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Abstract. This paper studies various aspects of reproducing kernel spaces
with a possibly indefinite metric when the field of scalar is replaced by the
skew–field of quaternions. We first discuss in some details the positive case.
A key fact which allows to consider the non–positive case is that Hermitian
matrices with quaternionic entries have only real eigenvalues. This permits
to extend the notion of functions with a finite number of negative squares
to the present setting and we prove in particular that there is a one–to–one
correspondence between such functions and reproducing kernel Pontryagin
quaternionic spaces.
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1. Introduction

In this paper we present the theory of reproducing kernel quaternionic Pontryagin
spaces. The paper is in part of a review nature and we first consider the case of
quaternionic Hilbert space in some details. We use the survey of F. Zhang [47] for
basic facts on the skew–field of quaternions. We also use [10, Chapter I] for the
theory of topological vector spaces over a skew–field.

We note that a number of papers and chapters in books have been written on
the theory of quaternionic Hilbert spaces and of reproducing kernel quaternionic
Hilbert spaces (or more generally of Hilbert spaces of functions which take val-
ues in a Clifford algebra). We mention in particular [45], [33], [18], [14], [13], [11,
Section 24 p. 184–198]. In [14] J. Cnops points out in particular important differ-
ences between the case of Clifford algebra valued functions and of complex–valued
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functions. For instance in a Hilbert module of functions it need not be true that
all functions vanish at a given point w or there is a function such that f(w) = 1.
This and other phenomena do not take place in the case of quaternionic valued
functions since the quaternions form a skew–field.

The spectral theory of matrices with quaternionic entries is not an easy topic
and we refer to the above mentioned paper of Zhang [47] for details and references.
We also refer to the book [46]. Fortunately the case of hermitian matrices with
quaternionic entries is well understood. As in the complex case, such a matrix has
only real eigenvalues; see [15, p. 106]. This allows to extend to the quaternionic case
the notion of functions with a finite number of negative squares (due to M.G Krĕın
and H. Langer in the case of C; see [29]) and develop the corresponding theory
of reproducing kernel quaternionic Pontryagin spaces. In the case of the complex
numbers such a theory was developed by P. Sorjonen in [41] and L. Schwartz in [37]
and by one of the authors and H. Dym in [3]. The case of quaternionic Pontryagin
spaces does not seem to have been considered in previous works and this is the
focus of the present paper. The main difficulty is to redo the various arguments
(for vector spaces over the complex numbers) in the setting of quaternions, when
commutativity does not hold anymore.

We now turn to the outline of the paper. The paper consists of thirteen
sections, of which this introduction is the first. In the second section we review
various facts on the quaternionic skew–field H. In the third section we discuss ma-
trices with entries in H. In Section 4 we discuss the notion of hyperholomorphic
functions. The notion of quaternionic vector spaces is considered in Section 5. In
Section 6 we review some facts from the theory of linear operators in quaternionic
Hilbert spaces. Sections 7 and 8 and 9 are respectively devoted to positive func-
tions, quaternionic reproducing kernel Hilbert spaces and some facts on operators
in quaternionic reproducing kernel Hilbert spaces. The last four sections deal with
the non–positive case: In Section 10 we discuss quaternionic inner product spaces.
In Section 11 we study the notion of functions with a finite number of negative
squares. In Section 12 we study quaternionic Pontryagin spaces and in Section 13
we consider reproducing kernel quaternionic Pontryagin spaces.

Finally a word on notation. We denote by C
m×n the set of matrices with m

rows and n columns and with complex entries. Similarly, Hm×n stands for the set
of matrices with m rows and n columns and with quaternionic entries. In both
cases we write m rather than m × 1. The identity matrix in H

n×n (and of course
in Cn×n and Rn×n) will be denoted by In. The conjugate of an element x (either
in C or in H) will be denoted by x. Let M = (m�j)�=1,...m,j=1,...n ∈ Hm×n. The
matrix M is the element in Hm×n with (�, j) entry m�,j . The matrix M t, called the
transposed matrix, is the element of Hn×m with (�, j) entry mj,�, and the adjoint
of M , denoted by M∗, is equal to M∗ = M t. A matrix M ∈ Hn×n will be called
unitary if MM∗ = M∗M = In.
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2. The skew–field H

Consider the real four–dimensional vector space R
4 with its standard (canonical)

basis e0, e1, e2 and e3. The element e0 will be identified in the following with 1
and will be omitted. Let x, y be two elements from R4, that is, x =

∑3
k=0 xkek

and y =
∑3

k=0 ykek with xk, yk (k = 0, 1, 2, 3) real numbers. Then R4 becomes
a real linear space if it is endowed with the usual (component–wise) operations
of addition and of multiplication by (real) scalars. Moreover, the rules (which
originate with R. Hamilton and form Caley’s table)

e1e2 = −e2e1= e3,

e2e3 = −e3e2= e1,

e3e1 = −e1e3= e2,

and
e2
1 = e2

2 = e3
1 = −1,

make R4 into a skew–field.
The very last equality justifies the name imaginary units almost always used

for e1, e2, and e3. We recommend to the reader to verify directly that the multi-
plication defined by the above table is indeed associative.

In this setting we recall Frobenius theorem, stating that R
n can be endowed

with a field or skew–field structure only if n = 1, 2 or 4; see [43, p. 104] and [21,
p. 94] for some historical remarks. The case of n = 1 and n = 2 corresponds to
the fields of real and complex numbers respectively. The case n = 4 corresponds
to the skew–field of quaternions H.

We note the formula for the multiplication:

(xy)0 = x0y0 − x1y1 − x2y2 − x3y3, (2.1)

(xy)1 = x0y1 + x1y0 + x2y3 − x3y2, (2.2)

(xy)2 = x0y2 + x2y0 + x3y1 − x1y3, (2.3)

(xy)3 = x0y3 + x3y0 + x1y2 − x2y1. (2.4)

For x =
∑3

k=0 xkek we define the mapping (of quaternionic conjugation)

bar : x =
3∑

k=0

xkek �→ x = x0 − x1e1 − x2e2 − x3e3.

The number x0 = x+x
2 is called the real part, or the scalar part, of the quaternion

x.
We note that xy = y x and that

xx = xx = x2
0 + x2

1 + x2
2 + x2

3.

There is one more way of constructing the set H relating the latter with complex
numbers. To demonstrate that we note that for x ∈ H we can write:

x = (x0 + x1e1) + (x2 + x3e1)e2.
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We then identify e1 with the complex number i and H with C2; in this setting we
use the notation j := e2. The set of elements of the form

q = z1 + z2j, z1, z2 ∈ C, j2 = −1, (2.5)

endowed both with an obvious component–wise addition and with the associative
multiplication governed by the fundamental correlation between the imaginary
units:

ij + ji = 0,

is then a realization of H. In the representation (2.5) z1 is called the first complex
component and z2 is called the second complex component.

We have for z ∈ C and z, its complex conjugate, that

zj = jz.

Let p = z1 + z2j and q = w1 + w2j. We note that pq = (pq)1 + (pq)2j where

(pq)1 = z1w1 − z2w2, (2.6)

(pq)2 = z2w1 + z1w2. (2.7)

The quaternionic conjugation can be defined by

z1 + z2j := z1 − z2j.

Note that the classical conjugation in C2 is

(z1, z2) �→ (z1, z2),

while the one which appears here is

(z1, z2) �→ (z1,−z2).

Lemma 2.1. Let q = z1 + z2j ∈ H. Then,

qq = qq = |z1|2 + |z2|2. (2.8)

The inverse of the element q = z1 + z2j �= 0 is therefore given by

(z1 + z2j)−1 =
z1 − z2j

|z1|2 + |z2|2 .

Thus H is a skew–field generated by C2. Property (2.8) is crucial for many pur-
poses, in particular it expresses a deep relationship between the Euclidian metric
in C2 and the algebraic properties of H. The next definition is quite natural; it
determines the quaternionic modulus.

Definition 2.2. For q = z1 + z2j ∈ H we set

|q| :=
√
|z1|2 + |z2|2.

It is also easy to see that |q| is a norm on the quaternions and in particular
the triangle inequality holds:
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Proposition 2.3. Let p and q be in H. Then

|p + q| ≤ |p| + |q|. (2.9)

Assume p �= 0. Equality holds if and only if q = tp for some t ∈ R+.

Proof. Indeed, let p = z1 + z2j and q = w1 + w2j. We have:

|p + q| =
√
|z1 + w1|2 + |z2 + w2|2

=
√
|z1|2 + |w1|2 + |z2|2 + |w2|2 + 2Re (z1w1 + z2w2)

=
√
|z1|2 + |z2|2 + |w1|2 + |w2|2 + 2Re (z1w1 + z2w2)

≤
√

|z1|2 + |z2|2 + |w1|2 + |w2|2 + 2 ·
√
|z1|2 + |z2|2 ·

√
|w1|2 + |w2|2

=
√
|z1|2 + |z2|2 +

√
|w1|2 + |w2|2

since

|Re (z1w1 + z2w2)| ≤ |(z1w1 + z2w2)|
≤
√
|z1|2 + |z2|2 ·

√
|w1|2 + |w2|2

by Cauchy–Schwartz inequality in C2. Equality holds if and only the vectors
(z1, z2)t and (w1, w2)t are linearly independent over C. Without loss of gener-
ality we may assume z1 or z2 different from 0. Then equality holds if and only if
there is a positive number t such that wj = tzj for j = 1, 2. This is equivalent to
q = tp. �

Of course, inequality (2.9) in itself is trivially clear but we see it instructive
to demonstrate a proof based on purely algebraic properties.

One may find all the above in many sources; see for instance [28, Appendices].
Note explicitly that it is easy to check that:

Proposition 2.4. The sequence qn = z1n + z2nj is a Cauchy sequence in H if and
only if both z1n and z2n are Cauchy sequences of complex numbers.

Various realizations of the skew–field of quaternions will be reviewed in the
next section. One construction is as follows (and follows the construction of the
complex numbers as matrices): Let E1 and E2 be two matrices in C2×2 such that

E2
1 = E2

2 = −
(

1 0
0 1

)

and E1E2 + E2E1 = 0.

For instance one can take

E1 =
(

0 1
−1 0

)

and E2 =
(

0 i
i 0

)

.

Then the set of matrices of the form (x0I2 + x1E1) + (x2I2 + x3E1)E2 where
x0, x1, x2 and x3 are real numbers becomes isomorphic to H if we identify E1 with
the complex number i and set E2 = j.
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3. Matrix representations of quaternions and matrices with
quaternionic entries

In the same way that one can see the skew–field of quaternions as R
4 or C

2 (with
an appropriate structure) one can associate with a quaternion in a natural way
two matrices, one in R4×4 and one in C2×2. We begin with the case of matrices in
R4×4. In the next proposition |x|2 denotes the Euclidian norm of x.

Proposition 3.1. The map which to x = (x0, x1, x2, x3)t ∈ R4 associates the matrix

B(x) :=







x0 −x1 −x2 −x3

x1 x0 −x3 x2

x2 x3 x0 −x1

x3 −x2 x1 x0





 ∈ R

4×4 (3.1)

has the following properties:

B(x)B(y) = B(xy),

where the components of xy are given by (2.1)–(2.4),

B(x + y) = B(x) + B(y),
B(λx) = λB(x),
B(1) = I4,

B(x) = B(x)t,

(3.2)

where x = (x0,−x1,−x2,−x3)t and where B(x)t is the transpose matrix of the
matrix B(x), and

detB(x) = |x|4
for any x, y ∈ H and λ ∈ R.

These various properties are easily verified. It follows that

B(x)B(x) = B(|x|2) = |x|2 · I4

and

B(x)−1 = B

(
x

|x|2
)

.

Therefore:

Proposition 3.2. The set
{
B(x) ; x = (x0, x1, x2, x3)t ∈ R

4
}

endowed with the usual laws of multiplication and addition of matrices is a skew–
field.

We set e0 = I4 and

e1 =







0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0





 , e2 =







0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0






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and

e3 =







0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0





 .

These ej satisfy the Caley table and thus the set of elements of the form

B(x) =
3∑

k=0

xkek ∈ H

is a realization of the skew–field of quaternions. We identify x with B(x).
For future use it is useful to note the following:

Lemma 3.3. Let x, y ∈ R4 and let z = xy ∈ R4 be defined by (2.1)–(2.4). Then

z = B(x)y.

The proof is a direct computation and will be omitted.
The counterpart of the above results for matrices with complex entries is:

Proposition 3.4. The map which to q = (z, w)t ∈ C2 associates the matrix

χ(q) :=
(

z w
−w z

)

(3.3)

has the following properties:

χ(p)χ(q) = χ(pq)

where the components of pq are given by (2.6)–(2.7),

χ(q) = (χ(q))∗,

detχ(q) = |q|2,
χ(1) = I2.

The counterpart of Lemma 3.3 is:

Lemma 3.5. Let p, q ∈ C2 and let r = pq ∈ C2 be defined by (2.6)–(2.7). Then

rt = qtχ(p).

We denote by Hn×m the set of n×m matrices with entries in H. When m = 1,
we set Hn×1 := Hn.

The map x �→ B(x) extends to matrices in the following way: let

X = X0 + X1e1 + X2e2 + X3e3 ∈ H
n×m

with the X� ∈ Rn×m. We set

B(X) :=







X0 −X1 −X2 −X3

X1 X0 −X3 X2

X2 X3 X0 −X1

X3 −X2 X1 X0





 ∈ R

4n×4m.
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We now collect the main properties of the map X �→ B(X):

Proposition 3.6. The map X �→ B(X) has the following properties:

B(XY ) = B(X)B(Y )

where X and Y are of appropriate dimensions,

B(X∗) = B(X)t

where X∗ denotes the adjoint of the matrix X, and

B(X−1) = (B(X))−1.

when X is invertible.

The proof of Proposition 3.6 is a direct computation and is left to the reader.
We just note the following fact, used in the proof of the second claim. Since the
entries of X� are real we have for � = 1, 2, 3:

(X�e�)∗ = −e�X
∗
� = −e�X

t
� = −Xt

�e�.

The following formula will be used in the sequel; see Theorem 9.9.

Lemma 3.7. Let p, q ∈ Hn and Q ∈ Hn×n. Then,

Re q∗Qp =
(

1 0 · · · 0
)
B(q)tB(Q)B(p)










1
0
0
...
0










.

The matrix representation

χ(q) =
(

a b

−b a

)

of a quaternion q = a + bj extends to matrices: if Q = A + Bj belongs to Hn×m

with A and B in Cn×m one defines χ(Q) ∈ C2n×2m by the formula

χ(Q) :=

(
A B

−B A

)

.

Clearly,
χ(Q) = χ(P ) ⇐⇒ P = Q.

The following results are the counterparts of Proposition 3.6. They may be found
in [47, p. 30] and were first proved in [30]. As in the case of Proposition 3.6 the
results follow from direct computations.
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Proposition 3.8. The map Q �→ χ(Q) has the following properties:

χ(QR) = χ(Q)χ(R) (3.4)

where Q and R are of appropriate dimensions,

χ(Q∗) = (χ(Q))∗ , (3.5)

and when Q is invertible,

χ(Q−1) = (χ(Q))−1 . (3.6)

The counterpart of Lemma 3.7 is:

Lemma 3.9. Let p, q ∈ H
n and Q ∈ H

n×n. Then,

Re q∗Qp =
(

1 0 · · · 0
)
χ(q)∗χ(Q)χ(p)










1
0
0
...
0










.

If Q ∈ Hn×m we define its kernel to be

ker Q := {u ∈ H
m ; Qu = 0}

and its range to be
ran Q := {Qu ; u ∈ H

m} .

Note that both the kernel and the range are right quaternionic vector spaces (the
notion of quaternionic vector spaces is reviewed in Section 5). The dimension of
ran Q will be called the rank of Q and denoted by rank Q.

Note also that one could define the dual notions
{
u ∈ H

1×n ; uQ = 0
}

and
{
uQ ; u ∈ H

1×n
}

.

One then obtain left quaternionic vector spaces. The relationships between both
notions follow from the fact that uQ = 0 ⇐⇒ Q∗u∗ = 0 and u ∈ ran Q if and
only if u∗ belongs to the left range of Q∗ (Q∗ denotes the adjoint of Q, defined in
the introduction and whose definition is recalled in the next paragraph).

The definition of the adjoint of a matrix is similar to the complex case: if
Q ∈ H

n×m its adjoint is the matrix Q∗ ∈ H
m×n with entries q�j . The matrix

Q ∈ Hn×n is said to be normal if it commutes with its adjoint and to be hermitian
if Q = Q∗.

Quaternionic matrices which are normal have the following nice structure;
see [47, Corollary 6.2 p. 41] and [12], [30].
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Proposition 3.10. The matrix Q ∈ Hn×n is normal if and only if there exists a
quaternionic unitary matrix U and complex numbers c1, . . . , cn such that

Q = U∗diag (c1, c2, . . . , cn) U.

As a corollary we have the following result, which plays a central role in the
sequel.

Proposition 3.11. The matrix Q ∈ H
n×n is hermitian if and only if there exists a

quaternionic unitary matrix U and real numbers h1, . . . , hn such that

Q = U∗diag (h1, h2, . . . , hn) U. (3.7)

Definition 3.12. The signature of the hermitian matrix Q is (ν+(Q), ν−(Q), ν0(Q))
where ν+(Q) (resp. ν−(Q) and ν0(Q)) denotes the number of strictly positive hj

(resp. of strictly negative hj and of hj = 0) in the representation (3.7). The matrix
Q is called positive (notation: Q ≥ 0) if it is hermitian and if c∗Qc ≥ 0 for all
c ∈ Hn. It is called strictly positive (notation: Q > 0) if it is positive and if
c∗Qc > 0 for c �= 0.

It follows directly from (3.7) that that Q ≥ 0 if and only if ν−(Q) = 0 while
Q > 0 if and only if ν−(Q) = ν0(Q) = 0, that is:

Proposition 3.13. A matrix is positive if and only if it is hermitian and all its
eigenvalues are positive. It is strictly positive if it is hermitian and if all its eigen-
values are strictly positive.

We note that it is not enough to require that c∗Qc ≥ 0 for all c ∈ Cn to
insure positivity. Take for instance the matrix

A =
(

0 e2

−e2 0

)

.

Then for every c ∈ C2 it holds that c∗Ac = 0 but
(

e2 1
)
A
(

e2 1
)∗ = −2.

We note that for matrices for complex entries the assumption Q = Q∗ is superflu-
ous and follows from the polarization identity

d∗Ac =
1
4

3∑

k=0

ik(c + ikd)∗A(c + ikd),

where c, d ∈ C
n and A ∈ C

n×n, together with the positivity condition c∗Ac ≥ 0
for c ∈ Cn.

The same holds in the case of matrices with entries in H. Assume that M ∈ Hn×n

is such that c∗Mc ≥ 0 for every c ∈ Hn. We want to show that M = M∗. We could
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use the polarization identity in H (see [27, p. 108])) but we proceed as follows: let
c = a + bj where a, b ∈ Cn. Then

χ(c)∗χ(M)χ(c) ≥ 0

and in particular

(1 0)χ(c)∗χ(M)χ(c)(1 0)∗ ≥ 0,

that is,

(a b)∗χ(M)
(

a
b

)

≥ 0.

Since a and b are arbitrary it follows by the polarization identity that χ(M) is
hermitian and so is M .

Proposition 3.11 is the counterpart of the spectral theorem for hermitian
matrices in the present setting. It allows to give, as in the complex case, the
following characterization and properties of positive matrices.

Corollary 3.14. Let Q ∈ H
n×n. Then:

• Q is positive if and only if Q = TT ∗ where T ∈ Hn×m with m = rankR Q.
• Q is positive if and only if there is a hermitian positive matrix M ∈ Hn×n

such that Q = M2.

The proofs are direct consequences of Proposition 3.11 and will be omitted.
The following property of positive quaternionic hermitian matrices is proved

as in the complex case, using the well–known formula
(

Q11 Q12

Q21 Q22

)

= (3.8)

=
(

Ip 0
Q21Q

−1
11 Iq

)(
Q11 0
0 Q22 − Q21Q

−1
11 Q12

)(
Ip Q−1

11 Q12

0 Iq

)

,

where the Q�k are matrices (here with quaternionic entries) of appropriate dimen-
sions. See [20, formula (0.4), p.3]. For a discussion of this formula in the present
setting see [15, §8]. We recall that Q22−Q21Q

−1
11 Q12 is called the Schur complement

of Q11 in Q.

Proposition 3.15. A positive matrix Q ∈ H
n×n can be factored as Q = LL∗ where

L ∈ Hn×n is a lower triangular matrix.

Proof. We outline the proof for completeness. We first assume that Q > 0 (that
is, that all the h� in (3.7) are strictly positive). Let Q = (q�k). We first apply (3.8)
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with

Q11 = q11,

Q12 =
(

q12 · · · q1n

)
,

Q21 =
(

q21 · · · qn1

)t
,

Q22 =







q22 q23 · · · q2n

q32 q33 · · · q3n

· · · ·
qn2 qn3 · · · qnn





 .

The matrix Q22 −Q21Q
−1
11 Q12 is strictly positive since Q > 0 and we reiterate the

procedure and apply formula (3.8) to this matrix where now Q11 is replaced by
the 11 entry of the Schur complement.

When Q ≥ 0 we replace Q by Q(ε) = Q + εIn. Then Q(ε) > 0 for ε > 0 and
there are lower triangular matrices L(ε) such that Q(ε) = L(ε)L(ε)∗. The entries
of L(ε) are uniformly bounded for ε ∈ [0, 1] and thus one can take a subsequence
ε� going to 0 and obtain a converging subsequence L(ε�). The result follows. �

We compare now the above notions and facts with their real and complex
counterparts. In the notation we remove the dependence of the signature on the
matrix and e.g. write ν+ for ν+(Q).

Proposition 3.16. Q is hermitian if and only if B(Q) is self–transposed. The matrix
Q has signature (ν+, ν−, ν0) if and only if B(Q) has signature (4ν+, 4ν−, 4ν0). In
particular Q is positive if and only if B(Q) is positive.

Proof. Indeed, write Q = U∗diag (h1, h2, . . . , hn) U as in Proposition 3.11. The
properties of the map Q �→ B(Q) give:

B(Q) =
=B(U)tdiag (h1, h2, . . . , hn, h1, h2, . . . , hn, h1, h2, . . . , hn, h1, h2, . . . , hn)B(U)

and hence the result. �

Proposition 3.17. Q is hermitian if and only if χ(Q) is hermitian. Q has signa-
ture (ν+, ν−, ν0) if and only χ(Q) has signature (2ν+, 2ν−, 2ν0). In particular Q is
positive if and only if χ(Q) is positive.

Proof. Assume that χ(Q) = (χ(Q))∗. By (3.5), χ(Q) = χ(Q∗) and therefore Q =
Q∗. Conversely, assume that Q = Q∗. Then χ(Q) = χ(Q∗) and once more using
(3.5) we get that χ(Q) is hermitian. From (3.7) and the properties of the map
Q �→ χ(Q) mentioned in Proposition 3.8 we obtain

χ(Q) = (χ(U))∗ diag (h1, h2, . . . , hn, h1, h2, . . . , hn)χ(U)

from which follow easily the other claims of the proposition. �
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The following lemma is easily proved for matrices with complex entries, and
indeed we reduce the proof to this case. The result itself will be used in the proof
of Lemma 10.6.

Lemma 3.18. Let G ∈ H
n×n be hermitian and let X ∈ H

n×r. Assume that G has
s negative eigenvalues. Then, X∗GX has at most s negative eigenvalues.

Proof. By (3.4) and (3.5),

χ(X∗GX) = (χ(X))∗ · χ(G) · χ(X)

and so by Proposition 3.17 the matrix χ(X∗GX) has at most 2s negative eigen-
values. That same proposition allows to conclude that X∗GX itself has at most s
negative eigenvalues. �

The next lemma is used in the proof of Theorem 13.1. We first state the
minimax principle for the eigenvalues of a hermitian matrix (see [23]).

Theorem 3.19. Let A ∈ Cn×n be hermitian and let λ1 ≤ λ2 ≤ · · · be its eigenvalues
in increasing order. Then,

λr = min
Mr

max
c∈Mr

‖c‖=1

{c∗Ac}

where Mr runs through all r–dimensional subspaces of Cn.

Lemma 3.20. Let M and N be two hermitian matrices with quaternionic entries
and assume M ≥ 0. Then

ν−(M + N) ≤ ν−(M) + ν−(N).

Proof. We prove the first inequality. The result is true for hermitian matrices with
complex entries. Indeed, from minimax principle the eigenvalues of a hermitian
matrix we have

λr(χ(M) + χ(N)) ≥ λr(χ(N))
since χ(M) is a positive matrix. Thus,

ν−(χ(M + N)) = ν−(χ(M) + χ(N))

≤ ν−(χ(M)) + ν−(χ(N)).

We conclude by using Proposition 3.17. �

As in the classical case a signature matrix will be a matrix J ∈ Hn×n which
is both hermitian and unitary. From Proposition 3.11 follows:

Proposition 3.21. J is a quaternionic signature matrix if and only if it can be
written as

J = U∗
(

Ip 0
0 −Iq

)

U (3.9)

where U is unitary.

Another consequence of Proposition 3.11 is the following result.
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Proposition 3.22. Let Q ∈ Hn×n of rank r be a hermitian matrix. Then there is
an r × r signature matrix J and a matrix M ∈ Hn×r such that

Q = MJM∗. (3.10)

For more information on matrices with quaternionic entries we refer to [22].
We mention the next definition and result for completeness. Since we will not

use them in the sequel the proof is omitted.

Definition 3.23. Let Q ∈ Hn×n. M(Q) denotes the element of C2n×2n defined by

M(Q) = (χ(q�k)) .

Proposition 3.24. There is a permutation matrix P (depending only on n) such
that

M(Q) = P ∗χ(Q)P.

4. Hyperholomorphic functions

Writing a quaternion as x =
∑3

k=0 xkek and a quaternionic–valued function
f(x) = f(x0, x1, x2, x3) as

f =
3∑

k=0

fkek,

the latter will be called left–hyperholomorphic if

Df :=
∂

∂x0
f + e1

∂

∂x1
f + e2

∂

∂x2
f + e3

∂

∂x3
f = 0. (4.1)

The operator D is called the Cauchy-Riemann operator. Because of the non–
commutativity of quaternionic multiplication it can act on the right also, and if
we use the notation Dr them f will be called right–hyperholomorphic if it holds
that

Drf :=
∂

∂x0
f +

∂

∂x1
fe1 +

∂

∂x2
fe2 +

∂

∂x3
fe3 = 0.

Note that the set of left–hyperholomorphic functions has a natural structure of
a quaternionic right–linear space, while right–hyperholomorphic functions form a
left–linear space. See the next section for definitions.

Various representations of quaternions described in Sections 2 and 3 lead
to the corresponding reformulations of equation 4.1. Using the matrix represen-
tation (3.1) one may define a (left–) hyperholomorphic R4–valued vector f =(

f0 f1 f2 f3

)
as a solution to the system
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∂f0

∂x0
− ∂f1

∂x1
− ∂f2

∂x2
− ∂f3

∂x3
= 0,

∂f0

∂x1
+

∂f1

∂x0
− ∂f2

∂x3
+

∂f3

∂x3
= 0,

∂f0

∂x2
+

∂f1

∂x3
+

∂f2

∂x0
− ∂f3

∂x0
= 0,

∂f0

∂x3
− ∂f1

∂x2
+

∂f2

∂x1
+

∂f3

∂x0
= 0.

(4.2)

Sometimes (4.2) bears the name of the Fueter system.
Consider now the representation (2.5) which allows to identify C

2 and H,
that is, the independent variable x = (x0, x1, x2, x3) ∈ R4 is identified now with
z = (x0 + ix1, x2 + ix3) ∈ C2. We use the canonical notation

∂
∂z1

:= 1
2

(
∂

∂x0
+ i ∂

∂x1

)
; ∂

∂z1
:= 1

2

(
∂

∂x0
− i ∂

∂x1

)
;

∂
∂z2

:= 1
2

(
∂

∂x2
+ i ∂

∂x3

)
; ∂

∂z2
:= 1

2

(
∂

∂x2
− i ∂

∂x3

)
,

where of course we have written again i instead of e1 and will write j instead of e2

and we set f = (f0 + if1)+(f2 + if3)j =: F1 +F2j. Condition (4.1) is equivalent to
the following ”hyperholomorphic Cauchy–Riemann conditions” for the mapping
(F1, F2) Ω ⊂ C

2 → C
2:

∂F1

∂z1
=

∂F2

∂z2
,

∂F1

∂z2
= −∂F2

∂z1
.

In particular this means that given holomorphic functions F1(z1) and an holomor-
phic F2(z2) then F1+jF2 is hyperholomorphic. To imbed all holomorphic mappings
into the set of hyperholomorphic mappings, one may consider, for instance, the
quaternionic operator

D̃f :=
∂

∂x0
f + e1

∂

∂x1
f + e2

∂

∂x2
f − e3

∂

∂x3
f

but some others as well. For more information on all the above the reader is referred
to [39], [44], [31], [42], [40].

It is illustrative to verify that the quaternionic variable x itself is not left–
hyperholomorphic.

Example 4.1. For every y in the open unit ball S of H the function

x �→ K(x, y) =
1 − xy

|1 − xy|4 (4.3)

is left–hyperholomophic in S.

We will come back to this important example in the sequel. See Examples
7.3 and 8.2 and Corollary 9.5. The function K(x, y) is called the Szëgo kernel of S.



446 Alpay and Shapiro IEOT

It is positive (in the sense of Definition 7.1 below) and it is the reproducing kernel
of the Hardy space of the unit ball of H. See [11].

5. Quaternionic vector spaces and quaternionic Hilbert spaces

For the definition of a right quaternionic vector space we refer to [9, A II.3, AII.95–
118] . The reader needs only to take as a special case the skew–field of quaternions
in the definitions there. The definitions follow the classical case of the complex
numbers, with appropriate care due to the non–commutativity of the multiplica-
tion. There is also the related notion of left quaternionic vector space. Since we
will consider here only the case of right quaternionic vector space, mostly we will
only say quaternionic vector space.

Definition 5.1. Let M be a right quaternionic vector space. The elements f1, . . . , fk

are called linearly independent if for q1, . . . , qk ∈ H it holds that:
k∑

1

fkqk = 0 =⇒ q1 = · · · = qk = 0.

The definition of a basis has to take into account the non–commutativity: a
set (eα)α∈A is a (right) basis of the quaternionic vector space M if every element
m ∈ M can be written in a unique way as a finite linear combination

m = eα1q1 + · · · + eαim
qim

with coefficients q1, . . . , qim
∈ H.

Definition 5.2. Let H be a right quaternionic vector space. We denote by HR (resp.
HC) this same space when endowed with the structure of a real vector space (resp.
of a complex vector space).

Proposition 5.3. Let H be a finite–dimensional right quaternionic vector space, of
dimension κ. Then it has dimension 2κ when considered as a vector space over
the complex numbers and it has dimension 4κ when considered as a vector space
over the real numbers. Moreover if {f1, . . . , , fN} is a basis of H then

{f1, f1e1, f1e2, f1e3, · · · , fN , fNe1, fNe2, fNe3}
is a basis of HR, and

{f1, f1e2, · · · , fN , fNe2}
is a basis of HC .

Definition 5.4. Let V be a quaternionic right vector space. A norm on V is a map

‖ · ‖ : V → R
0
+ := [0,∞)

with the following properties: for v, w ∈ V ,
• ‖v‖ = 0 ⇐⇒ v = 0.
• ‖v + w‖ ≤ ‖v‖ + ‖w‖.
• ‖vp‖ = |p|‖v‖, for any p ∈ H.
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All norms on a finite–dimensional quaternionic vector space are equivalent
(see [17, Théorème 1.1 p. 24]).

Definition 5.5. A pre–Hilbert quaternionic space is a right vector H–space H en-
dowed with an H–valued form 〈·, ·〉 which is:

1. Hermitian, i.e.,
〈f, g〉 = 〈g, f〉.

2. Positive:
〈f, f〉 ≥ 0

and equality holds only for f = 0.
3. Linear, meaning that:

〈fp, gq〉 = q〈f, g〉p
for all p, q ∈ H.

The previous definition appears already in [45, Section 1 p. 338]. See also [17,
p. 441]. It is more restrictive than more recent ones for the case of general Clifford
algebras, where usually it is not required that 〈f, f〉 is a real number; see [11, p.
35] for the definition. A similar definition holds for left quaternionic Hilbert space.
Since we will consider only right quaternionic Hilbert spaces, mostly we will not
mention the adjective right in the sequel.

We set ‖f‖ :=
√〈f, f〉. It is a norm and it is usefull to note that

〈fq, fq〉 = |q|2 · ‖f‖2.

Lemma 5.6. The Cauchy–Schwartz inequality

|〈f, g〉|2 ≤ ‖f‖2 · ‖g‖2

holds in a quaternionic pre–Hilbert space.

Proof. Without loss of generality we assume that g �= 0. Let q = z1 + z2j ∈ H and
f, g ∈ H. We set 〈f, g〉 =: w1 + w2j. We have

0 ≤ 〈f + gq, f + gq〉
= ‖f‖2 + |q|2 · ‖g‖2 + 〈g, f〉q + q〈f, g〉
= ‖f‖2 + (|z1|2 + |z2|2)‖g‖2 + (z1w1 + z2w2 + w1z1 + w2z2)

=
∥
∥
∥
∥

(
z1

z2

)

cdot‖g‖ +
(

w1

w2

)

· 1
‖g‖
∥
∥
∥
∥

2

C2

+ ‖f‖2 −

∥
∥
∥
∥

(
w1

w2

)∥
∥
∥
∥

2

C2

‖g‖2
.

Since the above holds for any choice of complex numbers z1 and z2 it follows that

0 ≤ ‖f‖2 −

∥
∥
∥
∥

(
w1

w2

)∥
∥
∥
∥

2

C2

‖g‖2
. �

Remark 5.7. As in the classical case, the above proof uses only that 〈f, f〉 ≥ 0
and not the additional requirement that 〈f, f〉 = 0 if and only if f = 0.
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Two elements of a quaternionic pre–Hilbert space will be called orthogonal
if 〈f, g〉 = 0. If M ⊂ H we set

M⊥ :=
{
h ∈ H ∣∣ 〈h, m〉 = 0, ∀m ∈ M} .

We note that the Gram–Schmidt orthonormalization process works as in the com-
plex Hilbert space case since 〈f, f〉 is a strictly positive number for all f �= 0. More
precisely:

Theorem 5.8. Let H be a quaternionic pre–Hilbert space and let f1, . . . , fk be lin-
early independent (see Definition 5.1). Then there exist e1, . . . , ek ∈ H with the
following properties:

• For all � ≤ k

l.s. {f1, . . . , , f�} = l.s. {e1, . . . , , e�},
where l.s. stands for the set of linear combinations (with coefficients on the
right).

• It holds that
〈e�, em〉 = δ�,m.

The proof is as in the complex case and can also be derived from Proposi-
tion 3.15. One has to be careful with the place of scalars because of the lack of
commutativity. One defines by induction

e1 =
f1

‖f1‖ ,

e2 =
f2 − e1〈f2, e1〉
‖f2 − e1〈f2, e1〉‖ ,

...

The quaternionic pre–Hilbert space is called a quaternionic Hilbert space if
‖f‖ :=

√〈f, f〉 defines a norm for which H is complete. very quaternionic pre–
Hilbert space has a completion, as follows from [10, p. EVT I.6].

If H is a quaternionic Hilbert space and M is a closed subspace of it, then it
holds that:

M⊕M⊥ = H.

See [10, Chapter I]). We note that in Bourbaki’s treatise on topological vector
spaces over skew–fields the setting is more general. On the other hand the special
case of Hilbert spaces is treated in Bourbaki only for the real and complex scalars;
see [10, Chapitre V]. In this context, we note that a quaternionic Hilbert space
can be given a structure of complex Hilbert space (its so called symplectic image
and a structure of real Hilbert space. See [33]). Sometimes (see e.g. Proposition
5.10) using the complex or real structure helps proving results for the quaternionic
structure. In general we will prefer direct arguments.
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Proposition 5.9. Let H be a quaternionic Hilbert space with quaternionic inner
product 〈·, ·〉. Then:

(1) There exists a bilinear real form 〈·, ·〉0 such that

〈f, g〉 = 〈f, g〉0 + e1〈f, ge1〉0 + e2〈f, ge2〉0 + e3〈f, ge3〉0. (5.1)

The form 〈f, g〉0 endows H with the structure of a real Hilbert space.

(2) There exists a sesquilinear hermitian form 〈〈·, ·〉〉 such that

〈f, g〉 = 〈〈f, g〉〉 + 〈〈f, gj〉〉j
and the form

〈〈f, g〉〉
endows H with the structure of a (right) complex Hilbert space.

Proof. We set
〈·, ·〉0 = Re 〈·, ·〉.

Clearly, 〈·, ·〉0 is a real bilinear form. We set

〈f, g〉 = 〈·, ·〉0 + a1(f, g)e1 + a2(f, g)e2 + a3(f, g)e3,

where the aj are R–valued. The next formulas (see e.g. [33, p.2]) show that 〈f, g〉0
determines the inner product uniquely and that the aj are bilinear real forms:

a1(f, g) = 〈f, ge1〉0, (5.2)
a2(f, g) = 〈f, ge2〉0, (5.3)
a3(f, g) = 〈f, ge3〉0. (5.4)

We prove the first equality. The others are proved in a similar way. Using the
H–linearity of the inner product we have

〈f, ge1〉 = −e1〈f, g〉
= −e1 (〈f, g〉0 + e1a1(f, g) + e2a2(f, g) + e3a3(f, g))

= a1(f, g) − e1〈f, g〉0 + e2a3(f, g) − e3a2(f, g),

and hence we get (5.2). This ends the proof of (1). The claims of (2) are proved
in much the same way. �

Following other authors we will not use the term Hilbert modules but rather
quaternionic pre–Hilbert space or quaternionic Hilbert space since Hilbert mod-
ules has already a different meaning.

We conclude this section with the following result:

Proposition 5.10. Let H be a quaternionic Hilbert space and let hα be a uniformly
bounded family of elements: supα ‖hα‖ < ∞. Then hα possesses a weakly converg-
ing subsequence hαn

.
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Proof. The result is true when one considers H endowed with its real Hilbert space
structure; see e.g. [10, Théorème 4 p. EVT V.17]. In the notation of Proposition
5.9 there exists h ∈ H such that

∀g ∈ H lim
n→∞〈hαn

, g〉0 = 〈h, g〉0.
Using (5.2)–(5.4) we have

lim
n→∞〈hαn

, g〉� = 〈h, g〉�, � = 1, 2, 3,

and hence by (5.1) we obtain the weak convergence in the quaternionic inner
product. �

The proofs of thee following two propositions are left to the reader.

Proposition 5.11. Let H be a quaternionic Hilbert space. Then f ⊥ g if and only
if {f, fe1, fe2, fe3} is orthogonal to {g, ge1, ge2, ge3} in the real inner product.

Proposition 5.12. Let H be a quaternionic Hilbert space. Then f ⊥ g if and only
if {f, fj} is orthogonal to {g, gj} in the complex inner product.

6. Linear operators in quaternionic Hilbert spaces

We here follow [10, Chapter I] and [11, Section 7, p. 35–43]. An operator A between
two quaternionic right Hilbert spaces will be called (right) linear if

A(xp + yq) = A(x)p + A(y)q

for all x, y in the domain of A and p, q ∈ H. The operator is called a functional if
the range space is inside H. It is called bounded (or continuous) if

‖A‖ := sup
‖x‖≤1

‖Ax‖ < ∞.

In the above expression we denoted by the same symbol the norms in the (possibly
different) quaternionic Hilbert spaces. The equivalence between continuity and
boundedness is shown as in the case of complex numbers.

Of importance for the present work are the following:
• The Riesz representation theorem for continuous functionals holds; see [11,

p. 24].
• The closed graph theorem holds; see [10, EVT 1.19].
• The open mapping theorem (see e.g. [34, Théorème 5.10 p. 96]) holds. See

[10, Corollaire 1 p. EVT 1.19].
• The Hahn–Banach theorem (see [24]).

The Riesz representation theorem reads as follows:

Theorem 6.1. Let H be a quaternionic right Hilbert space with quaternionic inner
product 〈·, ·〉, and let ϕ be a continuous right linear functional. Then there is a
uniquely defined element pϕ ∈ H such that

ϕ(x) = 〈x, pϕ〉, ∀x ∈ H.
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As in the case of complex numbers the Riesz representation theorem allows to
define the adjoint of an operator. We here focus on the case of bounded operators.

Proposition 6.2. Let A be a bounded right linear operator from the quaternionic
Hilbert space (H1, 〈·, ·〉1) into the quaternionic Hilbert space (H2, 〈·, ·〉2). Then there
exists a uniquely defined bounded right linear operator

A∗ : H2 → H1

such that for any x ∈ H1 and y ∈ H2

〈Ax, y〉2 = 〈x, A∗y〉1.
Finally, ‖A‖ = ‖A∗‖.
Proof. The existence of A∗y follows form the Riesz representation theorem. We
prove that A∗(yq) = (A∗y)q for y ∈ H2 and q ∈ H. We have:

〈Ax, yq〉2 = 〈x, A∗(yq)〉1, (6.1)

while on the other hand

〈Ax, yq〉2 = q∗〈Ax, y〉2
= q∗〈x, A∗y〉1
= 〈x, (A∗y)q〉1, (6.2)

and hence the result is true by comparing (6.1) and (6.2).
We now check that A∗ is bounded and has the same norm as A. Let y be

such that A∗y �= 0. We have ‖A∗y‖ ≤ sup‖x‖≤1 |〈A∗y, x〉| by Cauchy–Schwartz
inequality. The choice x = A∗y

‖A∗y‖ leads to

‖A∗y‖1 = sup
‖x‖≤1

|〈A∗y, x〉1|.

Thus,
‖A∗y‖1 = sup

‖x‖≤1

|〈y, Ax〉|2 ≤ ‖y‖2 · ‖A‖

and so ‖A∗‖ ≤ ‖A‖. The equality holds by symmetry. �

The operator will be called self–adjoint if A = A∗. For another discussion of
adjoints, in the more general setting of quaternionic Banach spaces see [39, §3.11].

We quote now the open mapping theorem in the setting of Hilbert quater-
nionic spaces. We will need this result in Section 12 to prove that all fundamental
decompositions in a quaternionic Pontryagin space lead to equivalent topologies.

Theorem 6.3. Let E and F two right quaternionic Hilbert spaces and let u be
a one–to–one and onto, right–linear continuous map from E to F . Then u−1 is
continuous.
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7. Positive functions

Definition 7.1. An Hn×n–valued function K(z, w) defined for z, w in some set Ω
is called positive if it is hermitian in the sense that

K(z, w) = K(w, z)∗

and if for every choice of integer m ∈ N and every choice of points w1, . . . , wm ∈ Ω
the m × m matrix with �j entry K(w�, wj) is positive.

A first and trivial example is the case where Ω = H and where K(x, y) = xy.
This example also serves to show that a product of positive functions (which a
priori need not be hermitian at all) need not be positive even it is hermitian. The
function T (x, y) = K(x, y)2 = xyxy is not positive. We postpone the discussion
after the proof of the next proposition. Another example is the real–valued function

Re (xy) = x0y0 + x1y1 + x2y2 + x3y3.

Proposition 7.2. Let K(z, w) be a hermitian function from Ω×Ω into H
n×n. Then:

(1) It is positive if and only if the R
4n×4n–valued function

B(K(z, w)) =










K0(z, w) −K1(z, w) −K2(z, w) −K3(z, w)

K1(z, w) K0(z, w) −K3(z, w) K2(z, w)

K2(z, w) K3(z, w) K0(z, w) −K1(z, w)

K3(z, w) −K2(z, w) K1(z, w) K0(z, w)










is positive on Ω in the usual sense, where we have set K(z, w) = K0(z, w) +
K1(z, w)e1 + K2(z, w)e2 + K3(z, w)e3 with the Kj being Rn×n–valued.
(2) It is positive if and only if the C2n×2n–valued function

χ(K(z, w)) =

(
A(z, w) B(z, w)

−B(z, w) A(z, w)

)

(7.1)

is positive on Ω in the usual sense, where we have set K(z, w) = A(z, w)+B(z, w)j
with A and B being Cn×n–valued.

Proof. We present the complex case only. The real case is proved in a similar
manner. Assume first that the function K(z, w) is positive on Ω. Then, for any
choice of points w1, . . . , wm ∈ Ω, the block matrix M ∈ Hnm×nm with �k block
equal to

A(w�, wk) + B(w�, wk)j
is positive. Set

A = (A(w�, wk))�,k∈{1,...,m} , B = (B(w�, wk))�,k∈{1,...,m} .

Then M = A + Bj and by Proposition 3.17 the matrix

χ(M) =

(
A B

−B A

)
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is positive. Let P denote the permutation matrix which sends the lines

{1, 2, · · · , m, m + 1, m + 2, · · · , 2m}
to the lines

{1, m + 1, 2, m + 2, · · · , m, 2m, · · · , 2m}
Multiplying χ(M) by P on the left and on the right by P ∗ we get

Pχ(M)P ∗ = (χ(K(w�, wk)))�,k∈{1,...,m} (7.2)

and hence the function χ(K) is positive in the usual sense.
Equation (7.2) shows in fact that argument may be read backwards to prove

the converse direction. �

Example 7.3. The function 1−xy
|1−xy|4 is positive in S. Thus the function




1−(ac+bd)

(|1−(ac+bd)|2+|ad−bc|2|)2 − (ad−bc)

(|1−(ac+bd)|2+|ad−bc|2|)2
(da−cd)

(|1−(ac+bd)|2+|ad−bc|2|)2
1−(ca+db)

(|1−(ac+bd)|2+|ad−bc|2|)2



 (7.3)

where x = a + bj and y = c + dj is positive in the unit ball B2 of C2.

The positivity of the function 1−xy
|1−xy|4 follows from the reproducing kernel

property (see [11]) and a direct proof seems quite difficult. Similarly a direct proof
of the positivity of the kernel (7.3) seems also quite difficult.

Example 7.4. The function K(x, y) = xy is trivially positive. The corresponding
functions A and B are given by (with x = a + bj and y = c + dj)

A(x, y) = ac + bd, B(x, y) = bc − ad.

We have
(

A(x, y) B(x, y)

−B(x, y) A(x, y)

)

=
(

ac + bd bc − ad

ad − bc ac + bd

)

=
(

a b

−b a

)(
c d

−d c

)∗

which is a positive function.

The above equality is nothing but

χ(xy) = χ(x)χ(y)∗.

On the other hand:

Example 7.5. The function K(x, y) = yx is not positive.

Now
A(x, y) = ac + bd, B(x, y) = cb − da.

Thus (
A(x, y) B(x, y)

−B(x, y) A(x, y)

)

=
(

ac + bd cb − da

ad − bc ac + bd

)

.
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To show that this function is not positive we write
(

ac + bd cb − da

ad − bc ac + bd

)

=
(

ac + bd 0
0 ac + bd

)

+
1
2

{(
b a

a −b

)(
d c

c −d

)∗
−

−
( −b a

a b

)( −d c

c d

)∗}
.

This formula expresses that this function has in fact two negative squares; see
Section 11 and Proposition 11.4.

In connection with this example and to emphasize the non–commutativity
we give the following example taken from matrix theory.

Example 7.6. Let Ω = Cn×n. The function

K(A, B) = AB∗

is positive on Ω. The function T (A, B) = B∗A is not positive on Ω for n > 1.

To see that the function T (A, B) is not positive on Ω for n > 1 take n = 2
and A1 =

(
1 0
0 0

)
and A2 =

(
a b
0 0

)
. Then:

(
A∗

1A1 A∗
2A1

A∗
1A2 A∗

2A2

)

=







1 0 a∗ 0
0 0 b∗ 0
a b a∗a a∗b
0 0 b∗a b∗b





 .

This matrix is not positive when b �= 0.

We now return to the function T (x, y) = xyxy. If this function was positive
so would be the function yx. We just saw that this last function is not positive.

8. Reproducing kernel quaternionic Hilbert spaces

For completeness we mention the papers [26] and [32] but we will not need the full
theory developed in those papers.

Definition 8.1. A quaternionic Hilbert space H of Hn–valued functions defined on
a set Ω is called a reproducing kernel quaternionic Hilbert space if there exists an
Hn×n–valued function defined on Ω × Ω and with the following properties:

1. For every w ∈ Ω and a ∈ Hn the function

z �→ K(z, w)a

belongs to H.
2. For every f ∈ H and w and a as above

〈f, K(·, w)a〉H = a∗f(w).
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By Riesz’ theorem an equivalent definition is that the functionals f �→ a∗f(w)
are all continuous.

We have in particular

〈K(·, w)b, K(·, v)a〉H = a∗K(v, w)b.

Using this equality and computing the norm of an element of the form
m∑

j=1

K(z, vj)aj

we see that
m∑

�,j=1

a∗
�K(v�, vj)aj ≥ 0,

that is the kernel is positive as defined in Section 7.
The function K(z, w) is called the reproducing kernel of the space. It is unique

(if it exists). Two proofs are available; one relies on the fact that the representation
of a continuous functional by Riesz theorem is unique. The other proof mimics the
case of complex scalars, as in e.g. [20, p. 23].

Example 8.2. The Hardy space of the unit ball S of H consists of the closure of the
functions left–hyperholomorphic in the unit ball of R

4 and continuous up to the
boundary, with respect to the norm associated to the quaternionic inner product

〈f, g〉 =
∫

S

g(x)f(x)dλ(x),

λ being the normalized Lebesgue measure on S.
It is a the (right) quaternionic reproducing kernel Hilbert space with repro-

ducing kernel 1−xy
|1−xy|4 .

See [14], where it is called the Szëgo module of the unit ball of R
4.

In Definition 8.1 one can make the weaker requirement that H is a quater-
nionic pre–Hilbert space. A consequence of Theorem 8.4 below is that a reproduc-
ing kernel quaternionic pre–Hilbert space has a unique completion as a quater-
nionic reproducing kernel Hilbert space. Before turning to this point we need a
preliminary lemma.

Lemma 8.3. A Cauchy sequence in a quaternionic pre–Hilbert space of H
n–valued

functions with reproducing kernel converges pointwise.

Proof. Let (fn) be a Cauchy sequence, let w ∈ Ω and let p ∈ H
n. By the Cauchy–

Schwartz inequality,

|p∗(fn(w) − fm(w))|2 = |〈fn(·) − fm(·), K(·, w)p〉|2
≤ ‖fn − fm‖2 · p∗K(w, w)p.

Therefore n �→ p∗fn(w) is a Cauchy sequence and has a limit in H. It follows
readily that n �→ fn(w) has a limit in the metric of Hn. �
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Theorem 8.4. Given an Hn×n–valued function K(z, w) positive on a set Ω, there
exists a uniquely defined reproducing kernel quaternionic Hilbert space of Hn×1–
valued functions defined on Ω and with reproducing kernel K(z, w).

Proof. The proof of course follows the classical one (see e.g. [5], [36]). We outline
it for completeness.

Let
◦

H(K) denote the linear span of the functions of the form z �→ K(z, w)p
where w varies in Ω and p varies in Hn, with the inner product

〈K(·, v)q, K(·, w)p〉 ◦
H(K)

:= p∗K(w, v)q. (8.1)

It is readily seen as in the classical case that (8.1) indeed is well–defined and that
the reproducing kernel property

p∗f(w) = 〈f(·), K(·, w)p〉 ◦
H(K)

holds for all f ∈
◦

H(K). The positivity of the function K(z, w) implies that
◦

H(K)
is a quaternionic pre–Hilbert space. That it admits a closure follows from general
results; see for instance [10, p. EVT 1.6]. This closure is unique, up to an isomor-
phism which leaves invariant the pre–Hilbert space and a natural choice consists
in the set of all the equivalence classes of Cauchy sequences, two such sequences
being equivalent if their difference goes to 0 in norm. Here we are interested in the
closure as a space of functions and not as a space of equivalence classes of Cauchy
sequences.

Take two equivalence Cauchy sequences (fn) and (gn). By Lemma 8.3 the
limits

lim
n→∞ fn(w) and lim

n→∞ gn(w)

exist and are equal. Thus for (̃fn), an equivalence class of Cauchy sequences, we
can define a function f on Ω by

f(w) := lim
n→∞ fn(w)

where (fn) is any sequence in the equivalence class. We set H(K) to be the set of
these functions with the inner product

〈f, g〉 := lim
n→∞〈fn, gn〉 ◦

H(K)
.

In a way similar to the complex field, H(K) is a quaternionic Hilbert space with
reproducing kernel K. The uniqueness of H(K) is proved as follows: let (H′, 〈·, ·〉H′

be another quaternionic reproducing kernel Hilbert space of functions with repro-

ducing kernel K(z, w). By definition of the reproducing kernel the space
◦

H(K) is
isometrically included in H′ and so is H(K). Any f ∈ H′ �H(K) is in particular
orthogonal to the K(·, v)q and so q∗f(v) ≡ 0, that is f ≡ 0 and H(K) = H′. �
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Theorem 8.5. Let K(z, w) : Ω × Ω → Hn×n be a positive function and let H(K)
be the associated quaternionic reproducing kernel Hilbert space of Hn–valued func-
tions. Let Ω1 ⊂ Ω. Then the restriction K1(z, w) of K(z, w) to Ω1 is still a positive
function. The elements of H(K1) are the restrictions of functions of H(K) to Ω1

with the norm

‖f1‖H(K1) = inf ‖f‖H(K),

where the infimum is over all functions f ∈ H(K) which coincide with f1 on Ω1.

Before we turn to the proof of the theorem let us present an example. Consider
the function K(x, y) defined by (4.3) and restrict it to the open unit disk, that is,
both x and y are now complex numbers of modulus strictly less than 1. Then,

K(x, y) = K(z1, w1) =
1

(1 − z1w1)(1 − z1w1)2
.

We now have a C–valued function positive in D and the corresponding reproducing
kernel Hilbert space consists of functions of the form

f(z1) =
∞∑

n=0

z1
nfn(z1)

where the fn belong to B2, the Bergman space of the disk, and are such that

∞∑

0

‖fn‖2
B2

< ∞.

This last sum is then the square of the norm of the function f .
When only a finite number of fn are different from 0 the function f is poly-

analytic. See [7] for more on these functions. When n = 0 we get the Bergman
space of the disk. We note that the Bergman space of the disk contains the Hardy
space of the disk since the kernel

1
(1 − zw)2

− 1
1 − zw

is positive in D but the inclusion is contractive and not isometric.

Proof of Theorem 8.5. Consider the map i from H(K1) into H(K) which to the
function z �→ K(z, w1)c (with z ∈ Ω1 and w1 ∈ Ω1) associates the function
z �→ K(z, w1)c with z ∈ Ω. Then, for f ∈ H(K) and w1 ∈ Ω1 we have

〈i∗f, K(·, w1)c〉H(K1) = 〈f, K(·, w1)c〉H(K)

= c∗f(w1).

Thus i∗f is the restriction of a function of H(K) to Ω1. �
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9. Operators in quaternionic reproducing kernel Hilbert spaces
and some applications

Definition 9.1. Let L(z, w) be an Hn×n–valued function positive on a set Ω. A
function S : Ω → Hn×n is called a multiplier if the operator MS of multiplication
f �→ Sf is bounded from H(L) into itself. It is called a Schur multiplier if ‖MS‖ ≤
1.

The next lemma is the key for the study of multipliers. The proof is as in the
complex case and is reviewed for completeness.

Lemma 9.2. In the notation of the previous definition, it holds that

(M∗
SL(·, w)c) (v) = L(v, w)S(w)∗c.

Proof. Let d ∈ Hn. Then,

d∗((M∗
S(L(·, w)c)) (v) = 〈M∗

S(L(·, w)c), L(·, v)d〉H(L)

= 〈L(·, w)c, S(·)L(·, v)d〉H(L)

= 〈S(·)L(·, v)d, L(·, w)c〉H(L)

= (c∗S(w)∗L(w, v)d)

= d∗L(v, w)S(w)∗c

and hence the result. �

Proposition 9.3. In the notation of the previous definition, S is a multiplier if and
only if there exists a strictly positive number p such that the function

L(z, w) − 1
p
S(z)L(z, w)S(w)∗

is positive in Ω. The smallest such p is equal to ‖MS‖.
The proof follows the complex case and relies on the formula
(

(I − 1
p
MSM∗

S)(L(·, w)c)
)

(v) = L(v, w) − 1
p
S(v)L(v, w)S(w)∗c.

The next result takes full advantage of the fact that 〈f, f〉 is a positive real number.

Proposition 9.4. Let K(z, w) be an Hn×n–valued function positive on a set Ω, and
let H(K) be the associated quaternionic Hilbert space of Hn×1–valued functions
defined on Ω and with reproducing kernel K(z, w). A function f(z) : Ω → H

n is
in H(K) if and only if there is a positive number p > 0 such that the function

K(z, w) − 1
p
f(z)f(w)∗

is positive in Ω,
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Proof. Assume first that the given function is positive. As in the complex case the
positivity of the kernel ensures that the formula

T (K(·, w)c) =
1
p
f(z)f(w)∗c

which, a priori, defines a relation (that is, a linear subspace of H(K)×H(K), see [2]
for more on linear relations) defines in fact a contraction. Furthermore T ∗f = f
and so f ∈ H(K). The converse statement is proved by reading the arguments
backwards. �

As an application we have:

Corollary 9.5. Let a ∈ H with |a| < 1 and let

ϕa(x) = (x − a)(1 − ax)−1 = (1 − xa)−1(x − a).

The map which to f associates the function Caf defined by

Caf(x) = (1 − |a|2)3/2 1 − xa

|1 − xa|4 f ◦ ϕa(x)

is a contraction from the hyperholomorphic Hardy space of the unit sphere into
itself.

Proof. We first note that

1 − ϕa(x)ϕa(y) = 1 − (1 − xa)−1(x − a)(y − a)(1 − ay)−1

= (1 − xa)−1 {(1 − xa)(1 − ay) − (x − a)(x − a)} (1 − ay)−1

= (1 − xa)−1(1 − xy)(1 − ay)−1(1 − |a|2).
(9.1)

In particular

1 − |ϕa(x)|2 =
(1 − |x|2)(1 − |a|2)

|1 − xa|2
and ϕa sends S into itself.

Let f be in the hyperholomorphic Hardy space and of norm equal to 1. Then
1 − xy

|1 − xy|4 − f(x)f(y)

is positive in S. (Note that the converse statement is false; the positivity of the
kernel ensures only that ‖f‖ ≤ 1). Replace in this kernel x by ϕa(x) and y by
ϕa(y). We obtain that the kernel

1 − ϕa(x)ϕa(y)
|1 − ϕa(x)ϕa(y)|4 − f ◦ ϕa(x)f ◦ ϕa(y)

is positive on S. Using (9.1) we obtain that the kernel

(1 − xa)−1(1 − xy)(1 − ay)−1(1 − |a|2)
|1 − xa|−4|1 − xy|4|1 − ay|−4(1 − |a|2)4 − f ◦ ϕa(x)f ◦ ϕa(y)
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is positive on S. It follows that the kernel
1 − xy

|1 − xy|4 − 1 − xa

|1 − xa|4 f ◦ ϕa(x)f ◦ ϕa(y)
1 − ay

|1 − ay|4 (1 − |a|2)3

is positive on S. Thus ‖Caf‖ ≤ 1 and the result follows. �

We note that the above arguments take full advantage of the fact that qq
is a real positive number for q ∈ H. For the fact that the map Ca maps left–
hyperholomorphic functions into left–hyperholomorphic functions we refer to [22,
Lemma 3.103 p. 120].

For the sake of comparison we find it instructive to redo the similar argument
for the Hardy space H2 of the disk and to show that the map which to f ∈ H2

associates the function √
1 − |a|2
1 − za

f

(
z − a

1 − za

)

is a contraction. Setting ba(z) = z−a
1−za , we first recall that

1 − ba(z)ba(w)
1 − zw

=
1 − |a|2

(1 − za)(1 − aw)
. (9.2)

Now from the positivity of the kernel
1

1 − zw
− f(z)f(w)

in D (that is, ‖f‖H2 ≤ 1) we obtain that the kernel
1

1 − ba(z)ba(w)
− f ◦ ba(z)f ◦ ba(w)

is positive in D. Replacing 1

1−ba(z)ba(w)
by

(1 − za)(1 − aw)
(1 − |a|2)(1 − zw)

we obtain the result.
The same argument works in the reproducing kernel Hilbert space of functions

analytic in the unit ball of CN with reproducing kernel 1
1−zw∗ where

z = (z1, . . . , zN ), w = (w1, . . . , wN )

and zw∗ =
∑N

1 z�w�. One replaces then ba by an automorphism of the ball, namely

(1 − |a|2)1/2

1 − za∗ (z − a)(IN − a∗a)−1/2.

Formula (9.2) is then still valid. See [35, Theorem 2.2.2 p. 26]. For related results,
see [4].

For the case N = 1 we recall that by Littewood’s theorem (see [38, p. 16],
[16]) the composition operator which to f associates the function z �→ f

(
z−a
1−za

)

has norm less or equal to 1+|a|
1−|a| .
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Theorem 9.6. Given an Hn×n–valued function positive on a set Ω, and let H(K)
be the associated reproducing kernel quaternionic Hilbert space of Hn×1–valued
functions with reproducing kernel K(z, w). Then, H(K) is finite dimensional (of
dimension N , say) if and only if there exist N linearly independent elements
f1, . . . , fN of H(K) such that

K(z, w) =
N∑

j=1

fj(z)fj(w)∗. (9.3)

Proof. The space is finite dimensional if and only if it has a finite dimensional
basis. This basis may be supposed orthonormal. It is then easy to see that (9.3)
gives a formula for the reproducing kernel. �

Definition 9.7. An H
n×n–valued function positive on a set Ω is said to be of finite

rank if it is of the form (9.3), or, equivalently, if the associated quaternionic repro-
ducing kernel Hilbert space H(K) is finite dimensional. The rank of the function
is then defined to be the number N in (9.3), or, equivalently, the dimension of
H(K).

In the previous theorems the domain where the functions are defined was not
specified. The next result deals with the special case where Ω ⊂ H.

Theorem 9.8. Given an Hn×n–valued function positive on an open set Ω ⊂ C2, and
let H(K) be the associated reproducing kernel quaternionic Hilbert space of Hn×1–
valued functions with reproducing kernel K(z, w). Assume that for all w ∈ Ω the
function z �→ K(z, w) is left–hyperholomorphic. Then the entries of the elements
of H(K) are also left–hyperholomophic.

Proof. We consider the case of H–valued functions. The case of matrix–valued
functions is treated in a similar way. For f ∈ H(K), p ∈ Ω and ε ∈ R small enough
we have

K(p, q + εej) − K(p, q)
ε

=
K(q + εej, p) − K(q, p)

ε

and hence

∂K(p, q)
∂yj

=
∂K(q, p)

∂xj
. (9.4)

The family of functions K(p,q+εej)−K(p,q)
ε is uniformly bounded in norm and there-

fore has a weakly convergent subsequence, which is readily seen to converge to
∂K(p,q)

∂yj
. Since

f(p + εej) − f(p)
ε

= 〈f(·), K(·, p + εej) − K(·, p)
ε

〉H(K)

we have
∂f

∂xj
(p) = 〈f,

∂K(·, p)
∂yj

〉H(K).
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By the properties of the inner product,

∂f

∂x0
+ e1

∂f

∂x1
+ e2

∂f

∂x2
+ e3

∂f

∂x3
=

= 〈f,
∂K(·, q)

∂x0
〉H(K) + e1〈f,

∂K(·, q)
∂y1

〉H(K) + e2〈f,
∂K(·, q)

∂y2
〉H(K) +

+e3〈f,
∂K(·, q)

∂y3
〉H(K)

= 〈f,
∂K(·, q)

∂y0
− ∂K(·, q)

∂y1
e1 − ∂K(·, q)

∂y2
e2 − ∂K(·, q)

∂y3
e3〉H(K).

Using (9.4) we have

∂K(·, q)
∂y0

− ∂K(·, q)
∂y1

e1 − ∂K(·, q)
∂y2

e2 − ∂K(·, q)
∂y3

e3 =

=
∂K(q, ·)

∂x0
+ e1

∂K(q, ·)
∂x1

+ e2
∂K(q, ·)

∂x2
+ e3

∂K(q, ·)
∂x3

= 0,

since for every h ∈ Ω the function q �→ K(q, h) is left–hyperholomorphic. �

Theorem 9.9. Let K be an H
n×n–valued function positive on a set Ω and let H(K)

be the associated reproducing kernel quaternionic Hilbert space. Let H(B(K)) de-
note the reproducing kernel Hilbert space of R4n–valued functions with reproducing
kernel B(K) and let H(χ(K)) denote the reproducing kernel Hilbert space of C2n–
valued functions with reproducing kernel χ(K) (defined by (7.1)). Then:

(1) The map

m∑

1

K(z, w�)q� �→
m∑

1

B(K(z, w�))B(q�)







1
0
0
0







extends to a unitary map from HC(K) onto H(B(K)).

(2) The map
m∑

1

K(z, w�)q� �→
m∑

1

χ(K(z, w�))χ(q�)
(

1
0

)

(where q� = a� + b�j ∈ H
n) extends to a unitary map from HR(K) onto H(χ(K)).

Proof. The proof of the first claim relies on formula (3.7).
Let v, w ∈ Ω and p = a + bj and q = c + dj be in Hn. The first complex

component of q∗K(w, v)q is equal to

c∗K1(w, v)a + dtK2(w, v)a + dtK1(w, v)a − c∗K2(w, v)b.
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This expression is in turn equal to
(

c

−d

)∗
χ(K(w, v))

(
a

−b

)

.

The real parts of these two expressions are in particular equal and therefore

〈K(·, v)p, K(·, w)q〉H(K) = real part of q∗K(w, v)q

=
〈

χ(K(·, v))
(

a

−b

)

, χ(K(·, w))
(

c

−d

)〉

H(χ(K))

.

This expression extends on linear combinations with real coefficients and this
allows to conclude the proof. �

We leave to the reader to check that the previous result is false if one considers
the complex structures rather than the real structures of the spaces.

10. Quaternionic inner product spaces

We consider a (right) vector H–space P endowed with a form [·, ·] which is her-
mitian and linear (as in Definition 5.5) but for which the positivity hypothesis is
replaced by the following reality and non–degeneracy hypothesis:

• [f, f ] is a real number for all f ∈ P.
• If f ∈ P is such that [f, g] = 0 for all g ∈ P then f = 0.

We will call such a space a (non–degenerate) quaternionic inner product space. As
in the classical case, two elements f and g of P will be called orthogonal (notation:
f [⊥]g) if [f, g] = 0. Two subspaces of P will be called orthogonal if every element
of the first is orthogonal to every element of the second. For M, a subset of P, we
set

M[⊥] = {n ∈ P such that [n, m] = 0 for all m ∈ M} .

Since we assume that [f, f ] is real the following definitions also make sense in
the present setting: an element f ∈ P is positive (resp. negative or neutral) if
[f, f ] ≥ 0 (resp. [f, f ] ≤ 0 or [f, f ] = 0). A subspace M ⊂ P will be called positive
(resp. negative, neutral) if [f, f ] ≥ 0 (resp. [f, f ] ≤ 0 or [f, f ] = 0) for all f ∈ M.
It will be called positive definite if [f, f ] > 0 for f �= 0 and similarly it will be
called negative definite if [f, f ] < 0 for such f . It will be called maximal positive
(resp. negative, neutral) if it is maximal with respect to this property. We will say
that M is maximal positive definite (resp. negative definite) if [f, f ] > 0 (resp.
[f, f ] < 0) for all f �= 0 ∈ M.

From the definition of the inner products of PR and PC it is easy to prove
that:

Proposition 10.1. Let P be an inner product space and let M is a positive (resp.
strictly positive) (resp. negative) subspace of P. Then:
(1) MR is a positive (resp. strictly positive) (resp. negative) subspace of PR.
(2) MC is a positive (resp. strictly positive) (resp. negative) subspace of PC.
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Definition 10.2. The space M will be called projectively complete (or orthocom-
plemented) if

M + M[⊥] = P.

See [6, Definition7.8 p.44], [8, §9 p. 18]. The notion of orthogonal complement
is more involved in a general inner product space than it is in a Hilbert space and
not every subspace is projectively complete. The following proposition is what we
need in the present work and is used several times in the sequel.

Proposition 10.3. Every finite dimensional definite subspace of a quaternionic in-
ner product space is projectively complete,

Proof. We follow the proof of [8, Lemma 9.8 p. 20] and assume that the subspace
N of the quaternionic inner product space V is positive definite and of dimension
N < ∞. Let n1, . . . , nN be an orthonormal basis of N and for f ∈ V write:

f =

(
N∑

1

nj [f, nj ]

)

+

(

f −
N∑

1

nj [f, nj ]

)

.

We have
∑N

1 nj [f, fj ] ∈ N and (f −∑N
1 nj [f, fj ]) ∈ N [⊥] and this concludes the

proof.
The case of negative definite spaces is treated in a similar way. �

Definition 10.4. Let g1, . . . , gn be n elements of a quaternionic inner product space
P. The Gram matrix associated to the gj is the n×n hermitian matrix with (�, j)
entry equal to [gj , g�]P .

Let g = (g1 g2 · · · gn) ∈ Pn. Then for c, d ∈ Hn we have

[gc, gd]P = d∗Gc.

Thus, with some abuse of notation one can interpret the Gram matrix as
G = [gt, g], where the inner product is understood component–wise.

Definition 10.5. A quaternionic inner product space H with indefinite inner prod-
uct [·, ·] is called a quaternionic antiHilbert space, or the antispace of a quaternionic
Hilbert space, if H endowed with the inner product −[·, ·] is a quaternionic Hilbert
space.

The following lemma played a central role in the arguments in [2]. It will also
have an important role here.

Lemma 10.6. [2, Lemma 1.1.1′ p. 4]. Let g1, . . . , gn be vectors in a quaternionic
inner product space P and let G = ([gj , g�]) be their Gram matrix. Then the
number of negative eigenvalues of G coincides with the maximum dimension of a
subspace N of the span of the gj which is the antispace of a quaternionic Hilbert
space in the inner product of P.
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Proof. We follow the proof of [2, Lemma 1.1.1′ p. 4]. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the
eigenvalues of G and let ν−(G) denote the number of strictly negative eigenvalues
of G. Write

G = U∗
(

D− 0
0 D+

)

U

where U ∈ H
n×n is unitary, D− and D+ are diagonal, with

D− = diag (λ1, . . . , λν−(G)).

The ν−(G) vectors defined by GU

(
Iν−(G)

0

)

have as Gram matrix D− and there-

fore form an antispace of a quaternionic Hilbert space. Thus

ν−(G) ≤ maxdim N
where the maximum is taken over all such spaces.

Conversely, let N ⊂ l.s. {g1, . . . , gn} be the antispace of a quaternionic Hilbert
space, and let n1, . . . , ns be an orthonormal basis of N . There exists a matrix
X ∈ Hn×s such that (n1 n2 · · ·ns) = (g1 g2 · · · gn)X and so

−Is = X∗GX.

By Lemma 3.18 we have ν−(G) ≤ s, and this ends the proof. �

11. Number of negative squares

Thanks to Proposition 3.11 the next definition makes sense:

Definition 11.1. An Hn×n–valued function K(z, w) defined on a set Ω has κ nega-
tive squares if it is hermitian and if for every choice of m ∈ N and of z1, . . . , zm ∈ Ω
the m × m block hermitian matrix with �j entry K(z�, zj) has at most κ strictly
negative eigenvalues, and exactly κ strictly negative eigenvalues for some choice of
m, z1, . . . , zm.

An apparently different definition is:

Definition 11.2. An Hn×n–valued function K(z, w) defined on a set Ω has κ nega-
tive squares if it is hermitian and if for every choice of m ∈ N, of z1, . . . , zm ∈ Ω and
of vectors c1, . . . , cm ∈ Hn the m×m hermitian matrix with �j entry c∗�K(z�, zj)cj

has at most κ strictly negative eigenvalues, and exactly κ strictly negative eigen-
values for some choice of m, z1, . . . , zm and c1, . . . , cm ∈ Hn.

Proposition 11.3. Definitions 11.1 and 11.2 are equivalent.

Proof. Let
◦

P(K) denote the linear span of the functions of the form z �→ K(z, w)p
where w varies in Ω and p varies in H

n. The (in general indefinite) inner product

[K(·, v)q, K(·, w)p] ◦
P(K)

= p∗K(w, v)q.
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is readily seen to be well–defined. By Lemma 10.6 the function K has κ negative
squares in either way if and only if the dimension of a maximum antispace of a

quaternionic Hilbert space in
◦

P(K) has dimension κ. �

When the function K has a finite number of negative squares we will see

in Section 13 that the space
◦

P(K) admits a closure which is a quaternionic re-
producing kernel Pontryagin space (see the following section, Section 12, for the
definition of a quaternionic Pontryagin space).

Proposition 11.4. Let K(z, w) be a C
n×n–valued function having κ negative squares

on a set Ω. Then:
(1) The function B(K(z, w)) has 4κ negative squares.
(2) The function χ(K(z, w)) has 2κ negative squares.

As an illustration, see Example 7.5. The proof of the proposition follows
exactly the proof of Proposition 7.2 and will be omitted.

The following result characterizes functions which have a finite number of
negative squares. The proof is deferred to the last section of the paper.

Theorem 11.5. An Hn×n–valued function K(z, w) defined on a set Ω has at most κ
negative squares if and only if it can be written as K(z, w) = K+(z, w)−K−(z, w)
where both K+ and K− are positive and where moreover K− is of finite rank. It
has exactly κ negative squares if moreover

H(K+) ∩H(K−) = {0}.

12. Quaternionic Pontryagin spaces

A number of books have appeared on the theory of Krĕın and Pontryagin spaces
(and more generally, on spaces with an indefinite metric) and we refer in partic-
ular to [6], [8] and [25]. In this section we present a short introduction into the
quaternionic setting.

Definition 12.1. A quaternionic (right) inner product space (P, [·, ·]) is called a
quaternionic Pontryagin space if there exist two subspaces P+ and P− of P with
the following properties:

1. The space P− is finite dimensional.
2. P+ and P− are orthogonal:

[p+, p−] = 0 ∀(p+, p−) ∈ P+ × P−.

3. The space P+ endowed with the form [·, ·] and the space P− endowed with
the form −[·, ·] both are quaternionic Hilbert spaces.

4. It holds that
P = P+ ⊕ P−. (12.1)
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The last item means that every element in P admits a decomposition p =
p+ + p− where (p+, p−) ∈ P+ × P−. This decomposition is unique. Indeed, if one
can write 0 = p+ + p− (p+, p−) ∈ P+ × P− we have p− ∈ P+ ∪ P− and hence
[p−, p−] = 0 so that p− = 0.

A decomposition as in Definition 12.1 is called a fundamental decomposition.
Such a decomposition is in general not unique.

A more general concept would be that of quaternionic Krĕın space, where the
finite dimensionality requirement is dropped. Already in the case of the complex
field C the situation is much more complicated; see [37], [19], [1]. We will not
consider this case here.

We note that P endowed with the inner product

〈f, g〉 = [f+, g+] − [f−, g−] (12.2)

is a quaternionic Hilbert space as defined in Section 5. We set ‖f‖ = 〈f, f〉.
Proposition 12.2. The form [·, ·] is continuous with respect to the topology defined
by (12.2). More precisely, it holds that

|〈f, g〉|2 ≤ ‖f‖2 · ‖g‖2. (12.3)

Proof. By the Cauchy-Schwarz inequality (5.6) we have

|[f±, g±]2| ≤ [f±, f±] · [g±, g±].

Therefore, using the triangle inequality (2.9),

|〈f, g〉|2 ≤ (|[f+, g+]| + |[f−, g−]|)2

≤
(√

[f+, f+] ·
√

[g+, g+] +
√
−[f−, f−] ·

√
−[g−, g−]

)2

and using the Cauchy–Schwarz inequality in R2

≤ ([f+, f+] − [f−, f−]) · ([g+, g+] − [g−, g−])

= ‖f‖2 · ‖g‖2

and hence the result. �
The decomposition (12.1) is not unique in general but the following funda-

mental result holds:

Theorem 12.3. Let P be a quaternionic Pontryagin space. The norms defined by
(12.2) corresponding to different fundamental decompositions are all equivalent.

The same result (and almost the same proof) hold for quaternionic Krĕın
spaces. Before proving the theorem we note that:

Lemma 12.4. Let P = P+⊕P− be a fundamental decomposition of P. It holds that

P+ = P [⊥]
− ,

P− = P [⊥]
+ .
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Proof. It is clear that P− ⊂ P [⊥]
+ . Let now h ∈ P [⊥]

+ \P− and let h = h++h− be the
decomposition of h along the fundamental decomposition with (h+, h−) ∈ P+×P−.
Then,

0 = [h, p+]

for all p+ ∈ P+ since h ∈ P [⊥]
+ . Thus

0 = [h+, p+]

and so h+ = 0. Thus h ∈ P− ∩ P+ and so h = 0 and hence the result. �

As a corollary we have that

P− = P [⊥⊥]
− , P+ = P [⊥⊥]

+ . (12.4)

Proof of Theorem 12.3. We follow and somewhat simplify the proof of the classical
result in [6, Theorem 7.19, p. 47]. Let P = N+ ⊕ N− be another fundamental
decomposition of P.

STEP 1: The space N [⊥⊥]
+ is closed in the topology defined by the first de-

composition.

This follows from the definition

N [⊥⊥]
+ =

{
f ∈ P such that [f, g] = 0 for all g ∈ N [⊥]

+

}
(12.5)

and from the continuity of the form [·, ·] (see Proposition 12.2 for the latter).
STEP 2: The space N+ is closed in the topology defined by the first decom-

position.

The claim follows from the previous step and from (12.4).

STEP 3: Let n = n+ + n− ∈ P with n± ∈ N±. The maps n �→ n± are
continuous.

We use Proposition 10.3. Let n1, . . . , nN be an orthonormal basis of N−.
Then

n− =

(
N∑

1

nj [n, nj ]

)

and n+ =

(

f −
N∑

1

nj [f, nj ]

)

.

The map n �→ n− is then clearly continuous and so is n+ = n − n−.
STEP 4: The topology defined by the first decomposition restricted to N+

and the restriction of [·, ·] to N+ are equivalent.

Let n+ ∈ N+ and let n+ = p+ + p− be its decomposition along the first
fundamental decomposition. Then,

[n+, n+] = [p+, p+] + [p−, p−] ≤ [p+, p+] − [p−, p−] = 〈n+, n+〉
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and therefore the identity map is a contraction from N+ endowed with its intrinsic
norm onto N+ endowed with the norm defined by the first decomposition. Since
N+ is a Hilbert space with either norm (by definition for the intrinsic norm and
thanks to STEP 2 for the first), the open mapping theorem (see Theorem 6.3 and
the discussion preceding it) the identity is bicontinuous.

In the preceding step one can replace N+ by N− and [·, ·] by -[·, ·]. The
arguments are simpler since all norms on a finite dimensional quaternionic Hilbert
space are equivalent; see [17, Théorème 1.1 p. 24].

STEP 5: The two topologies are equivalent. Let n ∈ P and let n = n+ + n−
be its decomposition with respect to the second fundamental decomposition. We
denote by ‖·‖1 the norm defined by the second decomposition. Using the preceding
step and STEP 3 we have:

‖n‖1 ≤ ‖n+‖1 + ‖n−‖1

≤ ‖n+‖ + k‖n−‖ (k > 0)
≤ (1 + k)‖n‖

and once more the open mapping theorem allows to conclude. �

The different fundamental decompositions define thus equivalent topologies.
We will endow the quaternionic Pontryagin space with any of these.

Proposition 12.5. Let P be a quaternionic Pontryagin space and let P = P+ ⊕P−
be a fundamental decomposition. Then P+ (resp. P−) is maximal strictly positive
(resp. maximal strictly negative).

Proof. Assume that there is a strictly positive subspace L such that P+ ⊂ L and
let h ∈ L\P+. Let h = h+ +h− be the decomposition of h along the fundamental
decomposition with (h+, h−) ∈ P+ × P−. Then, as in the argument in the proof
of Lemma 12.4 one shows that h− = 0 and so that L = P+. �

As a corollary we have:

Proposition 12.6. The dimensions of the spaces P− (as vector spaces) are the same
for all decompositions (12.1).

Proof. Indeed all the spaces P− are maximal strictly negative and by the finite
dimensional hypothesis have the same dimension. �

One can be a bit more precise and prove the following result. See [6, Theorem
4.2, p. 24] for the complex case.

Proposition 12.7. Let L be a strictly positive (resp. strictly negative) subspace
of the quaternionic Pontryagin space P. Let P = P+ ⊕ P− be a fundamental
decomposition and let P+ and P− be the associated orthogonal projections. Then,
P+ is a homeomorphism from L onto P+L (resp. P− is an homeomorphism from
L onto P−L).
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Proof. We follow the proof in [6]. Let h ∈ L be such that P+h = 0. Then h =
(P+ + P−)h = P−h ∈ P−. So

[h, h] ≥ 0

since L is a positive subspace, while

[h, h] ≤ 0

since h ∈ P−. Hence [h, h] = 0 and h = 0. Thus P+ is one–to–one on P+. Moreover,
for h = h+ + h− ∈ L we have

[h+, h+] ≥ −[h−, h−] since L is a positive subspace.

Thus,

‖P+|Lh‖2 = ‖h+‖2 ≥ 1
2
(‖h+‖2 + ‖h−‖2

)
=

1
2
‖h‖2.

But P+ is continuous. By the open mapping theorem P+|L is a homeomorphism.
�

The following result is due to Pontryagin in the complex case and is of fun-
damental importance. We here follow the proof in Bognar’s book (see [8, p. 185]),
suitably adapted to the present case.

Theorem 12.8. Any dense subspace of a quaternionic Pontryagin space P contains
a maximal uniformly negative subspace.

Proof. Let L denote the dense subspace. We fix P = P+⊕P− to be a fundamental
decomposition of the quaternionic Pontryagin space P. By Theorem 5.8 the Hilbert
space (P−,−[·, ·]) has an orthonormal basis e1, . . . , , ek:

−[e�, em] = δ�m.

As earlier we denote by 〈·, ·〉 the positive inner product defined by the given fun-
damental decomposition and by ‖ ·‖ the associated norm. Let ε > 0 to be specified
later. There exist elements g1, . . . , gk ∈ L such that ‖g� − e�‖ ≤ ε for � = 1, . . . , k.
We claim that the space spanned by the gj is strictly positive for small enough
ε (it will follow in particular that the gj are linearly independent). Indeed, let
y =
∑k

1 g�q� with q1, . . . , qk ∈ H and set x =
∑k

1 e�q�. Then,

[x, x] = 〈x, x〉 (12.6)
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and we have

‖y − x‖ ≤
k∑

1

‖(g� − e�)q�‖

=
k∑

1

‖(g� − e�)‖ · |q�|

≤ ε

(
k∑

1

|qj |
)

≤ ε
√

k

√
√
√
√

k∑

1

|q�|2

= ε
√

k‖x‖.
In particular, by the triangle inequality,

‖y‖ ≤ ‖y − x‖ + ‖x‖ ≤ ‖x‖(1 + ε
√

k).

Thus, in view of (12.3),

|[y, y] − [x, x]| = |[y − x, x] + [y, y − x]|
≤ ε

√
k‖x‖ + ε

√
k‖x‖‖y‖

≤ ε
√

k‖x‖2(2 + ε
√

k).

Using (12.6) we see that [y, y] > 0 for ε small enough and x �= 0. �

Proposition 12.9. Let P be a quaternionic Pontryagin space with decomposition
(12.1) and negative index κ. A sequence xn converges in P to x ∈ P if and only
the following hold:

1. The sequence [xn, xn] converges to [x, x].
2. For z in a dense set L the sequence [xn, z] tends to [x, z].

Proof. The conditions are necessary since the inner product is continuous (see
Proposition 12.2). We now show that they are also sufficient. By Theorem 12.8
the space L contains a maximal negative space, say L−, of dimension κ. Write

P = L− + L[⊥]
−

and let xn = yn + tn and x = y + t be the corresponding decompositions of the
elements of the sequence xn and of x. Then for all z ∈ L− the limit

lim
n→∞−[yn, z]

exists. Since L− is finite dimensional it follows that limn→∞ yn exists (and is equal
to y ∈ L−). Therefore

lim
n→∞[tn, tn]
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exists, as well as
lim

n→∞[tn, z]

for z ∈ L ∩ L[⊥]
− . This implies that limn→∞ ‖tn − t‖ = 0 since L[⊥] is a Hilbert

space. �

Proposition 5.9 still makes sense in the setting of quaternionic Pontryagin
spaces.

Proposition 12.10. Let P be a quaternionic Hilbert space and let

[f, g] = [f, g]0 + e1[f, ge1]0 + e2[f, ge2]0 + e3[f, ge3]0.

where the [f, g]� (� = 0, 1, 2, 3) are real valued. The form [f, g]0 endows P with the
structure of a real Pontryagin space PR and the form

[f, g]0 + i[f, g]1
endows P with the structure of a complex Pontryagin space PC.

Theorem 12.11. Let P be a quaternionic Pontryagin space of index κ. Then PR is
a Pontryagin space of index 4κ and PC is a Pontryagin space of index 2κ.

Proof. Let P = P+ ⊕ P− be a fundamental decomposition of P. Then by Propo-
sition 5.3,

dim (P−)
R

= 4 dim P−.

By Proposition 10.1 (P−)
R

is a negative subspace and (P+)
R

is a positive subspace,
and they are still orthogonal in the real inner product. This concludes the proof.

�

13. Reproducing kernel quaternionic Pontryagin spaces

As already mentioned the next result originates with work of P. Sorjonen [41] and
L. Schwartz in [37] for the complex case.

Theorem 13.1. Let Ω be a set. There is a one–to–one correspondence between
quaternionic reproducing kernel Pontryagin spaces of Hn–valued functions on Ω
and Hn×n–valued functions which have a finite number of negative squares on Ω.

Proof. We follow the proof of Theorem 8.4. For the classical case the reader is
referred to [41], [37].

Assume that the function

K(z, w) : Ω × Ω =⇒ H
n×n

has κ negative squares. As in the proof of Theorem 8.4 let
◦

P(K) denote the linear
span of the functions of the form z �→ K(z, w)p where w varies in Ω and p varies
in Hn. The (now indefinite) inner product

[K(·, v)q, K(·, w)p] ◦
P(K)

:= p∗K(w, v)q.
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is well–defined and, as earlier, the reproducing kernel property

p∗f(w) = [f(·), K(·, w)p]

holds for all f ∈
◦

P(K). These two properties hold even if K does not have a finite
number of negative squares. The sequel of the argument does take into account
the finite number of negative squares. By Proposition 12.6 any maximal strictly

negative subspace of
◦

P(K) has dimension κ. Let N− be such a subspace. By
Proposition 10.3 one can write

◦
P(K)= N− + N [⊥]

− .

The space N [⊥]
− is a quaternionic pre–Hilbert space. Let f1, . . . , fκ be an orthonor-

mal basis of N−. Then, N [⊥]
− has reproducing kernel

KN [⊥](z, w) = K(z, w) −
κ∑

1

fj(z)f(w)∗. (13.1)

By Theorem 8.4, N [⊥]
− has a unique completion as a reproducing kernel Hilbert

space with reproducing kernel (13.1). We set N+ to be this completion and we set

P(K) := {f = f− + f+, f+ ∈ N+, f− ∈ N−, }
with the inner product

[f, f ] := [f−, f−] + [f+, f+]N+ .

This space is easily seen to be a quaternionic reproducing kernel Pontryagin
space with reproducing kernel K(z, w). We now prove its uniqueness and follow
the arguments in [2, p. 10]. Let (P ′, [·, ·]P) be another quaternionic reproducing

kernel Pontryagin space with reproducing kernel K(z, w). Then
◦

P(K) and hence
N− and N [⊥]

− are isometrically included in P ′. Thus N⊥
− is dense in P ′ �N− and

so its closure is isometrically included in P ′. We deduce that P(K) is isometrically
included in P ′ and equality follows as in the proof of uniqueness in Theorem
8.4. �

We conclude with the proof of Theorem 11.5. Assume first that the Hn×n–
valued function K(z, w) (with z, w ∈ Ω) is the reproducing kernel of the reproduc-
ing kernel Pontryagin space P(K) and let

P = P+ ⊕ P−

be a fundamental decomposition. One defines functions K+(z, w) and K−(z, w)
such that for every w ∈ Ω and c ∈ Hn

K(z, w)c = K+(z, w)c + K−(z, w)c

is the decomposition of the function z �→ K(z, w)c along this fundamental decom-
position. The functions K+ and K− are positive in Ω and are the reproducing
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kernels of P+ and P− respectively. Since P− is finite dimensional the function K−
is of finite rank κ = dim P− (Definition 9.7).

Conversely, assume that K(z, w) = K+(z, w) − K−(z, w) where K−(z, w) is
of finite rank. It follows from Lemma 9.7 that K has a finite number of negative
squares. There exists thus an associated quaternionic reproducing kernel Pontrya-
gin space P(K) and the other claims are obtained by considering the decomposition
of K as above from any fundamental decomposition of P(K).
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