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Abstract. Double operator integrals are a convenient tool in many problems
arising in the theory of self-adjoint operators, especially in the perturbation
theory. They allow to give a precise meaning to operations with functions
of two ordered operator-valued non-commuting arguments. In a different lan-
guage, the theory of double operator integrals turns into the problem of scalar-
valued multipliers for operator-valued kernels of integral operators.

The paper gives a short survey of the main ideas, technical tools and
results of the theory. Proofs are given only in the rare occasions, usually they
are replaced by references to the original papers. Various applications are
discussed.
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1. Introduction

1.1.

Formally, Double Operator Integrals are objects of the type

Q =
∫

Λ

∫
M

φ(λ, µ)dE(λ)TdF (µ). (1.1)

So far, this is only a formal expression. In (1.1) (Λ,E(·)) and (M,F (·)) are two
spaces with spectral measure. The values of the measure E(·) are orthogonal pro-
jections in a Hilbert space H, and similar for the measure F (·) in a Hilbert space
G. Both spaces H,G are always supposed separable. The scalar-valued function
φ(λ, µ) (the symbol of the integral) is defined on Λ × M . Finally, T is a linear
bounded operator acting from G to H (notation T ∈ B(G,H)). It is clear that un-
der any reasonable definition the result Q of integration is also an operator acting
from G to H. Hence, the integral (1.1) defines a linear mapping

J E,F
φ : T �→ Q. (1.2)

Following I. Gohberg and M.G. Krein [22], we use the term transformer for linear
mappings acting on operators. So, the mapping J E,F

φ is a special case of a trans-
former. Often we use for it a shortened notation Jφ. In particular, we do this when
the spectral measures E,F are fixed. Sometimes we write

Qφ := J E,F
φ T. (1.3)

If E,F are the spectral measures of self-adjoint operators A,B (E = EA, F =
FB), then instead of (1.3) we write

Qφ := JA,B
φ T. (1.4)

In a simplest situation, double operator integrals (1.1), and also integrals of
higher multiplicity, first appeared in 1956, in the paper [18] by Y.L. Daletskii and
S.G. Krein. Their purpose was differentiation of the functions h(A(t)) where h
is a smooth scalar-valued function on R (say, with compact support) and A(t) is
a smooth function whose values are bounded self-adjoint operators in a Hilbert
space H. The starting point was the representation

h(A(t)) =
∫

R

h(λ)dEA(t)(λ) = −
∫

R

h′(λ)EA(t)(λ)dλ.

Based upon this representation and beginning from the case dimH < ∞, the
authors of [18] came to the equality, now known as the Daletskii – Krein differ-
entiation formula; see equation (1.12) of this Introduction. It was justified under
rather restrictive assumptions on h, and the authors did not consider the double
and multiple operator integrals as a subject deserving a special study.

The authors of the present paper started their work on double operator inte-
grals in 1964. Our interest in the topic was motivated by the work of M.Sh. Birman
on the stationary approach to the scattering theory, see his papers [2], [3]. This
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required an analysis of many natural questions to which no answers were known
at that time. In particular, it was necessary to be able to show that for a wide
class of non-smooth symbols φ the assumption T ∈ S1 (where S1 stands for the
trace class) implies Qφ ∈ S1. In this connection, M.G. Krein attracted Birman’s
attention to the paper [18], and influenced by his remarks we started our work on
the subject.

It was understood rather soon that indeed, the double operator integrals
provide an appropriate tool for study of questions of this nature. But it was also
realized that one could not answer them without developing a comprehensive the-
ory of such integrals. This was done in a series of authors’ papers starting from
[5]. As a result, varied important questions, including the above one, got their
adequate answers. Among contributions of other mathematicians to this topic the
most substantial results are due to V. Peller [30], [32] and S. Rotfeld [34]. Sec-
tion 10 contains further historical remarks and comments on the literature on the
subject.

The most important applications of the double operator integrals concern
Perturbation Theory. With their help, an integral representation of the operator
h(B) − h(A) can be given. It yields useful estimates of the norm of the latter
operator in various operator ideals. Further, this techniques allows to justify the
Daletskii – Krein differentiation formula in a more general situation. It is important
that if A′(t) belongs to an operator ideal, then the derivative in (1.12) exists in
the norm of the same ideal. This fact plays a basic role in applications of double
integrals to the Spectral Shift Function of I.M. Lifshits – M.G. Krein, see section
9.

In most cases the theory of operator integrals deals with the symbols contin-
uous in at least one of the variables. However, there are also some useful results
for discontinuous symbols. They are closely related to the theory of the so-called
triangle transformer for which Λ = M = R and σ(λ, µ) = θ(λ− µ), where θ is the
Heaviside function. For F = E this transformer is one of the main technical tools
in the theory of Volterra operators, see the book [22].

It turns out that the main estimates for this transformer extend, upon a
different technical basis, to the case when the spectral measures are different. A
consequence of this fact is a general result on integration of functions of bounded
variation (in one variable), Theorem 7.3, which in its turn leads to an important
Theorem 8.6.

There exists a realization of operator integrals, which on the first sight has
nothing in common with the expression (1.1). Namely, let T be an integral op-
erator acting between two L2-spaces, with the kernel T (λ, µ). Given a scalar-
valued, bounded function φ(λ, µ), consider the integral operator Q with the kernel
T (λ, µ)φ(λ, µ). Some useful properties of the transformation T �→ Q were studied
in [22], section II.5.

It turns out that this transformation can be written as a double integral (1.1)
with the symbol φ, if one chooses the spectral measures E,F in an appropriate
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way. What is more, this realization is exhaustive, i.e. any transformer (1.1) can
be realized as the above multiplier transformation. However, the “usual” scalar-
valued kernels are not sufficient for this purpose, and one needs integral operators
with operator-valued kernels. We discuss this material in sections 3.2 and 4.1.

This point of view allows to consider the pseudo-differential operators on R
d

as a special case of a transformer of the type (1.4) applied to the identity operator
I, see section 6.

The authors’ papers on the theory and applications of operator integrals were
originally published in Russian mathematical journals of minor importance; not
all of them were translated into English, and the complete exposition was never
written. This paper is an attempt of such exposition. This is a survey where all
the basic problems and main applications are discussed in detail. As a rule, the
proofs are absent. Instead, we give the relevant references.

The remaining part of Introduction is an informal description of the contents
of the paper.

1.2. Preliminary remarks

The first problem in the theory of operator integrals is to give their rigorous
definition for as broad as possible class of symbols. It turns out that there is
no universal such definition: the proper definition, and hence also the class of
admissible symbols, depend on the space of operators we wish to deal with. In this
respect the space S2 of Hilbert – Schmidt operators plays a special role: here the
integral (1.1) can be well defined for an arbitrary bounded and measurable symbol
(measurability with respect to an appropriate measure σ on Λ×M). The measure
σ is determined by the given spectral measures E and F ; the operator Qφ is also
Hilbert – Schmidt and moreover,

‖Qφ‖S2 ≤ (σ)- sup |φ| ‖T‖S2 . (1.5)

All this, including the construction of the measure σ, will be explained in section
3.

For other spaces of operators the situation is more complex. The most impor-
tant case is when the integral (1.1) can be well defined for any bounded operator
T and the resulting operator Qφ is also bounded. Then the transformer J E,F

φ

acts in the space B(G,H) and by Closed Graph Theorem is bounded. Theorem 4.1
gives a full description of the class M = M(E,F ) of all admissible symbols of this
type. If φ ∈ M, then the transformer J E,F

φ is also bounded in the space S1 and in
the space S∞ of all compact operators. It is possible to consider the action of the
integral (1.1) between other spaces of operators, and the spaces for T and for Q
may differ from each other. It is worth mentioning that the exhaustive description
of the class of admissible symbols for the most of cases is not known. However,
there are many sufficient conditions which allow one to apply the general results
of the theory of operator integrals.
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If a space S of operators is chosen, then the symbols φ, such that the trans-
former Jφ = J E,F

φ is bounded in S, form a commutative algebra of functions on
Λ × M , with complex conjugation as the involution. Namely, it turns out that

Jφ1+φ2 = Jφ1 + Jφ2 ; Jφ1φ2 = Jφ1Jφ2 ; Jφ̄ = J ∗
φ . (1.6)

Moreover, if S is a Banach space, then the above algebra is a Banach algebra with
respect to an appropriate norm. This points out on the possibility to develop a
sort of operational calculus for the integrals (1.1). Our main goal is the detailed
study of the transformer (1.2) in various classes of operators, obtaining estimates
for the corresponding norm of Jφ, and so on.

1.3. Functions of non-commuting operators

Suppose that G = H and in (1.1) Λ = M = R, E = EA, and F = FB where A,B
are self-adjoint operators. Then it is natural to regard Qφ as the function φ of the
pair A,B, separated by the operator T. Here the “argument” A stands on the left
side of T, and B stands on the right side of T. The operators A and B are not
assumed commuting. Even if they do commute, this does not affect the general
picture: indeed, the presence of the operator T prevents any possible gains which
might come from the commutation of A and B. Of course, this situation changes if
one makes some assumptions on the properties of the commutators [A,B], [A,T]
and [B,T]. However, such assumptions are not natural for the general theory of
double operator integrals.

It is quite clear, how to define the operator Qφ for the case when φ(λ, µ) =
α(λ)β(µ) where α and β are bounded functions. Indeed, then by Spectral Theorem

α(A)Tβ(B) =
∫

α(λ)dE(λ)T
∫

β(µ)dF (µ).

Formally, this can be re-written as

Qφ = α(A)Tβ(B) =
∫

R

∫
R

α(λ)β(µ)dE(λ)TdF (µ). (1.7)

Actually, one integrates only over the spectra, that is over σ(A)×σ(B). Moreover,
for the operator Qφ given by (1.7) we have

‖Qφ‖ ≤ sup
λ,µ

|α(λ)||β(µ)|‖T‖. (1.8)

More exactly,
‖Qφ‖ ≤ ‖α‖L∞(Λ;E)‖β‖L∞(M ;F )‖T‖

where, say, L∞(Λ;E) denotes the space L∞ on Λ with respect to the spectral
measure E.

The equality (1.7) can serve as the definition of the integral (1.1) for the
functions φ(λ, µ) = α(λ)β(µ). Clearly, this definition extends to the finite linear
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combinations of such monoms, in particular to the case when φ is a polynomial in
λ, µ and the operators A,B are bounded. However, the estimate similar to (1.8),
i.e.

‖Qφ‖ ≤ sup
λ,µ

|φ(λ, µ)|‖T‖

is no longer valid. This is one of the main difficulties we encounter when developing
the theory of operator integrals. The estimate (1.5) shows that this difficulty can
be overcome if one is interested in estimates in the Hilbert – Schmidt norm, rather
than in the usual operator norm.

A similar situation arises if we are dealing with two families of mutually
commuting self-adjoint operators, unitary, or normal operators. Then E(·) and F (·)
are the joint spectral measures for these families, and depending on the situation
we take Λ = R

d, T
d, or C

d, and similar for M . In sections 6.2, 6.3 we will see that
other choice of Λ or M can also appear in a natural way.

1.4. On applications to the perturbation theory

Here we briefly discuss one of possible applications of double operator integrals.
Let A and B be two self-adjoint operators in a Hilbert space H, for simplicity we
assume them bounded. Let h(λ) be a function defined on an interval which contains
the spectra of both operators. One of the central problems of the perturbation
theory is study of the operator h(B)− h(A), depending on the properties of T :=
B − A. In particular, it would be useful to have an explicit representation of
h(B)− h(A) in terms of T. To achieve this goal, let us try to give meaning to the
“crazy” formula

h(B) − h(A) =
h(B) − h(A)

B − A
T. (1.9)

Rather surprisingly, this can be done in the language of operator integrals, with
the help of the algebraic properties (1.6) of the transformers Jφ = JA,B

φ . The
proper realization of the meaningless equality (1.9) is the formula

h(B) − h(A) =
∫

σ(A)

∫
σ(B)

φh(λ, µ)dEA(λ)TdFB(µ). (1.10)

where

φh(λ, µ) :=
h(µ) − h(λ)

µ − λ
.

The formula (1.10) will be justified in section 8.1.

An integral representation similar to (1.10) is valid also for quasi-commutators
Jh(B) − h(A)J where J is one more bounded operator. Namely,

Jh(B) − h(A)J (1.11)

=
∫

σ(A)

∫
σ(B)

φh(λ, µ)dEA(λ)(JB − AJ)dFB(µ).

Clearly, (1.10) is a particular case of (1.11). Let us point out a minor difference
between these two equalities: if in the right-hand side of (1.11) we change places of
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the spectral measures, then the left-hand side becomes h(B)J− Jh(A); for (1.10)
this change is irrelevant. It is also irrelevant for the case when A = B, that is
for commutators. Note also that for the equality (1.11) the assumption G = H is
unnecessary, and the operator J acts from G to H.

Both formulas (1.10) and (1.11) can be treated as a way to linearize a non-
linear problem. Let us explain this for (1.10). The transformer Jφh

is a linear
mapping which acts on any operator T of an appropriate class, rather than on the
operator B − A only. Thus the non-linear problem on the representation of the
operator h(B) − h(A) in terms of the unperturbed operator A and the perturba-
tion B − A is embedded into the linear problem on the properties of the linear
transformer Jφh

. It is noteworthy that such linearization often gives very precise
results for the original problem.

The representation (1.10) for the operator h(B) − h(A) leads to useful esti-
mates for its norm in various spaces of operators. Further, consider the operator-
valued function A(t) = A + tT (so that A(0) = A, A(1) = B). By (1.10),

h(A(t)) − h(A(0))
t

=
∫

σ(A)

∫
σ(A(t))

φh(λ, µ)dEA(λ)TdEA(t)(µ).

Formally passing to the limit as t → 0, we come to the equality

dh(A(t))
dt

∣∣∣∣
t=0

=
∫

σ(A)

∫
σ(A)

φh(λ, µ)dEA(λ)TdEA(µ) (1.12)

known as the Daletskii – S. Krein formula. The limiting procedure here needs a
justification which can be given under certain assumptions on the function h and
the operator T. We discuss this problem in section 8.3.

It is also possible to calculate the further derivatives and to write the Taylor
formula for the operator-valued functions. However, this requires integrals of mul-
tiplicity greater than two. Their theory is developed up to a lesser extent and we
do not include it in our exposition.

1.5. Double operator integrals as multiplier transformation

The double operator integral admits a useful equivalent interpretation as a mul-
tiplier transformation for kernels of the integral operators. Here we give some
preliminary explanations, restricting ourselves to the Hilbert – Schmidt operators
acting on scalar-valued functions.

Let (Λ, ρ) and (M, τ) be two separable measure spaces and Γ = Λ × M ,
σ = ρ × τ . Consider the Hilbert spaces G = L2(M, τ) and H = L2(Λ, ρ). Any
operator T ∈ S2(G,H) can be realized as an integral operator with a kernel
T (λ, µ) from L2(Γ, σ):

v(λ) = (Tu)(λ) =
∫

M

T (λ, µ)u(µ)dτ(µ). (1.13)
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Moreover,

‖T‖2
S2

= ‖T‖2
L2(Γ,σ) =

∫
Γ

|T (λ, µ)|2dρ(λ)dτ(µ). (1.14)

Let now a function φ ∈ L∞(Γ, σ) be given. Consider the mapping Mφ which
transforms the operator (1.13) into the integral operator whose kernel is the prod-
uct φ(λ, µ)T (λ, µ):

(MφTu)(λ) =
∫

M

φ(λ, µ)T (λ, µ)u(µ)dτ(µ). (1.15)

It is clear that the mapping Mφ is linear, meets the properties (1.6) and is bounded
in S2(G,H):

‖MφT‖S2 ≤ ‖φ‖L∞(Γ,σ)‖T‖S2 , (1.16)

cf. (1.5). This leads to the conclusion that there should be a connection between
the multiplier transformation Mφ and the transformer Jφ generated by the double
operator integral. It turns out that indeed this is the case.

In order to show this, let us consider the spectral measure E(·) in H, formed by
the operators of multiplication by the characteristic functions χδ of the measurable
subsets δ ⊂ Λ, i.e. (E(δ)u)(λ) = χδ(λ)u(λ) for any u ∈ H. Let also F (·) be the
similar spectral measure in the space G. It is not difficult to verify that

Mφ = J E,F
φ . (1.17)

Moreover, let E,F be arbitrary spectral measures. It turns out that any trans-
former J E,F

φ which is bounded in the space S2 can be realized as the multiplication
transformation Mφ in an appropriate class of kernels. However, the scalar-valued
kernels are not sufficient for achieving this goal. One has to consider the kernels
whose values themselves are operator-valued functions, and the appropriate lan-
guage is the one of von Neumann’s direct integrals of Hilbert spaces. This material
is discussed in section 3.2 and its generalization for the spaces of operators differ-
ent from S2 – in section 5. See also section 6 for applications of this scheme to
pseudodifferential operators.

2. Auxiliary material

The most of the material we need can be found in the textbook [13].

2.1. Reminder on spectral measures

Below E (in more detailed notation, (Λ,E)) is a spectral measure in a separable
Hilbert space H, defined on a σ-algebra of subsets of a given set Λ. This σ-algebra
is not reflected in our notations, and all the subsets encountered are assumed
measurable, i.e. they belong to this σ-algebra. The values E(δ) of the spectral
measure E are mutually commuting orthoprojections in H. For each element h ∈ H
the function ρh(δ) = (E(δ)h, h) is a finite scalar measure.
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For two scalar measures ν1, ν2 defined on the same σ-algebra the relation
ν1 ≺ ν2 means that given a measurable set δ, the equality ν2(δ) = 0 implies
ν1(δ) = 0. The measures ν1, ν2 are called equivalent (ν1 ∼ ν2), if ν1 ≺ ν2 and
ν2 ≺ ν1. The class of all measures equivalent to a given measure ν is called its
type.

It is convenient to single out a scalar measure on Λ, say ρ, whose type coin-
cides with the type of the spectral measure E. This means that ρh ≺ ρ for each
h ∈ H and there exists an element h0 ∈ H such that ρ ∼ ρh0 . Any such h0 is called
element of maximal type with respect to the spectral measure E. The elements of
maximal type (and measures ρ) do always exist provided that H is separable.

2.2. Integration with respect to a spectral measure

Let α(λ) be a measurable and (E)-a.e. finite function on Λ, then the integral
Iα :=

∫
Λ

α(λ)dE(λ) is well defined; this is an operator in H which is bounded
if and only if α ∈ L∞(Λ) := L∞(Λ, ρ). As a rule, this is the only case we are
interested in in this paper. If Λ = R and E is a spectral measure of a self-adjoint
operator A in H, then by definition Iα = α(A).

The mapping α �→ Iα satisfies the following properties:

Iα1+α2 = Iα1 + Iα2 , Iα1α2 = Iα1Iα2 , Iᾱ = I∗α; (2.1)

‖Iα‖ = ‖α‖L∞ . (2.2)

This shows that α �→ Iα is an isometric isomorphism of the Banach C∗-algebra
L∞(Λ) onto a commutative and involutive sub-algebra of the algebra B = B(H).

It is useful to add that for any h ∈ H

Iαh =
∫

Λ

α(λ)d(E(λ)h); ‖Iαh‖2 =
∫

Λ

|α(λ)|2dρh(λ); (2.3)

in the first integral we integrate with respect to the vector-valued measure E(·)h.

2.3. Direct integral of Hilbert spaces

Each Hilbert space H with a given spectral measure (Λ,E) can be decomposed
into the direct integral of Hilbert spaces:

H =
∫

Λ

⊕H(λ)dρ(λ) (2.4)

where ρ is a chosen scalar measure whose type coincides with the type of E. The
meaning of the equality (2.4) is that there is a unitary operator which identifies
each element h ∈ H with a function h(λ) = hΛ,E(λ) with values in H(λ) (in writing,
h ∼ h(λ)). Each function h(λ) is measurable, in an appropriate sense. As a matter
of fact, the term “function” is here not quite accurate, since h(λ) takes its values
in different spaces H(λ) for different λ ∈ Λ. See e.g. [13], Section 7.1 for more
detail.
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Unitarity means that

(h1, h2)H =
∫

Λ

(h1(λ), h2(λ))H(λ)dρ(λ), ∀h1, h2 ∈ H.

The decomposition (2.4) diagonalizes each operator Iα, i.e.

h ∼ h(λ) =⇒ Iαh ∼ α(λ)h(λ). (2.5)

3. Double operator integrals on S2

3.1. Basic definition

Let (Λ,E), (M,F ) be two spectral measures in the spaces H, G. It is convenient
to fix scalar measures ρ on Λ and τ on M whose types coincide with the types of
the spectral measures E,F respectively.

The Hilbert-Schmidt class S2 = S2(G,H) is a Hilbert space, with respect to
the scalar product

〈T,S〉 = tr(TS∗) = tr(S∗T). (3.1)

We shall construct a certain spectral measure on S2, the tensor product of measures
(Λ,E) and (M,F ), and define the transformer Jφ as integral with respect to this
spectral measure.

Consider the mappings{
E(δ) : T �→ E(δ)T for δ ⊂ Λ, T ∈ S2;
F(∂) : T �→ TF (∂) for ∂ ⊂ M, T ∈ S2.

(3.2)

Each operator E(δ) is an orthogonal projection in S2, the mapping δ �→ E(δ) is
σ-additive, and E(Λ) = I (the identity transformer on S2). So we see that E is
a spectral measure in S2, and the same for F . The type of E (of F) coincides
with that of E (of F ), so that both types are defined by the above measures ρ, τ .
It follows directly from the definition that for any bounded measurable functions
α(λ), β(µ) we have ∫

Λ

α(λ)d(E(λ)T) =
∫

Λ

α(λ)dE(λ) · T,

∫
M

β(µ)d(F(µ)T) = T ·
∫

M

β(µ)dF (µ).

The measures E and F commute, since one corresponds to the multiplication from
the left and another from the right.

The mapping

G(δ × ∂) = E(δ)F(∂) : T �→ E(δ)TF (∂) (3.3)

is an additive projection-valued function on the set of all “measurable rectangles”
δ × ∂ ⊂ Λ × M (orthogonal projections in S2). It turns out (see [16]) that this
function is σ-additive. The σ-additive projection-valued function G(∆) extends, in
a unique way, from the set of measurable rectangles ∆ = δ × ∂ to the minimal
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σ-algebra A0 of subsets in Λ×M , generated by such rectangles, and the extension
is σ-additive, so it is a spectral measure in S2. We denote it by the same symbol
G. It is convenient to add to A0 all the subsets e′ ⊂ e of sets e ∈ A0 of G-measure
zero, putting G(e′) = 0. The resulting family A is also a σ-algebra, and the spectral
measure G on A is N-full, cf. [13], section I.3.7. The type of G coincides with the
type of the scalar measure ρ × τ on Λ × M .

Now we take by definition

Jφ =
∫

Λ×M

φ(λ, µ)dG(λ, µ), (3.4)

or

JφT =
∫

Λ×M

φ(λ, µ)d(G(λ, µ)T). (3.5)

So, for bounded φ this is a bounded transformer in S2. The relations (2.1), (2.2)
turn into

Jφ1+φ2 = Jφ1 + Jφ2 , Jφ1φ2 = Jφ1Jφ2 ; (3.6)

Jφ̄ = J ∗
φ ; (3.7)

‖Jφ‖ = ‖φ‖L∞(Λ×M). (3.8)

If φ(λ, µ) = α(λ), then Jφ =
∫

Λ
α(λ)dE(λ), or JφT =

∫
Λ

α(λ)dE(λ) · T. The
similar formula is valid for Jφ with φ(λ, µ) = β(µ). Using this observation and
(3.6), we see that∫

Λ×M

α(λ)β(µ)d(G(λ, µ)T) =
∫

Λ

α(λ)dE(λ) · T ·
∫

M

β(µ)dF (µ).

This shows that our definition is compatible with the “naive” description suggested
in section 1.

3.2. Integrals on S2 as multipliers

In section 1.4 we already discussed the possibility to interpret the double operator
integral as a multiplier transformation for the kernels of integral operators. We did
this for the simplest situation when H = L2(Λ, ρ), G = L2(M, τ) and the spectral
measures E,F are formed by the operators of multiplication by the characteristic
functions of the measurable subsets in Λ and M respectively. In order to cover the
general case, we need the apparatus of direct integrals of Hilbert spaces.

Consider the decomposition (2.4) of the space H and the similar decomposi-
tion

G =
∫

M

⊕G(µ)dτ(µ) (3.9)

of the space G, which corresponds to the spectral measure (M,F ). There is a class
of integral operators which is closely connected with the pair of decompositions
(2.4), (3.9). Namely, consider the measure space (Λ × M,ρ × τ). Let T (λ, µ) be a
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measurable function (kernel) on Λ × M , whose values are linear operators acting
from G(µ) to H(λ). Suppose that T (λ, µ) ∈ S2(G(µ),H(λ)) a.e. and

‖T (λ, µ)‖S2 ∈ L2(Λ × M,ρ × τ).

Consider the operator T acting according to the rule

h(λ) =
∫

M

T (λ, µ)g(µ)dτ(µ). (3.10)

Then T ∈ S2(G,H) and, moreover,

‖T‖2
S2

=
∫

Λ×M

‖T (λ, µ)‖2
S2(G(µ),H(λ))dρ(λ)dτ(µ).

Conversely, each operator T ∈ S2(G,H) can be represented, in a unique way, as
the integral operator (3.10) with an appropriate operator-valued kernel T (λ, µ).
This scheme allows one to write

S2(G,H) =
∫

Λ×M

⊕S2(G(µ),H(λ))dρ(λ)dτ(µ). (3.11)

It turns out that it realizes the decomposition of this space, corresponding to the
spectral measure (Λ×M,G). We have to show that for any measurable subset ∆ ⊂
Λ×M and any operator T ∈ S2 the kernel of operator G(∆)T is χ∆(λ, µ)T (λ, µ).
It is sufficient to consider operators T = (·, ω)ϑ of rank one, since they span the
space S2. The kernel of such T is T (λ, µ) = ϑ(λ)ω(µ) where ϑ(λ) = ϑΛ,E(λ) and
ω(µ) = ωM,F (µ).

Suppose that ∆ = δ×∂, then G(∆)T = (·, F (∂)ω)E(δ)ϑ, and the correspond-
ing kernel is χδ(λ)ϑ(λ)χ∂(µ)ω(µ) = χ∆(λ, µ)T (λ, µ). This extends to arbitrary
measurable ∆ ⊂ Λ × M , q.e.d.

Applying the general formula (2.5) to this new situation, we find for any
φ ∈ L∞(Λ × M):

T ∼ T (λ, µ) =⇒ J E,F
φ T ∼ φ(λ, µ)T (λ, µ). (3.12)

In other words, the transformer J E,F
φ is realized as the multiplier transformation,

cf. (1.15).

4. Integrals on S1 and B
4.1. Class M

After the transformer Jφ is well defined on the class S2, the next important task is
its extension to the space B = B(G,H) of all bounded operators. This is not always
possible: we need some additional assumptions on the symbol φ. The scheme we
use below, has many classical analogs. It exploits the duality arguments.

Let S1 stand for the trace class of operators, then

S1 ⊂ S2 ⊂ B. (4.1)



Vol. 47 (2003) Double Operator Integrals 143

Moreover, the space B is adjoint to S1, with respect to the duality form given by
trace, cf. (3.1):

〈T,S〉 = tr(TS∗), T ∈ S1, S ∈ B. (4.2)

Any transformer Jφ with the L∞-symbol maps S1 into S2. Suppose that for a
given function φ its image lies in S1 and, moreover, Jφ is bounded as a transformer
on S1. It is possible (and not difficult) to show that then the transformer Jφ is
also bounded in S1 and has the same norm. The adjoint transformer Jφ

∗ acts in
the space B. The equality (3.7) shows that it is natural to define

JφT = (Jφ

∣∣
S1

)∗T, ∀T ∈ B. (4.3)

The properties (3.6) of the transformers Jφ extend to the whole of B.

If T ∈ S∞ (the space of all compact operators), then also JφT ∈ S∞. Indeed,
it is sufficient to show this for the dense in S∞ set K of finite rank operators. But
if T ∈ K, then JφT ∈ S1 ⊂ S∞. So, the defined in (4.3) transformer Jφ acts from
S∞ to S∞ and, moreover,

‖Jφ‖B→B = ‖Jφ‖S1→S1 = ‖Jφ‖S∞→S∞ . (4.4)
By interpolation, we obtain

‖Jφ‖B→B ≥ ‖Jφ‖S2→S2 = ‖φ‖L∞ . (4.5)

There is another, more direct way to define the transformer Jφ on the space
S∞. Namely, let φ ∈ L∞. Then Jφ is well defined on the class S2 which is dense
in S∞. If for a given φ the estimate holds

‖JφT‖B ≤ C‖T‖B, ∀T ∈ S2,

then Jφ extends to the whole of S∞ by continuity.
The two definitions are equivalent. Indeed, the space S1 is adjoint to S∞ with

respect to the same duality form (4.2); this time we should take T ∈ S∞, S ∈ S1.
Therefore, the adjoint transformer (Jφ

∣∣
S∞

)∗ is bounded in S1, and it is easy to
see that this transformer is nothing but Jφ

∣∣
S1

. Now, the adjoint to the latter is
the transformer Jφ on B and its restriction to S∞ coincides with the original
transformer.

Denote by MB the set of all functions φ on Λ×M , such that the transformer
Jφ is bounded on B. This is a normed algebra of function, with respect to the
norm

‖φ‖MB = ‖Jφ‖B→B.

The mapping φ �→ φ is an involution in MB. It easily follows from (4.5) that the
algebra MB is complete and hence, is a Banach C∗-algebra. The Banach algebras
MS1 and MS∞ are introduced in the same way. It follows from the above reasoning
that

M := MB = MS1 = MS∞ ,
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including equality of the corresponding norms.
The class M depends on the choice of the spectral measures E,F . We shall

use the detailed notations M(E,F ) when it is useful to reflect this dependence
explicitly.

Now we show how to interpret the transformers Jφ in B as multipliers. If
T ∈ S2, we shall denote by T = T (λ, µ) its operator-valued kernel with respect to
the pair of decompositions (2.4), (3.9) of the spaces H and G. Denote by K(S1)
the linear space of kernels of all trace class operators. Being equipped by the trace
norm of the corresponding operator, it becomes a Banach space. For any bounded
operator S, the linear functional ϕS(T) = tr(TS∗) can be considered as a linear
functional on K(S1). It is natural to call this functional the (generalized) kernel
of the operator S. This is in parallel with the generally accepted definition of a
distribution.

Suppose now that φ ∈ M and S ∈ B. Then we interpret the generalized kernel
of the operator JφS as the product φ(λ, µ)S(λ, µ). Of course, for each particular
operator S �∈ S2 this definition needs an accurate realization.

4.2. Criterion of φ ∈ M

The above construction does not give any analytical description of the algebra M.
Such description is given by the next result.

Theorem 4.1. Let φ ∈ L∞(Λ,M). Then the following three statements are equiva-
lent:

(i) φ ∈ M = M(E,F ).
(ii) For any g ∈ G, h ∈ H the integral operator

Kg,h : L2(M ; τg) → L2(Λ; ρh), (Kg,hu)(λ) =
∫

M

φ(λ, µ)u(µ)dτg(µ)

belongs to S1, and

sup
‖g‖=‖h‖=1

‖Kg,h‖S1 =: C < ∞.

Moreover, ‖φ‖M = C.
(iii) The symbol φ admits the factorization

φ(λ, µ) =
∫
T

α(λ, t)β(µ, t)dη(t) (4.6)

(where (T , η) is an auxiliary measure space) such that


A2 := (E)- sup
λ

∫
T |α(λ, t)|2dη(t) < ∞;

B2 := (F )- sup
µ

∫
T |β(µ, t)|2dη(t) < ∞.

(4.7)

For any such factorization

‖φ‖M ≤ AB, (4.8)
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and there exists a factorization such that

cAB ≤ ‖φ‖M, c > 0. (4.9)

The constant c does not depend on spectral measures E,F .

The result is due the authors, [6], [9], except for the necessity for φ ∈ M of
the condition (iii). It was established by Peller, [30]. Note that the constant factor
c in (4.9) can be estimated from below by an expression involving the Grothendick
constant.

Outline the proof of sufficiency of (iii). Suppose that φ admits the factoriza-
tion (4.6) with the estimates (4.7). Consider the operator-valued functions

A(t) =
∫

Λ

α(λ, t)dE(λ), B(t) =
∫

M

β(λ, t)dF (µ).

The operators A(t), t ∈ T mutually commute and the same is true for B(t).
Formally, the factorization (4.6) leads to the equality

Q = JφT =
∫

Λ

∫
M

∫
T

α(λ, t)β(µ, t)dη(t) dE(λ)TdF (µ)

=
∫
T

A(t)TB(t)dη(t).

The expression in the right-hand side has no immediate meaning, since for any
given t ∈ T the operators A(t), B(t) can be unbounded. However, for each h ∈ H
and each g ∈ G the vector-valued functions A(t)h, B(t)g are well defined for
almost all t ∈ T . This follows from the estimates∫

T
‖A(t)h‖2dη(t) =

∫
T

∫
Λ

|α(λ, t)|2d(E(λ)h, h)dη(t) ≤ A2‖h‖2,

∫
T
‖B(t)g‖2dη(t) ≤ B2‖g‖2.

Now, consider the sesqui-linear form

Ω(g, h) =
∫
T

(TB(t)g,A(t)∗h)dt, h ∈ H, g ∈ G.

This form is bounded:

|Ω(g, h)| ≤ ‖T‖
∫
T
‖A(t)h‖‖B(t)g‖dη(t) ≤ AB‖T‖‖g‖‖h‖.

Let Q ∈ B(G, GH) be the operator associated with the sesqui-linear form Ω, i.e.
Ω(g, h) = (Qg, h) for any h ∈ H, g ∈ G. An elementary additional argument allows
one to identify Q as JφT, and (4.8) follows.

Note that the statement (ii) can be easily proved using the representation of
Jφ as a multiplier transform.
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5. Transformers Jφ on other classes

5.1.

Now we discuss the transformer Jφ on the classes of operators, other than S2, S1

and B. “Classes” here means symmetric ideals of compact operators, complete with
respect to a certain norm or quasinorm. Respectively, they are called symmetrically
normed, or quasinormed ideals. Each such ideal S is described in terms of the
behaviour of the singular numbers sn(T) = λn(

√
T∗T) of operators T ∈ S. The

main source in the theory of symmetric ideals is the book [21]. Many important
results for the quasinormed case are due to Rotfeld, [33], [34]. See also [11], [13]
for a short account on these results.

The most popular ideals are the Schatten classes

Sp = {T ∈ S∞ : {sn(T)} ∈ lp}, 0 < p < ∞. (5.1)

For 1 ≤ p < ∞, these are complete normed spaces, with respect to the norm

‖T‖Sp
:= ‖{sn(T)}‖lp .

Another important spaces are “weak Sp-ideals”

Sp,w = {T ∈ S∞ : sn(T) = O(n−1/p)}, 0 < p < ∞. (5.2)

The natural functional [T]p = sup
n

(n1/psn(T)) generates the metric topology on

Sp,w but does not satisfy the triangle inequality. The spaces Sp,w are complete
in this topology. For 1 < p < ∞, a norm in Sp,w can be introduced, which is
equivalent to [T]p. The expression for this norm is rather complicated and we do
not present it here. The spaces Sp, p < 1 and Sp,w, p ≤ 1 are not normalizable.
The spaces Sp,w (for all p) are non-separable; the closure in Sp,w of the set K is
the separable ideal

S◦
p,w = {T ∈ S∞ : sn(T) = o(n−1/p)}. (5.3)

We also mention the spaces

Sp,1 = {T ∈ S∞ :
∑

n

np−1−1sn(T) < ∞}, 0 < p < ∞. (5.4)

These are complete separable quasinormed spaces, with a quasinorm equivalent to
the sum in (5.4). If 1 ≤ p < ∞, this sum itself satisfies the triangle inequality and
is standardly taken as the norm in Sp,1. Evidently, S1,1 = S1.

For 1 < p < ∞, there are duality relations (the duality form is given by (3.1))

S∗
p = Sp′ ; (S◦

p,w)∗ = Sp′,1; S∗
p,1 = Sp′,w, 1/p′ = 1 − 1/p. (5.5)

For p ≥ 1, the spaces Sp,w, S◦
p,w and Sp,1 are special cases of the spaces SΠ,

S◦
Π and Sπ, introduced in [21], sections III.14 and III.15. See this book for the

additional information on these spaces, including the definition of the norm in
Sp,w.

For brevity, we shall call the symmetrically normed ideals appearing in (5.5)
“nice ideals”. It is convenient to treat also the algebra B as a nice ideal.
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There are many other useful symmetric ideals (both normed and quasi-
normed) but we do not discuss them in this paper.

By interpolation, the inclusion φ ∈ M implies boundedness of Jφ in any nice
ideal S. However, it says nothing about properties of Jφ as acting, say, on Sp

with p < 1, or on Sp,w with p ≤ 1. Also, it may happen that φ �∈ M but Jφ can
be well defined as a bounded transformer acting in some ideal S, for example in
Sp with some p ∈ (1,∞). To define Jφ on such ideals, the extension by continuity
from the set of all finite rank operators and the duality arguments are used.

Given a symmetrically normed ideal S, the set of symbols φ, such that the
transformer Jφ is bounded on S, form a commutative Banach algebra of functions
on Λ×M , with complex conjugation as the involution. We denote this algebra as
MS. It follows from the duality arguments and interpolation that for 1 < p < ∞

MSp
= MSp′ ; MS◦

p,w
= MSp′,1 = MSp,w

(5.6)

and for all nice ideals the following topological embeddings hold:

M ⊂ MS ⊂ MS2 = L∞(Λ × M). (5.7)

These algebras depend on the spectral measures E,F but this is not reflected in
the notations. For any symmetrically quasi-normed ideal S, the similarly defined
set MS is a commutative quasi-Banach algebra.

No exhaustive description of the algebras MS in the analytic terms is known
so far, except for the cases S = S2 (see section 3) and S = B,S1,S∞ (see
Theorem 4.1). A part of this Theorem, except for (iii), extends to the ideals
Sp, Sp,w with p < 1, see [34].

5.2. Analytic tests for φ ∈ M and φ ∈ MS

Such tests can be obtained based upon Theorem 4.1 and interpolation between
the results for S = S2 and S = S1. We do not know how to interpolate between
L∞ and the class described by the factorization (4.6). However, the specific tests
for φ ∈ M admit such interpolation. The following quite useful remark is implied
by the first inclusion in (5.7).

Remark 5.1. If φ ∈ M, then φ ∈ MS for any nice ideal S, and

‖φ‖MS
≤ ‖φ‖M.

Below we present some results without proof. It is always supposed that the
spectral measure E is Borelian. The spectral measure (M,F ) can be arbitrary.

Theorem 5.2. Let Λ = R
d and suppose that for some numbers m1 ≥ 0 and m2

such that m1 < d < m2, we have

(τ)- sup
µ

∫
Rd

(|ξ|m1 + |ξ|m2)|φ̂(ξ, µ)|2dξ = K2 < ∞ (5.8)
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where φ̂(ξ, µ) stands for the Fourier transform of φ with respect to the variable
λ. Then φ ∈ M and ‖φ‖M ≤ CK where the constant C = C(d,m1,m2) does not
depend on E,F .

The roles of E,F can be inverted.

If we take here m1 = 0, m2 =: 2m > d, this estimate turns into

‖φ‖M ≤ C(d,m) (τ)- sup
µ

‖φ(·, µ)‖Hm(Rd), 2m > d. (5.9)

The general result of Theorem 5.2 is more flexible than the estimate (5.9) since it
does not require φ(·, µ) ∈ L2(Rd). So, the decay of φ as |λ| → ∞ can be slower.

Theorem 5.2 applies to any Borelian spectral measure E on R
d and the

constant C in the estimate does not depend on E. Usually this is convenient, but
on the other hand this can be considered as a weak point: indeed, dependence on
the properties of a given spectral measure would be important in many questions.

In part, this defect is corrected in the next result which can be easily derived
from Theorem 5.2. This result reflects dependence of the estimate on the (closed)
support of E.

Theorem 5.3. Let Λ be a domain in R
d with uniformly Lipschitz boundary, or a

compact d-dimensional smooth Riemannian manifold. Then

‖φ‖M ≤ C(Λ,m)(τ)- sup
µ

‖φ(·, µ)‖Hm(Λ), 2m > d. (5.10)

We might suppose Λ to be a non-compact manifold, but then some additional
assumptions on the geometry of Λ at infinity would be necessary.

According to Remark 5.1, all the conditions presented automatically guar-
antee boundedness of Iφ in any nice ideal. The next result gives a test for the
boundedness of Iφ only in some of such ideals. The symbol Wα

p (Λ) means the
Sobolev space, possibly of the fractional order α of smoothness.

Theorem 5.4. Let Λ be as in Theorem 5.3, or Λ = R
d. Suppose that

Np,α(φ) := (M)- sup
µ

‖φ(·, µ)‖Wα
p (Λ) < ∞

for some p > 2 and α such that pα > d, then φ ∈ MS for S = Sr and S = Sr,w

with |r−1 − 1/2| < α/d. The estimates

‖φ‖Sr
≤ C(r, p, α)Np,α, ‖φ‖Sr,w

≤ C ′(r, p, α)Np,α

are satisfied.

6. Pseudodifferential operators as double operator integrals

6.1. General pseudodifferential operators

Let G = H = L2(Rd), Λ = R
d, and E be the joint spectral measure of the family of

operators of multiplication by x1, . . . xd. Let F be the similar measure in Fourier
representation. In order to distinguish in notations between the spectral measures
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E and F , we denote by Ξd the d-dimensional Euclidean space in the variable ξ.
Denoting the Fourier transform by Φ, we have

E(δ) : u(x) �→ χδ(x)u(x), F (∂) : u(x) �→ Φ∗
ξ→x(χ∂(ξ)û(ξ)). (6.1)

It is natural to take the Lebesgue measure as both ρ and τ . Then the representation
of H as the direct integral with respect to the spectral measure E is trivial. It is
realized by the equality H = L2(Rd); for any x ∈ R

d we have H(x) = C
1, and for

each u ∈ H its representative is the function u(x) itself. For the spectral measure
F , the picture is similar but the representative of a function u ∈ H is its Fourier
transform û(ξ). This can be written as H = Φ∗L2(Ξd).

Let now a function φ(x, ξ) on R
d × Ξd be given. Suppose that φ ∈ M(E,F ),

then the operator JφT is well defined as a bounded operator in H = L2(Rd), as
soon as T is bounded.

Let in particular T = I, the identity operator in L2(Rd). With respect to
these two decompositions of H, the operator I is given by the inverse Fourier
transform: u = Φ∗û. This means that the generalized kernel of I is (2π)−d/2eixξ.
According to the general scheme of operator integrals as multipliers, the operator
Q := JφI is defined by the kernel Q(x, ξ) = (2π)−d/2φ(x, ξ)eixξ. In other words,

Qu = Φ∗
ξ→x

(
φ(x, ξ)û(ξ)

)
= Op(φ), (6.2)

where Op(φ) stands for the pseudodifferential operators with the symbol φ. So, we
did realize the general pseudodifferential operator as a double operator integral,
applied to the operator T = I.

Now, Theorem 5.2 and its particular case, the inequality (5.9) give convenient
tests for boundedness of a pseudodifferential operator in L2(Rd). In particular, we
get for 2m > d:

‖Op(φ)‖L2(Rd)→L2(Rd) ≤ C ess supξ‖φ(·, ξ)‖Hm(Rd); (6.3)

‖Op(φ)‖L2(Rd)→L2(Rd) ≤ C ess supx‖φ(x, ·)‖Hm(Ξd), (6.4)

C = C(d,m).

This shows that for the boundedness one needs only finite order smoothness of
the symbol. Moreover, the smoothness conditions can be formulated alternatively
either in terms of x, or in terms of ξ . The latter possibility is of a special interest,
since often the symbols of pseudodifferential operators are smooth in ξ.

6.2. Pseudodifferential operators with homogeneous symbols of zero order

Such symbols are non-smooth at ξ = 0. However, in this case the above scheme
can be refined in such a way that only the smoothness of φ on the sphere |ξ| = 1
is involved.

Let Θd−1 stand for the unit sphere in Ξd. For ξ �= 0, denote θ(ξ) = ξ/|ξ| ∈
Θd−1. Consider a new projection-valued function F0 on Θd−1. Namely, let F be the
spectral measure on Ξd, introduced in (6.1). Given a measurable subset ∂ ⊂ Θd−1,



150 Birman and Solomyak IEOT

we denote by cone(∂) the conic subset in Ξd, such that cone(∂)∩Θd−1 = ∂. Then
we define

F0(∂) = F (cone(∂)).
It is clear that F0 is a spectral measure in L2(Rd).

Let now the symbol φ be homogeneous in ξ of zero order, i.e.

φ(x, ξ) = σ(x, θ(ξ)). (6.5)

Then the transformer Jφ can be written in a more convenient way:

JφT =
∫

Rd×Ξd

φ(x, ξ)dE(x)TdF (ξ) =
∫

Rd×Θd−1
σ(x, θ)dE(x)TdF0(θ).

In particular,

Op(φ) = JφI =
∫

Rd×Θd−1
σ(x, θ)dE(x) I dF0(θ).

This representation allows us to apply the result of Theorem 5.3 with M = Θd−1

(and the roles of Λ,M interchanged). We come to the following result: let φ be
given by (6.5) and 2m > d − 1, then

‖Op(φ)‖L2(Rd)→L2(Rd) ≤ C(d,m)ess supx‖σ(x, ·)‖Hm(Θd−1). (6.6)

For the class of pseudodifferential operators considered, this relaxes the smoothness
condition on the symbol, cf. the estimate (6.4). Its counterpart, the estimate (6.3),
can not be improved in a similar way.

6.3. Pseudodifferential operators of negative order

Let us consider the operators

(Qu)(x) = (2π)−d/2b(x)
∫

Rd

ζ(ξ)φ(x, ξ)eix·ξ (̂cu)(ξ)dξ. (6.7)

Here φ(x, ξ) = |ξ|−κσ(x, θξ) is a homogeneous in ξ function of the order −κ < 0,
ζ(ξ) is a smooth cut-off function which is 0 at ξ = 0 and is 1 for large enough
|ξ|; we need not this regularizing factor if κ < d. In the coordinate representation,
Q is typically an integral operator with the “weakly polar” kernel K, K(x, y) =
O(|x − y|κ−d) as |x − y| → 0. If the weight functions b, c decay fast enough at
infinity, then such operator is compact in L2(Rd) and its singular numbers are
of the order sn(Q) = O(n−κ/d). Our goal is to make this argument rigorous and
obtain for sn(Q) the qualified estimates.

The main idea (for κ < d): let first φ(x, ξ) = |ξ|−κ, and let Q0 be the
corresponding operator (6.7), with ζ ≡ 1. The operator Q0 can be re-written in
the “coordinate representation”:

(Qu)(x) = C(d, κ)b(x)
∫

Rd

c(y)u(y)
|x − y|d−κ

dx.

To this operator Theorem 10.3 from [11] applies. For the “symmetric case” b = c
it gives

sn(Q0) ≤ C‖b‖2
L2d/κn−κ/d.
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It can be re-written as [Q0]d/κ,w ≤
(
C‖b‖L2d/κ

)κ/d. It remains to insert the addi-
tional multiplier σ(x, θξ) which is homogeneous of order 0 and therefore, can be
considered as a function on the unit sphere Θd−1. This allows us to apply Theorem
5.4. Here we need estimates in the class Sd/κ,w.

Below we present a particular case of the main result:

nsd/κ
n (Q) ≤ C‖b‖2

L2d/κ‖σ‖MSd/κ,w
.

A certain specific condition on σ can be derived from here with the help
of Theorem 5.4. It allows symbols σ of a rather low smoothness. The complete
symbol can be not smooth at all, due to the presence of the weight function b(x),
with no smoothness conditions imposed on it. The result applies, in particular, to
the case when b = χΩ where Ω is a bounded domain in R

d. This corresponds to
the case of operators acting in L2(Ω).

Similar estimates, with some changes in the formulation, apply also to κ ≥ d.
Here we have to use results for the non-normalizable classes MSp,w

with p ≤ 1.
These estimates were used in [12] for calculating spectral asymptotics for the

operators of the type discussed, and also for more general class of operators with
anisotropically-homogeneous symbols.

7. Integrals with discontinuous symbols. The triangle transformer

7.1. Discontinuities on the diagonal

Starting with this section, we often deal with the transformers Jφ whose symbols
are discontinuous. This requires some precautions even in the framework of S2-
theory, since the symbol φ has to be well defined G-everywhere (cf. section 3),
including the set of its discontinuity points. In this subsection we discuss this
question for the most important case when Λ = M = R, both spectral measures
E,F are Borelian, and the set of discontinuities is a subset of the diagonal

diag = {(λ, λ) : λ ∈ R} ⊂ R
2. (7.1)

First of all, consider the restriction of the spectral measure G to the diagonal.
Given a set ς ⊂ R, let ς◦ be its natural image on the diagonal,

ς◦ = {(λ, λ) : λ ∈ ς} ⊂ diag. (7.2)

Let E , F be the spectral measures in S2, defined in (3.2). It is not difficult to
show that

G(ς◦) =
∑
λ∈ς

E({λ})F({λ}). (7.3)

Due to the separability of Hilbert spaces G and H, the number of non-zero terms in
the right-hand side of (7.3) is no more than countable. If A and B are self-adjoint
operators and E = EA, F = FB, then the points {λ ∈ R : G({λ, λ}) �= 0} are
nothing but the common eigenvalues of A and B.



152 Birman and Solomyak IEOT

We see that G
∣∣
diag

is an atomic measure. According to the construction in
section 3, the measure G is N-full. Therefore, any function on diag is G-measurable.

Let M = M(R) stand for the Banach space of all bounded functions on R,
with the standard norm ‖ω‖M = supλ∈R

|ω(λ)|. With any function ω ∈ M we
associate a function ω◦ := ω(λ)δλ,µ on R

2. In other words,

ω◦(λ, λ) = ω(λ), ω◦(λ, µ) = 0, µ �= λ. (7.4)

We take by definition, at first for T ∈ S2:

Qω,diag = Jω,diagT =
∫

diag

ωd(GT) :=
∫

R2
ω◦(λ, µ)d(G(λ, µ)T).

In order to simplify our further notations, denote Eλ := E({λ}), Fλ := F ({λ}).
It immediately follows from the definition of Qω,diag and the equality (7.3) that

Qω,diag =
∑
λ∈R

ω(λ)EλTFλ. (7.5)

Let now T ∈ B. Estimating the quadratic form of the operator in the right-
hand side of (7.5), we find for g ∈ G, h ∈ H:

|(Qω,diagg, h)| ≤ ‖ω‖M‖T‖
∑
λ∈R

‖Fλg‖‖Eλh‖ ≤ ‖ω‖M‖T‖‖g‖‖h‖

which means that
‖Qω,diag‖ ≤ ‖ω‖M‖T‖.

Using duality and interpolation, we derive from here that

‖Qω,diag‖S ≤ ‖ω‖M‖T‖S

for any nice symmetrically normed ideal S. As we know, for S �= S2 this estimate
has no analogs for integrals over the whole of R

2. The estimates obtained show
that the equality (7.5) can be taken as the definition of the transformer Jω,diag

on the class B and on any nice ideal S. It is clear that this definition is compatible
with the general definition (4.3), for the symbol φ = ω◦. The above inequality for
‖Qω,diag‖ shows that for arbitrary spectral measures E,F

ω ∈ M =⇒ {ω◦ ∈ M = M(E,F ), ‖ω◦‖M ≤ ‖ω‖M}. (7.6)

According to Theorem 4.1, any function φ ∈ M admits a factorization of the
type (4.6) – (4.7). It is not difficult to present such a factorization for φ = ω◦:
we take T = R, η = δ (δ-measure concentrated at 0), α(λ, t) = ω◦(λ, λ − t), and
β(µ, t) = δµ,t. The estimates (4.7) hold with A = ‖ω‖M, B = 1.

The next statement is implied by the equality (7.5).

Proposition 7.1. Let T ∈ B. The condition

EλTFλ = 0, ∀λ ∈ R (7.7)
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is necessary and sufficient in order to have∫
diag

ωd(GT) = 0 (7.8)

for any bounded function ω.

Proposition 7.1, though quite elementary, is useful when one considers inte-
grals (1.1) with the symbols φ discontinuous on diag. Namely, the condition (7.7)
guarantees independence of the resulting operator Q = J E,F

φ T on the way φ is
defined on diag. If the condition (7.7) is violated, then the operator Q is not well
defined, unless we somehow extend φ to the set {{λ, λ} ∈ diag : G({λ, λ}) �= 0}.
Still, the property of φ to be G-measurable does not depend on the mode of such
extension.

7.2. Symbols with the derivative of bounded total variation

The simplest discontinuous symbol is φ(λ, µ) = θ(λ − µ), where

θ(t) = 0 (t ≤ 0); θ(t) = 1 (t > 0). (7.9)

So, θ is the left continuous realization of Heaviside function. We call the corre-
sponding transformer J E,F

θ the triangle transformer. This term is generally ac-
cepted in the case F = E, when the transformer J E

θ plays the central role in the
theory of Volterra operators, see [22]. We preserve the same term in the general
case, though for F �= E the transformer J E,F

θ is no more related to the Volterra
operators.

Since the symbol θ(λ − µ) is defined everywhere on R × R and takes two
values 0 and 1, the transformer J E,F

θ defines an orthogonal projector in the Hilbert
space S2. Its properties in other symmetric ideals, including Sp with p �= 2, look
problematic, since all the tests presented in Section 5 require continuity of the
symbol at least in one variable. However, this obstacle can be overcome, and the
following result takes place.

Theorem 7.2. Let E,F be arbitrary Borelian spectral measures on R, possibly in
two different Hilbert spaces. The triangle transformer J E,F

θ , originally defined on
the class K of all finite rank operators, extends to all the spaces Sp, 1 < p < ∞ as
a bounded operator, and

‖J E,F
θ ‖Sp→Sp

≤ C(p)
where C(p) = C(p′) → ∞ as p → 1,∞. The result remains valid for the trans-
former J E,F

θ̃
where θ̃(t) = θ(t+).

Note that the function θ̃ is nothing but the right continuous realization of
Heaviside function.

For the case F = E this result is due to Gohberg and M.G.Krein [22], section
III.6. Their proof uses an operator identity for Volterra operators. This identity
allows to derive the result for a given p ≥ 4 from the one for p/2. Since the result for
p = 2 (with C(2) = 1) is known, this gives a basis for induction. For p = 2r, r ∈ N
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this proof gives C(2r) = cot(2−r−1π). As it was shown by Gohberg and Krupnik
[23], this value is sharp.

The result for other p > 2 then follows by interpolation and it extends to
p ∈ (1, 2) by duality. For p > 2, p �= 2r the sharp value of the constant C(p) is
unknown so far. For the classes B, S1 and S∞ the result fails which is clear from
the behaviour of C(p).

The consequence of Gohberg - M.G. Krein’s result for Volterra operators
claims that if such an operator Q has the imaginary part from Sp, 1 < p < ∞,
then also Q ∈ Sp. This result is known as Matsaev’s Theorem [27], see also [22],
Theorem III.6.2. Matsaev proved it (before Gohberg and M.G. Krein and for p < 2
only) with the help of the theory of entire functions.

The original argument used by Gohberg and M.G.Krein does not extend to
the transformer J E,F

θ with F �= E, since the theory of Volterra operators does not
apply. The proof of Theorem 7.2 makes use of the identity

Q∗Q = J E
θ

(
Q∗T − T∗Q

)
+ T∗Q, Q = J E,F

θ (7.10)

which turns out to be a consequence of the functional equation

θ(u + v)
(
θ(u) + θ(v) − 1

)
= θ(u)θ(v), ∀u, v ∈ R.

The identity (7.10) is an analog of the relation for Volterra operators which Go-
hberg and M.G.Krein used in their proof. As soon as (7.10) is established, the rest
part of Gohberg - M.G.Krein’s reasoning goes through and leads to Theorem 7.2
in its full generality. It gives the same values of the constants C(p).

The following statement, which also was proved in [37], is a consequence
of Theorem 7.2. Below V stands for the space of all functions of bounded total
variation on R. Further, we let

Vl (Vr) = {f ∈ V : f is left (right) continuous}.

Theorem 7.3. Let E,F be arbitrary Borelian spectral measures on R and φ(λ, µ) be
a Borelian function on R

2, such that for (F)-almost all µ ∈ R the function φ(·, µ)
lies in Vl. Suppose also that the norms ‖φ(·, µ)‖V are (F )-essentially bounded.
Then φ ∈ MSp

for any 1 < p < ∞, and

‖φ‖MSp
≤ 2C(p) (F )- sup

µ
‖φ(·, µ)‖V (7.11)

where C(p) is the same constant as in Theorem 7.2. The result remains valid if
the condition φ(·, µ) ∈ Vl is replaced by φ(·, µ) ∈ Vr.

By interpolation, the similar statement is valid in the classes MSp,w
.
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8. Applications to Operator Theory

8.1. Transformers Zh

Let A,B be two self-adjoint operators acting in the Hilbert spaces G,H respec-
tively. Let h(λ) be a uniformly Lipschitz function on R, then the function

φh(λ, µ) =
h(µ) − h(λ)

µ − λ

is well defined (and continuous) outside the diagonal and bounded. Suppose that
it is somehow extended to diag and the extended function is bounded on R

2.
Note that this function is always G-measurable, cf. the end of section 7.1. If at
some point λ ∈ R the function h is differentiable, the natural choice of extension is
φh(λ, λ) = h′(λ). Otherwise, the value of φh(λ, λ) can be chosen arbitrarily. This
choice is indifferent if the operators A,B have no common eigenvalues, since in
this case G(diag) = 0.

Below we suppose that some extension of φh to the whole of R
2 is chosen

and fixed. Then the transformer

ZA,B
h := JA,B

φh
=

∫
R

∫
R

h(µ) − h(λ)
µ − λ

dEA(λ)(·)dFB(µ) (8.1)

is well defined, at least on the class S2. This transformer naturally arises in many
problems of Perturbation Theory; this was already discussed in the section 1.3.
Now we return to this material and treat it in a more systematic way. We shall write
ZA

h instead of ZA,A
h . We do not reflect the choice of extension in the notations,

since the formulas presented in Theorems 8.1, 8.2 hold true independently of it.
Moreover, for any symmetrically normed ideal S the membership φh ∈ MS does
not depend on this choice. This follows from the material of section 7.1.

Theorem 8.1. Let G = H and A,B be self-adjoint operators in H with the same
domain, and suppose that B − A ∈ S where S is a nice ideal. Suppose also that
the function h(λ) is such that φh ∈ MS. Then, independently on the way φh is
defined on the diagonal,

h(B) − h(A) = ZA,B
h (B − A). (8.2)

The result is not very difficult but remarkable for several reasons.
1) It allows the operators A,B to be unbounded.
2) The assumption on h is formulated in general terms not involving analytic

properties of the function. This is important, since the necessary and sufficient
conditions on h ensuring φh ∈ MS are unknown so far, with the only exclusion
S = S2 when such condition is h ∈ Lip1.

Theorem 8.1 extends to the quasi-commutators JB − AJ. Here J is a lin-
ear bounded operator acting from G to H. The operators A,B are not supposed
bounded, and JB−AJ is understood as the operator generated by the sesqui-linear
form (JBg, h) − (Jg,Ah) where h ∈ DomA, g ∈ DomB.
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Theorem 8.2. Let A,B be self-adjoint operators in the spaces G and H respectively
and let J ∈ B(G,H). Suppose that JB−AJ ∈ S where S is a nice ideal, and that
φh ∈ MS. Then, independently on the way φh is defined on the diagonal,

Jh(B) − h(A)J = ZA,B
h (JB − AJ).

Theorem 8.2 turns into Theorem 8.1 if we take G = H and J = I. Both
theorems were proved in [9] which contains also other results of the similar nature.

Proof of Theorem 8.2 for the particular case A,B ∈ B, S = B. We use the
equalities AJ = JλJ, JB = JµJ. Using the properties of the algebra M, we find

Jφh
(JB − AJ) = Jφh

(JµJ − JλJ)

= Jφh(µ−λ)J = Jh(µ)−h(λ)J = Jh(B) − h(A)J. Q.E.D.

The proof for the general case is a bit more complex. The above argument
does not go through even if A,B ∈ B, JB − JA ∈ Sp for some p ∈ (1,∞) and
φh ∈ MSp

but φh /∈ M. To obtain the desired result, we construct a special family
of finite rank operators Jk strongly converging to J. Then we apply Theorem 8.2
to Jk and pass to the limit as k → ∞. The realization of this scheme requires a
careful construction of Jk.

8.2. Tests for φh ∈ MS

For practical usage of Theorems 8.1, 8.2 one needs tools for checking the inclusion
φh ∈ MS for a given ideal S. Applying to φh general results is not very productive
since the tests obtained turn out to be too rough. Indeed, smoothness of φh is more
or less the same as that of h′. However, this naive argument does not take into
account that for each µ the only “dangerous” point for the function φh(·, µ) is
λ = µ.

The simplest particular case of Theorem 8.1 says that

|h(µ) − h(λ)| ≤ L|µ − λ| =⇒ ‖h(B) − h(A)‖S2 ≤ L‖B − A‖S2 .

It would be interesting to find an elementary proof of this estimate.

Here is the test for φh ∈ M found by Peller, [32]; the similar result for
bounded operators was established by him earlier in [30]. The condition is very
precise but still not necessary. Recall that a function h(x) on R belongs to the
Besov space B1

∞,1(R) if

r0(h) :=
∫ ∞

0

(
sup
x∈R

|h(x + t) − 2h(x) + h(x − t)|
)dt

t2
< ∞. (8.3)

Any function h ∈ B1
∞,1(R) has the bounded continuous derivative, and we denote

r(h) := r0(h) + sup
t

|h′(t)|.

Naturally, for a function h ∈ B1
∞,1(R) we set φh(λ, λ) = h′(λ).
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Theorem 8.3. Let h ∈ B1
∞,1(R). Then φh ∈ M for any spectral measures E,F , and

‖φh‖M ≤ Cr(h),

where C is an absolute constant. In particular, for any nice ideal S the estimate
is satisfied

‖Jh(B) − h(A)J‖S ≤ Cr(h)‖JB − AJ‖S. (8.4)

The condition r0(h) < ∞ takes care of both the smoothness of h and its
decay at infinity. The following sufficient condition is rougher but sometimes more
convenient, since the smoothness conditions and those at infinity are separated.

Theorem 8.4. Suppose that h′ ∈ Lip(ε) ∩ Lp for some ε > 0 and p < ∞. Then
φh ∈ M for any spectral measures E,F .

In particular, for any self-adjoint operators A ∈ B(H), B ∈ B(G) with spectra
lying in a finite segment [c, d], and for any J ∈ B(G,H) we have the estimate in
an arbitrary nice ideal S:

‖Jh(B) − h(A)J‖S ≤ C(ε, d − c)‖JB − AJ‖S

under the single condition h′ ∈ Lip(ε).
Let us mention also the similar result for unitary operators.

Theorem 8.5. Suppose that h is a differentiable function on the unit circle, such
that h′ ∈ Lip(ε) with some ε > 0. Then for any unitary operators U in H, V in G
and any operator J ∈ B(G,H) we have

‖Jh(V) − h(U)J‖S ≤ C(ε)‖JV − UJ‖S.

where S is an arbitrary nice ideal.

The next result easily follows from Theorem 7.3.

Theorem 8.6. Suppose that h admits the integral representation

h(x) = h(0) +
∫ x

0

η(s)ds, ∀x ∈ R, η ∈ Vl. (8.5)

Then
‖φh‖MSp

≤ 2C(p)‖η‖V, 1 < p < ∞.

In particular,

‖h(B) − h(A)‖Sp
≤ 2C(p)‖B − A‖Sp

, 1 < p < ∞. (8.6)

Recall that Vl stands for the space of left continuous functions of bounded
total variation on R, cf. section 7.3. It follows from the representation (8.6) that
the derivative h′(x) = η(x) exists at any point x where η is continuous. In the
points of discontinuity of η the similar equality holds for the derivative from the
left:

h′(x − 0) = η(x). (8.7)
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Proof of Theorem 8.6. It is sufficient to consider the case when the function η is
monotone (non-decreasing). Then an elementary calculation shows that for each
µ ∈ R the function φ(·, µ) is also non-decreasing, and ‖φ(·, µ)‖V ≤ ‖η‖V. The
function φ(·, µ) is continuous at each point λ0 ∈ R, with the only possible exception
of λ0 = µ. Left continuity at this point is nothing but the equality (8.7). So,
Theorem 7.3 applies and we are done.

The estimate (8.6) is usually referred to as a Theorem by Davies who had
proved it in [19]. His proof is directly based upon Matsaev’s theorem, see section
7.2. In this connection we would like to notice that Theorem 7.3, whose immediate
corollary is Theorem 8.6, was published in [37] some twenty years earlier.

8.3. Differentiation of functions of self-adjoint operators

Let A,T be self-adjoint operators in H, T being bounded. Consider the operator-
valued function A(t) = A + tT, DomA(t) = DomA. Given a function h(λ) such
that φh ∈ M, we derive from Theorem 8.1 that

h(A(s)) − h(A(t)) = (s − t)
∫

R

∫
R

φh(λ, µ)dEA(t)(λ)TdEA(s)(µ).

Dividing both parts by s − t and formally passing to the limit as s → t, we
arrive at the Daletskii – S.Krein formula, [18]

dh(A(t))
dt

=
∫

R

∫
R

φh(λ, µ)dEA(t)(λ)TdEA(t)(µ) = Z
A(t)
h T. (8.8)

This formula needs a careful justification, since here we are dealing with the
limit of an integral with respect to a varying spectral measure. In [18] (where a
different approach had been applied), (8.8) was justified for the bounded operators
and h ∈ C2, which is rough. Better results were obtained in [6], [9], and then in [30],
[32]. The results similar to Theorem 8.1 are unknown so far. We have to assume
that φh ∈ M (independently of the symmetrically normed ideal S the operator T
belongs to), and even this is not enough: at least one of the functions α(λ, t), β(µ, t)
appearing in the factorization (4.6) of φh has to possess some additional properties.
It turns out that these properties are satisfied if h ∈ B1

∞,1(R). This leads to the
following result.

Theorem 8.7. Let h ∈ B1
∞,1(R) and T ∈ S where S is a nice ideal. Then at each

point t ∈ R the derivative dh(A(t))/dt does exist in the topology of S and is given
by the equality (8.8). Besides, the estimate is valid

∥∥dh(A(t))
dt

∥∥
S
≤ Cr(h)‖T‖S, ∀t ∈ R (8.9)

where C is an absolute constant.

The only exclusive case when a stronger result is known, is that of S = S2;
see [28]. In S2 the formula (8.8) holds under the natural condition that the function
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h has continuous and bounded derivative everywhere, and instead of (8.9) a better
estimate is valid: ∥∥dh(A(t)

dt

∥∥
S2

≤ sup
t

|h′(t)|‖T‖S2 .

8.4. Fractional powers of self-adjoint operators

Let 0 < γ < 1, then for t > 0

h(λ) := λγ = cγλ

∫ ∞

0

tγ−1(t + λ)−1dt, cγ = π−1 sin πγ.

This implies that

φh(λ, µ) = cγ

∫ ∞

0

tγ

(t + λ)(t + µ)
dt =

∫ ∞

0

α(λ, t)α(µ, t)dt (8.10)

where α(λ, t) = √
cγ tγ/2(t + λ)−1. We have

∫ ∞

0

|α(λ, t)|2dt = cγ

∫ ∞

0

tγ(t + λ)−2dt = γλγ−1. (8.11)

Let now A,B be two positive definite self-adjoint operators in H (i.e. A,B ≥
εI, ε > 0) with the same domain and let T := B−A ∈ B. The equalities (8.2) and
(8.10) yield that

Bγ − Aγ =
∫ ∞

0

∫ ∞

0

µγ − λγ

µ − λ
dEA(λ)TdFB(µ)

= cγ

∫ ∞

0

tγ(A + t)−1T(B + t)−1dt.

It follows from (8.11) and (4.8) that

‖Bγ − Aγ‖S ≤ γεγ−1‖B − A‖S, (8.12)

so that the estimate blows up as ε → 0.
Put δ = (1 − γ)/2 and along with φh consider the function

φ̃h(λ, µ) = λδφh(λ, µ)µδ =
∫ ∞

0

α̃(λ, t)α̃(µ, t)dt

where α̃(λ, t) = λδα(λ, t). By (8.11),
∫ ∞
0

|α̃(λ, t)|2dt = γ for all λ > 0. Since

JA,B

φ̃h

T = Aδ
(
ZA,B

h T
)
Bδ, (8.13)

we obtain a useful inequality

‖Aδ(Bγ − Aγ)Bδ‖S ≤ γ‖B − A‖S, 2δ = 1 − γ. (8.14)

In contrast with (8.12), the inequality (8.14) is satisfied for any positive (not
necessarily positive definite) self-adjoint operators A,B.
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Suppose again that A,B are positive definite, then A(t) = A + tT is also
positive definite for any t ∈ [0, 1]. If T belongs to a nice ideal S, then the function
Aγ(t) is differentiable in S and

dAγ(t)
dt

= Z
A(t)
h T = JA(t)

φ̃h

(
A−δ(t)TA−δ(t)

)
, 0 ≤ t ≤ 1. (8.15)

Here the second equality comes from (8.13)

Now, assuming that B ≥ A, we outline the proof of a useful inequality (see
[4])

‖Bγ − Aγ‖S ≤ ‖(B − A)γ‖S, 0 < γ < 1. (8.16)
It follows from (8.15) that
∥∥dAγ(t)

)
dt

∥∥
S
≤ γ‖A−δ(t)TA−δ(t)‖S = ‖(A−δ(t)Tδ)Tγ(TδA−δ(t))‖S.

Since A(t) = A + tT ≥ tT, we derive from the Heinz inequality (see e.g. [13],
section 10.4) that for all t ∈ (0, 1)

‖A(t)−δTδ‖ ≤ t−δ, ‖TδA(t)−δ‖ ≤ t−δ.

Therefore,
∥∥dAγ(t)

dt

∥∥
S
≤ γt−2δ‖Tγ‖S = γtγ−1‖Tγ‖S.

Integrating this inequality in t over the segment [0, 1], we obtain (8.16). Since
this inequality does not involve the lower bound of the operator A, it extends to
arbitrary non-negative operators A and B ≥ A.

9. Applications to the theory of Spectral Shift Function

9.1. Calculation of the trace of an operator integral

Let φ ∈ M and

Q = JφT =
∫

Λ

∫
M

φ(λ, µ)dE(λ)TdF (µ), T ∈ S1. (9.1)

Then Q ∈ S1 and it is natural to try to calculate trQ. We shall discuss this
problem for the case when G = H, Λ = M and E = F .

As we know from Theorem 4.1, the assumption φ ∈ M is equivalent to
existence of a factorization

φ(λ, µ) =
∫
T

α(λ, t)β(µ, t)dt, (9.2)

see (4.6), such that the conditions (4.7) are satisfied. According to (4.8), we have
the estimate

‖Q‖S1 ≤ AB‖T‖S1 . (9.3)
It is important that the factorization (9.2) determines the values of the symbol
φ(λ, µ) for E-almost all λ, µ ∈ Λ. More precisely, this means that there exists
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a subset Λ0 ⊂ Λ such that E(Λ \ Λ0) = 0 and the equality (9.2) holds for all
λ, µ ∈ Λ0. Moreover, by Cauchy’s inequality

|φ(λ, µ)| ≤ AB, ∀λ, µ ∈ Λ0.

This shows in particular that the function φ(λ, λ) is well defined as an element of
L∞(Λ;E).

It follows from (9.1), at least formally, that in the case E = F

trQ =
∫

Λ

∫
Λ

φ(λ, µ)tr(dE(λ)TdE(µ)). (9.4)

The orthogonality of the spectral measure E(·) gives rise to the conclusion that
dE(µ)dE(λ) = δλ,µdE(λ). By the known properties of the trace,

tr(dE(λ)TdE(µ)) = tr(dE(µ)dE(λ)T) = δλ,µtr(dE(λ)T).

Hence, we find from (9.4):

trQ =
∫

Λ

φ(λ, λ)tr(TdE(λ)). (9.5)

It is convenient to re-write the equality (9.5) as follows. Let us introduce the
scalar complex-valued measure on Λ, namely

mT,E(δ) = tr(TE(δ)), δ ⊂ Λ.

Then (9.5) takes the form

trQ =
∫

Λ

φ(λ, λ)dmT,E(λ) =
∫

Λ

φ(λ, λ)mT,E(dλ). (9.6)

The arguments which led us to the equality (9.6), were of a rather heuristic
nature. However, it is not difficult to justify it. To achieve this goal, one starts
with operators T of rank one. They span S1, and the result extends to the whole
of this space with the help of the estimate (9.3). The equality (9.6) is an analogue
of the classical formula for the trace of an integral operator in L2.

9.2. Two representations for h(B) − h(A)
One such representation is given by the formula (8.2). Recall that A,B are self-
adjoint operators in H with the common domain. We assume that h ∈ B1

∞,1(R),
cf. (8.3). As we know, this assumption implies the existence of continuous and
bounded derivative h′ and guarantees that the function

φh(λ, µ) =
h(µ) − h(λ)

µ − λ
, µ �= λ; φh(λ, λ) = h′(λ) (9.7)

belongs to the algebra M = M(EA, FB.
If T := B − A ∈ S1, then by Theorem 8.1.

h(B) − h(A) = ZA,B
h T. (9.8)

Our next task is to find the trace of h(B)−h(A). Unfortunately, the formula (9.6)
does not apply, since the spectral measures E(·), F (·) in (9.8) differ from each
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other. For this reason, we now derive for h(B) − h(A) another representation.
This new representation is more complex than (9.8) but is free from the above
mentioned defect.

Let us consider the operator-valued function A(t) = A + tT, t ∈ R. Then
A(0) = A and A(1) = B. By Theorem 8.7, the assumption h ∈ B1

∞,1(R) is
sufficient for the Daletskii – S.Krein formula (8.8) to be valid. Hence, we have

dh(A(t))
dt

=
∫

R

∫
R

φh(λ, µ)dEA(t)(λ)TdEA(t)(µ), ∀t ∈ R. (9.9)

It is important that under the condition T ∈ S1 the derivative in (9.9) exists in
the sense of convergence in S1. By integrating in t ∈ [0, 1] we derive from (9.9):

h(B) − h(A) =
∫ 1

0

dt

∫
R

∫
R

φh(λ, µ)dEA(t)(λ)TdEA(t)(µ). (9.10)

Just this is the second representation of h(B) − h(A) which was our goal.

Now we use (9.10) for calculating the trace of h(B) − h(A). It is more con-
venient to start with finding the trace of derivative dh(A(t))/dt. Here the formula
(9.6) does apply, and we get

tr
dh(A(t))

dt
=

∫
R

h′(λ)mT,EA(t)(dλ), ∀t ∈ R. (9.11)

Finally, we derive from (9.11) by integration over 0 ≤ t ≤ 1 that

tr
(
h(B) − h(A)

)
=

∫
R

h′(λ)dΞ(λ) (9.12)

where

Ξ(δ) =
∫ 1

0

tr(EA(t)(δ)T)dt. (9.13)

It is not difficult to justify all the steps of this calculation. The function Ξ(·)
defined by (9.13) is a real-valued σ-additive measure (a charge). If the operator T
is non-negative, then Ξ is also non-negative. For the total variation of Ξ we have
the estimate ∣∣Ξ∣∣ ≤ ‖T‖S1 . (9.14)

It is also clear that
Ξ(R) = trT. (9.15)

9.3. Spectral Shift Function

As a matter of fact, the measure (9.13) is absolutely continuous with respect to the
Lebesgue measure, i.e. there exists a real-valued function ξ = ξ(·;B, BA) =∈ L1(R)
such that

Ξ(δ) =
∫

δ

ξ(λ)dλ. (9.16)
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The function ξ appearing in (9.16) is the spectral shift function, introduced by a
physicist I.M. Lifshits in [25] for the case of finite rank perturbations. The con-
sistent mathematical theory of the spectral shift function was developed by M.G.
Krein in [24]. In particular, M.G. Krein established the formula

tr
(
h(B) − h(A)

)
=

∫
R

h′(λ)ξ(λ)dλ (9.17)

for a wide class of functions h, under the assumption B − A ∈ S1. The spectral
shift function proved very efficient tool in many problems of Mathematics and
Theoretical Physics.

Two important questions arise in connection with the formula (9.17): what
are the properties of the function ξ(λ) and what is the class of functions for which
the equality (9.17) is satisfied. We do not aim in giving a survey of properties of
the spectral shift function and restrict ourselves to a few remarks.

The techniques of double operator integrals does not provide us with the tools
to show absolute continuity of the measure Ξ. This probably is a penalty for the
inclusion of a non-linear problem in the framework of a linear one, cf. the discussion
in section 1.3, below the formulas (1.10) and (1.11). In the representation (9.13) the
connection between the operator-valued function A(t) and the operator T = B−A
is lost. It is also remarkable that the measures tr(EA(t)(δ)T) appearing in the
integrand of (9.13) are not necessarily absolutely continuous, but the integration
moves off the singular component.

The approach of M.G. Krein uses Complex Function Theory, it is based upon
a thorough analysis of the function

∆(z) = det
(
I + T(A − zI)−1

)
which is analytic outside the spectrum of A. Namely, it turns out that

ξ(λ) = π−1 lim
ε→0

arg ∆(λ + iε) a.e. (9.18)

In this representation the connection between A,B and T is taken into account
in a more explicit way than in (9.13). The relations (9.14) – (9.16) mean that∫

R

|ξ(λ)|dλ ≤ ‖T‖,
∫

R

ξ(λ)dλ = trT.

Further, suppose that rankT < ∞ and the signature of T is (n+, n−). Then
−n− ≤ ξ(λ) ≤ n+ for a.e. λ. These inequalities easily follow from the representa-
tion (9.18) but not from (9.13).

In this respect, one may ask the question: why at all the approach based on
the theory of double integrals is useful? Another natural question concerns the
additional information which can be extracted from the representation (9.13) or,
in more detailed writing,∫

δ

ξ(λ)dλ =
∫ 1

0

tr
(
EA(t)(δ)T

)
dt. (9.19)
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One of general facts of this type is the two-sided inequality (proved in [10])

tr
(
EB(−∞, λ)T

)
≤

∫ λ

−∞
ξ(µ;B,A)dµ ≤ tr

(
EA(−∞, λ)T

)
.

There are also many other useful applications of the formula (9.19).
Another advantage of the representation (9.19) is substantial expansion of

the class of admissible functions h. In the M.G. Krein’s approach, h has to belong
to Wiener’s class W1, that is

h ∈ C1
loc, h′(λ) =

∫
R

e−λtdσ(t), |σ|(R) < ∞.

This class is much narrower than B1
∞,1.

10. Remarks on the literature

Double, and also multiple operator integrals first appeared in the paper [18] where
the Daletskii – S.Krein formula (8.8) was derived, under some restrictive assump-
tions about the function h.

The consecutive theory of double operator integrals was worked out in the
series of authors’ publications [5] – [9] and [37]. In particular, the S2-theory of
such integrals was developed in [5], [6]. In the same papers, the Condition (ii) of
Theorem 4.1 as a criterion of φ ∈ MS1 was established, and the definition (4.3)
of the transformer Jφ on the class B was suggested. Theorem 8.5 for J = I and
S = Sp, 1 ≤ p ≤ ∞ was also obtained there.

Realization of an integral as a multiplier transform was found in [7]. This
lead to the possibility to realize the pseudodifferential operators as double operator
integrals. The material of sections 6.1 and 6.2 of the text presented is borrowed
from this paper.

The element-wise multiplication of matrices (”Schur multiplication”) was in-
troduced by I. Schur as far back as in 1911, see [35] and also section 4 of the recent
survey paper [20]. Among many other results, a discrete analog of the factorization
(4.6)–(4.7) and the estimate (4.8) were found there. The multiplier transformation
(1.15) can be viewed as an analog of Schur multiplication for the (generalized)
kernels of integral operators. It is worth mentioning that many properties of the
discrete Schur multiplication are not valid in the ”continuous” case. Unfortunately,
the authors were unaware of the Schur’s results when starting the work on double
operator integrals.

One of topics studied in [7] were the analytical tests for φ ∈ M and φ ∈ Mp,
1 < p < ∞ Theorems 5.3 and 5.4 were proved there. Theorem 5.2 was obtained
later, in [8].

In the paper [9] many technical tools of the theory were worked out. This
includes the sufficiency part of the statement (iii) of Theorem 4.1; its necessity
was established later by V. Peller in [30]. The study of the transformers Zh started
in [5] and was continued in [9]. Theorem 8.1 was proved there. Besides, in [9]
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the problem of continuity of the transformers J E,F
φ with respect to the varying

spectral measure was studied in detail, and the Daletskii – S.Krein formula (8.8)
was justified under rather mild assumptions about the function h. More advanced
results in this direction are due to V. Peller, [30] – [32], and to J. Arazy, T. Barton
and Y. Friedman, [1].

In [10] the results of [9] were applied to the theory of the spectral shift
function. The formula (9.13) was obtained there, its another proof was suggested
by B. Simon [36]. For the systematic exposition of the theory of the spectral shift
function see e.g. the book [38] and the paper [17].

Theorem 7.3 was obtained in [37]. As it was already mentioned in section 8.2,
Theorem 8.6 is its elementary consequence. In the paper [14] the authors revisited
this material and found some new results, in particular concerning commutators
and quasi-commutators with unbounded operator J, cf. (8.4).

Applications to the fractional powers of self-adjoint operators were discussed
in [4] and [15].

In the book [26] V.P. Maslov developed the theory of functions of several
“ordered” non-commuting operator-valued variables. As it was mentioned in sec-
tion 1.3, a double operator integral can also be considered as a special case of
such function. In this connection we would like to mention that the material of
this paper has almost no intersections with the book [26]. This concerns both the
technical means of the theory and the nature of applications.

As it was already mentioned in the Introduction, recently a new interest in
operator integrals arose on another technical basis, see [29], [28] and references
therein.
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2003, xci–clxxxiii.

[21] I.C. Gohberg and M.G. Krein, Introduction to the theory of linear non-selfadjoint
operators in Hilbert space. Izdat. “Nauka”, Moscow 1965 448 pp.

English translation: Amer. Math. Soc., Providence (1969).

[22] , Theory and applications of Volterra operators in Hilbert space. Izdat.
“Nauka”, Moscow 1967 508 pp.

English translation: Amer. Math. Soc., Providence (1970).

[23] I.C. Gohberg, N.Y. Krupnik, On the norm of the Hilbert transform in Lp spaces.
(Russian) Funktsional Anal. i Prilozhen. 2, No 2 (1968), 91–92.

Engl. transl: Functional Analysis and Applications 2 (1968), 181-182.

[24] M.G. Krein, On the trace formula in perturbation theory. (Russian) Mat. Sbornik
33(75) 1953, 597–626.

[25] I.M. Lifshits, On a problem in perturbation theory. (Russian) Uspehi Mat. Nauk 7
(1952), no. 1(47), 171–180.

[26] V.P. Maslov, Operational metods. Izdat. “Nauka”, Moscow 1973 543 pp.
English translation: Mir Publishers, Moscow (1976).

[27] V.I. Matsaev, Volterra operators obtained from self-adjoint operators by perturbation.
(Russian) Dokl. Akad. Nauk SSSR 139 1961, 810–813.

[28] B. de Pagter and F.A. Sukochev, Differentiation of operator functions in non-
commutative Lp-spaces, Preprint, 2002.

[29] B. de Pagter, F.A. Sukochev, and H. Witvliet, Double operator integrals, J. Funct.
Anal. 192 (2002), no. 1, 52–111.

[30] V.V. Peller, Hankel operators in perturbation theory of unitary and self-adjoint op-
erators (Russian), Func. Anal. and Appl. 19 (1985), 37–51.

[31] , For which f does A − B ∈ Sp imply that f(A) − f(B) ∈ Sp? Operator
Theory: Advances and Appl., Birkhäuser Verlag 24 (1987), 289–294.
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