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Abstract
As the most abundant small RNAs, piwi-interacting RNAs (piRNAs) have been identified as a new class of non-coding 
RNAs with 24–32 nucleotides in length, and they are expressed at high levels in male germ cells. PiRNAs have been 
implicated in the regulation of several biological processes, including cell differentiation, development, and male repro-
duction. In this review, we focused on the functions and molecular mechanisms of piRNAs in controlling spermatogenesis, 
including genome stability, regulation of gene expression, and male germ cell development. The piRNA pathways include 
two major pathways, namely the pre-pachytene piRNA pathway and the pachytene piRNA pathway. In the pre-pachytene 
stage, piRNAs are involved in chromosome remodeling and gene expression regulation to maintain genome stability by 
inhibiting transposon activity. In the pachytene stage, piRNAs mediate the development of male germ cells via regulating 
gene expression by binding to mRNA and RNA cleavage. We further discussed the correlations between the abnormalities 
of piRNAs and male infertility and the prospective of piRNAs’ applications in reproductive medicine and future studies. 
This review provides novel insights into mechanisms underlying mammalian spermatogenesis and offers new targets for 
diagnosing and treating male infertility.
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Introduction

PiRNAs and piRNA pathways

Non-coding RNAs are classified into short and long non-
coding RNAs in terms of nucleotide length, as shown in 
Table 1. The short non-coding RNAs include microRNAs 
(miRNAs), small interfering RNAs (siRNAs), small nucleo-
lar RNAs (snoRNAs), and piRNAs [1, 2]. MiRNAs inhibit 
mRNA translation or cause mRNA degradation by bind-
ing to fully or partially complementary sequences in the 3’ 
untranslated regions (3’ UTRs) of targeting message RNAs 
(mRNAs) [3, 4], while siRNAs silence gene expression 
by forming RNA-induced silencing complexes (RISC) to 
bind perfectly to complementary mRNAs [5]. In addition to 
binding to mRNAs, snoRNAs direct the cleavage of rRNA. 
The regulation of mRNA 3’ end processing and selective 
cleavage by snoRNAs is crucial for regulating gene expres-
sion and appropriate protein synthesis [6]. Among all non-
coding RNAs, piRNAs are the most abundant small RNAs, 
and they mediate gene expression by silencing transpos-
able elements to maintain genome stability [7]. PiRNAs 
are enriched in the testis and ovary, and they play key roles 

in controlling spermatogenesis and oogenesis [8–11]. The 
orderly regulation of piRNA pathways ensures the correct 
pairing and segregation of chromosomes during meiosis to 
ensure the transmission and stability of genetic information 
[12].

The Piwi proteins were first identified in female Dro-
sophila melanogaster, and deletion of Piwi leads to mitotic 
arrest of female germinal stem cells in Drosophila [26]. 
Knockdown of Piwi in Caenorhabditis elegans inhibits 
the self-renewal of germline stem cells [27]. PIWI proteins 
have been shown to be mainly expressed in male germ cells 
in mammals, and a diversity of PIWI proteins with tempo-
ral and spatial expression exists during germ cell develop-
ment (Table 2) [28]. There are three types of PIWI proteins 
in mice, including PIWIL1 (also known as Miwi), PIWIL2 
(Mili) and PIWIL4 (Miwi2) [29–31], while human PIWI 
proteins can be divided into four types, namely PIWIL1 
(HIWI), PIWIL2 (HILI), PIWIL3 and PIWIL4 (HIWI2) 
[32, 33]. PiRNAs have been found to interact with PIWI 
proteins [34–39]. In mammals, piRNAs can guide PIWI 
proteins to silence transposons and regulate gene expres-
sion in cells [40]. However, the mechanisms of piRNA 
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generation vary in different species and tissues. Here, we 
focused on the piRNA generation mechanisms in mammals.

During mammalian spermatogenesis, piRNAs are formed 
via two stages. At the first wave beginning at the embryonic 
stage, pre-pachytene piRNAs can be detected in fetal and 
perinatal germ cells [49, 50]. Pachytene piRNAs are mainly 
detectable in pachytene spermatocytes [51]. These two 
waves of piRNA biogenesis play different roles. Pre-pachy-
tene piRNAs are primarily involved in silencing transpo-
sons, while pachytene piRNAs mainly participate in gene 
regulation [52]. There are two main pathways for piRNA 
generation, including the primary processing pathway and 
the ping-pong cycle pathway. In the primary processing 
pathway, precursor RNA transcription of pachytene piR-
NAs is initiated by MYB proto-oncogene-like 1 (A-myb) 

and subsequently cleaved to generate piRNA intermedi-
ates by phospholipase D family member 6 (MitoPLD) [51]. 
MitoPLD is located at the mitochondrial outer membrane, 
and it can process piRNAs from their longer immature 
forms into shorter intermediate forms, namely pre-piRNAs 
[53]. PARN-like ribonuclease domain-containing exonucle-
ase 1 (PNLDC1) interacts with Tudor structural domain 
protein TDRKH, which has been proposed to be a piRNA 
trimming cofactor [54]. Pre-piRNAs are cleaved to mature 
length by PNLDC1 and 2’-O-methylation into functional 
forms by HEN methyltransferase 1 (HENMT1) [55–57]. 
The absence of HENMT1 leads to unmethylation of piR-
NAs and decreases in their abundance and length [58]. In 
the ping-pong cycle pathway, primary piRNAs bind to PIWI 
proteins and cleave complementary mRNAs, which results 

Table 1  The characteristics and functions of non-coding RNAs in gene regulation and cellular processes
Non-cod-
ing RNAs

Lengths Locations Functions and mechanisms References

MiRNAs 18 ∼ 25 
nt

Cytoplasm MicroRNAs (miRNAs) form the RISC by binding to target mRNAs. This RISC complex 
degrades the mRNA or inhibits its translation, thus affecting the expression of the target 
genes.

[13, 14]

SiRNAs 21 ∼ 23 
nt

Cytoplasm SiRNAs bind to the target mRNA through fully complementary pairing, which causes the 
degradation of mRNAs, thereby resulting in the silencing of the target genes.

[15, 16]

SnoRNAs 60 ∼ 300 
nt

Nucleolus SnoRNAs regulate the rRNA processing, RNA cleavage, and translation as well as the 
oxidative stress response.

[17, 18]

PiRNAs 24 ∼ 32 
nt

Cytoplasm PiRNAs form complexes with PIWI proteins and participate in various biological pro-
cesses, e.g., maintenance of chromatin stability, post-transcriptional gene silencing, and 
transgenerational inheritance.

[19, 20]

LncRNAs > 200 nt Cytoplasm, 
nuclei

LncRNAs participate in gene expression regulation, cell fate determinations, cell cycle, 
and epigenetic regulation.

[21, 22]

CircRNAs / Cytoplasm CircRNAs relieve the inhibitory effect of miRNA on target genes and upregulate the 
expression levels of the target genes.

[23–25]

Table 2  Expression, functions and interacting proteins of four PIWI proteins in mammals
PIWI
proteins

Mice Humans Functions Expression Abnormal 
phenotypes

PiRNA pathway-
related proteins

References

PIWIL1 Miwi HIWI Protection of mRNA of 
male germ cells from 
premature degradation 
and translation

From pachytene 
spermatocytes to 
round spermatids

Arrest at the early 
spermatid stage

TDRKH,
ADAD2,
MAEL

[41]

PIWIL2 Mili HILI Promoting germline 
stem cell division and 
differentiation through 
translational regulation

From primor-
dial germ cells 
(PGCs) to round 
spermatids

Arrest at the round 
spermatid stage

GPAT2,
RHOX10,
EXD2,
MOV10L1,
TDRD1,
ADAD2,
TEX15

[42–44]

PIWIL3 / HIWI3 Transient maintenance 
of piRNA biogenesis 
and genome integrity

Oocytes and 
early embryos

Defective chromo-
some segregation 
and abnormal 
early embryonic 
development

TDRKH,
PNLDC1

[45–47]

PIWIL4 Miwi2 HIWI2 Inhibition of aber-
rant retrotransposon 
activation

The PGCs of 
fetal testis

Arrest in the early 
stages of meiosis I

EDX1,
TDRD12,
GTSF1,
MVH/DDX4,
TDRD9

[31, 48]
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spermatogonial stem cells (SSCs), two meiotic divisions of 
spermatocytes, and spermiogenesis with the morphologi-
cal changes from round spermatids to elongated spermatids 
[64], and it is derived from primordial germ cells (PGCs) 
[65]. In the human testis, spermatogonia are classified into 
type A spermatogonia and type B spermatogonia, while 
type A spermatogonia are subdivided into the Adark and Apale 
spermatogonia [66]. Adark spermatogonia are the quiescent 
SSCs, while Apale spermatogonia are the self-renewing 
SSCs [67]. Type B spermatogonia further differentiate into 
spermatocytes that undergo two meiotic divisions to gen-
erate spermatids with morphic maturation to form sperma-
tozoa. Unlike human testis, type A spermatogonia in mice 
are divided into Asingle, Apaired, and Aaligned spermatogonia, 
which is followed by A1 − 4, intermediate spermatogonia, 
and type B spermatogonia [68]. This process of spermato-
genesis requires the cooperation of various kinds of male 
germ cells with testicular somatic cells, including Sertoli 
cells, myoid cells, and Leydig cells [69]. Spermatogenesis 
is precisely regulated by genetic and epigenetic factors. 
Notably, numerous studies have highlighted that epigenetic 
factors, including piRNAs and other ncRNAs, are involved 
in mediating spermatogenesis.

PiRNAs are essential for the development of male germ 
cells and somatic cells through multiple mechanisms. 
Firstly, piRNAs bind to PIWI proteins to form a RISC that 
effectively inhibits transposons by guiding their methyla-
tion and recombination [11, 70]. There are three major types 

in the production of secondary piRNAs with a 5’end. These 
secondary piRNAs are associated with PIWI proteins and 
cleave complementary target mRNAs again, which gener-
ates primary piRNAs with a 3’end. After modification by 
HENMT1, primary piRNAs are matured into functional 
molecules. The primary piRNAs and secondary piRNAs are 
generated in a continuous ping-pong cycle pathway [59–61]. 
The generation process of piRNAs is illustrated in Fig. 1. 
Any error in the primary processing pathway or the ping-
pong pathway can lead to the impaired piRNA biogenesis. 
In 2020, ribosomes have been identified as key players in 
pachytene piRNA formation, and they participate in piRNA 
generation through three distinct mechanisms [62]. First of 
all, the binding of ribosomes to cleavage products stabilizes 
the cleavage products for loading PIWI. Ribosomes main-
tain a stepwise division from the 5’ UTR to the 3’ UTR in 
piRNA biogenesis. Secondly, the extended ribosome itself 
acts as a powerful helicase to remove secondary structures 
and RNA-binding proteins. Finally, ribosomes provide a 
platform for biological and regulatory proteins to bind to 
pachytene piRNA precursors [62]. Ribosomes have been 
shown to direct the fragmentation of mRNAs to produce 3’ 
UTR piRNAs [63].

PiRNAs and their regulation of spermatogenesis

Spermatogenesis is a complex process that comprises three 
main stages, including self-renewal and differentiation of 

Fig. 1  The piRNA pathway 
proteins are involved in piRNA 
biosynthesis. PiRNA biosynthesis 
can be divided into two main pro-
cesses, namely primary piRNA 
pathway and ping-pong pathway. 
Primary piRNAs generate the ini-
tial piRNAs with the beginning 
of the ping-pong pathway. These 
two processes are involved in 
piRNA generation and functions. 
Different proteins are required for 
the primary piRNA pathway and 
the ping-pong pathway
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the testis, with 74.93% of them being retrotransposons [95]. 
Therefore, piRNAs are committed to protecting the genome 
from transposons and participate in the regulation of pro-
tein-coding genes. These two processes act synergistically 
at different stages of testis development [96]. To elucidate 
the diverse mechanisms by which piRNA function, we sum-
marized the proteins mainly involved in the pre-pachytene 
piRNA biogenesis and pachytene piRNA biogenesis as well 
as the deficiency of proteins in the piRNA pathways with 
spermatogenesis arrest, as we illustrated in Fig. 2.

The pre-pachytene piRNA pathway and 
spermatogenesis

A series of pre-pachytene piRNA-related proteins have 
been identified in mammalian spermatogenesis, includ-
ing Mili [30], Miwi2 [31], Pnldc1 [57], Mov10l1 [97], the 
homeobox transcription factor Rhox10 [98], Exonuclease 
domain-containing 1 (Exd1) [99], Glycerol-3-phosphate 
acyltransferase 2 (Gpat2) [100], Gametocyte-specific fac-
tor 1 (Gtsf1) [101], Tdrd12 [102], ATPase activity of mouse 
Vasa homolog (Mvh) [103], and MORC family CW-type 
zinc finger 3 (Morc3) [104]. The main function of piRNAs 
is to inhibit transposon activity during de novo DNA meth-
ylation [105, 106]. Mili is expressed in the cytoplasm of pro-
spermatogonia, while Miwi2 is present in the cellular nuclei 
of these cells. Both Mili and Miwi2 are required for DNA 
methylation of TE sequences. Mili acts as an upstream fac-
tor of Miwi2, and it is involved in the regulation of Miwi2 
nuclear localization [107]. As a functional partner of Miwi2, 
Tdrd9 mutation in fetal testes results in abnormal piRNA 
profiles in prospermatogonia [108]. In spermatogonia, 
LINE-1 repression is accomplished primarily through the 
following three pathways: the Piwi-piRNA pathway, CpG 
promoter DNA methylation, and G9a-mediated H3K9me2 
[109]. Here, we discussed the repression of LINE-1 by the 
Piwi-piRNA pathway in spermatogonia. PiRNAs comple-
ment the LINE-1 sequences and maintain genome stability 
by directing the Piwi proteins Mili to cleave and disrupt 
LINE-1 transcripts via the RNA interference (RNAi)-like 
mechanism [110]. Deletion of Mili severely impacts the 
self-renewal and differentiation of SSCs by regulating 
translation [30, 103, 111]. In Mili null mice, spermatogonia 
are absent and exhibit a Sertoli cell-only (SCO) phenotype 
[44]. During the transition of PGCs to prospermatogonia, 
Rhox10 transcriptionally activates Mili, and Mili protein 
drives the piRNA pathway to mediate the repression of the 
LINE-1 promoter, thereby inhibiting transposons [112]. 
Loss of Rhox10 leads to an aberrant number of SSCs and a 
progressive spermatogenesis disorder [98, 113].

Defects in the processing and maturation of piRNAs 
impede normal development of male germ cells. Pnldc1 is 

of transposons in mammals, including LINES, SINES, and 
LTRS, while piRNAs are mainly involved in the regula-
tion of LINES [49, 71, 72]. Secondly, piRNAs can bind 
to complementary sequences of mRNAs or lncRNAs to 
promote their degradation, transport, or post-transcrip-
tional regulation. Pachytene piRNAs negatively regulate 
mRNAs, lncRNAs, and LINE-1 retrotransposons in late 
spermatocytes, which is largely dependent on retrotranspo-
son sequences and pseudogenes [73]. Thirdly, piRNAs are 
highly enriched in late spermatocytes and round spermatids 
[74]. Abnormality of piRNAs/PIWI leads to developmen-
tal disorders of male germ cells in Drosophila, zebrafish, 
nematode, mice, golden hamsters, and humans. Notably, 
piRNAs are involved in the development and maturation 
of male germ cells by affecting chromosome remodeling, 
epigenetic modifications, and apoptosis, and conversely, 
piRNA dysfunction leads to male infertility [10, 75–80]. 
Finally, piRNA clusters contain partial or complete transpo-
son sequences, and piRNA systems can distinguish between 
friends and enemies and initiate responses [81]. As such, 
piRNAs protect the genome of male germline from inva-
sion by new transposable elements [82, 83]. In this review, 
we elucidated the roles and mechanisms of piRNAs in con-
trolling spermatogenesis, including genome stability, gene 
expression regulation, and male germ cell development, to 
illustrate the indispensable functions of piRNAs in main-
taining male fertility and reproductive health.

The functions of piRNAs in controlling 
mammalian spermatogenesis

Abnormality in the expression of one or more genes involved 
in the piRNA pathway leads to aberrant spermatogenesis, 
and the phenotypes of mice with piRNA pathway defects 
include abnormal activation of germ cell transposons, mei-
otic arrest, and spermiogenesis disorder, which eventually 
results in male infertility [31, 84–87]. Several proteins, 
including Mili, Mov10-like RISC complex RNA helicase 1 
(Mov10l1), and Ring finger protein 17 (Rnf17), have been 
identified as key components involved in the piRNA path-
way [88–91]. PiRNAs play different roles in the pre-pachy-
tene and pachytene stages. During the pre-pachytene stage, 
piRNAs play a critical role in maintaining genome stability 
by inhibiting transposon activity [49, 92]. Pachytene piR-
NAs are mainly involved in regulating mRNA degradation 
and translation during the post-meiotic stages of sper-
matogenesis [41, 93, 94]. Notably, piRNAs interact with 
mRNAs, as evidenced by the findings that piRNAs mediate 
the stability and translation of mRNAs and that mRNAs in 
turn participate in the biogenesis and functional regulation 
of piRNAs [74, 88]. The targets of piRNAs are expressed in 
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these genes associated with transposon silencing may lead 
to genome instability and azoospermia [121]. Defective pro-
cessing of piRNAs may be an important etiology of NOA 
patients, as evidenced by the integration of clinical data and 
in vivo studies.

MVH is crucial for processing intermediates into piR-
NAs, which ensures the silencing of transposable elements 
and the maintenance of male fertility [122]. Mvh mutation 
impairs piRNA binding to Miwi2 and impacts de novo 
methylation of transposons, resulting in piRNA cycle arrest 
and spermatocyte arrest at the meiotic stage and male infer-
tility in mice [103]. Gasz (Germ cell protein with Ankyrin 
repeats, sterile alpha motif, and leucine Zipper) knockout 
mice exhibit phenotypes similar to Mili knockout mice, 
and Gasz may participate in the regulation of spermatogen-
esis by localizing or stabilizing multiple proteins to affect 
piRNA processing and synthesis [123].

EXD1 acts as an RNA adaptor in the PIWI-EXD1-
TDRD12 (PET) complex [99]. The absence of Exd1 causes 
a reduction in the production of Mili-sliced piRNAs and 
the biogenesis of Miwi2 piRNAs [99]. In contrast to the 
phenotype observed in Exd1-deficient mice, Exd2 interacts 
with Mili and its mutation leads to abnormal regulation of 
specific piRNA clusters without affecting piRNA biogene-
sis [124]. Therefore, Exd2 mutations have no obvious effect 
on male fertility, and the precise function of Exd2 in the 
piRNA pathway remains to be further elucidated. To elu-
cidate the function of Exd1 and Exd2 in the piRNA path-
way is important for understanding the mechanism that 
maintains genome stability during spermatogenesis [124]. 

a trimmer of pre-piRNAs, and it is involved in the cleav-
age of pre-piRNAs [54, 85]. Abnormal alterations in the 
length of piRNAs, the number of pachytene piRNAs, and 
piRNA-processing proteins PIWIL1, PIWIL4, A-MYB 
and TDRKH, have been observed in non-obstructive azo-
ospermia (NOA) with PNLDC1 mutations [79]. Also, piR-
NAs 3’end processing is disrupted in Pnldc1 mutant mice, 
which leads to an accumulation of 3’untrimmed piRNA 
intermediates, a reduction of pre-pachytene piRNAs and 
pachytene piRNAs, and defective spermatogenesis [57, 77, 
114]. Lack of piRNA trimming and methylation in Pnldc1 
and Henmt1 double knockout male mice results in the col-
lapse of the piRNA pathway [115]. A 3’ tail modification 
of mature piRNAs has been identified in mouse testes, and 
uridylation initiated by TUT4/7 is the predominant tail 
form of MIWI-bound piRNAs [116]. In addition, Mov10l1 
is an RNA helicase located upstream of PNLDC1 and it is 
involved in piRNA 5’ end processing. It is noteworthy that 
two MOV10L1 mutations and one homozygous MOV10L1 
mutation are identified in NOA patients [117]. MOV10L1 
has been found to be upstream of Piwi proteins during the 
primary processing of pachytene piRNAs [92]. In mice, 
Mov10l1 has a similar expression pattern to Mili, and 
it can bind to pre-piRNAs to initiate the piRNA pathway 
[97, 118]. Disruption of Mov10l1 helicase activity results 
in the loss of pre-pachytene piRNAs, the activation of ret-
rotransposons, early meiotic arrest, and male infertility 
[119, 120]. In testes of cryptorchid boys, expression levels 
of MOV10L1, PIWIL2, PIWIL4, and TDRD9 are signifi-
cantly reduced, suggesting that the impaired expression of 

Fig. 2  The expression of piRNAs 
and PIWI proteins and the rela-
tionship between the loss of key 
proteins in the piRNA/piRNA 
pathway and spermatogenesis 
failure. The expression of piR-
NAs and PIWI proteins is spatio-
temporal specific. According to 
the expression periods, piRNAs 
are classified into pre-pachytene 
piRNAs and pachytene piRNAs. 
Loss of key proteins of the 
piRNA/piRNA pathway results in 
spermatogenesis disorder
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[128], Tdrd1 [90], Tdrd5 [129], Tdrd9 [108], Ubiquitin-like 
with PHD and ring finger domains 1 (Uhrf1) [130], Tdrkh 
[131], MitoPLD [55], Rnf17 [88], Adenosine deaminase 
domain containing 2 (Adad2) [132], Testis expressed 19 
(Tex19) [133], Testis expressed 15 (Tex15) [134], Ubiquitin 
B (Ubb) [135], BTB domain containing 18 (Btbd18) [136], 
Maelstrom (Mael) [137], and FKBP prolyl isomerase family 
member 6 (Fkbp6) [55, 138]. Next, we addressed the spe-
cific functions and molecular mechanisms of these proteins 
involved in piRNA biogenesis.

Miwi, a member of the PIWI protein family, is mainly 
expressed in male germ cells from pachytene spermato-
cytes to early spermatids [29]. Miwi deficiency affects cen-
tromere assembly in meiosis, resulting in an enhancement 
in chromosome missegregation at meiosis I, an increase in 
aneuploidy at meiosis II, and the death of spermatids [139]. 
Miwi/HIWI functions as piRNAs-guided mRNA degrada-
tion [96]. The Miwi/piRNAs mechanism plays a dual role 
in the regulation of spermatogenesis in mice, and transla-
tion activation occurs through the formation of Miwi/piR-
NAs/eIF3f/HuR supercomplex in round spermatids [128]. 
At elongating spermatids, the Miwi/piRNAs/CAF1 super-
complex forms and initiates extensive mRNA elimination in 
spermatids to regulate acrosome formation [128].

Members of the TDRD family (TDRD1-9, 12) are 
involved in the biogenesis of piRNAs or PIWI protein inter-
action, with the exception of TDRD3 [140]. However, the 
specific functions of each protein seem to be distinct [141–
143], as shown in Table 3. Tdrd1 interacts with Mili, and it 
is involved in regulating retrotransposons via the Piwi path-
way. Tdrd1 deficiency leads to the derepression of LINE-
1, and loss of DNA methylation of its regulatory elements 
causes mislocalization of Miwi2 from nuclei to cytoplasm 
[42]. Nevertheless, Tdrd1 does not affect piRNA biogenesis 
in spermatogenesis [43, 144]. Unlike Tdrd1, Tdrd9 is a func-
tional partner of Miwi2 in the Piwi pathway. Tdrd9 mutation 

TDRD12, also known as ECAT8, is a unique piRNA bio-
genesis factor. The complex formed by Tdrd12 with Exd1 
and Mili is mainly involved in the biogenesis of second-
ary piRNAs, while Tdrd12 does not affect the biogenesis 
of primary piRNAs [125]. Gpat2 is one of the Mili binding 
proteins, and Gpat2 may act as a scaffold to recruit various 
factors required for piRNA production, which is essential 
for primary piRNA biogenesis [126]. Knockdown of Gpat2 
results in the impaired piRNA biogenesis in SSCs and more 
apoptosis in neonatal spermatogonia [100]. Gtsf1 is a com-
ponent of the Mili/Miwi2 complex, and deficiency of Gtsf1 
in mouse prospermatogonia results in abnormal localization 
of Miwi2. Loss of Miwi2-bound piRNAs leads to defective 
secondary piRNA biogenesis, reflecting that Gtsf1 is a key 
factor for piwi-piRNA cleavage of target mRNAs [101]. 
Morc3 recognizes and binds to H3K4me3 marks on the 
promoter regions of retrotransposon genes and piRNA clus-
ters, thereby affecting the biogenesis of primary piRNAs. 
In the embryonic testes, Morc3 is involved in chromosome 
remodeling and regulates the transcription of piRNA pre-
cursors. In addition, Morc3 may be involved in the biogen-
esis of secondary piRNAs [104].

Collectively, these studies mentioned above implicate 
that piRNAs assume stage-specific regulation during sper-
matogenesis. In spermatogonia, a number of transposon-
targeting piRNAs are generated, while piRNAs in primary 
spermatocytes play pivotal roles in the suppression of 
repetitive sequences and transposons. This stage-specific 
regulation is essential for maintaining genome stability and 
ensuring proper spermatogenesis [127].

The pachytene piRNA pathway and 
spermatogenesis

We summarized the pachytene piRNA pathway proteins 
affecting mammalian spermatogenesis, including Miwi 

Table 3  Different functions of the TDRD family proteins
TDRDs Alias Interacting 

PIWI
Functions Phenotypes of knockout mice References

Tdrd1 Mtr-1 Mili Ensuring correct nuclear localization of Miwi2;
ensures the entry of correct transcripts into the nor-
mal piRNA pool

Arrest at the pachytene stage [42, 158]

Tdrd2 Tdrkh Miwi Promotes the final step of piRNA biogenesis Arrest at the zygotene stage [131, 142, 
159]

Tdrd4 Rnf17 Miwi Suppressing the production of secondary piRNAs Arrest at round spermatids [88, 160]
Tdrd5 / Miwi Essential for pachytene piRNA biogenesis Arrest at either zygotene sper-

matocytes or round spermatids
[129, 161, 
162]

Tdrd6 / Mili
Miwi

Involved in spliceosome maturation and mRNA 
cleavage

Arrest at round and elongated 
spermatids

[144, 163]

Tdrd7 / Suppresses LINE-1 retrotransposons Arrested at round spermatid stage [149]
Tdrd8 Stk31 Miwi A critical player in fertilization Affect fertility [143, 151]
Tdrd9 / Miwi2 Silencing Line-1 retrotransposon Meiotic failure [108]
Tdrd12 Ecat8 Mili

Miwi2
Essential for the production of secondary piRNAs Spermatocytes fail to proceed 

beyond the prepachytene stage
[102, 125]
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it may act as a nuclear effector protein downstream of the 
piRNA pathway to silence TEs in male germ cells [152]. 
Meanwhile, TEX15 has been shown to be essential for de 
novo DNA methylation of TEs regulated by MIWI2-piRNA 
pathway [134]. Ubb is essential for maintaining piRNA-
metabolic proteins, and Ubb knockout in mice results in the 
reduction of piRNA metabolic process-related proteins and 
meiotic cell cycle arrest in male germ cells, which leads to 
azoospermia phenotype [135]. Deletion of Btbd18 reduces 
the expression level of primary piRNA precursors, which 
severely impairs piRNA biogenesis. Mice lacking Btbd18 
experience a massive loss of spermatocytes due to apop-
tosis, leading to spermatogenesis arrest, azoospermia, and 
male infertility. Since no aberrant retrotransposon activation 
is observed, the phenotype of Btbd18 null mice differs from 
Miwi knockout mice [136]. Btbd18 enhances the expres-
sion level of primary piRNA precursors by promoting tran-
scriptional elongation [136]. During spermatogenesis, both 
A-MYB and TCFL5 regulate piRNAs. A-Myb is involved in 
piRNA generation as a transcription factor, and A-Myb null 
mice generate fewer pachytene piRNAs [51, 153]. Interest-
ingly, half of the promoters of human pachytene piRNAs 
do not interact with A-Myb [153]. During early meiosis I, 
A-Myb initiates transcription of Tcfl5 which binds to its own 
promoter and A-Myb promoter to form a mutually reinforc-
ing positive feedback loop. Tcfl5 regulates the expression of 
genes required for piRNA maturation and stimulates tran-
scription of evolutionarily young pachytene piRNA genes, 
while A-Myb is responsible for activating transcription in 
older pachytene piRNA genes [154]. Spermatogenesis in 
Tcfl5−/− and Tcfl5+/− mice is arrested at the pachytene/dip-
lotene spermatocyte transition and round/elongating sper-
matid transition [155, 156], while spermatocytes in A-Myb 
mutant mice assume abnormal cell cycle progression [157].

The histone H3 family includes two major histone vari-
ants CENP-A and H3.3 [164]. H3.3 is encoded by two 
different genes, namely H3.3a and H3.3b, with the same 
amino acid sequences [165, 166]. Loss of H3.3b in sper-
matocytes is associated with the increased expression of 
RLTR10B and RLTR10B2 retrotransposons as well as 
downregulation of piRNA clusters. This finding reflects the 
dual role of H3.3b in controlling spermatogenesis. H3.3 
can positively regulate the expression of piRNAs required 
for meiotic chromatin inactivation and repression of repeat 
element transcription [167]. Mael is a conserved HMG box 
structural domain protein that is essential for mouse sper-
matogenesis [137, 168], and its MAEL domain may have 
potential nuclease activity or RNA binding capacity to affect 
piRNA biogenesis [169]. MAEL-related protein complex, 
including MIWI/PIWIL, TDRD6, TDRD4/RNF17, TDRD, 
STK31/TDRD8, and TDRD9, has been identified [170]. 
Mael129 knockout mice exhibit spermatogenesis arrest 

in fetal testis affects the silencing of LINE-1 in pre-sper-
matogonia and piRNAs profiles [108]. Tdrd2, also known 
as Tdrkh, specifically recruits Miwi to drive the piRNA bio-
genesis. Miwi is lost in the chromatoid body when Tdrkh is 
defective in the testis, which causes spermatogenesis arrest 
at the round spermatid stage [145]. Unlike Tdrkh, MitoPLD 
deficiency in mice leads to meiotic arrest of spermatocytes 
due to affecting piRNA generation and distribution [84, 
146]. Deletion of Uhrf1 in the testis results in a significant 
reduction of PIWI proteins and piRNA-associated proteins 
TDRKH and MVH [130]. Tdrd4, also known as Rnf17, has 
been shown to participate in the balance of the ping-pong 
cycle of piRNAs during meiosis, affect piRNA content by 
inhibiting the generation of secondary piRNAs, and enhance 
the expression of protein-coding genes crucial for the reg-
ulation of spermatogenesis by inhibiting the ping-pong 
cycle [88]. Interestingly, a testis-specific protein, namely 
Adad2, interacts with multiple RNA-binding proteins, 
including Mili, Miwi, Rnf17, and Ythdc2, has been found 
to be involved in piRNA biogenesis [132]. Adad2 guides 
Rnf17 to repress ping-pong activity during the biogenesis 
of pachytene piRNAs. During meiosis, Adad2 knockout 
can cause mislocalization of Rnf17 followed by the loss of 
ping-pong suppression, which results in overproduction of 
secondary piRNAs and ultimately spermatogenesis arrest at 
the round spermatid stage [147, 148]. Tdrd5 binds directly 
to the precursors of piRNAs and functions via selectively 
controlling the processing of the pachytene piRNAs precur-
sors [129]. Tdrd6 interacts with Mili and Miwi, and Tdrd6 
knockout mice are arrested at the round spermatid stage and 
fail to form the elongated spermatids. Abnormal miRNA 
expression has been observed in Tdrd6 knockout mice, and 
it remains unclear about whether Tdrd6 affects piRNA bio-
genesis [144]. In contrast to Tdrd6, LINE-1 expression is 
abnormal in Tdrd7−/− testis, and Tdrd7 mutant mice have 
spermatogenesis arrest at the round spermatid stage [149]. 
Tdrd7 is associated with RNP remodeling at early sperma-
tid stage, and Tdrd6 is related to structural maintenance at 
a later stage of spermatid development. Chromatoid bodies 
are important subcellular sites for piRNA biogenesis, con-
taining a large number of proteins required for piRNA bio-
genesis [150]. Therefore, Tdrd7 may influence not only the 
expression of LINE-1 in spermatogenesis but also the expres-
sion and localization of other piRNA biogenesis proteins, 
e.g., Mili, Mvh, Mael, and Gasz [149]. Tdrd8, also known 
as Stk31, has been shown to interact with Miwi in mouse 
testis by LC/MS assay [151]. However, subsequent experi-
ments found that disruption of Stk31 does not affect male 
fertility [143], and the function of Stk31 in the testis needs 
to be further explored. TEX19 is directly associated with 
piRNAs through its VPTEL domain [133]. Unlike TEX19, 
TEX15 functions independently of piRNA biogenesis, and 
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piR-43773, and piR-30198 have been identified as molecu-
lar hallmarks of male infertility [181]. In another study, low 
expression of piR-31704 and piR-39888 has been found in 
sperm of infertile men, and piRNA levels have been indi-
cated to be correlated with sperm concentration and fertil-
ization rate with intracytoplasmic sperm injection (ICSI) 
[182]. The levels of piR-1207 and piR-2107 in sperm and 
seminal plasma of asthenospermia patients are significantly 
lower than those of normal fertile individuals [183]. RNA 
sequencing of serum reveals that piR-26399 level exhibits 
a significant difference between males with reduced fertility 
and normal controls [184].

The piRNA pathway genes, including HENMT1, PIWIL1, 
and PIWIL2, are highly expressed in male germ cells dur-
ing normal spermatogenesis, and their expression levels are 
decreased in spermatogenesis failure accompanied by germ 
cell depletion [185]. Significantly, male infertility has been 
demonstrated to be associated with hypermethylation of the 
PIWIL2 and TDRD1 promoters, and epigenetic inactiva-
tion of PIWI pathway genes can lead to piRNA deficiency 
and LINE-1 hypomethylation [186]. Aberrant expression of 
piRNAs is associated with the impaired spermatogenesis, 
loss of sperm motility, and abnormal sperm morphology in 
azoospermia (Table  4). Mutations in genes responsible for 
piRNA generation, e.g., PNLDC1 and TDRD1, contribute to 
spermatogenesis failure. Notably, mutations in PNLDC1 have 
been found to cause azoospermia by whole exome sequencing 
(WES) in three studies [79, 187, 188]. Four PNLDC1 muta-
tions have been identified in 924 NOA patients, reflecting 
that mutations of PNLDC1 affect meiosis of spermatocytes 
[79]. A novel PNLDC1 mutation causing oligoasthenozoo-
spermia has been identified by generating male mice with the 
PNLDC1 R58G mutation [188]. A compound heterozygous 
missense variant of PNLDC1 has been further found as it 
causes spermatogenesis arrest [187]. Therefore, PNLDC1 is 
essential for maintaining normal spermatogenesis by affect-
ing piRNA biogenesis. Mutations in MOV10L1, which is 
required for piRNA processing, have been identified in two of 
414 patients with NOA or severe oligospermia [117]. HIWI 
and TDRD proteins have been shown to be critical for piRNA 
biogenesis [189, 190], and notably, HIWI and TDRD polymor-
phisms are highly related to male infertility [191]. Nine single 
nucleotide polymorphisms (SNPs) in four human Piwi genes 
have been identified by the SNP stream ® 12-plex platform 
and TaqMan methods. Interestingly, the HIWI2 rs508485 
has been found to be positively associated with the risk of 
azoospermia [192], which provides the first epidemiological 
evidence supporting the involvement of genetic polymor-
phisms of Piwi in spermatogenesis failure. Variants in piRNA 
pathway genes have been identified as risk factors for male 
infertility [191]. In addition, the SNP rs77559927 in piRNA 
pathway TDRD1 gene has been shown to be associated with 

with acrosome and flagellar malformations, which may be 
caused by an imbalance between pachytene piRNAs and 
MIWI [170], and loss of Mael leads to a decrease in the lev-
els of pachytene piRNAs in mouse testes [171, 172]. MAEL 
is mainly expressed in spermatid mitochondria in the human 
testis, and loss of Mael can lead to mouse mitochondrial 
dysfunction and asthenozoospermia [173]. It remains to be 
further uncovered whether MAEL affects piRNA biogen-
esis in human spermatogenesis. FKBP6 is required for sper-
matogenesis, and it is involved in piRNA biogenesis and 
synaptic complex formation [174]. Recently, Fkbp6-null 
testicular cells have been found to be arrested at the round 
spermatids, and Fkbp6 deletion severely affects piRNA 
levels [175]. Moreover, FKBP6, a molecular chaperone of 
HSP90, reduces MIWI2-binding piRNAs in Fkbp6-null tes-
tes [138, 176]. Hsp90 regulates spermatogenesis by partici-
pating in the formation and/or stabilization of MILI-piRNA 
and MIWI2-piRNA complexes [177]. In addition, piRNAs 
can directly bind to mRNAs and affect their translation and 
stability, thereby regulating gene expression. High level of 
piR-003399 inhibits CDK6 expression and causes cell cycle 
arrest in mouse spermatogonia at G1 phase and abnormal 
sperm count, motility, and morphology [178]. The loss of 
pi6 and pi18 loci on mouse chromosomes 6 and 18 affects 
sperm motility and acrosome reaction, respectively, thereby 
preventing spermatids from penetrating the zona pellu-
cida and resulting in male infertility. Pi6 and pi18 piRNAs 
primarily target mRNA rather than retrotransposons. Pi6 
represses gene expression by cleaving mRNA encoding 
proteins required for spermatogenesis, and it is involved in 
the piRNA-piRNA precursor interaction network [179]. In 
summary, the piRNA pathway plays critical roles in sper-
matogenesis through three primary pathways, including 
participation in piRNA biogenesis, altering the status of the 
transposons, and regulating mRNA stability or translation.

Abnormal piRNAs and spermatogenesis 
failure and male infertility

Mutations or low piRNA levels in blood or semen have 
recently been linked to male infertility. High-throughput 
Illumina Hiseq technology has been used to compare the 
piRNA profiles of testes from unsuccessful sperm retrieval 
(USR) groups and successful sperm retrieval (SSR) con-
trols. Interestingly, 553 piRNAs have been shown to be spe-
cifically expressed in NOA patients with successful sperm 
retrieval [180], suggesting that these piRNAs may be poten-
tial biomarkers for predicting successful sperm retrieval. 
RNA sequencing of seminal plasma reveals significantly 
fewer piRNA numbers in infertile patients compared to nor-
mal men. In addition, piR-31068, piR-31925, piR-43771, 
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the continuous development of single-cell RNA sequenc-
ing or RNA deep sequencing, more clues can be uncovered 
to better understand molecular mechanisms underlying the 
regulation of piRNAs in male germ cell development and 
reproductive system diseases, and new approaches would be 
developed for the diagnosis and treatment of male infertility.

Applications of piRNAs in reproductive medicine

The applications of piRNAs in the male reproductive system

PiRNAs are essential for regulating male germ cell devel-
opment, normal spermatogenesis and male fertility. In the 
field of male reproduction, piRNAs might have significant 
implications as shown in Fig. 3. First of all, piRNAs may be 

a risk of spermatogenesis disorder [193]. Notably, the expres-
sion levels of the TDRD gene family are significantly lower in 
NOA testicular tissues compared to the OA patients with nor-
mal spermatogenesis. Abnormal expression of TDRD family 
genes associated with the piRNA pathway may lead to male 
infertility [194]. MOV10L1 polymorphisms have been found 
to be associated with male infertility in 30 infertile men diag-
nosed with spermatocyte arrest [195]. It is of particular sig-
nificance to explore the mechanisms by which piRNA-related 
genes’ polymorphisms control abnormal spermatogenesis. 
This would help us better understand the pathogenesis of 
male infertility and develop new treatments for this disease.

In conclusion, aberrant expression of piRNAs and 
piRNA pathway genes are associated with abnormalities 
in spermatogenesis and male infertility. Therefore, with 

Table 4  Correlation of piRNAs and piRNA pathways with male infertility and spermatogenesis disorder
References Methods of detection Tissues or cells Patients and numbers PiRNA/piRNA pathway Phenotypes
[79] Whole exome 

sequencing (WES)
Blood 924 NOA patients PNLDC1: rs200629089

rs141903829
rs754159168
c.607–2A→T

Error-prone meiosis 
arrest

[188] WES Blood 456 patients with male 
infertility

PNLDC1 p.R47G Oligoasthenoteratozoo-
spermia

[187] WES Blood 280 NOA patients PNLDC1:
p.E381K
p.R476W

Affect the function of 
PNLDC1 protein

[117] WES Blood 414 NOA patients MOV10L1: p.Ser816Ile
p.Pro1032Argfs*53
p.Gly848Arg

Meiosis is arrested 
and piRNAs levels are 
relatively low

[192] SNPstream® 12-plex 
platform and the Taq-
man method

Blood 490 patients with idiopathic 
azoospermia or oligozoo-
spermia and 468 fertile 
controls

HIWI2 rs508485 Increased risk of 
oligospermia

[191] Multi-temperature 
single strand con-
formation polymor-
phism technique

Blood 226 NOA patients and 200 
fertile controls

HIWI2 rs508485
HIWI3 rs11703684

Increased risk of 
azoospermia

[193] Improved multiplex 
ligation detection 
reaction technique

Blood 342 cases of NOA and 493 
fertile controls

TDRD1 rs77559927 Spermatogenic 
impairment

[195] Single-strand 
conformation 
polymorphism

Blood 30 infertile men with 
complete maturation arrest 
at spermatocytes and 70 
fertile controls

MOV10L1 gene 
polymorphisms

Increased risk of sper-
matogenesis defects

[180] Small RNA-Seq Testicular tissues 10 NOA patients (both SSR 
and USR groups)

553 testicular piRNAs Biomarker for micro-
TESE application

[181] High-throughput 
sequencing

Seminal plasma 211 infertile patients 
(asthenozoospermia and 
azoospermia) and 91 fertile 
controls

piR-31068,
piR-31925,
piR-43771,
piR-43773,
piR-30198

Male infertility

[182] Real-time PCR Spermatozoa 186 patients with idiopathic 
male infertility

piR-31704,
piR-39888

Correlate with sperm 
concentration and fertil-
ization rate after ICSI

[184] Small RNA-Seq Serum 12 subfertile men and 4 
fertile controls

piR-26399 Subfertility

NOA: non-obstructive azoospermia; SSR: successful sperm retrieval; USR: unsuccessful sperm retrieval; Micro-TESE: micro-dissection tes-
ticular sperm extraction
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nor TGCT cells express PIWI/piRNA pathway genes with 
no piRNA biogenesis [199, 200]. In particular, piRNAs 
may have applications in treating tumors because they can 
inhibit the proliferation and metastasis of cancer cells [201].

PiRNAs can be further used as biomarkers for reproduc-
tive toxicity. Fluoride has been shown to change the expres-
sion of piRNAs and their lysosomal signaling pathway in 
the testis, thereby causing testicular damage [202]. The 
toxicity of nickel nanoparticles (Ni NPs) has been demon-
strated to affect spermatogenesis, sperm motility, and fer-
tilization ability. Furthermore, piR-32362,259 enhances Ni 
NPs-induced GC-1 cell damage by regulating the PI3K/
AKT signaling pathway [203]. Together, abnormalities of 
piRNAs are closely related to the occurrence of male infer-
tility, testicular cancer, and other diseases, and piRNAs can 
be applied as biomarkers for the diagnosis and treatment of 
reproductive system diseases.

The applications of piRNAs in drug development

Katalin Kariko and Drew Weissman won the 2023 Nobel 
Prize in physiology or medicine, for their discoveries on 
nucleoside base modifications that enable the development 
of effective mRNA vaccines against COVID-19. At pres-
ent, the development and application of RNA drugs have 
aroused great interest. In 2018, two drugs received FDA 
approval, including Onpattro (patisiran) for the treatment 
of hereditary amyloidosis and Givlaari (givosiran) for the 
treatment of acute intermittent porphyria [204, 205]. Dur-
ing COVID-19, Moderna and Pfizer/BioNTech have suc-
cessfully developed an mRNA vaccine against the Corona 
Virus [206]. Moreover, non-coding RNAs can be used as 
targets of drug resistance in cancer cells. By constructing 
the patient-derived xenograft tumor mouse model, treat-
ment with siRNA targeting carcass has been found to restore 
sorafenib resistance [207]. The length of piRNAs has been 
found to be correlated with translation, and short piRNAs 
result in the impaired MIWI/piRNAs translational activa-
tion and inhibit mRNA translation [208]. Future studies may 
be focused on designing drugs to add exogenous piRNAs 
to restore normal spermatogenesis. In human spermato-
genesis, PNLDC1, MOV10L1, and HIWI mutations have 
recently been shown to cause azoospermia by affecting 
piRNA processing [79, 117, 190]. In the near future, small 
molecule drugs targeting proteins related to these piRNA 
pathways can be designed to repair the abnormal biosyn-
thesis of piRNAs, rescue spermatogenesis and treat male 
infertility. It is feasible to achieve this goal by designing 
small molecule drugs that target piRNAs and their pathway 
proteins by binding to piRNAs or interfering with piRNA 
interactions with PIWI or MIWI proteins, thereby affecting 
piRNA functions. These small molecule compounds can 

used as biomarkers to assess male reproductive health based 
upon the quality and quantity of piRNAs in serum or semi-
nal plasma, and piRNAs can be employed for the diagnosis 
and treatment of reproduction-related diseases. PiRNAs can 
also be utilized as biomarkers to predict residual spermato-
genic conditions in NOA patients. In testicular tissues from 
NOA patients, a total of 959 piRNAs were significantly dif-
ferentially expressed between successful and failed sperm 
extraction groups by RNA-seq, while 553 piRNAs were 
completely absent in the failed sperm extraction group 
[180]. Therefore, these piRNAs can be utilized as markers 
for the development of assisted reproductive technology 
(ART). Cryptorchidism has been found to be deficient in 
normal piRNA formation, which affects the development 
of normal testicular tissues [196, 197]. The expression pat-
tern of piRNAs during spermatogenesis and maturation is 
closely related to the quality and quantity of sperm, and thus 
piRNAs can be used as biomarkers of sperm for the diagno-
sis and treatment of male infertility.

PiRNAs also have potential applications in the treatment 
of reproductive tumors. The majority of piRNAs in testicu-
lar germ cell tumors (TGCT) have been found to be lost 
by RNA sequencing [198]. It has been found that loss of 
piRNA defense in carcinoma in situ and TGCT cells results 
in a reduced ability to prevent chromatin instability [198], 
since neither in germ cell neoplasia in situ (GCNIS) cells 

Fig. 3  Prospective of piRNAs in the male reproductive system. The 
applications of piRNAs in the male reproductive system include the 
following six aspects: as a standard for assessing male reproductive 
health, selecting high-quality sperm in ART, the diagnosis and treat-
ment of male infertility, the diagnosis and therapy of male reproduc-
tive system tumors, biomarkers of reproductive toxicity, and exploring 
novel mechanisms underlying male germ cell development
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be discovered and optimized by high-throughput screen-
ing, bioinformatics analysis, gene expression profiling, and 
functional experiments. This would offer perspective for the 
treatment and prevention of male infertility, other reproduc-
tive system diseases, and reproductive system tumors.

Conclusions and perspective

In summary, we addressed the functions and mechanisms of 
piRNAs in regulating spermatogenesis and their abnormal-
ity or mutations in male infertility. In general, the piRNA 
pathway participates in the regulation of spermatogenesis 
through three main pathways, including the inhibition of 
transposons, participating in piRNA biogenesis, and binding 
to mRNAs. We also discussed the correlations between the 
abnormalities of piRNAs and male infertility. Finally, we 
pointed out potential applications of piRNAs in reproduc-
tive medicine and drug design. Furthermore, piRNAs play 
essential roles in male reproduction and tumor formation. 
Future studies on piRNAs might be focused on the follow-
ing aspects: (i) the roles and regulatory mechanisms of piR-
NAs in controlling self-renewal and differentiation of SSCs, 
meiosis of spermatocytes, and spermatogenesis of sperma-
tids; (ii) the functions of piRNAs in mediating the testis 
environment or niche, particularly somatic cells, including 
Sertoli cells, myoid cells, and Leydig cells; (iii) the regula-
tory networks formed by piRNAs, other non-coding RNAs, 
and genes or proteins to regulate normal spermatogenesis; 
and (iv) the important applications of piRNAs as biomarkers 
for the diagnosis of male infertility and cancers as well as 
novel drug development for the treatment of these diseases.
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