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Abstract. Infection by the human immunodeficiency ments that the oxidative stress due to infection itself
participates in CD4+ T lymphocyte depletion by increas-virus (HIV-1) causes chronic ongoing inflammation in
ing their rate of apoptosis and particularly of Fas-HIV-1 seropositive individuals as shown by high plasma

levels of inflammatory cytokines and production of induced apoptosis. This oxidative stress also facilitates
reactive oxygen intermediates (ROIs). One source of NF-kB-dependent activation of HIV transcription. In
ROIs is provided from the very early stages of HIV vitro studies suggest that the early steps of HIV activation
infection by activated polymorphonuclear neutrophils. from its quiescent state might be subsequently facilitated
Tat, the viral protein, is also specifically responsible for by this oxidative environment, whereas already active
an endogenous cellular increase of ROI. In this review we replication is not influenced. The data presented here lead
also evaluate the effects of this oxidative stress on various to a better understanding of the consequences of oxida-
biological parameters such as immune response and tive stress on the pathophysiology of HIV infection and

also enable us to evaluate the potential use of antioxidantsurvival of T lymphocytes, virus transcription and repli-
molecules as therapeutic agents against AIDS.cation. It was clearly demonstrated in ex vivo experi-
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HIV infection induces oxidative stress

HIV-1 infection causes a chronic ongoing inflammation
shown by high plasma levels of inflammatory cytokines
[1] and production of reactive oxygen intermediates in
HIV-1 seropositive individuals. This oxidative stress
occurring at the onset of the disease was shown by a
decrease in the concentration of the main antioxidant
molecules such as plasma and lymphocyte glutathione
[2–4] or lymphocyte [5] and plasma [6] thioredoxin.
These reports were consistent with the observation of
an increase in plasma concentration of the byproduct of
lipid peroxidation, malondialdehyde (MDA) [7, 8]. This
oxidative stress was shown to be related to the constitu-
tive production of H2O2 by neutrophils at all stages of

the disease, even in the early stages when the number of
CD4 T cells is still high (fig. 1) [9]. This overproduction
of H2O2 is accompanied by other signs of cell activation
such as expression of adhesion molecules like CD11b or
actin polymerisation. This study was realized, using
flow cytometry, in conditions permitting analysis of
H2O2 production directly in the blood and avoiding any
artefactual activation linked to neutrophil isolation [9].
In addition, HIV-1 infected cells undergo endogenous
oxidative stress related to inhibiting effect of the viral
protein Tat on activity of manganese super-
oxide dismutase (MnSOD) [10, 11], leading to an in-
crease in endogenous ROI. This process of induction of
endogenous oxidative stress, dependent on the expres-
sion of a viral protein, is thus very specific for HIV
infection. Since the role of HIV infection in inducing
oxidative stress from exogenous (polymorphonuclear* Corresponding author.
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Figure 1. H2O2 production by neutrophils detected in the blood
of HIV infected individuals. The distinct stages of infection are
defined according to the Centers for Disease Control and Preven-
tion (CDC): group 1 (n=10) corresponds to asymptomatic pa-
tients with more than 500 CD4+/ml, group 2 (n=10) to
asymptomatic patients with fewer than 500 CD4+/ml, group 3
(n=12) to ARC (IDS-related complex) patients and group 4
(n=10) to AIDS patients. The controls are healthy individuals
(n=10). Neutrophils were incubated with dichlorofluorescein di-
acetate for 15 min at 37 °C. The fluorescence of its oxidized
product (dichlorofluoresceine) was detected using flow cytometry
at 530 nm. These data are adapted from Elbim et al. [9].

[13–15] and that this rate of apoptosis is significantly
decreased by the addition of antioxidant compounds
[16].
When activated, peripheral blood T lymphocytes are
induced to express Fas/APO-1/CD95 receptors which
mediate apoptosis upon binding to Fas ligand [17–19].
Surface expression of Fas was also found to be higher
on CD4+ and CD8+ T lymphocytes from HIV-infected
individuals [20, 21]. Furthermore, these lymphocytes
from HIV-infected individuals undergo apoptosis in
vitro in response to antibody stimulation (cross-linking)
of Fas at a much higher frequency than uninfected
controls. This suggests that HIV-infected individuals
are primed in vivo to undergo apoptosis in response to
Fas stimulation. Fas signalling then may be responsible
for T lymphocyte functional defects and depletion ob-
served in HIV disease. HIV-1 Tat and gp120 were also
shown to accelerate induction of Fas-mediated T cell
apoptosis [22]. The cellular antioxidant thioredoxin was
shown to protect U937 cells against apoptosis triggered
by anti-Fas mAb [23]. This is in agreement with in vitro
studies showing that the increase of the reduced glu-
tathione, the most abundant intracellular thiol antioxi-
dant, obtained by the use of N-acetylcysteine (NAC) or
other thiol compounds are able to inhibit apoptosis
triggered by Fas ligation [24].
Conversely, in monocytic cells U937 capable of sustain-
ing a chronic infection in vitro, an increase of reduced
glutathione over the constitutive level of uninfected cells
was observed. This was accompanied by a refractory
state of these cells to tumor necrosis factor (TNF) or
phorbol myristate acetate (PMA) [25]. This adaptative
mechanism might be a key component of resistance to
apoptosis and of viral persistence in macrophages which
are known to constitute a reservoir for the virus [26].
Work is in progress in our laboratory to characterize
the redox status of primary macrophages during the
establishment of chronic infection.
In conclusion, these data provide evidence that infec-
tion-induced oxidative stress contributes to CD4+ T
lymphocyte depletion by increasing their rate of apop-
tosis, particularly Fas-induced apoptosis. Adaptative
mechanisms in some cells (U937 in vitro) or drugs
which maintain the level of cellular antioxidants coun-
teract this induction of apoptosis.

Consequence of oxidative stress on HIV transcription

Furthermore, the progressive and irreversible decline of
CD4+ T cells observed during HIV-1 infection is clearly
associated with a progressive increase of plasma viral
load [27, 28]. In order to better understand AIDS
pathogenesis, it was therefore important to find out
how the oxidative stress induced by the infection itself
might influence the expression of the viral genome.
HIV responds to transcriptional stimuli similar to those
leading to the induction of a series of cellular genes

neutrophils) and endogenous (Tat) sources has been
well established, it is important to evaluate the influence
of this oxidative stress on the pathophysiology of HIV
infection.

Consequence of oxidative stress on the immune response

The hallmark of HIV infection is immunodeficiency
with progressive CD4+ T lymphocyte depletion. One
important issue is whether the oxidative stress induced
by the infection itself might participate in this im-
munodeficiency.
In vivo studies have shown that oxidative stress might
lead to immunodeficiency at the cellular and humoral
levels. For instance, exposure of mice to normobaric
oxygen resulted in a decrease of the number of B cells
which produce antibodies after immunization, in a de-
layed-type hypersensibility response and in a decrease
of T cell proliferation in response to mitogens [12, 55].
The participation of oxidative stress in lymphocyte de-
pletion during HIV infection may result from different
mechanisms such as impairment of proliferation, as
suggested in animal models, but also from apoptosis.
Indeed, ex vivo studies have shown that T lymphocytes
from HIV-infected individuals exhibit a higher rate
of apoptosis than lymphocytes from normal subjects
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Table 1. BHA leads to an increase in total thiol content accompa-
nied by a dose-dependent decrease of TNF-induced LTR transac-
tivation in a Jurkat cell clone stably expressing luciferase activity
driven by HIV-1 LTR. TNF does not modify thiol content, even
though it induces a high level of LTR transactivation. Luciferase
activity was measured in cell lysates and expressed as RLU
(relative light units)/106 cells. Thiol content was determined using
a previously described technique [55] and expressed in nmol/106

cells. These data are adapted from Israël et al. [40].

TNF BHA Luciferase Thiol content
addition addition activity nm/106 cells

RLU/106 cells

− 0 92 14.0

+ 0 2266 12.2
+ 100 2137 13.7
+ 200 1841 18.4
+ 300 1166 19.4
+ 400 214 24.7
+ 500 43 25.7

Figure 2. H2O2 alone does not significantly modify the constitu-
tive level of luciferase activity, but potentiates the effect of PMA.
J.Jhan cells, transiently transfected with the plasmid 3 Enh-TK-
Luc which carries 3 ‘HIV-enhancer’ motifs (6 kB sites) upstream
of a minimum promoter (TK: thymidine kinase of herpes simplex
virus) driving the luciferase gene, were exposed to H2O2 (30–100
mM) alone or in association with PMA (20 ng/ml) from 24 to 30
h after transfection. Luciferase activity was measured in cell
lysates and expressed as RLU/106 cells. These data are adapted
from Israël et al. [40].

during T cell activation. The pivotal event is the activa-
tion of NF-kB transcription factor (for review see [29]).
Activation of this factor was shown to be one of the
main requirements in the early stages of viral replication
in T lymphocytes. The event necessary to efficiently
trigger NF-kB-induced viral transcription is recognition
of a specific antigen [30, 31]. NF-kB is composed of two
subunits (p50 and p65) and is retained in an inactive
form in the cytoplasm by interaction with inhibitory
molecules designated IkBs (for reviews see [32–35]).
Under various stimuli mediated through a number of
cell surface molecules, such as receptors to antigens or
to cytokines (for review see [29]), this factor is translo-
cated into the nucleus. There, it interacts with two
specific cis-acting sequences present within the long
terminal repeat sequence (LTR) of HIV-1 [36].
Various antioxidant molecules have been shown to
block cellular activation events [37–39]. Since HIV
transcriptional activation is closely related to cellular
activation events, we tested the hypothesis that pheno-
lic, lipid-soluble, chain-breaking antioxidants that act at
the membrane level, such as nordihydroquairetic acid
(NDGA), a-tocopherol (vitamin E), and particularly
butylated hydroxyanisole (BHA) would decrease NF-
kB-dependent PMA- or TNF-induced HIV-LTR acti-
vation. Since the main targets of the virus are CD4+ T
lymphocytes and monocytes/macrophages, we used
both lymphoblastoid T (J.Jhan) and monocytic (U937)
cell lines and we showed that these free radical scav-
engers inhibit HIV-LTR transactivation by blocking
NF-kB activation (table 1) [40]. Besides the phenolic
antioxidants, various antioxidants such as dithiocarba-
mates [41], NAC or other glutathione precursors [4,
42–44] were also demonstrated to decrease HIV tran-
scription by blocking NF-kB activation induced by
PMA or TNF.

We also examined the mechanism involved in the influ-
ence of the redox status on the modulation of NF-kB
activation in lymphoblastoid T cell lines. It was sug-
gested that all stimuli which activate NF-kB induce
ROIs that act as second messengers to mediate NF-kB
activation and LTR transactivation. Subsequently, anti-
oxidant molecules, which scavenge ROIs, should pre-
vent NF-kB activation [41]. Since thiols, and particu-
larly glutathione, constitute one of the major
antioxidant systems, we approached the mechanism of
the BHA-mediated inhibitory effect by a correlative
study of NF-kB activation and of the cellular thiol
content in various experimental conditions of stimula-
tion by TNF or PMA or of inhibition by BHA as
shown in table 1 [40]. We showed that modification of
the redox status of Jurkat cells by BHA lead, as ex-
pected, to an accumulation of thiols within the cells
accompanied by a decrease of TNF induced LTR trans-
activation in a dose-dependent manner. TNF by itself
barely modified this level of thiols even though it led to
LTR transactivation. This indicates that production of
ROIs was not a step necessary to induce NF-kB activa-
tion. This conclusion was strengthened by the fact that
even oxidative stress (H2O2 or hyperoxic treatments) did
not lead to NF-kB activation in most hematopoietic
cell lines, as we (fig. 2) [40] and others [45, 46] have
shown. However, H2O2 synergizes with a signal such as
PMA (fig. 2) [40]. In conclusion, oxidative stress facili-
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Figure 3. BHA or NAC partially decrease TNF- or PMA-induced HIV replication in U1 cells (A) but do not modify HIV replication
in chronically infected U937 cells (B). Panel A: U1 cells were left unstimulated or stimulated for 6 h with TNF (500 U/ml) or PMA
(20 ng/ml) in the presence of NAC (30 mM) or BHA (300 mM) for 6.5 h; Panel B: Chronically infected cells were left untreated or
treated respectively with NAC (20 mM), BHA (200 mM) or vitamin E (150 mM) for 19 h. Each bar represents the p24 level expressed
in pg/ml/106 U1 cells (A) or in ng/ml/106 U937 cells (B) measured in the supernatant of cells 6.5 h (U1) or 24 h (U927) after the various
treatments. These data are taken from one representative experiment out of five. These data are adapted from Aillet et al. [25].

tates but does not mediate NF-kB activation and LTR
transactivation. These cofactors are probably constitu-
tively present and are sufficient to permit the full expres-
sion of the TNF signal in most hematopoietic cell lines.
This might not be the case in peripheral blood lympho-
cyte subsets, since these cells respond to ultra-violet (UV)
or H2O2 by inducing NF-kB activation [46].
We hypothesize that BHA, on blocking constitutive
membrane peroxidation as an ROI scavenger at the
level of the plasma membrane, leads to impairment of
the TNF signalling pathway, possibly by modifying
either the structure of the TNF receptor or the activity
of enzymes located at the plasma membrane and impli-
cated in this signalling pathway. This event could be
one of the modifications taking place at the plasma
membrane during oxidative stress, like the phosphoryla-
tion of the epidermal growth factor receptor triggered
by UV radiation [47] or phosphorylation of tyrosine
kinases [48] such as ZAP 70 [46] mediated by CD3, or
P56lck [49]. The targets of antioxidant molecules on the
plasma membrane leading to impairment of TNF sig-
nalling have not yet been identified.

Consequence of oxidative stress on HIV replication

Since oxidative stress activates NF-kB-dependent trans-
activation of HIV-LTR, we examined the dependence
of NF-kB activation for replication in two human
monocytic cell systems of the same origin, but exhibit-
ing different levels of HIV replication: the U1 subclone
previously characterized as a model of latency [50] and
chronically infected U937 which actively replicate the
virus. We investigated whether the suppression of NF-

kB activation by the two prototypic antioxidants,
namely NAC and BHA, would counteract HIV replica-
tion in both stages of HIV activation: namely, from its
quiescent state in U1 cells and from its already replicat-
ing state in chronically infected U937.
We showed that BHA and NAC both counteract TNF-
and PMA-induced NF-kB activation in the U1 cell line
and suppress the constitutive NF-kB activity perma-
nently induced [51] by the virus itself in chronically
infected U937 cells [40]. Inhibition of TNF- or PMA-
induced NF-kB activity was accompanied by a partial
decrease of induction of HIV replication in U1 cells (as
measured by p24 antigen concentration), whereas sup-
pression of NF-kB activity in chronically infected U937
cells did not lead (at least not within the 48 h of the study)
to any detectable decrease in HIV replication level (fig.
3) [25]. These data also suggest that participation of
NF-kB in viral replication is different in the two systems.
In the latent system, activation of NF-kB is necessary for
induction of HIV replication, whereas NF-kB constitu-
tively present in the nucleus of the actively replicative
U937 cells does not seem to be important when an active
replication has been established for a long time. It is likely
that, under these conditions, HIV Tat, the transactivator
encoded by the virus, plays a major role in virus replica-
tion, and BHA and NAC cannot counteract its strong
transactivating effect [25].
Thus activation of HIV transcription by oxidative stress
due to HIV infection might occur preferentially in the
first steps of HIV replication from its quiescent state. In
contrast, ongoing replication in cells which chronically
replicate the virus might not be influenced by the redox
status of the cells, since HIV transcription is then inde-
pendent of NF-kB.
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Potential use of antioxidants as therapeutic agents
against AIDS

On the basis of the data collected here, we discuss the
potential use of antioxidant molecules in the treatment
of HIV-infected individuals.
A potential therapeutic use of NAC in the treatment of
HIV-infected patients was first proposed on the basis of
its inhibitory effect on virus replication in normal circu-
lating lymphocytes infected in vitro with HIV-1 and
stimulated with mitogens [42] or in decreasing virus
replication in infected cell lines [43, 44]. However, we
think that anti-HIV therapies might aim, at the same
time, at inhibiting induced HIV replication in latent
cells and permanent replication in cells which actively
multiply the virus, since in vivo the integrated provirus
may either remain latent, especially in normal circulat-

ing lymphocytes, or be actively transcribed, as in
lymphoid organs [52, 53] or tissue macrophages [26, 53].
Our results obtained in vitro suggest that one of the
limitations of antioxidant therapy in vivo might be that
sustained replication in reservoir cells such as tissue
macrophages might not be impaired by antioxidant
compounds.
Another concern is that the concentrations needed to
prevent NF-kB activation would be difficult to obtain
in vivo, and if obtained, might have deleterious effects
on immune functions such as TNF production or pe-
ripheral blood lymphocytes proliferation. Furthermore,
NAC or BHA were shown to inhibit interleukin 2-in-
duced lymphocyte proliferation even at concentrations
lower than that necessary to impair HIV replication
(fig. 4) [25].
Another approach proposed the use of low concentra-
tions of antioxidants and particularly cysteine deriva-
tives to correct low thiol content (particularly
glutathione) in HIV-infected patients, with beneficial
effects on CD4 lymphocyte survival [54]. However, low
concentrations of antioxidants might have opposite ef-
fects to those observed with high concentrations, result-
ing in NF-kB activation. These bimodal effects were
shown on HIV transcription, using concentrations
lower than 20 mM for vitamin E [25] and 1 mM for
BHA (data not shown), and by others with dithiocarba-
mate derivatives [41]. The effect of these molecules on
PBMC (peripheral blood mononuclear cells) prolifera-
tion is also bimodal, depending on the concentrations
used. Stimulation was observed with low concentrations
of thiols, for instance. The bimodal effect of antioxidant
molecules is another limitation on the use of these
molecules in AIDS therapy.
In conclusion, these considerations warrant prudence in
the design of antioxidant-based anti-HIV therapies.
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