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Abstract
Identifying novel breast cancer biomarkers will improve patient stratification, enhance therapeutic outcomes, and help 
develop non-invasive diagnostics. We compared the proteomic profiles of whole-cell and exosomal samples of represen-
tative breast cancer cell subtypes to evaluate the potential of extracellular vesicles as non-invasive disease biomarkers in 
liquid biopsies. Overall, differentially-expressed proteins in whole-cell and exosome samples (which included markers 
for invasion, metastasis, angiogenesis, and drug resistance) effectively discriminated subtypes; furthermore, our results 
confirmed that the proteomic profile of exosomes reflects breast cancer cell-of-origin, which underscores their potential 
as disease biomarkers. Our study will contribute to identifying biomarkers that support breast cancer patient stratification 
and developing novel therapeutic strategies. We include an open, interactive web tool to explore the data as a molecular 
resource that can explain the role of these protein signatures in breast cancer classification.
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Introduction

Despite ongoing advances, breast cancer remains a signifi-
cant health problem. According to the World Health Orga-
nization, 2.3  million women worldwide were diagnosed 
with breast cancer in 2022, with 670,000 succumbing to 
the disease [1]. Breast cancer represents the leading cause 

of cancer-related deaths in women younger than 45, with 
incidence and mortality rates expected to increase signifi-
cantly in the near future [1]. Unfortunately, breast cancer’s 
heterogeneity, aggressiveness, and biological complexity 
make developing safe and effective therapeutic approaches 
a challenging task [2].

Graphical Abstract

(A) We quantified proteomic profiles of breast cancer cells (BCCs) and breast cancer-derived exosomes (BCDEs) samples 
from four breast cancer cell lines representative of common breast cancer subtypes – Her2-positive (Her2, MDA-MB-453), 

Luminal A (LA, MCF7), Luminal B (LB, ZR-75), and triple-negative (TN, MDA-MB-231). (B) We independently 
performed four comparisons for BCCs and BCDEs, comparing each cell line against the remaining three. (C) We identi-
fied differentially-expressed proteins (DEPs) for BCCs and BCDEs, defined protein signatures, and functionally analyzed 
resulting networks. Through pathway inference analysis (PIA), we identified Kyoto Encyclopedia of genes and genomes 
(KEGG) subpaths and biological Gene Ontology (GO) terms that displayed differential activation. (D) We validated our 
proteomic signature using the Cancer Genome Atlas (TCGA) and the Cancer Proteome Atlas (TCPA) databases, verified 

that differentially-activated pathways in BCDEs caused a corresponding response in receptor cells, and confirmed that the 
BCDE proteomic signature reflects their cell-of-origin and identifies candidate disease biomarkers in liquid biopsies
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Of the approximately ten different breast cancer subtypes 
currently described, the expression profile of the estrogen 
receptor (ER), progesterone receptor (PR), and human epi-
dermal growth factor receptor 2 (Her2) characterize four 
clinically-relevant molecular subtypes - luminal A (LA; 
ER+, PR+, Her2-) (40%), luminal B (LB; ER+, PR+, 
Her2+) (15–20%), Her2-enriched (Her2; ER-, PR-, Her2+) 
(10–15%), and triple-negative (TN; ER-, PR-, Her2-) (15–
20%) [3]. The development of the aggressive TN subtype 
usually involves metastasis to the brain, which associates 
with the failure of most therapeutic strategies [4, 5].

Current methods for cancer diagnostics include radio-
logical imaging for detection and biopsy for confirmation, 
with the latter providing a means to establish the molecular 
subtype and prognosis; however, these invasive methodolo-
gies can provide false positives, and image-based diagnostic 
tools remain expensive and not widely available. Further-
more, conventional biopsies may not reflect the complete 
nature of primary/secondary solid tumors due to tumor het-
erogeneity and distinct genomic profiles [6]. Breast cancer 
subtype classifiers based on gene expression signatures have 
significantly improved patient stratification and supported 
clinical decision-making (7–8). Compared to traditional 
diagnostic methods, analysis of liquid biopsies of easily-
accessible biological fluids (e.g., saliva, urine, and periph-
eral blood) represents a highly sensitive and minimally 
invasive diagnostic means to quickly provide results [9]. 
Liquid biopsies in breast cancer management have provided 
positive outcomes in early diagnosis, screening, and prog-
nosis prediction [10–12]; however, few assays have been 
clinically validated and incorporated into clinical guide-
lines, such as those used to detect EGFR mutations in lung 
cancer, RAS mutations in colorectal carcinoma, or PIK3CA 
mutations in breast cancer. Additional approaches based on 
next-generation sequencing focus on analyzing alterations 
in cell-free tumor DNA isolated from plasma samples and 
have been gradually incorporated into the clinical setting 
[13–15].

The bodily fluids used for liquid biopsies contain extra-
cellular vesicles such as exosomes and nanovesicles of 
endosomal origin, which play roles in short- and long-range 
cell-to-cell communication via the transfer of cargos that 
include lipids, proteins, and nucleic acid species. Exosomes 
play essential roles in physiological processes and have been 
implicated in controlling various disease-related pathways. 
They also represent a promising source of non-invasive bio-
markers [16–18] as they are present at elevated levels in 
cancer patient blood samples [19–21], their protected cargo 
reflects their cell-of-origin (22–23), and tumor cell-derived 
exosomes possess pro-metastatic potential [24].

Herein, we present the proteomic and functional charac-
terization of breast cancer cells (BCCs) and breast cancer 

cell-derived exosomes (BCDEs) representative of four clin-
ically-recognized subtypes [25]. This analysis demonstrates 
intrinsic differences, correlations with clinical scenarios, 
and applicability as non-invasive biomarkers to improve 
breast cancer patient stratification and disease monitoring.

Results

Characterization of breast cancer cells and breast 
cancer cell-derived exosomes

We analyzed BCCs and BCDEs from the MDA-MB-453 
(Her2), MCF7 (LA), ZR-75 (LB), and MDA-MB-231 (TN) 
cell lines to identify potential diagnostic/prognostic bio-
markers that may help to stratify patients and guide therapy 
choice (Fig.  1A describes the overall workflow). We iso-
lated BCDEs by ultracentrifugation of BCC supernatants 
cultured in exosome-depleted media. We confirmed the 
receptor profile of BCCs by Western blotting and evalu-
ated the presence of the CD63, CD9, and CD81 tetraspan-
ins (TSPANs) (given their function in exosome-biogenesis 
and release) and other exosome-related proteins (Hsc70 and 
Alix) in BCCs and BCDE extracts. The absence of clath-
rin and calnexin from BCDE samples indicated the lack 
of contamination with extracellular vesicle populations 
derived from the plasma membrane or endoplasmic reticu-
lum (Fig.  1B). We determined exosome size and concen-
tration via nanoparticle tracking analysis (NTA) (Fig. 1C), 
finding that BCDEs possessed sizes of 110–125 nm and that 
BCCs exhibited specific exosome production/secretion pro-
files, with LA and LB BCCs giving rise to the most signifi-
cant number of exosomes. We confirmed the significantly 
elevated level of BCDEs isolated from LA and LB BCCs 
found by NTA and the presence of the well-described cup-
shaped BCDEs by transmission electron microscopy (TEM) 
(26–27) (Fig. 1D-E).

Differential protein expression analysis in BCCs and 
BCDEs

We preprocessed and normalized proteomic data from 
BCCs and BCDEs to ensure comparability; overall, we 
quantified 1668 (BCCs) and 389 (BCDEs) UniProtKB/
SwissProt proteins. The exploratory data analysis by clus-
tering and principal component analysis (PCA) on both data 
sets discounted abnormal sample behavior (Supplementary 
Figure S1). We compared BCCs and BCDEs from each 
subtype against the remaining three subtypes combined: 
TN vs. (Her2 + LA + LB), Her2 vs. (TN + LA + LB), LA vs. 
(TN + Her2 + LB) and LB vs. (TN + Her2 + LA), which will 
be referred to as TN, Her2, LA, and LB, respectively, for 
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Fig. 1  Characterization of BCCs and BCDEs and differential protein 
expression analysis. (A) Characterization workflow. (B) Western 
blot of BCC extracts confirming characteristic receptor expression 
and BCC/BCDE extracts for exosome marker expression (Clathrin/
Calnexin as quality control for contamination with other extracellular 
vesicle types). (C) The concentration and distribution of BCDEs were 
analyzed with the NanoSight NS300 (vertical axis, x107 particles/ml) 
and by size (horizontal axis, in nanometers [nm]). (D) Quantitative 
analysis of BCDEs. (E) Representative TEM images of BCDEs. Scale 
bar = 200 nm. (F) Intersection of significantly dysregulated proteins 

by subtype in BCCs and BCDEs. Venn diagrams demonstrate the num-
ber of commonly significantly upregulated (“UP”) and downregulated 
(“DOWN”) proteins in intersections for subtype comparisons. (G) 
Statistical correlations between subtype comparisons in BCCs (col-
umns) and BCDEs (rows). Correlations among parental BCCs and 
BCDEs are positive, while non-parental relations present near-zero or 
negative values. Significant correlations are depicted with a red star. 
n = 3 in each experiment; error bars represent mean ± SEM, *p < 0.01, 
**p < 0.001, ***p < 0.0001; one-way ANOVA with post-Bonferroni’s 
Multiple Comparison Test
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inter-subtype separation in the PCA plot (Fig.  2C). Both 
approaches demonstrated the significant difference between 
TN and the remaining subtypes and the relative similarity 
between the LA and LB subtypes.

Using STRING, we explored the BCC signature protein-
protein interaction (PPI) network and functional profile [28]. 
The resulting PPI network displayed significantly high levels 
of connections (p = 6.88e-15, Fig. 2D) and presented a clear 
structure with a prominent central cluster comprising two-
thirds of the 33 proteins and multiple isolated groups of one 
to three proteins. Functional enrichment revealed twenty-
one biological processes (BP), six molecular functions 
(MF), and thirty-three cellular component (CC) enriched 
GO terms. These included BP GO functions Cytoskeleton 
organization (GO: 0007010), Cornification (GO:0070268), 
Oxidation-reduction process (GO:0055114), Cellular modi-
fied amino acid metabolic process (GO:0006575), and 
CC GO function Invadopodium (GO:0071437), which we 
highlighted given the interesting pattern of upregulation/
downregulation of their related proteins as this provides 
subtype-specific functional detail.

Her2-specific downregulated BCC proteins related to 
functions such as Cytoskeleton organization, Cornifica-
tion, and Invadopodium and upregulated proteins related 
to Oxidation-reduction and Cellular modified amino acid 
metabolic processes. LA-specific downregulated BCC pro-
teins related to Cytoskeleton organization, Cellular modi-
fied amino acid metabolic process, and Invadopodium, and 
upregulated proteins related to Cornification, while LB 
upregulated proteins related to Cornification and down-
regulated proteins related to Cytoskeleton organization 
and Invadopodium. Finally, TN-specific upregulated BCC 
proteins related to Cytoskeleton organization and Invadopo-
dium, and downregulated proteins related to Cornification 
and Cellular modified amino acid metabolic process. Inter-
estingly, keratins (KRTs) represent currently applied cancer 
diagnosis biomarkers: TPS (KRT18), TPACYK (KRT8/18), 
and CYFRA 21 − 1 (KRT19) [28–31]; here, they displayed 
common behavior, independent of the remaining proteins 
related to Cytoskeleton organization and opposite to KRT7 
(Fig. 2E).

In summary, a 33-protein signature of BCCs supported 
the clear discrimination of breast cancer subtypes and, more 
importantly, provided subtype-specific functional detail that 
could explain the differential prognosis of each breast can-
cer subtype.

Definition of a BCDE protein signature with subtype 
discriminatory potential

We next defined a BCDE protein signature in the same 
manner by selecting the top ten DEPs in each subtype 

simplicity. Table S1 reports the differentially-expressed pro-
teins (DEPs) in each BCC and BCDE comparison. Overall, 
BCCs displayed a more significant number of dysregulated 
proteins, although BCDEs exhibit more significant levels of 
alterations. We observed the most severe dysregulation (in 
terms of number) in the TN (265 DEPs) and Her2 compari-
sons (121 DEPs) in BCCs and the TN (109 DEPs) and Her2 
(118 DEPs) comparisons in BCDEs.

We represented significant DEPs from each subtype com-
parison for BCCs and BCDEs and considered their direc-
tion of change (upregulation/downregulation) as shown by 
Venn diagrams (Fig.  1F). In general, we observed a very 
low level of intersections among subtypes, with the most 
common intersection being between LA and the remaining 
subtypes. Our findings also suggested that most DEPs dis-
played subtype-specificity in BCCs and BCDEs; the more 
significant number of specific DEPs makes this especially 
true for the TN subtype.

We also explored proteomic correlation levels between 
BCCs and BCDEs through the statistics of the 239 com-
monly measured proteins. This analysis demonstrated 
significant positive correlations between parental BCCs 
and BCDE samples and significant negative correlations 
between non-parental BCCs and BCDE samples, except for 
LA and LB (Fig. 1G; Tables S2 and 3). This result suggests 
that BCDE protein cargo reflects the proteomic profile of 
their cell of origin and provides evidence for exosomes as a 
potential source of non-invasive breast cancer biomarkers.

Definition of a BCC protein signature with subtype 
discriminatory potential

We defined a 33-protein signature of BCCs by selecting each 
comparison’s top ten DEPs and removing duplicates (Table 
S2). Figure 2A depicts the expression level of said proteins, 
highlighting protein-specific profiles. Of note, 24 proteins 
presented a pattern of specific up- or down-regulation in one 
of the different subtypes (bold in Table S2). Proteins spe-
cifically overexpressed in (i) Her2 BCCs mainly associate 
with metabolism and energy production (e.g., KRT17 and 
CKB), (ii) LA and LB BCCs play roles in tumor growth and 
angiogenesis (e.g., GFRA1 and CTSD) and (iii) TN BCCs 
function in cytoskeletal remodeling, migration, epithelial-
mesenchymal transition, and chemoresistance. Of note, spe-
cific signature proteins do not present subtype specificity; 
instead, they display a gradual change across subtypes (e.g., 
SLC25A22, PDLIM1, CAPN2, FASN, and REEP6), while 
others displayed specificity to both luminal subtypes (e.g., 
KRT8, KRT18, HSPB1, and EPHX1).

The 33-protein signature can stratify cancer subtypes, 
as seen in the sample classification after the unsuper-
vised hierarchical clustering performed (Fig.  2B) and the 
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Fig. 2  A 33-protein Signature of BCCs Discriminates Subtypes and 
Provides Subtype-specific Functional Detail. (A) Barplots reporting 
the expression levels of the 33 BCC signature proteins (Her2, LA, 
LB, and TN representing MDA-MB-453, MCF7, ZR-75, and MDA-
MB-231). Boxes highlight upregulated (red) and downregulated 
(green) proteins for each BCC. (B) Heatmap of the expression levels of 
the 33 BCC signature proteins, with non-supervised clustering of the 
samples colored by the cell-of-origin. (C) The first and second com-
ponents of a PCA of samples considering only the protein signature, 
colored by the cell-of-origin, with ellipse plots with a confidence level 

of 0.9. (D) PPI analysis of the BCC protein signature. Proteins colored 
by their association to GO functions Cytoskeleton organization (GO: 
0007010), Cornification (GO:0070268), Oxidation-reduction pro-
cess (GO:0055114), Cellular modified amino acid metabolic process 
(GO:0006575) and Invadopodium (GO:0071437). (E) Upregulated 
and downregulated proteins are depicted in red and blue for the spe-
cific Her2, LA, LB, and TN networks. For further information on the 
network, please visit https://version-11-5.string-db.org/cgi/network?n
etworkId=bT6IRAwsY9iC
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median) and an upregulation in LA (22 proteins above the 
median) and LB (19 proteins above the median). Similar 
to the BBC signature, the BCDE signature could stratify 
cancer subtypes, as evidenced in sample classification after 
unsupervised hierarchical clustering (Fig.  3B) and inter-
subtype separation in the PCA plot (Fig. 3C). Importantly, 

comparison and removing duplicates, which also comprised 
33 proteins (Fig. 3A). Table S3 summarizes the upregulated 
and downregulated proteins in BCDE samples, highlight-
ing their subtype specificity. In general, we observed a gen-
eral downregulation of BCDE signature proteins in TN (25 
proteins under the median) and Her2 (20 proteins under the 

Fig. 3  Validation of a 33-protein signature in BCDEs. (A) Barplots 
reporting the expression level of the 33 BCDE signature proteins 
(Her2, LA, LB, and TN representing MDA-MB-453, MCF7, ZR-75, 
and MDA-MB-231). Boxes highlight upregulated (red) and downreg-
ulated (green) proteins for each BCDE. (B) Heatmap of expression 
levels of the 33 BCDE signature proteins, with non-supervised clus-
tering of the samples colored by the cell-of-origin. (C) The first and 

second components of a PCA of samples considering only the protein 
signature, colored by the cell-of-origin, with ellipse plots with a con-
fidence level of 0.9. (D) PCA plots of samples in the TCGA (left) and 
TCPA (right) datasets for the BCC and BCDE signatures proteins. For 
both validation steps, Her2, LA (LumA), LB (LumB), and TN (Basal) 
represent MDA-MB-453, MCF7, ZR-75, and MDA-MB-231
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A summary of the number of altered subpathways within 
each pathway provided potentially interesting differences 
between BCC subtypes. Figure 4A depicts the top altered 
pathways, which support the definition of two pattern types: 
(i) pathways altered mainly in one subtype (e.g., cAMP, 
HIF-1, and NF-kB signaling pathways in Her2; AGE-
RAGE signaling pathway in diabetic complications in LB; 
or Chemokine signaling pathway in TN) and (ii) pathways 
altered at the same time in different subtypes (e.g., Toll-like 
receptor signaling pathway, Rap1 signaling pathway, or 
Proteoglycans in cancer).

The subpathways associated with the second group also 
presented with subtype-specific dysregulation patterns for 
BCCs. For instance, the Rap1 signaling pathway (Fig. 4B), 
which promotes tumor invasion and metastasis in breast 
cancer [36], includes seven dysregulated subpathways in at 
least one subtype (identified in Fig. 4C). The subroute end-
ing in the THBS1 effector protein (the THBS1 subroute, in 
blue), which relates to defective angiogenesis in the path-
way (Fig. 4C), displayed overactivation in Her2 and TN and 
underactivation in LA and LB. The ITGA2B subroute (lilac), 
which functions in cell adhesion and migration, displayed a 
similar pattern. Cell adhesion and migration also associated 
with the ACTB, PRKC1/PARD6A/PARD3, and ITGAL 
subpathways (pink, red, and orange, respectively), which 
displayed deactivation in Her2. Additionally, the ITGAL 
subroute displayed deactivation in LA and activation in TN. 
The MAPK1 subroute (yellow), related to proliferation and 
survival, displayed overactivation in Her2, while the RAC1 
subroute (dark lilac), related to SMG crosstalk, displayed 
overactivation in TN. We observed similar differential pat-
terns to the Rap1 signaling pathway in additional pathways, 
including the Proteoglycans in cancer, Pathways in can-
cer, Hepatitis B, and Toll-like receptor signaling pathways 
(Fig. 4D-G, with subpathways of Fig. 4D and E identified 
in Supplementary Figs. S3 and 4). Our results indicate that 
although the Rap1 signaling pathway becomes systemati-
cally altered in breast cancer, each subtype possesses spe-
cific alterations in the pathway (activating or deactivating 
specific subpathways) and causes different potential func-
tional outcomes. This knowledge may support the develop-
ment of tailored treatments that respond to each patient’s 
specific requirements.

Functional impact of BCDE cargo in receptor cell 
pathways

We hypothesized that the functional characterization of 
BCDEs should be interpreted as the functional change that 
BCDEs induce in receptor cells; therefore, we analyzed 
altered pathways in BCDEs with Hipathia analogously to 
BCCs. We interpreted the PIA in BCDEs as the impact of 

these findings suggest that the protein cargo of BCDEs 
partly reflects their cell of origin.

As before, we explored the BCDE signature PPI net-
work and functional profile using STRING [28]. The result-
ing PPI network displayed significantly elevated levels of 
connections (p < 1.0e-16, Supplementary Figure S2) and 
possessed a similar structure to the BCC network, with a 
prominent central cluster comprising two-thirds of the 
total proteins and multiple isolated clusters of one to two 
proteins. Functional enrichment of signature proteins with 
STRING revealed 14 BCC-enriched GO terms in BCDEs; 
however, PPI analysis failed to reveal associations between 
protein clusters and biological functions in this case. Sup-
plementary Figs. S2B-E report the different patterns of dys-
regulation in Her2, the less differentiated patterns in LA and 
LB, and the general downregulation of signature proteins in 
TN, respectively.

We next explored the efficacy of our protein signatures to 
stratify breast cancer subtypes through The Cancer Genome 
Atlas (TCGA) and The Cancer Proteome Atlas (TCPA). 
PCAs revealed that both BCC and BCDE protein signa-
tures discriminated TN from the LA and LB subtypes in 
the TCGA dataset but had more difficulty separating Her2 
and could not discriminate between LA and LB (Fig. 3D). 
Interestingly, the BCDE protein signature represented the 
most powerful means of separating subtypes, especially 
for the TN subtype, providing evidence for the potential of 
exosomes as a source of subtype biomarkers in liquid biop-
sies. In the TCPA dataset, BCC and BCDE signatures could 
discriminate the TN subtype from the remaining subtypes 
(Fig. 3D). While further studies will be needed to corrobo-
rate our findings, these preliminary results offer an interest-
ing starting point when considering liquid biopsies as a tool 
for TN breast cancer diagnosis.

Pathway analysis reveals functional differences in 
BCC subtypes

We next performed pathway inference analysis (PIA) with 
the Hipathia package [32–35] in BCCs to explore dysregu-
lated pathways and subpathways for each subtype from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) sig-
naling pathways (34–35). Hipathia divides KEGG pathways 
into subpathways, which are defined as all the nodes in a 
path ending in a particular final node (also called the effec-
tor protein). A subpathway exists for each final node within 
a KEGG signaling pathway; thus, Hipathia infers the activa-
tion level for each subpathway separately as an independent 
biological entity. After analyzing all available subpathways, 
we discovered 234 (Her2), 38 (LA), 26 (LB), and 146 (TN) 
altered subpathways in BCCs (Table S4).
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Fig. 4  Pathway analysis reveals altered functional outcomes according 
to BCC subtype. (A) Number of subpathways altered in the top altered 
KEGG pathways in each BCC (Her2, LA, LB, and TN representing 
MDA-MB-453, MCF7, ZR-75, and MDA-MB-231). Framed path-
ways are further represented in B and D-G. (B) The dotplot represents 
the altered subpathways’ statistical value within the Rap1 signaling 
KEGG pathway. (C) Representative example, detail of the Rap1 sig-

naling KEGG pathway in each BCC. Specific parts of the altered sub-
pathways are colored following the column Subpathway in (B). Com-
mon components are colored in light gray. For further, visit https://
www.genome.jp/pathway/hsa04015. (D-G) Dot plots representing the 
statistical value of altered subpathways within the (D) Proteoglycans 
in Cancer, (E) Pathways in cancer, (F) Hepatitis, and (G) Toll-like 
receptor signaling pathway KEGG pathways in each BCC subtype
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(Fig. 5B), whose altered subpathways are characterized in 
Fig. 5C. We also found the ErbB signaling pathway, Proteo-
glycans in cancer, and Pathways in cancer KEGG pathways 
altered in Her2 and TN BCDEs (Fig. 5D and F).

Interestingly, the Her2 and TN subtypes present with 
overexpressed pathways whose effector proteins relate to 
migration and invasion processes. For instance, the Adher-
ens junction subpathway with SNAI2 effector protein (plays 
an essential role in promoting invasion and metastasis) and 
the subpathway from Proteoglycans in cancer ending in 
HOXD10 (related to cell migration and invasion) become 

BCDE protein cargo on signaling pathways in target cells, 
finding 49 (Her2), 47 (LA), 2 (LB), and 133 (TN) subpath-
ways altered in BCDEs (Table S4). Summarizing the num-
ber of altered subpathways within each KEGG pathway, we 
found considerable differences among BCDEs (Fig.  5A), 
with specific significant alterations to Ovarian steroido-
genesis, the Glucagon signaling pathway, and Adrenergic 
signaling in cardiomyocytes in TN BCDEs, Prostate cancer 
in Her2 BCDEs, and Retrograde endocannabinoid signal-
ing in LA BCDEs. We also discovered KEGG pathways 
commonly altered in all BCDEs, such as Adherens Junction 

Fig. 5  Pathway analysis reveals altered functional outcomes accord-
ing to BCDE subtypes. (A) The number of subpathways in the top ten 
altered KEGG pathways in each BCDE (Her2, LA, LB, and TN repre-
senting MDA-MB-453, MCF7, ZR-75, and MDA-MB-231). Framed 
pathways are further represented in B and D-E. (B) The dotplot rep-
resents the altered subpathways’ statistical value within the Adherens 
junction KEGG pathway. (C) Representative example, detail of KEGG 
pathway Adherens junction. Specific parts of the altered subpathways 

are colored following the column Subroute in B. All nodes in sub-
pathway CTNND1** (red) are included in subroute LEF1 CTNNB1 
(orange) except for pl20ctn, representing node CTNND1**. For fur-
ther details, visit https://www.genome.jp/pathway/hsa04520. (D-F) 
Dot plots representing the statistical value of the altered subpathways 
within the (D) Proteoglycans in Cancer, (E) ErbB signaling pathway, 
and (F) Pathways in Cancer KEGG pathways in each analyzed BCDE

 

1 3

  363   Page 10 of 17

https://www.genome.jp/pathway/hsa04520


Comparative profiling of whole-cell and exosome samples reveals protein signatures that stratify breast cancer…

or PBS (as vehicle control treatment) (Fig. 6A). The quan-
tification of tubes, loops, and branching points (as repre-
sentative measures of angiogenesis) demonstrated that LB 
BCDEs significantly increased the ability of HUVECs to 
form these structures compared to PBS (Fig.  6B-D). LA 
BCDEs significantly increased loop numbers compared to 
PBS (Fig.  6C) while LB BCDEs significantly increased 
loop numbers compared to TN BCDEs (Fig. 6C) and tube-
like structure formation and branching points compared to 
TN and Her2 BCDEs (Fig. 6B and D).

In the scratch wound healing assay, we exposed fibro-
blasts to BCDEs and monitored scratch closure over 24 h as 
a proxy for migration and invasion. In this case, TN (but not 
Her2, LA, or LB) BCDEs significantly increased fibroblast 
migration compared to PBS and LA BCDEs (Fig. 6E).

In summary and in agreement with the previous path-
ways subroute analysis (Fig.  5), the tube formation assay 
results suggest that LA and LB BCDEs have a more sig-
nificant impact on angiogenesis than TN and Her2 BCDEs, 
with LB BCDEs having the most significant impact. The 
scratch wound healing assay results suggest that TN BCDEs 
have a more pronounced invasive and metastatic potential. 
Together, these results support the proposed interpretation 
of the functional results of the PIA analysis as the differ-
ent functional impact of BCDE subtypes in recipient cells 
according to their cell of origin.

upregulated in Her2 (Supplementary Fig. S5). Furthermore, 
the activity of specific proteins (PXN, PTK2, PRKCA, 
NUDT16L1, HSPB2, and ACTB) through the Proteogly-
cans in cancer pathway (related to migration and invasion) 
became increased in TN. The LA and LB subtypes pres-
ent with the overactivation of subpathways concerning 
the effector protein CTNND1 (orange and red in Fig. 5B), 
which functions in angiogenesis and metastasis repression.

BCDEs differentially influence breast cancer 
progression as a reflection of the cell of origin

We next conducted two experiments to corroborate our 
hypothesis that the BCDE protein cargo functionally 
impacts target cells. As seen in Fig. 5, the functional results 
suggested that TN and Her2 BCDEs impact migration and 
invasion, while LA and LB BCDEs mainly impact the vas-
cular endothelium and angiogenesis events during cancer 
progression; thus, we performed tube formation and scratch 
wound healing assays in the presence of BCDEs from spe-
cific subtypes to evaluate their potential to alter pathways 
according to their cargo.

Phase-contrast microscopy images from tube forma-
tion assays using human umbilical vein endothelial cells 
(HUVECs) revealed that LA and LB BCDEs contributed to 
more complete and complex nets with a more significant 
number of tube-like structures than TN and Her2 BCDEs 

Fig. 6  Differential contribution of BCDEs to migration and angiogen-
esis according to subtype. (A) Bright-field images of tube formation 
assays. HUVECs were seeded (4.0 × 104) on 48-well plates coated 
with Matrigel and incubated with PBS or BCDEs (5 µg). (B-D) 
Quantitative analysis representative of (B) tubes, (C) loops, and (D) 
branching points formed by HUVECs cultured on Matrigel-coated 
plates after a 12 h incubation with BCDEs. (E) Quantitative analysis 

of wound healing assays using fibroblasts (expressed as % fibroblast 
migration). Fibroblasts were treated with 5 µg BCDEs and monitored 
for 24 h; fibroblasts were treated with PBS as a control. Bars repre-
sent mean ± SEM, **p < 0.01, ***p < 0.001; one-way ANOVA with 
the post, “Bonferroni’s Multiple Comparison Test of three different 
experiments, n = 3 wells in each experiment
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which reflects this subtype’s invasive and metastatic nature 
(Fig. 2E).

The PPI analysis of BCC signature proteins revealed an 
elevated level of interconnection, with the functional anal-
ysis encountering 21 enriched functions (Fig.  4). Proteins 
related to Cellular modified amino acid metabolic processes 
(which could influence proliferation, survival, and drug 
resistance) [43–45, 51] became upregulated in Her2 and 
downregulated in LA and TN. Proteins related to Cornifica-
tion became downregulated in Her2 and TN and upregu-
lated in LA and LB. Of note, KRT7 - which displayed a 
different behavior from KRT8, KRT18, and KRT19 - has 
been identified as a prognostic breast cancer biomarker, 
with elevated gene expression associated with poorer out-
comes, especially in basal and HER2 + subtypes. Elevated 
KRT7 levels have also been linked to a poorer 12-month 
response to treatment, particularly for patients undergo-
ing platinum-based chemotherapy. Of note, KRT18 and 19 
have been recognized as robust diagnostic and prognostic 
biomarkers for various human cancers, including breast 
cancer, where overexpression correlates with poorer patient 
prognosis and the loss of estrogen/progesterone receptors. 
Proteins related to Cytoskeleton organization but not to 
Cornification became downregulated in Her2, LA, and LB 
and upregulated in TN, revealing the highly invasive mes-
enchymal-like breast cancer phenotype of the TN subtype 
(36, 52–53). Proteins related to Oxidation-reduction process 
displayed a heterogeneous pattern, with a more significant 
upregulation observed in Her2 in accordance with their dys-
regulated metabolism [44].

Exosomes represent a potent intercellular communica-
tion mechanism that mediates tumor-host crosstalk by mod-
ifying the activity of signaling pathways in recipient cells 
and inducing gene transcription alterations [54]. Recent 
research highlighted the role of exosomes as biomarkers in 
liquid biopsies [55–58]. We reported a 33-protein signature 
in BCDEs, which stratified breast cancer subtypes and reca-
pitulated the cell-of-origin phenotype, indicating the poten-
tial of BCDEs as diagnostic/prognostic biomarkers in liquid 
biopsies [59] (Fig. 3).

Among the 33 BCDE proteins, we noted the specific 
upregulation of EDIL3 - previously observed in invasive 
breast cancer cell extracellular vesicles [60] - in TN BCDEs. 
Her2 BCDEs specifically upregulate SUSD2, ERBB2, 
CKB, and CLCA2, which function in drug resistance, 
energy transduction, and non-invasive phenotypes (61–62). 
Proteins specifically enriched in LA BCDEs reflected the 
tumorigenic potential and drug resistance mechanisms 
of these less invasive breast cancer subtypes. The immu-
nohistochemical detection of mucins (e.g., MUC5AC and 
MUC5B) correlates with several clinicopathologic charac-
teristics in breast cancer patients [63]; moreover, MUC5B 

ExoCellBC web tool

We have made all data and results available within the 
ExoCellBC web tool (https://bioinfo.cipf.es/metafun-Exo-
CellBC), which is freely accessible to any user and allows 
the confirmation of the results described in this manuscript 
and the exploration of other results of interest. This easy-
to-use resource is divided into different sections: [1] sum-
mary of analysis results in each phase. Then, for each of 
the datasets (BCC and BCDE), the detailed results of the 
[2] exploratory analysis, [3] differential expression, and [4] 
pathway analysis, as well as [5] the protein-protein interac-
tion analysis results. The user can interact with the web tool 
through graphics and tables and search for specific informa-
tion for a protein or pathway.

Discussion

While advances such as molecular characterization and tran-
scriptional profiling have prompted a degree of improve-
ment [37–41], breast cancer patient stratification remains 
a challenge. Proteomics has provided an additional step 
towards fully describing tumor heterogeneity and the asso-
ciated underlying mechanisms (by allowing the detection 
of protein markers); meanwhile, liquid biopsies [42] have 
seen an increase in use as a non-invasive means of diagnos-
ing, monitoring, and treating cancer. Here, we thoroughly 
explored the proteomic profile of BCCs and BCDEs repre-
sentative of the most common breast cancer subtypes.

We present a 33-protein signature of deregulated BCC 
proteins (potential biomarkers) to potentially guide thera-
peutic management, representing breast cancer subtype 
heterogeneity (Fig.  2). Specifically, deregulated proteins 
in Her2 (KRT17, SQOR, CKB, CKMT1B/CKMT1A, and 
ALDH4A1) highlight high metabolic rates and energy 
demands and their ability to grow and spread more rap-
idly than other subtypes (43–44). Çubuk et al. previously 
described the importance of crosstalk between metabolism 
and signaling pathways in BC [45]. Specifically, deregulated 
proteins in luminal subtypes (GFRAI, CA2, and UGDH in 
LA) (IARS, SLCA3, and CTSD in LB) associated with 
angiogenesis, suggesting the use of antiangiogenic thera-
pies [46–48]. LA and LB shared similar profiles, with com-
monly deregulated proteins, including the KRTs; indeed, 
CK7/8, 18, and 19 expression indicated a differentiated 
glandular phenotype and a better prognosis than Her2 or TN 
(49–50). Finally, specifically upregulated proteins in TN 
(e.g., TUBB6, MSN, GSTP1, ANXA1, VIM, and ITGB1) 
participate in cytoskeletal remodeling, migration, epithelial-
mesenchymal transition, metastasis, and chemoresistance, 
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Additional functional results in BCC by PIA revealed 
the specific dysregulation of different parts of hallmark-
related signaling pathways for each BCC subtype (Rap1 
and Toll-like signaling pathways, Proteoglycans in cancer, 
and Pathways in cancer). This information may guide drug 
development and disease management for each subtype. 
For instance, the AGE-RAGE signaling pathway, which 
modulates cellular redox balance and is relevant for tumor 
blood endothelial cell survival in the tumor microenviron-
ment (70–71), displayed significant alterations in LA and 
LB BCCs. An analysis of the top ten altered subpathways 
in each subtype highlighted their main features: metabolism 
and energy (Her2), actin cytoskeletal regulation, VEGF sig-
naling (LA and LB), and invasiveness (TN) [49]. While LA 
and LB BCCs display a degree of invasiveness, their pro-
teomic and functional profiles highlight their less aggressive 
nature. The PIA analysis proved that while BCC subtypes 
alter common signaling pathways, the proteins involved and 
subpathways affected may differ. Identifying these vital dif-
ferential players may be crucial in improving patient disease 
management.

Concerning the pathway functional analysis performed 
on BCDEs, the application of functional analysis methods 
to omics data has helped to understand the biological impli-
cations of the genes/proteins altered in a study; however, 
this approach assumes that the genes/proteins are accom-
panied by the necessary cell machinery allowing them to 
perform their function. In the case of our BCDE dataset, 
we cannot assume that proteins within BCDEs have the 
same functions as they would have in a cell, nor that they 
interact following the same pathways as in a cell. Thus, the 
interpretation of a pathway and functional characterization 
in BCDEs cannot be performed in a manner homologous 
to BCCs, and BCDEs cannot be considered the performers 
of the altered functions. Since BCDEs transport proteins to 
receptor cells, and different protein cargos will affect target 
cells differently, we hypothesized that the functional charac-
terization of BCDEs should be interpreted as the functional 
change BCDEs would induce in receptor cells.

The PIA performed in BCDEs revealed that TN BCDEs 
demonstrated significant differences from the remaining 
subtypes, suffering from alterations in pathways and sub-
pathways related to Adherens junction, Pathways in cancer, 
ErbB signaling pathways, and Proteoglycans in cancer. 
These findings highlight the role of TN BCDEs in prolif-
eration, invasion, metastasis, and drug resistance. Pathways 
specifically upregulated in LA and LB BCDEs instead 
related to angiogenic processes. In vitro assays (wound 
healing and tube formation) supported the differential role 
of BCDEs in specific oncogenic processes (migration and 
angiogenesis) depending on BCC phenotypes. LA and LB 
BCDEs had a more substantial influence on angiogenesis 

expression represents an early event in mucinous breast 
cancer development (64–65). Therefore, Mucin proteins in 
exosomes may represent a prognostic/diagnostic biomarker 
in LA breast cancer.

The presence of the CTSD extracellular membrane 
protein in LB BCDEs may support the design of targeted 
therapeutic strategies for LB metastasis to enhance the 
selectivity/efficiency of current treatments. CTSD, a mem-
ber of the cathepsin family, plays roles in various physiolog-
ical/pathological processes, including cancer progression 
and metastasis. The cathepsins resident in the extracellular 
space (including CTSD) can cleave extracellular matrix 
proteins, cell receptors, or cytokines, thereby influencing 
the tumor microenvironment and promoting metastasis. In 
the context of breast cancer, changes in cathepsin expres-
sion during metastatic progression have been observed, 
indicating the potential role of CTSD in modulating the 
tumor microenvironment during metastasis [48]. The poten-
tial of CTSD as a therapeutic target is further supported by 
research into lysosomal functions, given the involvement of 
CTSD in lysosomal degradation pathways. This opens the 
possibility of developing targeted therapeutic strategies that 
leverage the role of CTSD in the extracellular space and 
disease processes. In summary, the presence of CTSD in LB 
BCDEs presents an opportunity to explore targeted thera-
peutic interventions that take advantage of its extracellular 
functions, potentially impacting cancer metastasis.

In parallel, we detected the presence of SLC7A5/SLC3A2 
in LB BCDEs, whose co-expression has previously been 
reported in a subgroup of ER+/Her2- breast cancer patients 
who fail to benefit from endocrine therapy [66]. The BCDE 
signature also includes BASP1, which displayed upregula-
tion in LA and TN and has been reported to interact with 
ERα and enhance the anti-cancer effects of tamoxifen breast 
cancer treatment, enhancing patient survival [67]; however, 
BASP1 expression also associates with lung cancer brain 
metastasis (68–69). Identifying these proteins in exosomes 
highlights their potential as a source of biomarkers in liquid 
biopsies [69].

We validated the BCC and BCDE signatures on TCGA 
(transcriptomics) and TCPA (proteomics) datasets, finding 
promising separations between subtypes. Interestingly, the 
BCDE signature discriminated TN from remaining sub-
types, thereby representing an interesting starting point 
when considering BCDEs as TN biomarkers in liquid biop-
sies. While our models were based on purified BCCs and 
BCDEs, TCGA and TCPA data are obtained from tissues 
comprising many cell types, which could limit the discrimi-
natory power of the reported signatures. Even given these 
limitations, the validation of the proteomic signatures with 
TCGA/TCPA datasets provides evidence for the robust 
nature of our findings (Fig. 5).
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