Mean Oscillation and Hankel Operators on the Segal-Bargmann Space

Wolfram Bauer

Abstract. For the *Segal-Bargmann space* of Gaussian square integrable entire functions on \mathbb{C}^m we consider *Hankel operators* H_f with symbols in $f \in \mathcal{T}(\mathbb{C}^m)$. We completely characterize the functions in $\mathcal{T}(\mathbb{C}^m)$ for which the operators H_f and $H_{\bar{f}}$ are simultaneously bounded or compact in terms of the *mean oscillation* of *f*. The analogous description holds for the commutators $[M_f, P]$ where M_f denotes the "multiplication by f " and P is the *Toeplitz projection*. These results are already known in case of *bounded symmetric domains* Ω *in* \mathbb{C}^m (see [BBCZ] or [C]). In the present paper we combine some techniques of [BBCZ] and [BC1]. Finally, we characterize the entire function $f \in \mathcal{H}(\mathbb{C}^m) \cap$ $\mathcal{T}(\mathbb{C}^m)$ and the polynomials *p* in *z* and \bar{z} for which the *Hankel operators* $H_{\bar{f}}$ and H_p are bounded (resp. compact).

Mathematics Subject Classification (2000). Primary 47B10, 47B32, 47B35. **Keywords.** Hankel operators, Segal-Bargmann space, Mean oscillation.

1. Introduction

Throughout this paper let $m \in \mathbb{N}$ be fixed. Let μ denote the Gaussian measure on the complex space \mathbb{C}^m defined by $d\mu(z) = \pi^{-m} \exp(-||z||^2) dV(z)$, where V is the usual Lebesgue measure on \mathbb{C}^m . The *Segal-Bargmann space* $H^2(\mathbb{C}^m,\mu)$ is the closed subspace of $L^2(\mathbb{C}^m,\mu)$ of all square integrable holomorphic functions on \mathbb{C}^m . If P denotes the orthogonal projection from $L^2(\mathbb{C}^m,\mu)$ onto $H^2(\mathbb{C}^m,\mu)$ then for a function $f \in \mathcal{T}(\mathbb{C}^m)$ (for definition see section 2) the *Hankel operator*

$$
H_f: \mathcal{D}(H_f) \subset H^2(\mathbb{C}^m, \mu) \longrightarrow H^2(\mathbb{C}^m, \mu)^\perp
$$

is the densely defined (and in general unbounded) operator $H_f g = (I - P)M_f g$ for all $g \in \mathcal{D}(H_f)$ where M_f denotes the multiplication by f. Moreover, for $f \in \mathcal{T}(\mathbb{C}^m)$ the *commutator* of M_f and P given by $[M_f, P] := M_f P - PM_f$ is a densely defined

This work was supported by a fellowship of the *"Deutscher akademischer Austauschdienst", (DAAD)*.

operator on $L^2(\mathbb{C}^m,\mu)$. It is easy to verify that $[M_f, P]$ is bounded (resp. compact) if and only if both *Hankel operators* H_f and $H_{\bar{f}}$ are simultaneously bounded (resp. compact).

The authors of [BC1] prove that for bounded symbols $f \in L^{\infty}(\mathbb{C}^m)$ the *Hankel operator* H_f is compact if and only if $H_{\bar{f}}$ is compact (see also [S1]). Moreover, they determine the largest *-algebra Q in $L^{\infty}(\mathbb{C}^m)$ such that H_f and \overline{H}_f are compact for symbols $f \in Q$. The functions in Q are characterized by a condition of *oscillation at infinity*.

In general, if we deal with unbounded symbols f in $\mathcal{T}(\mathbb{C}^m)$ also the question arises whether the *Hankel operator* H_f is bounded. Our main aim in this paper is to prove that

(A) For $f \in \mathcal{T}(\mathbb{C}^m)$ the commutator $[M_f, P]$ is bounded if and only if the symbol f *has bounded mean oscillation.*

We also completely characterize the compact commutators $[M_f, P]$ for symbols $f \in \mathcal{T}(\mathbb{C}^m)$ in terms of the *mean oscillation* of f.

(B) *The commutator* $[M_f, P]$ *is compact if and only if the symbol f has vanishing mean oscillation at infinity.*

The analogous results are already known for *Bergman spaces of bounded symmetric domains* Ω *in* \mathbb{C}^m (see [BBCZ] and [C]) and it was a conjecture in [C] that both (A) and (B) above hold in the unbounded setting of the *Segal-Bargmann space*.

Finally, we determine the space of all entire functions in $\mathcal{T}(\mathbb{C}^m)$ as well as the space of all polynomials in z and \bar{z} for which $[M_f, P]$ is bounded or compact.

2. Preliminaries

For $j = (j_1, \dots, j_m) \in \mathbb{N}_0^m$ define $j! := j_1! \dots j_m!$ and $|j| := j_1 + \dots + j_m$. If $z \in \mathbb{C}^m$ then write $z^j := z_1^{j_1} \cdots z_m^{j_m}$. Throughout this paper $\langle \cdot, \cdot \rangle$ denotes the usual Euclidian scalar product and $\|\cdot\|$ the Euclidian norm in \mathbb{C}^m . For $R > 0$ and $a \in \mathbb{C}^m$ let $B(a, R)$ denote the ball in \mathbb{C}^m with radius R centered in a. Further, we write $\langle \cdot, \cdot \rangle_2$ for the $L^2(\mathbb{C}^m, \mu)$ -scalar product and $\|\cdot\|_2$ for the $L^2(\mathbb{C}^m, \mu)$ -norm.

Because each *point evaluation* is a continuous functional on $H^2(\mathbb{C}^m,\mu)$ the *Segal*-*Bargmann space* is a Hilbert space with *kernel function* $K(z, w) := \exp(\langle z, w \rangle)$ for $z, w \in \mathbb{C}^m$. We also use the *normalized kernel function* defined by

$$
k_w(z) := K(z, w) \|K(\cdot, w)\|_2^{-1} = \exp\left(\langle z, w \rangle - \frac{1}{2} \|w\|^2\right), \qquad \forall \ z, w \in \mathbb{C}^m.
$$

For $z, w \in \mathbb{C}^m$ let τ_z denote the *z*-shift on \mathbb{C}^m given by $\tau_z(w) := z + w$. Define the linear space

$$
\mathcal T(\mathbb C^m):=\{g\in L^2(\mathbb C^m,\mu): g\circ \tau_x\in L^2(\mathbb C^m,\mu),\;\;\forall\;x\in\mathbb C^m\}.
$$

It is easy to verify that a measurable function f on \mathbb{C}^m belongs to $\mathcal{T}(\mathbb{C}^m)$ if and only if the functions $\lambda \mapsto f(\lambda)K(\lambda, x)$ belong to $L^2(\mathbb{C}^m, \mu)$ for every $x \in \mathbb{C}^m$.

Because the linear span of the set of all *kernel functions* $\{K(\cdot, x) : x \in \mathbb{C}^m\}$ is dense in the *Segal-Bargmann space*

$$
\mathcal{D}(M_f) = \mathcal{D}(H_f) := \{ h \in H^2(\mathbb{C}^m, \mu) : fh \in L^2(\mathbb{C}^m, \mu) \}
$$

is a dense, linear subspace of $H^2(\mathbb{C}^m,\mu)$ whenever $f \in \mathcal{T}(\mathbb{C}^m)$. For $f \in \mathcal{T}(\mathbb{C}^m)$ define the *Berezin transform* \tilde{f} of \tilde{f} by

$$
\tilde{f}(\lambda) = \int_{\mathbb{C}^m} f \circ \tau_{\lambda}(u) d\mu(u) = \langle f k_{\lambda}, k_{\lambda} \rangle_2, \qquad \forall \ \lambda \in \mathbb{C}^m.
$$

Clearly from this definition we have $\tilde{\tilde{f}} = \tilde{\tilde{f}}$ and $\tilde{f} \circ \tau_{\lambda} = \widetilde{f \circ \tau_{\lambda}}$.

Let $\mathcal{BC}(\mathbb{C}^m)$ be the space of all bounded continous functions on \mathbb{C}^m and denote by $C_0(\mathbb{C}^m)$ the subalgebra in $\mathcal{BC}(\mathbb{C}^m)$ of all continous functions vanishing at infinity. For $f \in \mathcal{BC}(\mathbb{C}^m)$ define the *oscillation of* f in $z \in \mathbb{C}^m$ by

$$
Osc_z(f) := \sup\{|f(z) - f(w)| : ||z - w|| < 1\}.
$$

Then $z \mapsto \text{Osc}_z(f)$ also is a continuous function on \mathbb{C}^m . Now, we say f is of *bounded oscillation* [write $f \in B\mathcal{O}(\mathbb{C}^m)$] if $\text{Osc}_z(f)$ is in $B\mathcal{C}(\mathbb{C}^m)$ as a function of z. We say the function f *is of vanishing oscillation* [write $f \in \mathcal{VO}(\mathbb{C}^m)$] if $\text{Osc}_z(f) \to 0$ as $z \to \infty$. For $f \in \mathcal{T}(\mathbb{C}^m)$ the quantity

$$
\text{MO}(f, z) := \widetilde{|f|^2}(z) - |\widetilde{f}(z)|^2
$$

is a continuous function on \mathbb{C}^m and $MO(f, \cdot)$ is called the *mean oscillation of* f. We say f *is of bounded mean oscillation on* \mathbb{C}^m and write $f \in \mathcal{BMO}(\mathbb{C}^m)$ if

$$
||f||_{\text{BMO}} := \sup \{ \text{MO}(f,z)^{\frac{1}{2}} : z \in \mathbb{C}^m \} < \infty.
$$

We say f *is of vanishing mean oscillation* and we write $f \in VMO(\mathbb{C}^m)$ if

$$
\lim_{z \to \infty} \text{MO}(f, z) = 0.
$$

For all $f,g \in \mathcal{T}(\mathbb{C}^m)$ and all $\lambda \in \mathbb{C}^m$ it is easy to verify that

$$
0 \leq \text{MO}(g + h, \lambda)^2 \leq 2 \left[\text{MO}(g, \lambda)^2 + \text{MO}(h, \lambda)^2 \right].
$$

Thus $\mathcal{BMO}(\mathbb{C}^m)$ as well as $\mathcal{VMO}(\mathbb{C}^m)$ are linear spaces. For $S \subset \mathbb{C}^m$ and each $f \in \mathcal{T}(\mathbb{C}^m)$ we write

$$
||f||_{\text{BMO}(S)} := \sup \{ \text{MO}(f, z)^{\frac{1}{2}} : z \in S \}.
$$

Let $\mathbb{P}[z,\bar{z}]$ be the space of complex polynomials on \mathbb{C}^m in the complex variables z and \bar{z} . Each $p \in \mathbb{P}[z, \bar{z}]$ has the form

$$
p(z,\bar{z}) = \sum_{l,j \in \mathbb{N}_0^m} a_{l,j} z^l \bar{z}^j, \quad \text{where} \quad a_{l,j} \in \mathbb{C}.
$$
 (2.1)

For $p \in \mathbb{P}[z, \bar{z}]$ with (2.1) define the integer

$$
\rho(p) := \max\{|l + j| : l, j \in \mathbb{N}_0^m, a_{l,j} \neq 0\} \in \mathbb{N}_0.
$$

4 Bauer Bauer IEOT

Lemma 2.1. *Let* $R(z, \bar{z}) := z^l \bar{z}^j$ *with* $l, j \in \mathbb{N}_0^m$ *be a monomial in* z and \bar{z} *on* \mathbb{C}^m . Then \tilde{R} has the form $(*)$: $\tilde{R}(z,\bar{z}) = z^l \bar{z}^j + r(z,\bar{z})$, where $r \in \mathbb{P}[z,\bar{z}]$ with $\rho(r) < \rho(R) = |l + j|$.

Proof. It follows from the definition of the *Berezin transform* that \tilde{R} has the form

$$
\tilde{R}(z,\bar{z}) = \prod_{k=1}^{m} \widetilde{R_k}(z_k, \overline{z_k}),
$$

where $R_k: \mathbb{C} \to \mathbb{C}$ is defined by $R_k(z_k, \overline{z_k}) := z_k^{l_k} \overline{z_k}^{j_k}$ for $k = 1, \dots, m$. Moreover,

$$
\widetilde{R_k}(z_k, \overline{z_k}) = \frac{1}{\pi} \int_{\mathbb{C}} (z_k + w)^{l_k} \overline{(z_k + w)}^{j_k} \exp(-|w|^2) dV(w) = z_k^{l_k} \overline{z_k}^{j_k} + r_k(z_k, \overline{z_k})
$$

with $\rho(r_k) < l_k + j_k$. From this the decomposition (*) of \tilde{R} follows.

Corollary 2.2. *Let* $p \in \mathbb{P}[z, \bar{z}]$ *be as in* (2.1)*. Define* $A(p) := \{(l, j) \in \mathbb{N}_0^{2m} : |(l, j)| =$ $\rho(p)$ } *and*

$$
Q_p(z,\bar{z}) := \sum_{(l,j)\in A(p)} a_{l,j} z^l \bar{z}^j.
$$

Then it holds $\tilde{p}(z, \bar{z}) = Q_p(z, \bar{z}) + r(z, \bar{z})$ *where* $r \in \mathbb{P}[z, \bar{z}]$ *with* $\rho(r) < \rho(p)$ *.*

Proof. This directly follows from Lemma 2.1 and the linearity of the *Berezin transform*.

Corollary 2.3. *Let* $p \in \mathbb{P}[z, \bar{z}] \subset \mathcal{T}(\mathbb{C}^m)$ *be a non-constant polynomial. Then we have* $MO(p, \cdot) \in \mathbb{P}[z, \bar{z}]$ *and* $\rho(MO(p, \cdot)) < \rho(|p|^2) - 1 = 2\rho(p) - 1$ *.*

Proof. Using Corollary 2.2 we conclude that $Q_{|p|^2} = Q_{|\tilde{p}|^2} = Q_{|\tilde{p}|^2}$ and by the definition of $MO(p, \cdot)$ it follows that

$$
\rho(\text{MO}(p,\cdot)) < \rho(|p|^2) = 2\rho(p).
$$

Because of $MO(p, \lambda) \ge 0$ for all $\lambda \in \mathbb{C}^m$ and $\rho(p) > 0$ we have $\rho(MO(p, \cdot)) \ne$ $2\rho(p) - 1$ and Corollary 2.3 follows.

Lemma 2.4. *Let* $a, u \in \mathbb{C}^m$ *and define* $S_a \in \mathcal{T}(\mathbb{C}^m)$ *by* $S_a(u) := \langle u, a \rangle$ *. Then it follows that* $\widetilde{S}_a = S_a$ *and* $MO(S_a, z) = ||a||^2$ *for all* $z \in \mathbb{C}^m$.

Proof. The function S_a is holomorphic and so we have $\widetilde{S_a} = S_a$. Define for $t \in \mathbb{R}$ the function $F : \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
F(t) := \int_{\mathbb{C}^m} \langle u, a \rangle \exp\left(\langle u, z \rangle + \langle ta+z, u \rangle\right) d\mu(u) = \langle ta+z, a \rangle \exp\left(\langle ta+z, z \rangle\right). \tag{2.2}
$$

It follows that (*) $F'(0) = \exp\left(\frac{||z||^2}{||a||^2} + |\langle a, z \rangle|^2\right)$ and differentiation of (2.2) under the integral sign in $t = 0$ together with $(*)$ now shows that

$$
\widetilde{|S_a|^2} = ||a||^2 + |S_a|^2 = ||a||^2 + |\tilde{S}_a|^2.
$$

The inclusion $L^{\infty}(\mathbb{C}^m,\mu) \subset \mathcal{BMO}(\mathbb{C}^m)$ is valid but there are also unbounded functions in $\mathcal{BMO}(\mathbb{C}^m)$. Consider a linear polynomial $p = a_0 + \langle \cdot, b \rangle + \langle c, \cdot \rangle \in \mathbb{P}[z, \bar{z}]$ where $a_0 \in \mathbb{C}$ and $b, c \in \mathbb{C}^m$. Using Corollay 2.3 it follows that $\rho(MO(p, \cdot)) < 1$ and so $MO(p, \cdot)$ is constant. We conclude that $p \in BMO(\mathbb{C}^m)$.

Lemma 2.5. *For* $g \in \mathcal{T}(\mathbb{C}^m)$ *,* $h \in \mathcal{BMO}(\mathbb{C}^m)$ *and* $\lambda \in \mathbb{C}^m$ *we have*

(a) $MO(g, \lambda) = ||g \circ \tau_{\lambda} - \tilde{g}(\lambda)||_2^2 = (||g - \tilde{g}(\lambda)||^2)(\lambda),$

- (b) $MO(g, \lambda) \le ||(I P)(g \circ \tau_\lambda)||_2^2 + ||(I P)(\bar{g} \circ \tau_\lambda)||_2^2,$
- (c) $||h||_{BMO} \leq \sqrt{2} \max \{||H_h||, ||H_{\bar{h}}||\}.$

Proof. (a) easy computation.

(b) The *Berezin symbol* of g can be written in the following form:

$$
\tilde{g}(\lambda) = \langle g \circ \tau_{\lambda}, 1 \rangle_2 = \overline{\langle \bar{g} \circ \tau_{\lambda}, K(\cdot, 0) \rangle}_2 = \overline{P(\bar{g} \circ \tau_{\lambda})(0)} = P(\overline{P(\bar{g} \circ \tau_{\lambda})}).
$$

This yields the inequality

$$
||P[g \circ \tau_{\lambda}] - \tilde{g}(\lambda)||_2^2 = ||P[g \circ \tau_{\lambda}] - P[\overline{P(\bar{g} \circ \tau_{\lambda})}]||_2^2
$$

\$\leq ||g \circ \tau_{\lambda} - \overline{P(\bar{g} \circ \tau_{\lambda})}||_2^2 = ||(I - P)(\bar{g} \circ \tau_{\lambda})||_2^2\$. (2.3)

From $||g \circ \tau_{\lambda}||_2^2 = ||(I-P)(g \circ \tau_{\lambda})||_2^2 + ||P(g \circ \tau_{\lambda})||_2^2$ and $\langle P(g \circ \tau_{\lambda}), \tilde{g}(\lambda) \rangle_2 = |\tilde{g}(\lambda)|^2$ it follows that

 $||P[g \circ \tau_{\lambda}] - \tilde{g}(\lambda)||_2^2 + ||(I - P)(g \circ \tau_{\lambda})||_2^2 = ||g \circ \tau_{\lambda}||_2^2 - |\tilde{g}(\lambda)|^2 = \text{MO}(g, \lambda).$

This together with (2.3) imply (b).

(c) Follows from $\|(I-P)(h\circ\tau_\lambda)\|_2 = \|H_h k_\lambda\|_2 \le \|H_h\|$ for all $\lambda \in \mathbb{C}^m$ together with standard estimates from (b) .

The following Theorem is an analog to Theorem F in [BBCZ] in the case of *bounded symmetric domains* Ω *in* \mathbb{C}^m . The *Bergman metric* is replaced by the *Euclidian metric on* C^m.

Theorem 2.6. *For any smooth curve* $\gamma : I := [0, 1] \longrightarrow \mathbb{C}^m$ *and any* $f \in \mathcal{BMO}(\mathbb{C}^m)$ *we have*

$$
\left| \frac{d}{dt} \tilde{f} \circ \gamma(t) \right| \leq 2 \| f \|_{BMO(\gamma(I))} \left\| \frac{d}{dt} \gamma(t) \right\|, \qquad \forall \ t \in I.
$$

If $s = s(t)$ *denotes the arclength of* γ *then* $\frac{d}{dt}s(t) = \left\|\frac{d}{dt}\gamma(t)\right\|$.

Proof. Let $t \in I$. Then we differentiate under the integral sign in the definition of the *Berezin transform* \ddot{f} .

$$
\frac{d}{dt}\tilde{f} \circ \gamma(t) = \int_{\mathbb{C}^m} f(u) \frac{d}{dt} |k_{\gamma(t)}(u)|^2 d\mu(u) \tag{2.4}
$$
\n
$$
= 2 \int_{\mathbb{C}^m} f(u) \Re \left\{ \left(\frac{d}{dt} k_{\gamma(t)}(u) \right) \overline{k_{\gamma(t)}(u)} \right\} d\mu(u)
$$
\n
$$
= 2 \int_{\mathbb{C}^m} \left(f(u) - \tilde{f} \circ \gamma(t) \right) \Re \left[G_t(u) \right] d\mu(u)
$$

where $G_t(u) := \left[\frac{d}{dt} k_{\gamma(t)}(u) - \left\langle \frac{d}{dt} k_{\gamma(t)}, k_{\gamma(t)} \right\rangle \right]$ $\left[k_{\gamma(t)}(u) \right]$ $\overline{k_{\gamma(t)}(u)}$. Here we have used $2\Re\Bigl\langle \frac{d}{dt} k_{\gamma(t)}, k_{\gamma(t)}\Bigr\rangle$ $\frac{d}{dt} = \frac{d}{dt}$ $\langle k_{\gamma(t)}, k_{\gamma(t)} \rangle$ $\frac{d}{dt}1 = 0.$

For $u \in \mathbb{C}^m$ and $t \in I$ one easily computes

$$
\frac{d}{dt}k_{\gamma(t)}(u) = \left[\left\langle u, \frac{d}{dt}\gamma(t) \right\rangle - \Re \left\langle \gamma(t), \frac{d}{dt}\gamma(t) \right\rangle \right] k_{\gamma(t)}(u)
$$

and it follows that

$$
\frac{d}{dt}k_{\gamma(t)}(u) - \left\langle \frac{d}{dt}k_{\gamma(t)}, k_{\gamma(t)} \right\rangle_2 k_{\gamma(t)}(u) = \left\langle u - \gamma(t), \frac{d}{dt}\gamma(t) \right\rangle k_{\gamma(t)}(u). \tag{2.5}
$$

If we use the the equalities (2.4) and (2.5) as well as the *Cauchy-Schwarz inequality* we conclude that

$$
\begin{aligned}\n&\left|\frac{d}{dt}\tilde{f}\circ\gamma(t)\right| \\
&=2\left|\int_{\mathbb{C}^m}\left(f(u)-\tilde{f}\circ\gamma(t)\right)\Re\left\{\left\langle u-\gamma(t),\frac{d}{dt}\gamma(t)\right\rangle|k_{\gamma(t)}(u)|^2\right\}d\mu(u)\right| \\
&\leq2\left[\left(|f-\tilde{f}\circ\gamma(t)|^2\right)\circ\gamma(t)\right]^{\frac{1}{2}}\left[\left(|\Gamma_t-\tilde{\Gamma_t}\circ\gamma(t)|^2\right)\circ\gamma(t)\right]^{\frac{1}{2}}\n\end{aligned}
$$

where $\Gamma_t \in \mathcal{T}(\mathbb{C}^m)$ is defined by $\Gamma_t(u) := \langle u, \frac{d}{dt}\gamma(t) \rangle$. An application of Lemma 2.5 (a) and Lemma 2.4 yields

$$
\left|\frac{d}{dt}\tilde{f}\circ\gamma(t)\right|\leq 2\|f\|_{\mathrm{BMO}(\gamma(I))}\mathrm{MO}(\Gamma_t,\gamma(t))^{\frac{1}{2}}=2\|f\|_{\mathrm{BMO}(\gamma(I))}\left\|\frac{d}{dt}\gamma(t)\right\|.
$$

From this the desired result follows. $\hfill \square$

Corollary 2.7. *For* $f \in \mathcal{BMO}(\mathbb{C}^m)$ *and* $a, b \in \mathbb{C}^m$ *we have the Lipschitz-inequality* $|\tilde{f}(a) - \tilde{f}(b)| \leq 2||f||_{BMO} ||a - b||.$

In particular, $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ *and* $\|Osc_z(\tilde{f})\|_{\infty} \leq 2\|f\|_{BMO}$.

Proof. Choose $\gamma_a^b : I := [0, 1] \to \mathbb{C}^m$ with $\gamma_a^b(t) := a + t(b - a)$ and apply Theorem 2.6. \Box

Corollary 2.8. *Let* $f \in VMO(\mathbb{C}^m)$ *. For each* $\varepsilon > 0$ *there is a number* $r > 0$ *such that the inequality* $(*)$: $|\tilde{f}(a) - \tilde{f}(b)| < \varepsilon ||a - b||$ *is valid for all* $a, b \in A_r :=$ $\mathbb{C}^m \setminus B(0,r)$ *. In particular,* $\tilde{f} \in \mathcal{VO}(\mathbb{C}^m)$ *.*

Proof. Fix $r_0 > 0$ and $a, b \in A_{r_0}$ with $a \neq b$. Define $z_1 := \frac{1}{2}(a+b)$ and $z_2 := \frac{1}{2}(a-b)$. Choose $z_2 \in \mathbb{C}^m$ with $z_2 \perp z_2$ and $||z_2|| = ||z_2||$ and consider the arcs $\frac{1}{2}(a - b)$. Choose $z_3 \in \mathbb{C}^m$ with $z_3 \perp z_2$ and $||z_3|| = ||z_2||$ and consider the arcs $\gamma_1, \gamma_2 : I \to \mathbb{C}^m$ given by

$$
\gamma_1(t) := z_1 + z_2 \cos \pi t + z_3 \sin \pi t, \qquad \gamma_2(t) := z_1 + z_2 \cos \pi (1+t) + z_3 \sin \pi (t+1).
$$

We have $\gamma_1(0) = \gamma_2(1) = a$ and $\gamma_1(1) = \gamma_2(0) = b$. Because $a, b \in A_{r_0}$ it easy to check that either $\gamma_1(I) \subset A_{r_0}$ or $\gamma_2(I) \subset A_{r_0}$. Assume $\gamma_1(I) \subset A_{r_0}$ and apply Theorem 2.6

$$
|\tilde{f}(a) - \tilde{f}(b)| \le \int_0^1 \left| \frac{d}{dt} \tilde{f} \circ \gamma_1(t) \right| dt
$$

$$
\le 2||f||_{\text{BMO}(A_{r_0})} \int_0^1 \left| \frac{d}{dt} \gamma_1(t) \right| dt = \pi ||f||_{\text{BMO}(A_{r_0})} ||a - b||.
$$

Finally choose $r_0 > 0$ such that $||f||_{\text{BMO}(A_{r_0})} < \frac{\varepsilon}{\pi}$

3. The spaces $\mathcal{BMO}(\mathbb{C}^m)$ and $\mathcal{VMO}(\mathbb{C}^m)$

In this section we give a description of the space $\mathcal{BMO}(\mathbb{C}^m)$ [resp. $\mathcal{VMO}(\mathbb{C}^m)$]. We show in which sense they are related to $\mathcal{BO}(\mathbb{C}^m)$ [resp. $\mathcal{VO}(\mathbb{C}^m)$].

Theorem 3.1. *Let* $f \in \mathcal{T}(\mathbb{C}^m)$ *.*

(a) The Berezin transform $|f|^2$ is a bounded continuous function if and only if M_f P *is bounded. Moreover, there is a constant* $C > 0$ *such that*

$$
(*):\quad \|\widehat{|f|^2}\|_{\infty} \le \|M_f P\|^2 \le C \|\widehat{|f|^2}\|_{\infty}
$$

 $where \ \|g\|_{\infty} := \sup\{|g(z)| : z \in \mathbb{C}^m\}$ *for all* $g \in \mathcal{BC}(\mathbb{C}^m)$ *.*

(b) The operator $M_f P$ is compact if and only if $|f|^2(\lambda) \longrightarrow 0$ as $\lambda \to \infty$.

Proof. (a) An analogous computation as in [BC1] Lemma 14 shows that there is a constant $C > 0$ such that

$$
\| |f|^2 \|_{\infty} \le \| P M_{|f|^2} P \| \le C \| |f|^2 \|_{\infty}.
$$

Using $||PM_{|f|^2}P|| = ||(M_fP)^*(M_fP)|| = ||M_fP||^2$ the inequality (*) follows. (b) Let $M_f P$ be compact. Then the operator $PM_{|f|^2}P = (M_f P)^*(M_f P)$ is compact and because $k_{\lambda} \to 0$ weakly in $H^2(\mathbb{C}^m, \mu)$ as $\lambda \to \infty$ it follows that

$$
\widetilde{|f|^2}(\lambda) = \langle PM_{|f|^2}Pk_\lambda, k_\lambda \rangle_2 \leq ||PM_{|f|^2}Pk_\lambda||_2 \longrightarrow 0, \qquad (\lambda \to \infty).
$$

Let $|f|^2(\lambda) \to 0$ as $\lambda \to \infty$ and let χ_R be the characteristic function of $B(0, R)$. It is easy to verify that $M_{f\chi_R}P$ is of *Hilbert-Schmidt* type. Hence, it is sufficient to show that

$$
||M_f P - M_{f\chi_R} P|| = ||M_{f(1-\chi_R)} P|| \longrightarrow 0, \qquad (R \to \infty).
$$

According to (a) there is a constant $C > 0$ such that

$$
||M_{f(1-\chi_R)}P||_2^2 \le C \sup_{u \in \mathbb{C}^m} \int_{||z|| \ge R} |f(z)|^2 |k_u(z)|^2 d\mu(z). \tag{3.1}
$$

 $rac{\varepsilon}{\pi}$.

8 Bauer Bauer IEOT

Let $\varepsilon > 0$, then choose $r > 0$ with $\widetilde{|f|^2}(z) < \frac{\varepsilon}{C}$ for all $z \in \mathbb{C}^m \setminus B(0,r)$. It follows that

$$
\sup_{\|u\|>r} \int_{\|z\| \ge R} |f(z)|^2 |k_u(z)|^2 d\mu(z) \le \sup_{\|u\|>r} \widetilde{|f|^2}(u) < \frac{\varepsilon}{C}.\tag{3.2}
$$

On $\overline{B(0,r)}$ the function $F_R: u \mapsto \int_{\|z\| \ge R} |f(z)|^2 |k_u(z)|^2 d\mu(z)$ converges monotonely to 0 as $R \to \infty$. Using *Dini's theorem* there is $R_0 > 0$ such that with $R>R_0$

$$
\sup_{\|u\| \le r} \int_{\|z\| \ge R} |f(z)|^2 |k_u(z)|^2 d\mu(z) < \frac{\varepsilon}{C}.\tag{3.3}
$$

The inequalities (3.1), (3.2) and (3.3) prove that $||M_{f(1-\chi_R)}P||_2^2 < \varepsilon$ for each $R>R_0$.

Definition 3.2. In the following we use the spaces $\mathcal F$ and $\mathcal I$ defined by

$$
\mathcal{F}:=\left\{f\in \mathcal{T}(\mathbb{C}^m): |\widetilde{f}|^2\in \mathcal{BC}(\mathbb{C}^m)\right\},\qquad \mathcal{I}:=\left\{f\in \mathcal{T}(\mathbb{C}^m): |\widetilde{f}|^2\in \mathcal{C}_0(\mathbb{C}^m)\right\}.
$$

Corollary 3.3. *For* $f \in \mathcal{F}$ *the Hankel operator* H_f *is bounded and there is a constant* $C > 0$ such that $||H_f||^2 \leq C|||f|^2||_{\infty}$. Moreover, for $f \in \mathcal{I}$ the Hankel operator H_f *is compact.*

Proof. This follows from Theorem 3.1 with $H_f = (I - P)M_fP$.

Lemma 3.4. *Let* $f \in \mathcal{BO}(\mathbb{C}^m)$ *and* $\hat{p}x \in \mathbb{C}^n$ *for all* $z, w \in \mathbb{C}^m \setminus B(0, r)$ *we have the inequality* $|f(z) - f(w)| \leq C(f,r) (1 + \pi ||z - w||)$ *where* $C(f,r) :=$ $\sup \{ |Osc_z(f)| : ||z|| \geq r-1 \}.$

Proof. Let $z, w \in \mathbb{C}^m \setminus B(0, r)$. Then choose $\gamma : I = [0, 1] \to \mathbb{C}^m \setminus B(0, r)$ connecting z and w as in the proof of Corollary 2.8. Let $n \in \mathbb{N}$ be the greatest integer in $\pi || z - w ||$ then divide $\gamma(I)$ into $n + 1$ segments $[\gamma(t_i), \gamma(t_{i+1})]$ of equal length.

Because of $B(\gamma(t_i), 1) \subset \{z \in \mathbb{C}^m : ||z|| \ge r-1\}$ and $||\gamma(t_i) - \gamma(t_{i+1})|| < 1$ for $i = 0, \dots, n$, it follows that

$$
|f(z) - f(w)| \le (1 + n)C(f, r) \le C(f, r) (1 + \pi ||z - w||).
$$

From this we obtain Lemma 3.4.

Lemma 3.5. *We have* $BO(\mathbb{C}^m) \subset BMO(\mathbb{C}^m)$ *and the following statements are equivalent*

- (a) $f \in \mathcal{BO}(\mathbb{C}^m)$,
- (b) there is a constant $C > 0$ with $|f(z) f(w)| \leq C (1 + ||z w||)$ for all $z, w \in$ \mathbb{C}^m .
- (c) the function $z \mapsto ||f(z) f \circ \tau_z||_2$ is in $\mathcal{BC}(\mathbb{C}^m)$.

Proof. The conclusion $(a) \Rightarrow (b)$ follows from Lemma 3.4 with $r = 0$. Suppose (b) holds and $z \in \mathbb{C}^m$. Then

$$
||f(z) - f \circ \tau_z||_2^2 = \int_{\mathbb{C}^m} |f(z) - f(z+w)|^2 d\mu(w) \le C^2 \int_{\mathbb{C}^m} [1 + ||w||]^2 d\mu(w) < \infty.
$$

Vol. 52 (2005) Mean Oscillation and Hankel Operators 9

Finally suppose (c) holds. It is easy to check that

$$
||f(z) - f \circ \tau_z||_2^2 = \text{MO}(f, z) + |f(z) - \tilde{f}(z)|^2.
$$
 (3.4)

Because the left hand side of the equality (3.4) is bounded we conclude that $f \in BMO(\mathbb{C}^m)$ and

$$
f - \tilde{f} \in \mathcal{BC}(\mathbb{C}^m) \subset \mathcal{BO}(\mathbb{C}^m).
$$

It follows from Corollary 2.7 that $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ and so we obtain $f = (f - \tilde{f}) +$ $\widehat{f} \in \mathcal{BO}(\mathbb{C}^m).$

Lemma 3.6. *We have* $VO(\mathbb{C}^m) \subset VMO(\mathbb{C}^m)$ *and the following statements are equivalent*

- (a) $f \in \mathcal{VO}(\mathbb{C}^m)$,
- (b) *for each* $\varepsilon > 0$ *there is* $r > 0$ *such that* $|f(z) f(w)| \leq \varepsilon(1 + ||z w||)$ *for all* $z, w \in \mathbb{C}^m \setminus B(0,r)$,
- (c) the function $z \mapsto ||f(z) f \circ \tau_z||_2$ is in $C_0(\mathbb{C}^m)$.

Proof. The conclusion $(a) \Rightarrow (b)$ follows from Lemma 3.4 together with the convergence

$$
\lim_{r \to 0} C(f, r) = 0.
$$

Now, suppose (b) holds. Then fix $\varepsilon > 0$ and choose $R > 0$ such that for all $z\in\mathbb{C}^m$

$$
\int_{\|w\|>R} |f(z) - f(z+w)|^2 d\mu(w) \le C(f, 0)^2 \int_{\|w\|>R} [1+\pi \|w\|]^2 d\mu(w) < \frac{\varepsilon}{2}.
$$
 (3.5)

Define $M := \int_{\mathbb{C}^m} [1 + ||w||]^2 d\mu(w) > 0$ and choose a radius $r > 0$ such that for all $z, w \in \mathbb{C}^m \setminus \check{B(0,r)}$

$$
|f(z) - f(w)|^2 \le \frac{\varepsilon}{2M} (1 + \|z - w\|)^2.
$$
 (3.6)

If $||z|| > r + R$ then we have $||z+w|| > r$ for all $w \in B(0,R)$ and it follows with the inequalities (3.5) and (3.6) that

$$
||f(z) - f \circ \tau_z||_2^2
$$

= $\int_{||w|| \le R} |f(z) - f(z+w)|^2 d\mu(w) + \int_{||w|| > R} |f(z) - f(z+w)|^2 d\mu(w)$
 $\le \frac{\varepsilon}{2M} \int_{||w|| \le R} [1 + ||w||]^2 d\mu(w) + \frac{\varepsilon}{2} < \varepsilon$

and (c) follows.

Finally suppose (c) holds. Then the identity (3.4) shows that $f \in VMO(\mathbb{C}^m)$ as well as $\tilde{f} - f \in C_0(\mathbb{C}^m) \subset \mathcal{VO}(\mathbb{C}^m)$ and using Corollary 2.8 we conclude that $\tilde{f} \in \mathcal{VO}(\mathbb{C}^m)$. This together proves that $f = \tilde{f} - (\tilde{f} - f) \in \mathcal{VO}(\mathbb{C}^m)$.

Corollary 3.7. *Using the notations above we have*

(i)
$$
\mathcal{BMO}(\mathbb{C}^m) = \mathcal{BO}(\mathbb{C}^m) + \mathcal{F},
$$
 \t\t\t (ii) $\mathcal{VMO}(\mathbb{C}^m) = \mathcal{VO}(\mathbb{C}^m) + \mathcal{I}.$

Moreover, the decompositions in (i) and (ii) are given by $f = \tilde{f} + (f - \tilde{f})$ for $f \in BMO(\mathbb{C}^m)$ *[resp.* $f \in VMO(\mathbb{C}^m)$ *]*.

Proof. (i) The inclusion "⊃" follows from Lemma 3.5 and $\mathcal{F} \subset \mathcal{BMO}(\mathbb{C}^m)$.

Let $f \in \mathcal{BMO}(\mathbb{C}^m)$. Then we conclude that $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ from Corollary 2.7 and it is enough to show that $f - \tilde{f} \in \mathcal{F}$

$$
(|f - \tilde{f}|^2)(z) = ||(f - \tilde{f}) \circ \tau_z||_2^2 \le 2 \left[||f \circ \tau_z - \tilde{f}(z)||_2^2 + ||\tilde{f}(z) - \tilde{f} \circ \tau_z||_2^2 \right]
$$

= 2 \left[MO(f, z) + ||\tilde{f}(z) - \tilde{f} \circ \tau_z||_2^2 \right]. (3.7)

Because of $f \in BMO(\mathbb{C}^m)$ the function $MO(f, \cdot)$ is bounded. Moreover, Lemma 3.5 together with $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ shows that also $z \mapsto ||\tilde{f}(z) - \tilde{f} \circ \tau_z||_2^2$ is bounded and we conclude that $f - \tilde{f} \in \mathcal{F}$.

(ii) The inclusion "⊃" follows from Lemma 3.6 and $\mathcal{I} \subset \mathcal{VMO}(\mathbb{C}^m)$.

Let $f \in VMO(\mathbb{C}^m)$. Then we conclude that $\tilde{f} \in VO(\mathbb{C}^m)$ from Corollary 2.8 and it is enough to show that $f - \tilde{f} \in \mathcal{I}$. An application of Lemma 3.6 together with $\tilde{f} \in \mathcal{VO}(\mathbb{C}^m)$ yields

$$
\|\tilde{f}(z) - \tilde{f} \circ \tau_z\|_2^2 \longrightarrow 0, \qquad (z \to \infty). \tag{3.8}
$$

Finally, because of $f \in VMO(\mathbb{C}^m)$ the inequalities (3.7) and (3.8) show that $f - \tilde{f} \in \mathcal{I}.$

4. Bounded Hankel operators

We will prove (A) in section 1 (see Theorem 4.3). The main ingrediant for the proof is the decomposition $\mathcal{BMO}(\mathbb{C}^m) = \mathcal{BO}(\mathbb{C}^m) + \mathcal{F}$ of the space of all functions of *bounded mean oscillation* and the estimate in Theorem 4.1 between the norm of an *Hankel operator* and the *oscillation* of its symbol.

Theorem 4.1. Let $f \in \mathcal{BO}(\mathbb{C}^m)$ then H_f is bounded with $||H_f|| \leq C||Osc_z(f)||_{\infty}$
where C is a constant given by $C := \frac{1}{\pi^m} \int_{\mathbb{C}^m} [\pi ||w|| + 1] \exp(-\frac{1}{2} ||w||^2) dV(w)$.

Proof. For $f \in BMO(\mathbb{C}^m)$ the operator $(I - P)M_fP$ is an integral operator on $H^2(\mathbb{C}^m,\mu)$ defined by

$$
[(I-P)M_fPg](w) := \int_{\mathbb{C}^m} [f(w) - f(z)] \exp(\langle w, z \rangle) g(z) d\mu(z), \qquad \forall w \in \mathbb{C}^m.
$$

Because of $f \in \mathcal{BO}(\mathbb{C}^m)$ Lemma 3.4 with $r = 0$ shows for all $z, w \in \mathbb{C}^m$ that

$$
|f(z) - f(w)| \le ||\text{Osc}_z(f)||_{\infty}(1 + \pi ||z - w||). \tag{4.1}
$$

Define $p(z) := \exp(\frac{1}{2}||z||^2)$. Then a translation by $w \in \mathbb{C}^m$ with C defined as above shows that

$$
\int_{\mathbb{C}^m} [1 + \pi \|z - w\|] \exp \left(\Re \langle w, z \rangle \right) p(z) d\mu(z) = C p(w). \tag{4.2}
$$

After combining the inequalities (4.1) and (4.2) we conclude that

$$
\int_{\mathbb{C}^m} |f(w) - f(z)| \exp \left(\Re \langle w, z \rangle \right) p(z) d\mu(z) \le C \|\text{Osc}_z(f)\|_{\infty} p(w) \tag{4.3}
$$

and an application of *Schur's lemma* (see [HS] or [S1]) together with the inequality (4.3) now show that $||H_f|| = ||(I - P)M_f P|| \le C ||Osc_z(f)||_{\infty}$.

Theorem 4.2. *Let* $f \in \mathcal{BMO}(\mathbb{C}^m)$ *. Then the Hankel operator* H_f *is bounded and there is a constant* $D > 0$ *, independent of f, such that* $||H_f|| \le D||f||_{BMO}$ *.*

Proof. For $f \in \mathcal{BMO}(\mathbb{C}^m)$ Corollary 3.7 shows that $\tilde{f} \in \mathcal{BO}(\mathbb{C}^m)$ and $f - \tilde{f} \in \mathcal{F}$. Using Corollary 2.7 and Theorem 4.1 we conclude that $H_{\tilde{f}}$ is bounded and there is $C > 0$ independent of f such that

$$
||H_{\tilde{f}}|| \le C||\text{Osc}_z(\tilde{f})||_{\infty} \le 2C||f||_{\text{BMO}}.\tag{4.4}
$$

Now, using Corollary 2.7 again, it follows for all $z \in \mathbb{C}^m$ that

$$
\|\tilde{f}(z) - \tilde{f} \circ \tau_z\|_2 = \left[\int_{\mathbb{C}^m} |\tilde{f}(z) - \tilde{f}(z+w)|^2 d\mu(w) \right]^{\frac{1}{2}}
$$

$$
\leq 2 \|f\|_{\text{BMO}} \left[\int_{\mathbb{C}^m} \|w\|^2 d\mu(w) \right]^{\frac{1}{2}} = C_1 \|f\|_{\text{BMO}}
$$

where $C_1 := 2\left[\int_{\mathbb{C}^m} ||w||^2 d\mu(w)\right]^{\frac{1}{2}}$. This together with (3.7) shows that

$$
(|f - \tilde{f}|^2)(z) \le 2\left[\text{MO}(f, z) + C_1^2 \|f\|_{\text{BMO}}^2\right] \le 2(1 + C_1^2) \|f\|_{\text{BMO}}^2. \tag{4.5}
$$

Using (4.5) and Corollary 3.3 there are constants $C_2, C_3 > 0$ such that

$$
||H_{f-\tilde{f}}|| \le C_2 ||(|f-\tilde{f}|^2) ||_{\infty}^{\frac{1}{2}} \le C_3 ||f||_{\text{BMO}}.
$$
\n(4.6)

Finally, (4.4) together with (4.6) show $||H_f|| \le ||H||_f + ||H_{f-\tilde{f}}|| \le D||f||_{\text{BMO}}$ where $D > 0$ is a constant independent of f.

Theorem 4.3. *For* $f \in \mathcal{T}(\mathbb{C}^m)$ *the following are equivalent*

- (a) H_f and $H_{\bar{f}}$ are bounded operators,
- (b) $f \in BMO(\mathbb{C}^m) = BO(\mathbb{C}^m) + \mathcal{F}$. In particular, we have $\tilde{f} \in BO(\mathbb{C}^m)$ and $f - \tilde{f} \in \mathcal{F}$.

Whenever (a) and (b) hold the quantities $\|[M_f, P]\|$, $\max \{ \|H_f\|, \|H_{\bar{f}}\| \}$ and $||f||_{BMO}$ are equivalent.

Proof. Suppose (a) holds. Then Lemma 2.5, (c) shows that

 $||f||_{\text{BMO}} \leq \sqrt{2} \max \{ ||H_f||, ||H_{\bar{f}}|| \}$

and (b) follows.

Suppose (b) holds. Then we conlude $\bar{f} \in \mathcal{BMO}(\mathbb{C}^m)$ and using Theorem 4.2 we find $D_1, D_2 > 0$ with $||H_f|| \le D_1 ||f||_{\text{BMO}} < \infty$ and

$$
||H_{\bar{f}}|| \le D_2 ||\bar{f}||_{\text{BMO}} = D_2 ||f||_{\text{BMO}} < \infty
$$

and from this (*a*) follows. Moreover, $||f||_{BMO}$ and $\max\{||H_f||, ||H_{\bar{f}}||\}$ are equivalent.

Finally, the formulas

$$
[M_f, P] = H_f - H_f^*, \qquad (I - P)[M_f, P] = H_f, \qquad [M_f, P](I - P) = -H_f^* \quad (4.7)
$$

show that $\|[M_f, P]\|$ and max $\{\|H_f\|, \|H_{\bar{f}}\|\}$ are equivalent.

Corollary 4.4. *Let* $f \in \mathcal{T}(\mathbb{C}^m)$ *be an entire function on* \mathbb{C}^m *. Then the following are equivalent*

- (a) *There is* $a_0 \in \mathbb{C}$ *and* $b \in \mathbb{C}^m$ *such that* $f(z) = a_0 + \langle z, b \rangle$,
- (b) the Hankel operator $H_{\bar{f}}$ is bounded.

Proof. Suppose (a) holds. Then using Corollary 2.3 we conclude that

$$
\rho(\text{MO}(\bar{f},\cdot))=0
$$

and it follows that $\bar{f} \in \mathcal{BMO}(\mathbb{C}^m)$. Theorem 4.3 shows that $H_{\bar{f}}$ is bounded.

Suppose (b) holds, so $H_{\bar{f}}$ is bounded. Because of $H_f = 0$ Theorem 4.3 proves that f is in $\mathcal{BMO}(\mathbb{C}^m)$. Applying Corollary 3.7 we now obtain with $\tilde{f} = f$ that $f \in \mathcal{BO}(\mathbb{C}^m)$. It follows with Lemma 3.5 that there is a constant $C > 0$ such that

$$
|f(z) - f(w)| \le C(1 + \|z - w\|), \qquad \forall \ z, w \in \mathbb{C}^m. \tag{4.8}
$$

Assume $f(z) = \sum_{j \in \mathbb{N}_0^m} b_j z^j$. Then the *Cauchy estimates* show for any $r > 0$ and $j \in \mathbb{N}_0^m$ that

$$
|b_j| = \frac{|[D^j f](0)|}{j!} \le \frac{1}{r^{|j|}} \sup\{|f(z)| : z \in P(0, \mathbf{r})\}.
$$
 (4.9)

Here, $P(0, r)$ is the polydisc in \mathbb{C}^m with multiradius $\mathbf{r} := (r, \dots, r)$ and center 0. It is easy to check that the inclusion $P(0, r) \subset B(0, r\sqrt{m+1})$ holds and we obtain from (4.9) and (4.8)

$$
|b_j| \leq \frac{1}{r^{|j|}} \sup \{|f(z)| : z \in B(0, r\sqrt{m+1})\} \leq \frac{1}{r^{|j|}} \left\{|f(0)| + C(1 + r\sqrt{m+1})\right\}.
$$

Because $r > 0$ was arbitrary we conclude that $b_j = 0$ for $j \in \mathbb{N}_0^m$ such that $|j| > 1$ and (b) follows.

Corollary 4.5. *For* $p \in \mathbb{P}[z, \bar{z}]$ *the statements* (a) *and* (b) *are equivalent:*

- (a) *There is* $a_0 \in \mathbb{C}$ *and* $c, d \in \mathbb{C}^m$ *such that* $p(z, \bar{z}) = a_0 + \langle z, c \rangle + \langle d, z \rangle$,
- (b) *the Hankel operators* H_p *and* $H_{\bar{p}}$ *are bounded.*

Proof. Suppose (a) holds. Then using Corollary 2.2 we conclude that

$$
\rho(MO(p,\cdot))=0
$$

and it follows that $p \in BMO(\mathbb{C}^m)$. Theorem 4.3 shows that H_p and $H_{\bar{p}}$ are bounded.

Suppose (b) holds, so H_p and $H_{\bar{p}}$ are bounded. Then Theorem 4.3 shows that $p \in$ $BMO(\mathbb{C}^m)$ and according to Corollary 3.7 we have $\tilde{p} \in BO(\mathbb{C}^m)$. Using Corollary 2.2 it follows with the above defined set $A(p) := \{ (l, j) \in \mathbb{N}_0^{2m} : |(l, j)| = \rho(p) \}$ that

$$
\tilde{p}(z,\bar{z}) = Q_p(z,\bar{z}) + r(z,\bar{z}), \text{ where } Q_p(z,\bar{z}) := \sum_{(l,j)\in A(p)} a_{l,j} z^l \bar{z}^j \qquad (4.10)
$$

and $\rho(r) < \rho(p)$. Choose $a \in \mathbb{C}^m$ with $Q_p(a, \bar{a}) \neq 0$. Because of $\tilde{p} \in \mathcal{BO}(\mathbb{C}^m)$ Lemma 3.5 shows that there is a constant $C > 0$ such that

$$
|\tilde{p}(z,\bar{z})| \le |\tilde{p}(0,0)| + C(1 + ||z||).
$$

Using (4.10) we obtain for all $t > 0$

$$
t^{\rho(p)}|Q_p(a,\bar{a})| \le |\tilde{p}(ta,t\bar{a})| + |r(ta,t\bar{a})| \le |\tilde{p}(0,0)| + C\left[1 + t||a||\right] + |r(ta,t\bar{a})|.
$$

Because of $\rho(r) < \rho(p)$ this leads to a contradiction for $\rho(p) > 1$.

5. Compact Hankel operators

Finally, we prove (B) in section 1 about compact commutators $[M_f, P]$ with $f \in \mathcal{T}(\mathbb{C}^m)$. We use the decomposition $\mathcal{VMO}(\mathbb{C}^m) = \mathcal{VO}(\mathbb{C}^m) + \mathcal{I}$ which was proven in Corollary 3.7 and the fact that the *Hankel operator* $H_{\tilde{f}}$ is compact for all $f \in VMO(\mathbb{C}^m)$ (see Theorem 5.2). We show that there are no non-constant holomorphic symbols f such that $H_{\bar{f}}$ is compact.

Lemma 5.1. *For* $r > 0$ *consider a function* $f : A_r := \mathbb{C}^m \setminus B(0,r) \to \mathbb{C}$ *with*

$$
|f(z) - f(w)| \le C ||z - w||, \qquad \forall z, w \in A_r,
$$

where $C > 0$ *is independent of f. Then there is* $F : \mathbb{C}^m \to \mathbb{C}$ *such that*

(a)
$$
f(z) = F(z)
$$
, $\forall (z \in A_r)$,
(b) $|F(z) - F(w)| \le 2C ||z - w||$.

for all $z, w \in \mathbb{C}^m$.

Proof. If f is real-valued, then define $F(z) := \inf\{f(w) + C||z - w|| : w \in A_r\}.$ We conclude that (a) holds from $f(z) \le f(w) + C||z - w||$ for all $z, w \in A_r$. Moreover, from

 $f(w) + C||z_1 - w|| \le f(w) + C||z_2 - w|| + C||z_1 - z_2||, \quad \forall z_1, z_2 \in \mathbb{C}^m, \quad w \in A_r$ it follows that $|F(z_1) - F(z_2)| \leq C ||z_1 - z_2||$. If f is complex-valued, then write $f = f_1 + if_2$, where f_1 and f_2 are real-valued. Choose F_1 and F_2 with

$$
f_j(z) = F_j(z), \quad \forall z \in A_r, \qquad |F_j(z) - F_j(w)| \le C||z - w||, \quad \forall z, w \in \mathbb{C}^m
$$

for $j = 1, 2$. Then (a) and (b) in Lemma 5.1 immediately follow with $F := F_1 + iF_2$ and the triangle inequality. \Box

Theorem 5.2. Let $f \in VMO(\mathbb{C}^m)$. Then the Hankel operator $H_{\tilde{f}}$ is compact.

Proof. Let $\varepsilon > 0$. Applying Corollary 2.8 there is a number $r > 0$ such that for the *Berezin transform* \tilde{f} and all $z, w \in A_r := \mathbb{C}^m \setminus B(0,r)$ the inequality $|\tilde{f}(z) - \tilde{f}(w)| < \varepsilon ||z - w||$ holds. Due to Lemma 5.1 there is a function $F: \mathbb{C}^m \to \mathbb{C}$ such that

(i)
$$
F(z) = \tilde{f}(z) \quad \forall z \in A_r
$$
,
 (ii) $|F(z) - F(w)| < 2\varepsilon ||z - w|| \quad \forall z, w \in \mathbb{C}^m$.

Using Theorem 4.1 and (ii) we conclude that H_F is bounded and there is a constant $C > 0$ such that $||H_F|| < 2\varepsilon C$. The function $\tilde{f} - F$ has compact support and so $H_{\tilde{f}-F}$ is compact. Because $\varepsilon > 0$ was arbitrary and with $||H_{\tilde{f}} - H_{\tilde{f}-F}|| =$ $||H_F|| \leq 2\varepsilon C$ we conclude that $H_{\tilde{f}}$ is compact.

Theorem 5.3. *For* $f \in \mathcal{T}(\mathbb{C}^m)$ *the following are equivalent*

- (a) The commutator $[M_f, P]$ is compact,
- (b) H_f and $H_{\bar{f}}$ are compact operators,

(c)
$$
f \in \mathcal{VMO}(\mathbb{C}^m) = \mathcal{VO}(\mathbb{C}^m) + \mathcal{I}
$$
. In particular, $\tilde{f} \in \mathcal{VO}(\mathbb{C}^m)$ and $f - \tilde{f} \in \mathcal{I}$.

Proof. The equivalence $(a) \Leftrightarrow (b)$ follows from the equations in (4.7). Suppose (b) holds. Then using Lemma 2.5 , (b) we conclude that

$$
|\text{MO}(f,z)| \le ||H_{f \circ \tau_z}1||^2 + ||H_{\bar{f} \circ \tau_z}||^2 = ||H_f k_z||^2 + ||H_{\bar{f}} k_z||^2 \longrightarrow 0, \qquad (z \to \infty)
$$

because $k_z \to 0$ weakly in $H^2(\mathbb{C}^m,\mu)$ as $z \to \infty$. The second part of (c) follows from Corollary 3.7.

Suppose (c) holds. Then $f = \tilde{f} + (f - \tilde{f})$ where $\tilde{f} \in \mathcal{VO}(\mathbb{C}^m)$ and $f - \tilde{f} \in \mathcal{I}$. Due to Corollary 3.3 the *Hankel operator* $H_{f-\tilde{f}}$ is compact. Because $f \in VMO(\mathbb{C}^m)$ we conclude from Theorem 5.2 that $H_{\tilde{f}}$ is compact and so $H_f = H_{\tilde{f}} - H_{f-\tilde{f}}$ is compact.

For a function $f \in VMO(\mathbb{C}^m)$ we also have $\bar{f} \in VMO(\mathbb{C}^m)$ and the same argument shows that $H_{\bar{f}}$ is compact.

Example. Let $f \in \mathcal{T}(\mathbb{C}^m)$ be an entire function such that $H_{\bar{f}}$ is compact. Then by Corollary 4.4 we have $f(z) = a_0 + \langle \cdot, b \rangle$ where $b \in \mathbb{C}^m$. It follows that $H_{\bar{f}} = H_{\langle b, \cdot \rangle}$ and using Lemma 2.4 we obtain with $\langle b, \cdot \rangle = \langle b, \cdot \rangle$

$$
\text{MO}(\langle b, \cdot \rangle, \lambda) = |\widetilde{\langle b, \cdot \rangle}|^2(\lambda) - |\langle b, \lambda \rangle|^2 = \|b\|^2.
$$

Applying Theorem 5.3 we conclude that $b = 0$ and so $f \equiv a_0$ is constant.

Remark 5.4. A similar argument shows that for $p \in \mathbb{P}[z, \bar{z}]$ the *Hankel operator* H_p is compact if and only if p is holomorphic. In this case we obtain $H_p = 0$.

Acknowledgement

I thank Professor Lewis A. Coburn for calling my attention to the problems above as well as for many useful hints and discussions.

References

- [Bar] V. Bargmann, *On a Hilbert space of analytic functions and an associated integral transform*, Communications on Pure and Applied Mathematics 14 (1961), 187- 214.
- [Bau] W. Bauer, *Hilbert-Schmidt Hankel operators on the Segal-Bargmann space*, preprint 2002, to appear in the Proceedings of AMS.
- [Be1] F. A. Berezin, *Covariant and contravariant symbols of operators*, Math. USSR-Izv. 6 (1972), 1117-1151.
- [BBCZ] D. Békollé, C. A. Berger, L. A. Coburn and K. H. Zhu, *BMO in the Bergman Metric on Bounded Symmetric Domains*, Journal of functional analysis 93, No. 2, (1990), 310-350.
- [BC1] C. A. Berger, L. A. Coburn, *Toeplitz operators on the Segal-Bargmann space*, Trans. Amer. Math. Soc. 301 (1987), 813-829.
- [BCZ] C. A. Berger, L. A. Coburn and K. H. Zhu, *Toeplitz operators and function theory in n-dimensions* Lecture notes in Math. Vol. 1256, Springer, (1987).
- [C] L. A. Coburn, *Toeplitz Operators, Quantum Mechanics and Mean Oscillation in the Bergman Metric*, Proceedings of Symposia in Pure Mathematics 51, Part 1 (1990), 97-104.
- [HS] P. R. Halmos, V. S. Sunder, *Bounded integral operators on L*²*-spaces* , Springer, Berlin, (1978).
- [S1] K. Stroethoff, *Hankel and Toeplitz operators on the Fock Space*, Michigan Math. J. 39 (1992), 3-16.
- [S2] K. Stroethoff, *Compact Hankel operators on the Bergman space*, Illinois J. Math. 34 (1990), 159-174.
- [X] J. Xia, *Hankel operators on the Bergman space and Schatten p-classes: the case* $1 < p < 2$, Proc. Amer. Math. Soc. 129 (2001), 3559-3567.
- [XZ] J. Xia, D. Zheng, *Standard deviation and Schatten class Hankel operators on the Segal-Bargmann space*, preprint 2000.
- [Z1] K. H. Zhu, *Schatten class Hankel operators on the Bergman space of the unit ball*, Amer. J. Math. 113, No. 1 (1991), 147-167.
- [Z2] K. H. Zhu,*Hilbert-Schmidt Hankel operators on the Bergman space*, Proc. Amer. Math. Soc. 109, No. 3 (1990), 721-730.
- [Z3] K. H. Zhu, *Hankel operators on the Bergman space of bounded symmetric domains*, Trans. Amer. Math. Soc. 324 (1991), 707-730.

Wolfram Bauer Fachbereich Mathematik und Informatik Staudinger Weg 9 D-55128 Mainz Germany e-mail: BauerWolfram@web.de

Submitted: March 31, 2003 Revised: October 31, 2003