof. Let ε > 0. Applying Corollary 2.8 there is a number r > 0 such that
for the Berezin transform f̃ and all z, w ∈ Ar := C

m \ B(0, r) the inequality
|f̃(z)− f̃(w)| < ε‖z−w‖ holds. Due to Lemma 5.1 there is a function F : C

m → C

such that

(i) F (z) = f̃(z) ∀ z ∈ Ar, (ii) |F (z)− F (w)| < 2ε‖z −w‖ ∀ z, w ∈ C
m.

Using Theorem 4.1 and (ii) we conclude that HF is bounded and there is a
constant C > 0 such that ‖HF ‖ < 2εC. The function f̃ − F has compact support
and so Hf̃−F is compact. Because ε > 0 was arbitrary and with ‖Hf̃ − Hf̃−F ‖ =
‖HF ‖ ≤ 2εC we conclude that Hf̃ is compact. �

Theorem 5.3. For f ∈ T (Cm) the following are equivalent
(a) The commutator [Mf , P ] is compact,
(b) Hf and Hf̄ are compact operators,
(c) f ∈ VMO(Cm) = VO(Cm) + I. In particular, f̃ ∈ VO(Cm) and f − f̃ ∈ I.

Proof. The equivalence (a) ⇔ (b) follows from the equations in (4.7). Suppose (b)
holds. Then using Lemma 2.5, (b) we conclude that

|MO(f, z)| ≤ ‖Hf◦τz
1‖2 + ‖Hf̄◦τz

‖2 = ‖Hfkz‖2 + ‖Hf̄kz‖2 −→ 0, (z → ∞)

because kz → 0 weakly in H2(Cm, µ) as z → ∞. The second part of (c) follows
from Corollary 3.7.

Suppose (c) holds. Then f = f̃ +(f− f̃) where f̃ ∈ VO(Cm) and f− f̃ ∈ I. Due
to Corollary 3.3 the Hankel operator Hf−f̃ is compact. Because f ∈ VMO(Cm)
we conclude from Theorem 5.2 that Hf̃ is compact and so Hf = Hf̃ − Hf−f̃ is
compact.

For a function f ∈ VMO(Cm) we also have f̄ ∈ VMO(Cm) and the same
argument shows that Hf̄ is compact. �
Example. Let f ∈ T (Cm) be an entire function such that Hf̄ is compact. Then by
Corollary 4.4 we have f(z) = a0 + 〈·, b〉 where b ∈ C

m. It follows that Hf̄ = H〈b,·〉
and using Lemma 2.4 we obtain with 〈̃b, ·〉 = 〈b, ·〉

MO(〈b, ·〉, λ) = ˜|〈b, ·〉|2(λ) − |〈b, λ〉|2 = ‖b‖2.

Applying Theorem 5.3 we conclude that b = 0 and so f ≡ a0 is constant.

Remark 5.4. A similar argument shows that for p ∈ P[z, z̄] the Hankel operator
Hp is compact if and only if p is holomorphic. In this case we obtain Hp = 0.
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