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Abstract. A better definition of the structural and field, and discusses an integrated model for a bio-
chemically plausible evolution of these fundamentalthermodynamic determinants of the interaction of nu-

cleic acids with proteins is shedding light on the mechanisms of synthesis. This model is based on se-
quence-specific interactions between abiotically synthe-origin of the genetic code, protein synthesis, and nu-

cleic acid replication. This is also allowing to show a sized polynucleotides and polypeptides, and can
account for a coordinate evolution of the geneticconsistent biochemical framework for the appearance
code, protein synthesis, and nucleic acid replication inof these fundamental synthetic mechanisms. This
living cells.article reviews recent significant developments in the
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Introduction

Several articles have recently reassessed the origin of the
genetic code and protein synthesis [1–8]. This renewed
interest stems from recent biochemical and structural
advances, a major one being the discovery that RNA
can have specific enzymatic properties [9–13]. This find-
ing has profoundly changed current theories on the
origin of life [14], and has offered a unifying view of the
evolution of information-encoding molecules. A much
better understanding of the rules of interaction between
nucleotides and polypeptides [15–23], and improved
knowledge of the regulation of nucleic acid and protein
synthesis [24] are also contributing to this progress.
Finally, technological advances now allow adequate
testing of the basic tenets of evolutionary theories.
This article reviews recent developments in this field. A
model of molecular evolution that may allow their
integration in a biochemically plausible framework will
be discussed.

Stereochemical affinity or ‘frozen accident’?

The stereochemical [25, 26] and ‘frozen accident’ theo-
ries [27, 28] are two traditionally opposing views on the
origin of the genetic code. The stereochemical theory
predicts significant affinity between specific codon and
amino acid pairs [25]. As a consequence, the code would
derive from selective chemical interactions between nu-
cleotide bases and amino acids. The existence of a
strong driving force for the evolution of the code is
appealing, as it may explain why the genetic code ap-
peared so early, being almost as old as our planet [29].
This would also imply that the type of code that we
know is essentially a necessity. However, this theory is
difficult to accept in its original formulation, since there
is little evidence for selective binding of amino acids to
isolated codons or anticodons [5, 7, 16, 30]. This is
hardly surprising, considering merely the sheer differ-
ence in size between amino acids and triplets of nucleic
acid bases [31].
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The apparently opposing theory of the ‘frozen accident’
is a stochastic model which predicts a random assign-
ment of amino acids to codons. It also affirms that the
genetic code is universal only because all living organ-
isms derive from a single primordial cell. This theory
highlights the vast selective advantage of encoded
protein synthesis, whatever mechanism it originates
from. Moreover, it accounts well for the invariance of
the mature code. However, it says little about the
molecular mechanisms that generated the genetic code,
unless one postulates the probabilistic monster of the
sudden appearance of a cell with mature genetic code
and protein synthesis apparatus.

State of the art

A large variety of analyses have been recently provided
with complementary contributions from different fields.
An algebraic analysis of the evolution of the code
interprets it as a symmetry-breaking of a 16-dimen-
sional potential code [6]. This approach defines an evo-
lutionary hierarchy among the different codons, i.e., it
identifies groups of codons that are likely to derive from
a common progenitor [28]. Using a different approach,
an evolutionary hierarchy among different codons and
amino acids has also been defined by extracting the
simplest biochemical and combinatorial features from
the 64 codons and 20 amino acids [32]. The recognition
of codon symmetries [16, 30, 33], i.e., ‘the code within
codons’ [34], is an operationally similar approach. This
has succeeded in constructing homogeneous groups of
codon-amino acid pairs, based on chemical relation-
ships between amino acids and sequence similarity
among the corresponding codons. Indeed, ‘chemically
close’ codons are contiguous, i.e., only one base changes
between chemically consecutive groups. More general
models, like ‘RRY,’ ‘RNY,’ or ‘G-nonG-N’ [27], lead to
similar conclusions. Thus, plausible models for an evo-
lution of the code from a primitive form to the mature
one can be drawn.
In a few instances, amino acids, e.g., arginine and
isoleucine, have been demonstrated to specifically bind
ribozymes or in-vitro-selected RNA containing their
corresponding codons [21–23]. This indicates that a
stereochemically specific binding between amino acids
and RNA codons can exist, and that evolutionary mod-
els for the code based on stereochemical interactions are
possible [35, 36]. However, specific RNA-amino acid
recognition has been observed only after stringent RNA
selection [9, 11, 22, 23], and it is unclear if a correspond-
ingly selective pressure could have existed in a primor-
dial environment.
The difficult issue of the relationship between the ge-
netic code and protein synthesis has also been tackled.

Reductionistic approaches, e.g., that ordinate coding
might have preceded translation, have been proposed
[4, 5]. Crucial to these models are diverse enzymatic
activities of the primordial RNA that are consistent
with experimental evidence [9–12]. However, these
models do not indicate how an isolated genetic code
could have developed and gained an evolutionary ad-
vantage before the appearance of protein synthesis. A
significant advance toward the solution of this problem
has been the recognition that specific RNA secondary
structures could have been utilized to recognize specific
amino acids [1]. This model is based on the presence of
aminoacyl-tRNA ribozymic synthetases and of minihe-
lix tRNAs [3, 37], and predicts the appearance of a
non-coded protein synthesis, which subsequently
evolved into a coded form. Thus, it provides a critical
link between the genetic code and protein synthesis.
However, it requires ordinate recognition between dif-
ferent tRNAs and aminoacyl-tRNA synthetases and the
existence of abundant structurally homogeneous RNA.
A further difficulty is the potential necessity for up to
8000 different aminoacylated tRNA forms [3].

Open problems

Despite the significant advances outlined above, these
theories have been subjected to strong criticism. First, it
appears highly unlikely that complex molecules, like
coenzyme handles [5], minihelix tRNAs [3, 37] or ri-
bozyme-type RNA [9, 11, 21–23, 38, 39] appeared all of
a sudden as functional entities. Critical to this point is
the unlikelihood of selective catalysis, necessary for
ordinate synthetic pathways, in a ‘primordial soup.’
More generally, the models discussed generate a non-
solvable incongruity, often referred to as the ‘chicken
and egg’ problem. Synthetically, if complex structures
are necessary for the appearance of other complex
structures, one should first explain how the first ones
were generated. A solution to this paradox inevitably
requires the initial steps to be simple from both a
structural and a biochemical standpoint. Later steps can
subsequently become more and more complex, by intro-
ducing random changes (primordial mutations) and
fixing them by selection, if these are evolutionarily ad-
vantageous [24].
A further critical problem is represented by the evolu-
tion of the code over time. Indeed, the evolution of the
code, e.g. from a simple single-base to a triplet code, is
bound to lead to a devastating shift in the reading
frame of the pre-existing mRNA [28, 40], which would
annihilate all the advantages from the preceding stages
of evolution. On the other hand, there are consistent
indications that this evolution not only occurred, but
also occurred rapidly, since the present format of the
code is extremely ancient and is essentially invariant in
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all living organisms [29]. None of the theories presented
allows for a consistent explanation of this dicotomy.
Moreover, most theories on the appearance of the ge-
netic code say little about the evolution of protein
synthesis [3, 27]. This point is far from trivial, since it is
highly unlikely that a genetic code gained an evolution-
ary advantage in the absence of protein synthesis, i.e.,
of a selectable product. It is also difficult to imagine
that protein synthesis could have been ‘added’ to an
already existing code.

Biochemical plausibility of evolutionary models

Biochemical plausibility of models of the evolution of
the code and protein synthesis is required. Consistency
with knowledge of peptide/nucleic acid interactions and
with the thermodynamic characteristics of these pro-
cesses is also necessary.
A second characteristic of a credible evolutionary the-
ory is chemical and structural simplicity, to be compat-
ible with evolution in a poorly organized primordial
environment. It should also be possible to define coher-
ent paths of development for the genetic code, protein
synthesis, and nucleic acid replication, using a minimum
number of ad hoc assumptions. It is, indeed, difficult to
accept that three intertwined pathways of such com-
plexity could have evolved separately. On the other
hand, parallel evolution is able to provide a significant
evolutionary advantage, e.g., by cross-feeding relevant
substrates and regulatory processes from one pathway
to the other.
Finally, the model presented should allow testable pre-
dictions to be drawn, and be experimentally testable,
exiting from ‘theory only’ untestable models [32].

A coordinate evolution of the genetic code and protein
synthesis

Evolutionary models based on the above premises can
be developed [8]. A critical requirement for these mod-
els, i.e., that they be simple enough to be compatible
with a poor primordial biochemistry, can be tackled by
exploiting current knowledge on protein-nucleic acid
interactions [9–13, 15–23]. Schematically, strong and
selective binding between amino acids and nucleotide
bases can be provided by repetitive interactions between
specific amino acid side chains and specific bases, i.e.,
between polypeptides and polynucleotides. Starting
from this interaction between polymers, an ‘updated’
stereochemical theory can be built that overcomes the
main problem of the original theory, i.e. the insufficient
strength and selectivity of binding of different amino
acids to specific nucleic acid triplets. The only critical
assumption of this model is that polynucleotides and

polypeptides coexisted in sufficient amounts, although
the underlying chemistry is still far from having been
solved [41–49].
Sequence-specific interactions between polypeptides and
polynucleotides would result in the accumulation of
specific polypeptide-polyribonucleotide pairs. This cre-
ated the correspondence between defined peptide and
nucleotide sequences that is the core of a primordial
genetic code.
Proximity between a peptide and an RNA molecule is
likely to favor the formation of ester bonds between
them (fig. 1A) [9, 16, 50, 51]. As a consequence of the
covalent bonding, sequence-specific pairs of peptides
and RNA (primordial-loaded tRNA) accumulated.
The appearance of primordial-loaded tRNA played a
central role not only in the generation of the genetic
code, but also in the evolution of protein synthesis.
Single-stranded regions of loaded tRNA interacted with
other RNA with complementary sequence (fig. 1A–D)
(primordial mRNA). As a consequence, different
charged tRNA molecules were brought together by
primordial mRNA in a sequence-dependent way (fig.
1B). Proximity between two RNA-bound peptides in-
creased chances of trans-esterification (fig. 1C) [49].
This resulted in one free tRNA and one loaded tRNA
now bearing a longer peptide. Release of the free tRNA
(fig. 1D) and the juxtaposition of further loaded tRNA
molecules allowed a progressive increase in the polypep-
tide length. This process is a catalyzed synthesis of
longer polypeptides, and is templated by specific
polynucleotide sequences, i.e., it possesses the critical
characteristics of encoded protein synthesis. Interest-
ingly, this model predicts that the primordial synthetic
apparatus was composed of nucleic acids only, which is
consistent with other independent predictions [25, 27,
28].

Evolution of the genetic code

Significant interactions between nucleic acids and pep-
tides are likely to have occurred only over relatively
long regions. The main reason for this assumption is the
need for sufficiently strong binding [17–20] at the
higher temperatures characteristic of the ‘primordial
soup’ [48]. As a result, the early genetic code was
composed by elements much longer than the base-
triplet single amino acids seen nowadays. How could a
‘longer’ code evolve to its present form? The evolution
of cofactors that stabilized RNA-RNA binding (pri-
mordial ribosomes) led to a progressive parallel reduc-
tion in the length of the interacting polynucleotides and
polypeptides (see below). This permitted the evolution
of a translation machinery without causing frameshifts,
i.e., it allowed conservation of the sequence and viabil-
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ity of earlier encoded proteins. Maintaining the reading
frames of pre-existing mRNA is a fundamental advan-
tage over evolutionary models that postulate evolution
from a one-base to a two/three-base codon [28]. The
mature code then evolved to the absolute minimum of a
single amino acid per RNA coding unit. Sterical con-
straints [28], the need for sufficient thermal binding
stability, and the requirement for a sufficient number of
codons is likely to have imposed the lower limit of a
three-base codon. In summary, the triplet code is not
the longest evolved code, but the shortest.

Evolution of protein synthesis

The appearance of accessory molecules allowed further
evolution of protein synthesis. Likely early cofactors
were polypeptides with either catalytic properties for
tRNA loading (primordial aminoacyl-tRNA syn-
thetases) [52], or that stabilized the interaction between
tRNA and mRNA (primordial ribosomes) [53]. Primor-
dial aminoacyl-tRNA synthetases are likely to have

added finer discrimination among the different amino
acids, whereas primordial ribosomes increased both the
fidelity and the efficiency of the primordial translation
process. They also improved the utilization of the avail-
able biologically significant material. Indeed, while the
coding capability, i.e., the sequence-specific recognition
between polynucleotides and polypeptides, of long ver-
sus short polymers is equivalent, long polymers were
probably rare [40, 41, 44, 46–48, 54, 55], whereas short
ones were more abundant, but could bind less strongly
to each other.
In summary, both primordial aminoacyl-tRNA syn-
thetases and primordial ribosomes were favorably se-
lected, allowing a critical step up in the efficiency of
protein synthesis.

Further evolution of the primordial code and of protein
synthesis

The core of the presented model is stereochemically
deterministic. However, it allows for the evolution of

Figure 1. Evolution of the primordial genetic code and protein synthesis. (A) Generation of a primordial genetic code. (B–D)
Generation of primordial protein synthesis. N: N terminal; C: C terminal; a1: a helix polypeptide 1; a2: a helix polypeptide 2. (A)
Sequence-specific interactions between double-stranded RNA regions and oligopeptides in a helix conformation, and of complementary
primordial tRNA and mRNA. (B) Sequence-specific juxtaposition of different loaded tRNA. (C) Proximity-enhanced trans-esterifica-
tion reaction between tRNA-bound peptides. (D) Release of unloaded tRNA. (Reproduced from ref. 8, with kind permission of
Springer-Verlag.)
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the code and for the fixation of specific subsets of its
potential variants. It is, indeed, difficult to imagine that
primordial, i.e. unselected for, stereochemical interac-
tions were sufficient to confer adequate selectivity
among similar amino acids. On the other hand, cofac-
tors (primordial aminoacyl-tRNA synthetases) are
likely to have helped in refining tRNA-amino acid
recognition. This stage of evolution of the genetic code
was, thus, guided, which probably accounts for most of
its orderly features, i.e., internal symmetries [6]. Good
examples of these are the codons for acidic amino acids
and the corresponding amides. GAA and GAG encode
glutamic acid, while CAA and CAG encode glutamine.
Correspondingly, GAC and GAU encode aspartic acid,
while AAC and AAU encode asparagine. Thus, GAN
encodes acidic residues, whereas the corresponding
amide codons are encoded by AAN, i.e., they only
differ in the first base. In summary, the appearance of
aminoacyl-tRNA synthetases allowed a first expansion
of the probably incomplete primordial alphabet [5, 6,
28], by the addition of chemically similar amino acids.
Further expansion also occurred through the stabiliza-
tion of aminoacid/RNA interactions that were too weak
to be significant, or by developing some that did not
previously exist.
Discrimination between similar amino acids is likely to
have meant utilization of multiple tRNA recognition
elements and specific three-dimensional structures. It
also required guidance by more and more evolved
aminoacyl-tRNA synthetases. This process of structural
specialization led to a separation of functions, e.g., of
codon versus acceptor stems in tRNAs.
Each step of the evolution of the code and protein
synthesis is likely to have conferred a vast selective
advantage to the primordial cell possessing it. Thus, it
probably allowed a quick replacement of the preceding
stages of cellular evolution. Further evolution then oc-
curred among the descendants of each evolutionary
bottleneck. This indicates that the core feature of the
‘frozen accident’ theory, i.e., that the code is unique
because all living organisms derive from a single pri-
mordial cell [27], is consistent with a stereochemical
theory. Coherent with this analysis, significant excep-
tions to the universality of the code appear in cases of
radically different evolutionary history, e.g., the
genomes of intracellular organelles [16].

Nucleic acid replication

A powerful model for the evolution of the genetic code
and protein synthesis should be coherent with models
for nucleic acid replication (see above). Template-di-
rected RNA synthesis probably appeared in the form of
RNA-guided RNA synthesis [13], and was the precur-

sor of both mRNA transcription and nucleic acid repli-
cation. This process would have both increased the
availability of useful primordial mRNA, and favored
the genetic process of nucleic acid replication, as is the
case for replicating RNA viruses [24]. The template-
replicated RNA subsequently evolved into primordial
DNA by retrotranscription. The appearance of the pri-
mordial DNA and genome-containing cells permitted
the evolution of replicating organisms, with an ordinate
capacity to fix, maintain and transmit the advantages of
previous evolutionary steps.
Several models of primordial RNA transcription/repli-
cation can be envisaged. However, the most parsimo-
nious one is probably an RNA-only nucleic acid
replication mechanism [13]. ‘Folded-back’ RNA
molecules were probably abundant in the primordial
RNA pool (fig. 2A). These would have provided a
simple start for nucleic acid synthesis, since they would
have contained both a template and a primer for
polynucleotide elongation. This mechanism would have
directed the incorporation of single nucleotides or the
condensation of longer complementary oligonucleotides
in a strand-complementary fashion (fig. 2B, C). A con-
sistent remnant of this primordial mechanism is the use
of RNA primers for the initiation of the synthesis of
replicating DNA [24, 32].
The condensation of complementary oligonucleotides
over a nucleic acid template is in principle equivalent to
the primordial mRNA/tRNA recognition described
above as the core of protein synthesis (fig. 1). The only
significant difference is the nature of the tRNA, i.e.,
peptide loaded in the case of protein synthesis versus
peptide free in the case of nucleic acid replication. The
end point of the two types of RNA-RNA interactions is
also different, i.e., release of peptide-free tRNA in the
case of peptide synthesis (fig. 1D) versus condensation
into longer nucleotide polymers in the case of nucleic
acid synthesis (fig. 2C). Assuming the naı̈ve model of
two tRNA pools, i.e., peptide loaded versus peptide
free, in competition with each other, nucleic acid repli-
cation would be alternative to protein synthesis, a fea-
ture largely maintained by mature DNA synthesis
versus mRNA transcription [24]. An experimental find-
ing coherent with the model proposed is the conserva-
tion of tRNA-like structures in the genome that are
likely to have been involved in nucleic acid replication
[56]. An intriguing similarity between the folded-back
RNA precursor (fig. 2A) and telomeres [57] suggests
that the former could have originated the process of
chromosome end-capping. Consistent with the model
presented is also the observation that the top half
(acceptor stem and TpsiC) of the tRNA is more ancient
than the anticodon-containing half [56]. Equally consis-
tent with this model of RNA-catalyzed condensation of
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Figure 2. Evolution of primordial RNA replication. (A) Genera-
tion of double-stranded RNA regions by RNA back-folding. (B)
Sequence-specific juxtaposition of RNA building blocks over
complementary primordial RNA templates. (C) Condensation of
the juxtaposed RNA into longer sequence-specific polymers.

hybridization with peptide-loaded tRNA. Thus, a 5% to
3% directed RNA elongation would impart an N- to
C-terminal direction to peptide elongation.

Evolution of a primordial cell

The appearance and evolution of the first living cells is
critically linked to the evolution of the biochemical
pathways discussed in this article. It is, thus, proposed
here that a primordial cell consisted in a confined envi-
ronment (primordial cell membrane) that could favor
the (re)production of its major constituents, e.g.,
polynucleotides and polypeptides. Even the limited bio-
chemical interactions between the latter as depicted in
the preceding paragraphs were probably sufficient to
cross-feed evolutionary advantages accumulated by
each synthetic pathway. Instrumental to this had to be
the evolution of a primordial cell membrane. Am-
phipathic lipids, e.g., phospholipids, can self-assemble
in an aqueous medium in liposome-like structures, upon
minor energy inputs [60]. The diameter of such struc-
tures and the organization into lipid bilayers are re-
markably close to those of cells and cell membranes,
respectively, making this one of the most successful, and
least recognized, experimental tests of the evolution of
life. Sequestration of fluid within the primordial lipo-
some was a critical step for the evolution of life, since it
allowed the local accumulation of products and gener-
ated an immensely higher concentration of the compo-
nents that were no longer free to diffuse away. This also
allowed some degree of protection for biochemically
labile compounds. An equally important, albeit more
subtle, evolutionary advantage of the primordial cell
was to constitute a ‘selectable unit.’ In other words, if
an advantageous change occurred, e.g., in the synthesis
of primordial RNA, this would have translated into an
overall survival advantage for the whole cell. This al-
lowed the accumulation of disparate evolutionarily fa-
vorable changes, and further supports the assumption
that different biochemical pathways are highly likely to
have evolved coherently with each other.

Experimental findings

Several experimental findings support the model pro-
posed, and are listed below.
1) The existence of variants of the genetic code indi-
cates that evolution of the code is possible [31, 61].
2) Chemically similar amino acids are often encoded by
similar codons [5, 28, 34]. In the model proposed,
similar RNA sequences are more likely to bind polypep-
tides with similar chemical properties.
3) Relatively short peptides (down at least to 17mers)
recognize short specific sequences of double-stranded

short polymers into longer ones is the demonstration
that RNA can possess an RNA ligase activity [58].
Primordial replication did not need to be limited to
‘folded-back’ RNA. The use of independent RNA
molecules allowed the process of physical separation of
the replicated molecules, permitting further rounds of
synthesis and exponential increase in the copy number
of sequence-identical/complementary RNA.
The proposed model indicates a strong potential link
between nucleic acid replication and protein synthesis,
consistent with suggestions from previous work. Orgel
[59] proposed that amino acid charging at the 3% termi-
nus of tRNA would have favored RNA replication
from the opposite end. Interestingly, this model implies
that nucleic acid synthesis would follow the ‘correct’ 5%
to 3% direction. Elongation of the ‘folded-back’ RNA in
the model depicted would also impose a 5% to 3% direc-
tion of synthesis. Correspondingly, it would progres-
sively shield the single-stranded RNA portions from
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RNA or DNA [17–20]. Double-stranded RNA can
efficiently bind a-helical polypeptides through both the
major [15, 19, 62] and the minor [63, 64] grooves.
Finally, short repetitive motifs like the RGG box can
recognize RNA with sequence specificity [65].
4) Relatively short RNA can specifically recognize
amino acids in a genetic-code-consistent manner [21–
23]. Analogously, short specific RNAs can be selected
from large numbers of random sequences by selective
binding to proteins on a solid substrate [38, 39].
5) Binding to double-stranded nucleic acids can induce
a-helical conformation in peptides devoid of secondary
structure [18, 19, 66–68]. Consistent with this, RNA
can have a chaperone activity [69], i.e., facilitates the
folding of polypeptide chains.
6) Small RNAs and oligopeptides can possess the enzy-
matic properties required by the model presented. In-
deed, RNA can catalyze aminoacyl-tRNA synthesis
[52], amino acid transfer reactions [50], and esterifica-
tions [9]. Ribozymes can have esterase activity for
aminoacyl-tRNA bonds [11] and ribosomal RNA
shows peptidyl-transferase activity [70]. Conversely,
oligopeptides can affect the stability of ester bonds in
nucleic acids [16].
7) Covalently bonded nucleic acid/polypeptide com-
plexes have been identified in several different organ-
isms [51].
8) tRNA-like structures probably involved in replica-
tion are conserved in the genome [56]. These could be
remnants of primitive telomeres and/or replication
primers (fig. 2).
9) RNA ligases can originate from random RNA se-
quences [58]. RNA can also acquire RNA-polymerase-
like activity [13].

Experimental testing of the model

A large body of experimental evidence supports the
model presented, and the model itself presents experi-
mentally testable predictions.
SELEX-type binding assays can directly test the pre-
dicted preferential binding between specific RNA se-
quences and polypeptides of defined composition [21,
23, 38, 39]. Solid-phase-coupled homo- and heteropoly-
meric peptides could be used to select for RNAs that
bind to specific amino acid sequences. The sequence of
the latter will allow the determination of potential cor-
respondences between polypeptides and polynucleotides
[21, 22, 35]. This would also allow determination of the
subset of codon-amino acids which shows strong stereo-
chemical affinity. The latter may correspond to the
‘early set’ of codons that were progenitors of later
additions (see above).

Recently, transcription factors and DNA have been
analyzed at the level of fine structural details, e.g., by
cocrystallization [64, 67, 71]. Extensive analysis of the
structural determinants of these interactions may fur-
ther define ‘general’ rules that would apply to the selec-
tive recognition between polymers postulated in the
model analyzed. Important characteristics of these reac-
tions that will need to be clarified are the minimum
length of the interactive polymers and the discrimina-
tion rate between chemically similar structures, e.g.,
between L and D isomers. This might also shed light on
the old controversy of ‘genetic takeovers’ [72, 73] which,
however unlikely they may appear, might correspond to
a progressive restriction of molecular possibilities
among similar classes of compounds, e.g., choice of one
RNA backbone versus another.
The chemistry of spontaneous synthesis of amino acid
and base polymers needs to be elucidated. Recent ad-
vances indicate the feasibility of this approach [45, 47,
72, 74–79]. Experimental tests should probably include
an analysis of condensation reactions within liposome
cavities. This may allow determination of the effects of
a closed environment on polymerizing reactions, and
help to define its consequences on the development of
primordial cells.
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