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Abstract
Type 1 diabetes (T1D) is characterized by an immune-mediated progressive destruction of the insulin-producing β-cells. 
Proinflammatory cytokines trigger endoplasmic reticulum (ER) stress and subsequent insulin secretory deficiency in cultured 
β-cells, mimicking the islet microenvironment in T1D. β-cells undergo physiologic ER stress due to the high rate of insulin 
production and secretion under stimulated conditions. Severe and uncompensated ER stress in β-cells is induced by several 
pathological mechanisms before onset and during T1D. We previously described that the small drug Compound A (CpdA), 
a selective glucocorticoid receptor (GR/NR3C1, nuclear receptor subfamily 3, group C, member 1) ligand with demonstrated 
inflammation-suppressive activity in vivo, is an effective modulator of effector T and dendritic cells and of macrophages, 
yet, in a GR-independent manner. Here, we focus on CpdA’s therapeutic potential in T1D cellular and animal models. We 
demonstrate that CpdA improves the unfolded protein response (UPR) by attenuating ER stress and favoring the survival 
and function of β-cells exposed to an environment of proinflammatory cytokines. CpdA administration to NODscid mice 
adoptively transferred with diabetogenic splenocytes (from diabetic NOD mice) led to a delay of disease onset and reduc-
tion of diabetes incidence. Histological analysis of the pancreas showed a reduction in islet leukocyte infiltration (insulitis) 
and preservation of insulin expression in CpdA-treated normoglycemic mice in comparison with control group. These new 
findings together with our previous reports justify further studies on the administration of this small molecule as a novel 
therapeutic strategy with dual targets (effector immune and β-cells) during autoimmune diabetes.
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Abbreviations
CpdA	� Compound A
eIF2α	� Eukaryotic translation initiation factor 2α

ER	� Endoplasmic reticulum
GR	� Glucocorticoid receptor
GSIS	� Glucose-stimulated insulin secretion
SEGRAM	� Selective glucocorticoid receptor agonists 

and modulators
STZ	� Streptozotocin
T1D	� Type 1 diabetes
UPR	� Unfolded protein response

Introduction

The endoplasmic reticulum (ER) of β-cells plays an essential 
role in the production of insulin. Due to the high demand for 
insulin secretion during food intake, β-cells undergo physi-
ological ER stress.

The imbalance between protein loading and folding 
capacities causes ER stress leading to the activation of 
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the unfolded protein response (UPR). The UPR primarily 
functions to mitigate ER stress under physiological condi-
tions and promotes insulin production and cell survival [1]. 
Under pathological conditions, the UPR cannot cope with 
the chronic hyperactivation of ER stress leading to β-cell 
dysfunction and eventually death.

ER stress and β-cell insulin secretory deficiency have 
been shown to precede the onset of autoimmune diabetes 
[2]. There is cumulative evidence supporting the role of 
proinflammatory cytokines, elevated in the islet microen-
vironment during autoimmune diabetes, in the activation 
of ER stress, oxidative stress, β-cell dysfunction and death 
[3–5]. In experimental diabetes, pharmacological restoration 
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of UPR in β-cells has been reported as a preventive and/or 
therapeutic intervention [6, 7].

We have reported that Compound A (2-(4-acetoxyphenyl)-
2-chloro-N-methyl-ethylammonium chloride; CpdA), 
described as a non-steroidal glucocorticoid receptor (GR) 
ligand with dissociative properties [8], is an effective modu-
lator of effector T lymphocytes and dendritic cells [9, 10]. 
We provided evidence that CpdA immunomodulatory effects 
might be explained by a GR-independent inactivation of the 
NF-κB intracellular signaling pathway after TLR4 activation 
on dendritic cells [10].

Considering the role of the immune system in the patho-
genesis of autoimmune diabetes along with our previous 
results on the immunomodulatory activity of CpdA, we 
asked whether CpdA might have beneficial effects coun-
teracting cytokine-induced ER stress in β-cells and thus 
may exhibit therapeutic potential against the progression of 
experimental autoimmune diabetes.

Materials and methods

Reagents

Culture media, supplements and antibiotics were 
purchased from Gibco (Thermo Fisher Scien-
tific, Carlsbad, CA, USA). Fetal Bovine Serum was 
from Natocor (Córdoba, Argentina). Compound A 

(2-(4-acetoxyphenyl)-2-chloro-N-methyl-ethylammonium 
chloride; CpdA) was synthesized as described [10, 11]. Dex 
and RU486 were purchased from Sigma-Aldrich. Recom-
binant cytokines were from R&D Systems (Minneapolis, 
MN, USA).

Animals

NOD, NODscid, and C57BL/6 J mice (breeders from Jack-
son Laboratory, Bar Harbor, ME, USA) were housed under 
pathogen-free controlled environment (20–22  °C, 12  h 
light–dark cycle) in ventilated cages, and provided with 
food and water ad libitum. All procedures were conducted in 
accordance with the Guide for the care and use of laboratory 
animals, Eighth edition (2011). Studies were approved by 
the Animal Research and Care Committee (#0001 & #0069), 
FCEyN, University of Buenos Aires.

INS‑1E cell line

The rat β-cell line INS-1E (Prof. Wollheim, University 
Medical Centre, Geneva, Switzerland) was used between 
passages 63 and 90, and cultured at 37 °C in a humidified 
atmosphere containing 5% (vol./vol.) CO2 in complete 
RPMI 1640 medium [11 mM glucose, 10% (vol./vol.) heat-
inactivated fetal bovine serum (FBS), penicillin (50 IU/ml), 
streptomycin (50 µg/ml), L-glutamine (2 mmol/l), 2-mer-
captoethanol (50 µmol/l), HEPES (10 mmol/l) and sodium 
pyruvate (1 mmol/l)]. The possible presence of mycoplasma 
was periodically checked by PCR. INS-1E were seeded at 
40 × 103 cells/cm2 in multiwell plates (Nunc, Thermo Scien-
tific, Denmark) in complete medium with charcoal-treated 
FBS.

Mice islets isolation and culture

Islets (C57BL/6 J) were isolated by collagenase digestion 
and handpicked after density gradient centrifugation [12]. 
For standardization, islets with 100–125 µm in diameter 
were considered as an islet equivalent (IEQ). Islets were 
cultured on ultra-low fixation plates (Corning Costar, Ken-
nebunk, ME, USA), at 37 °C in humidified atmosphere 
containing 5% (vol./vol.) CO2 in RPMI 1640 medium con-
taining 5.5 mM glucose, 10% charcoal-treated FBS, peni-
cillin (50 IU/ml), streptomycin (50 µg/ml), L-glutamine 
(2 mmol/l) and HEPES (10 mmol/l) for 16–24 h prior to 
performing experiments.

Human islets isolation and culture

Human pancreata were obtained from the Center for Organ 
Recovery and Education, Pittsburgh, PA. Islets were iso-
lated using a semiautomated method following collagenase 

Fig. 1   CpdA inhibits cytokine-triggered NF-κB pathway activation 
and reduces nitric oxide (NO) production in INS-1E cells. a–c INS-
1E cells were pretreated with vehicle, CpdA 10  μM or dexametha-
sone (Dex) 0.1  μM for 1  h and then challenged or not with IL-1β 
100 pg/mL and IFN-γ 5 ng/mL (CYT). After indicated time, levels of 
phospho-IkBα and total IkBα were analyzed by Western blot. Repre-
sentative blots (a) and quantitative analysis of phospho-IkBα (b) and 
IkBα (c) protein expression expressed as mean ± SEM of n = 4 inde-
pendent experiments; β-actin was used as loading control. (*) p < 0.05 
vs. vehicle. d INS-1 cells were treated as described in (a) with 30 min 
CYT stimulation. NF-κB (RelA) cellular localization was analyzed by 
immunofluorescence staining. A representative confocal microscopy 
pictures of INS-1E cells immunostained for NF-κB (red) in different 
experimental conditions as indicated; nuclei were stained with DAPI 
(blue); scale bars 10  μm. e Quantification of nuclear:cytoplasmic 
ratio of NF-kB staining from analysis of 5 separate high-power 
field images for each experimental condition. Data are shown as 
mean ± SD of n = 3 independent experiments. f INS-1E were treated 
as described in (a) with 16  h CYT stimulation. NO secretion was 
assessed by Griess reaction. Data are shown as mean ± SD of n = 5 
independent experiments. g–i INS-1E were treated as described in (a) 
with 6 h CYT stimulation, iNOS mRNA and protein expression were 
analyzed by RT-qPCR and Western blot, respectively. Relative iNOS 
mRNA levels (g) normalized to HPRT expressed as mean ± SD of 
n = 3 independent experiments. Representative blots (h) and quantita-
tive analysis of iNOS (i) protein expression expressed as mean ± SD 
of n = 3 independent experiments; β-actin was used as loading con-
trol. d–i (†) p < 0.05 vs. vehicle; (*) p < 0.05, (**) p < 0.01, (***) 
p < 0.001 vs. vehicle + CYT​
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intraductal injection as previously described [13, 14]. Islets 
were purified with a COBE 2991 cell separator using discon-
tinuous Euro-Ficoll gradients; purity was assessed by dithi-
zone staining, as described [15]. Available characteristics 
of the donors as well as islet preparations are summarized 
in Table S1.

Islets were handpicked and cultured in ultra-low attach-
ment plates (Corning Costar, Kennebunk, ME, USA), at 
37 °C in humidified atmosphere containing 5% (vol./vol.) 
CO2 in RPMI 1640 medium containing 5.5 mM glucose, 
10% charcoal-treated FBS, penicillin (50  IU/ml), strep-
tomycin (50 µg/ml), L-glutamine (2 mmol/l) and HEPES 
(10 mmol/l). For standardization, islets with a diameter of 
150–200 μm were considered as an islet equivalent (IEQ). 
Islets were cultivated for 24–72 h before experimentation.

SDS‑PAGE and Western blot

INS-1E cells were harvested on ice-cold PBS, washed and 
lysed in lysis buffer [50 mM Tris–HCl pH 7.4, 250 mM 
NaCl, 25 mM NaF, 2 mM EDTA, 0.1% Triton-X, protease 
inhibitors mix (Complete ULTRA, Roche)]. Protein concen-
tration was determined using the BCA assay Kit (Pierce) 
and samples conserved at -20 °C. Proteins were separated 
by 8–12% SDS-polyacrilamyde gel electrophoresis (SDS-
PAGE), blotted onto nitrocellulose or PVDF membranes 
(Amersham GE-Healthcare, UK) and incubated with pri-
mary antibodies: IκBα (#sc-371; Santa Cruz Biotechnology, 
Santa Cruz, CA, USA); iNOS (#610,332, BD Biosciences, 
San Jose, CA, USA); ORP150 (#ab124884), BIP (#ab21685, 
Abcam, Cambridge, MA, USA); phospho-IκBα (#9246), 

Fig. 2   CpdA hampers the 
cytokine-induced activation 
of ER stress related pathways 
and favors unfolded protein 
response (UPR) pathways in 
INS-1E cells. a–d INS-1E cells 
were pretreated with vehicle, 
CpdA 10 μM or dexamethasone 
(Dex) 0.1 μM for 1 h and then 
challenged or not with IL-1β 
100 pg/mL and IFN-γ 5 ng/
mL (CYT). After 16 h, levels 
of phospho- and total eIF2α, 
ATF4 and CHOP were analyzed 
by Western blot. Representa-
tive blots (a) and quantitative 
analysis of phospho- and total 
eIF2α (b), ATF4 (c) and CHOP 
(d) protein expression expressed 
as mean ± SD of n = 3/4 inde-
pendent experiments; β-actin 
was used as loading control. 
e–f INS-1 cells were transiently 
transfected with XBP1u-LUC 
(e) or 5xATF6-LUC (f) and 
RSV-βGal reporter plasmids. 
At 24 h post-transfection, cells 
were treated as described in (a). 
After 16 h, cells were collected 
and firefly luciferase (LUC) 
activity was measured and nor-
malized against β-galactosidase 
(β-Gal) activity for transfection 
efficiency. Relative LUC activ-
ity is expressed as mean ± SD of 
n = 3 independent experiments; 
(†) p < 0.05 vs. vehicle; (*) 
p < 0.05, (**) p < 0.01, (***) 
p < 0.001 vs. vehicle + CYT​
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β-actina (#3700), phospho-eIF2α (#9721), eIF2α (#2103), 
ATF4 (#11,815), CHOP (#2895); PDI (#3501) (Cell Signal-
ing Technology, Danvers, MA, USA). Blots were incubated 
with HRP-conjugated secondary antibodies (Bio-Rad, Her-
cules, CA, USA) and visualized using ECL (Supersignal; 
Thermo Fisher Scientific, Carlsbad, CA, USA).

Confocal microscopy

INS-1E were cultured 72 h onto fibronectin coated cov-
erslips, treated as described in the figures, fixed by cold 
methanol and incubated with primary antibodies: NFκB 
p65 (RelA, #sc-8008) or GR (M-20) (#sc-1004, Santa Cruz 
Biotechnology). Secondary antibodies (1/200 dilution) were 
anti-goat or anti-rabbit Alexa Fluor 647 conjugated dye (Life 
Technology). The coverslips were mounted on slides with 
Mowiol and images were acquired on a Zeiss LSM 710 
Confocal microscope (Carl Zeiss GmbH, Germany). Data 
acquisition was performed with ZEN Black 2011 software, 
and image quantification was performed using Fiji software.

Nitric oxide production

Nitrite was measured as an indicator of nitric oxide (NO) 
production using Griess reagent (1% sulphanilamide and 
0.1% naphthyl ethylene diamine dihydrochloride in 2.5% 
phosphoric acid) at 570 nm [16].

Quantitative real‑time PCR

Total RNA was extracted from INS-1E cells with TRIzol 
reagent (Thermo Fisher Scientific, Carlsbad, CA, USA) 
according to the manufacturer's instructions. Nucleic acid 
quantification and quality control were performed with a 
NanoDrop One (Thermo Fisher Scientific, Carlsbad, CA, 
USA). For cDNA synthesis, 1 μg RNA was reverse-tran-
scribed using RevertAid Reverse Transcriptase (Thermo 
Fisher Scientific, Carlsbad, CA, USA) in the presence 
of RiboLock RNase Inhibitor (Thermo Fisher Scientific, 
Carlsbad, CA, USA) and oligo(dT) primers. Real-time 
PCR was performed on a Bio-Rad CFX96 Touch Real-
Time PCR Detection System, using SYBR Green mix 
(Thermo Fisher Scientific, Carlsbad, CA, USA). All reac-
tions were performed in triplicate and HPRT or RPL19 
were used as normalization controls. Relative expression 
was calculated with the 2−ΔΔCT method [17]. Primers are 
listed in Table S2.

Transient transfections and luciferase reporter 
assays

To determine ATF6 pathway activation, we used a reporter 
plasmid containing the firefly luciferase gene under the 
control of five copies of ATF6 consensus binding site 

Fig. 3   CpdA enhances the 
expression of ER chaperones in 
INS-1E cells. a–d INS-1E cells 
were pretreated with vehicle, 
CpdA 10 μM or dexamethasone 
(Dex) 0.1 μM for 1 h and then 
challenged or not with IL-1β 
100 pg/mL and IFN-γ 5 ng/
mL (CYT). After 16 h, levels 
of BIP, PDI and ORP150 were 
analyzed by Western blot. 
Representative blots (a) and 
quantitative analysis of BIP 
(b), PDI (c) and ORP150 (d) 
protein expression expressed as 
mean ± SD of n = 4 independent 
experiments; β-actin was used 
as loading control. (†) p < 0.05 
vs. vehicle; (*) p < 0.05, (**) 
p < 0.01 vs. vehicle + CYT​
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(5xATF6-LUC). To quantitatively measure XBP1 splicing, 
we used a splicing-specific reporter plasmid containing the 
coding sequence of firefly luciferase conjugated to the sec-
ond ORF of XBP1u (XBP1u-LUC); luciferase is expressed 
only after IRE1-induced splicing removes the 26-nt intron.

Plasmids were transfected into INS-1E cells with Lipo-
fectamine 3000 reagent (Thermo Fisher Scientific) in Opti-
MEM medium and cells were treated after 24 h. LUC activ-
ity in cell lysates was measured using the Luciferase measure 
kit (Promega) with a Junior Portable luminometer (Berthold, 
Bad Wild- bad, Germany). Cells were co-transfected with 
RSV-β-galactosidase expression vector, and β-gal activity 
was measured by ONPG assay as a normalization control 
for transfection efficiency.

Assessment of cell viability and apoptosis

For cell viability assays, INS-1E cells were seeded in 
96-well plates. After treatment, medium was replaced by 
fresh medium containing 0.5 mg/mL MTT (Thermo Fisher 
Scientific, Carlsbad, CA, USA). After 3 h at 37 °C, media 
was replaced for 100 μL of acidified isopropanol (40 mM 
HCl) and incubated at room temperature 15 min. Absorb-
ance was measured at 570 nm.

Apoptosis assessments were performed in isolated mouse 
islets. After treatment, islets were washed and stained with 
Hoechst 33,342 (10 μg/mL) and propidium iodide (PI; 5 μg/
mL) for 30 min at 37 °C. Images were acquired under a Zeiss 
Axio Observer Z1 Inverted Phase Contrast Fluorescence 
Microscope (Carl Zeiss GmbH, Germany). The percentage 
of apoptotic cells was analyzed by two investigators blinded 
to the experiment using Fiji software.

Fig. 4   CpdA acts independently of the GR-complex. a–b INS-1E 
cells were pretreated with vehicle, CpdA 10  μM or dexamethasone 
(Dex) 0.1 μM for 1 h and then challenged or not with IL-1β 100 pg/
mL and IFN-γ 5 ng/mL (CYT). After 30 min, glucocorticoid recep-
tor (GR) expression was analyzed by immunofluorescence staining. a 
Representative confocal microscopy pictures of INS-1E cells immu-
nostained for GR (red) in the different experimental conditions as 
indicated; nuclei were stained with DAPI (blue); scale bars 10 μm. b 
Quantification of nuclear:cytoplasmic ratio of GR staining was per-
formed from analysis of 5 separate high-power field images for each 
experimental condition. Data are shown as mean ± SD of n = 3 inde-

pendent experiments. (†) p < 0.05 vs. vehicle; (***) p < 0.001 vs. 
vehicle + CYT. c–d INS-1E were treated as described in (a) with or 
without the GCs antagonist RU486 (1 μM) and 16 h of CYT stimula-
tion. c NO secretion was assessed by Griess reaction. Data are shown 
as mean ± SD of n = 3 independent experiments. d Levels of CHOP 
protein expression were analyzed by Western blot; quantitative analy-
sis of blots is expressed as mean ± SD of n = 3 independent experi-
ments; β-actin was used as loading control. c–d (**) p < 0.01, (***) 
p < 0.001 between indicated experimental conditions; NS  not signifi-
cant differences
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Insulin quantification and Glucose‑Stimulated 
Insulin Secretion (GSIS)

The quantification of insulin secreted by INS-1E cells and 
islets was performed by a sandwich ELISA [18]. For GSIS, 
cells/islets were incubated in Krebs–Ringer phosphate 
buffer (KRB: 135 mmol/L NaCl, 0.5 mmol/L NaH2PO4, 
3.6 mmol/L KCl, 0.5 mmol/L MgCl2, 1.5 mmol/L CaCl2, 
5 mM NaHCO3, pH 7.4), 10 mmol/L HEPES, 0.1% BSA, 
with 2 mmol/L glucose for a period of 2 h. Cells/islets were 
incubated in KRB-HEPES-BSA 2 mmol/L glucose for 1 h; 
the solution was collected and the cells/islets were incubated 
in KRB-HEPES-BSA 20 mmol/L glucose for an additional 
1 h before collecting the solution. Secreted insulin was 
normalized to total protein content of cell/islet lysates and 
stimulation index (ratio between insulin released under high 
glucose versus low glucose conditions) was calculated. Pro-
tein concentration was determined using the BCA assay Kit 
(Pierce).

Adoptive transfer of diabetes in mice and CpdA 
treatment

Eight-week-old female NODscid mice were adoptively 
transferred with diabetogenic splenocytes (i.p. 5 × 106 
cells/mice) isolated from diabetic NOD mice [16, 19] and 
injected i.p. with CpdA 100μg/200μL or vehicle (Control) 
three times a week from day -1 to day 50. Body weight was 
registered weekly and animals monitored for appearance of 
treatment-related adverse effects. Tail-blood glucose was 
measured with a glucometer (Optium Xceed®, Abbott Labo-
ratories, North Chicago, IL, USA); diabetes was diagnosed 
when glycemia reached ≥ 300 mg/dl in two consecutive days. 
The incidence of diabetes between groups was compared by 
Kaplan–Meier analysis and the log-rank test.

Histological examination

The pancreata were fixed in 10% formaldehyde and embed-
ded in paraffin. Insulin immunolabeling was performed 
on 7 μm tissue sections with anti-insulin (clone HB125, 
#MU029-UC, Biogenex, Fremont, CA, USA) and HRP-con-
jugated donkey anti-mouse (#715‐036–150, Jackson Immu-
noResearch, Baltimore, PA, USA) and signal revealed with 
3,3-diaminobenzidine (DAB) substrate; nuclei were coun-
terstained with haematoxylin. Images were acquired under 
an optical microscope (Olympus CX31, Olympus, Tokyo, 
Japan). Two investigators blinded to the experiment scored 
at least 10 islets per mouse to calculate the infiltration per-
centage using the following criteria: 0, no insulitis; 1: < 25%; 
2: 25–50%; 3: 50–75%; and 4: > 75%.

Statistical analysis

Results are presented as mean ± SD. Comparison between 
groups was carried out using paired or unpaired Student´s 
t-test or ANOVA followed by Bonferroni´s multiple com-
parison test, as appropriate. A p < 0.05 was considered to 
indicate a statistically significant difference. All statistical 
analyses were performed using GraphPad Prism version 6.0 
Software.

Results

CpdA inhibits cytokine‑triggered NF‑κB pathway 
activation and reduces nitric oxide production 
in INS‑1E cells

To assess the impact of CpdA on cytokine-induced β-cell 
dysfunction we first evaluated the effect of CpdA on the 
NF-κB pathway (Fig. 1a–e). CpdA pretreatment inhibited 
CYT-triggered IκBα phosphorylation (Fig. 1a,b) protecting 
its degradation (Fig. 1a,c) and hampering, NF-κB nuclear 
translocation in INS-1E cells (p < 0.05; Fig. 1d,e); a pathway 
related to CYT-induced NO production and β-cell apopto-
sis. Dex showed weaker inhibition on IκBα phosphorylation 
and degradation compared to CpdA, and did not prevent 
CYT-triggered NF-κB nuclear translocation in INS-1E cells 
(Fig. 1a,c). NO is an inducer of IL-1β-mediated ER stress 
and apoptosis of β-cells. CpdA reduced cytokine-triggered 
NO secretion by INS-1E cells (p < 0.01; Fig. 1f). This effect 
was observed as early as 6 h after challenge (Fig. S1a) and 
could be explained by the reduction in inducible Nitric 
Oxide Synthase (iNOS) mRNA (p < 0.01; Fig. 1g) and pro-
tein (p < 0.01; Fig. 1h,i) expression. 5-methylisothiourea sul-
fate (SMT), an inhibitor of iNOS activity, abrogated CYT-
induced NO production in INS-1E (Fig. S1b).

CpdA hampers the cytokine‑induced activation 
of ER stress and favors UPR pathways in INS‑1E cells

The PERK/eIF2α/ATF4/CHOP pathway is one of the ER 
stress-induced signaling branches related to apoptosis in 
β-cells. CpdA treatment impaired the phosphorylation of 
eIF2α (p < 0.01; Fig. 2a,b) and decreased ATF4 (p < 0.01; 
Fig. 2a,c) and CHOP (p < 0.05; Fig. 2a,d) expression in 
CYT-challenged INS-1E cells. A similar effect was observed 
with the addition of Dex (p < 0.05, Fig. 2).

IRE1α-XBP1 and ATF6 pathways are an integral 
part of the UPR, involved in the regulation of ER chap-
erones expression and aimed at restoring homeostasis. 
We observed that CpdA favors the UPR stimulating 
IRE1-mediated XBP1 splicing (2.8-fold increase vs. 
Veh, p < 0.05 and 3.6-fold increase vs. CYT, p < 0.001; 
Fig. 2e) and counteracts a decreased (0.5 ± 0.1 vs. vehicle, 
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Fig. 5   CpdA attenuates CYT-induced apoptosis and preserves glu-
cose stimulated insulin secretion in β-cells. a–f INS-1E cells were 
pretreated with vehicle, CpdA 10  μM or dexamethasone (Dex) 
0.1 μM for 1 h and then challenged or not with IL-1β 100 pg/mL and 
IFN-γ 5 ng/mL (CYT) for 16 h. a Cell viability was assessed by MTT 
assay. Viability in control group (Veh) has been considered as 100%. 
Data are shown as mean ± SD of n = 3 independent experiments. 
b Bax mRNA to Bcl-2 mRNA ratio, c DP5 mRNA and d TNF-α 
mRNA expression were analyzed by RT-qPCR. Relative mRNA lev-
els normalized to HPRT are expressed as mean ± SD of n = 3/4 inde-
pendent experiments. e Cumulative insulin secretion was determined 
in the conditioned media (11 mM glucose) by specific ELISA. Values 
were normalized to total protein content measured by BCA. Relative 
insulin secretion is shown as mean ± SD of n = 3 independent experi-

ments. f Glucose-Stimulated Insulin Secretion (GSIS) was assessed 
by ELISA in the conditioned media of cells cultured in the presence 
of low (2  mM) or high (20  mM) glucose. Insulin secretion index 
(20 mM/2 mM) is shown as mean ± SD of n = 4 independent experi-
ments. g–h Murine islets (5 IEQ/well) were pretreated with vehicle, 
CpdA 10 μM or dexamethasone (Dex) 0.1 μM for 1 h and then chal-
lenged or not with IL1-β 100 pg/mL + IFN-γ 5 ng/mL + TNF-α 8 ng/
mL for 16 h. (g) Apoptosis was assessed by Hoechst and PI double 
fluorescence staining. Percentages of apoptotic cells in islets are 
expressed as mean ± SD of n = 3 independent experiments. h GSIS 
was assessed in isolated mice islets as described in (f). Insulin secre-
tion index (20 mM/2 mM) is shown as mean ± SD of n = 4 independ-
ent experiments. (†) p < 0.05 vs. vehicle; (*) p < 0.05, (**) p < 0.01, 
(***) p < 0.001 vs. vehicle + CYT​
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p < 0.05) transcriptional activity of ATF6 in CYT-chal-
lenged INS-1E cells (1.5-fold increase vs. CYT, p < 0.01; 
Fig. 2f). Dex slightly upregulated IRE1-mediated Xbp1 
splicing; an effect that was only significant in the absence 
of cytokines (1.7-fold increase, p < 0.05; Fig. 2e). On the 
other hand, a 1.4- and 2.4-fold increase of ATF6 tran-
scriptional activity was observed in the presence of Dex in 
comparison with vehicle and CYT-challenged conditions, 
respectively (p < 0.05; Fig. 2f).

In the presence of CpdA the levels of BIP, a key UPR 
modulator, were restored in CYT-treated INS-1E cells 
(p < 0.05; Fig. 3a,b). Additionally, an enhancement in the 
expression of PDI and ORP150, chaperones involved in 
insulin folding and processing, was observed both in pres-
ence and absence of pro-inflammatory cytokines (between 
1.3- and 2.26-fold increase, p < 0.05; Fig. 3a,c,d). No sig-
nificant effect was observed on the level of these proteins 
under Dex treatment.

CpdA acts independently of the GR in INS‑1E cells

CpdA was originally described as a GR-ligand with dis-
sociative properties. Interestingly, using indirect immuno-
fluorescence localization, we demonstrated that treatment of 

INS-1E cells with CpdA did not support nuclear transloca-
tion of GR (Fig. 4a,b). Dex treatment induced GR translo-
cation to the nucleus in INS-1E cells, both in the absence 
or presence of CYT (p < 0.05; Fig. 4a,b). In addition, while 
the effect of Dex on NO secretion and CHOP expression 
was abolished in the presence of the potent GR antagonist 
RU486 (p < 0.01; Fig. 4c,d), the activity of CpdA was not 
affected under this experimental condition (Fig. 4c,d).

CpdA attenuates CYT‑induced apoptosis 
and preserves glucose‑stimulated insulin secretion 
in β‑cells

Proinflammatory cytokine-induced ER stress can lead to 
β-cell dysfunction and death, thus we explored the effects 
of CpdA on β-cell function and survival. CpdA partially 
reduced the decline in β-cell viability observed under CYT 
challenge (p < 0.05; Fig. 5a) and attenuated the activation 
of apoptotic pathways exerted by CYT in INS-1E cells. Bax 
and Bcl-2 genes are involved in the control of apoptosis; 
the ratio between both genes constitutes a rheostat that can 
predict the response of a cell toward life or death under an 
apoptotic stimulus. We showed that CpdA reduced by 50% 
the 6.4 -fold increase in Bax/Bcl-2 mRNA expression ratio 

Fig. 6   CpdA improves glucose response in cytokine-challenged iso-
lated human islets. a–h Isolated human islets were pretreated with 
vehicle, CpdA 10  μM or dexamethasone (Dex) 0.1  μM for 1  h and 
then challenged or not with IL1-β 250  pg/mL + IFN-γ 50  ng/mL 
(CYT) for 16  h. a–b Glucose-Stimulated Insulin Secretion (GSIS) 
was assessed by ELISA in the conditioned media of islets (5 IEQ/
well) cultured in the presence of low (2 mM) or high (20 mM) glu-
cose. Values were normalized to total protein content measured by 

BCA. Islets from two non-diabetic donors were tested in independ-
ent experiments with similar results. Data are shown as insulin 
secretion index (20 mM/2 mM). c IL-6 mRNA d IL-1β mRNA and 
e TNF-α mRNA expression were analyzed by RT-qPCR. Islets (50 
IEQ/well) from three non-diabetic donors were tested in independent 
experiments (n = 3); relative mRNA levels normalized to RPL19 are 
expressed as mean ± SD. (†) p < 0.05 vs. vehicle; (**) p < 0.01, (***) 
p < 0.001 vs. vehicle + CYT​
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triggered by CYT in INS-1E cells (p < 0.01; Fig. 5b). Analo-
gously, CpdA treatment diminished by 38,5% the 16.8-fold 
enhancement of death protein 5 (DP5) mRNA expression 
(p < 0.05; Fig. 5c), one of the key pro-apoptotic BH3-only 
proteins involved in CYT-induced β-cell death [20]. A simi-
lar effect on Bax/Bcl-2 mRNA expression ratio (p < 0.01; 
Fig. 5b) and DP5 mRNA expression (p < 0.01; Fig. 5c) was 
observed in CYT-challenged INS-1E cells under Dex pre-
treatment. However, Dex did not show protective effects on 
INS-1E cell viability under CYT challenge (Fig. 5a).

TNF-α gene expression is upregulated in β-cells in 
response to pro-inflammatory cytokine exposure con-
tributing to islet inflammation [21]. CpdA prevented the 
increase in TNF-α mRNA expression (45% reduction vs 
CYT, p < 0.01; Fig. 5d) triggered by CYT in INS-1E cells; 
a more pronounced effect was observed with Dex (p < 0.001; 
Fig. 5d).

In addition to the protective effect observed on cell via-
bility, CpdA displayed a beneficial effect on β-cell function 
under CYT-induced ER stress. CYT exposure of INS-1E 

Fig. 7   Beneficial effects of CpdA administration in the adoptive 
transfer of autoimmune diabetes in mice. a Experimental scheme. 
Non-obese diabetic (NODscid) mice were adoptively transferred with 
diabetogenic splenocytes (at day 0 i.p. 5 × 106 cells/mice) and treated 
with CpdA (i.p. 100μg, n = 21) or vehicle (Control, n = 10) three 
times a week from day  – 1 to day 50. b Kaplan–Meier plot of cumu-
lative diabetes incidence. p < 0.0001 vs. vehicle, by log-rank (Man-
tel–Cox) test. c Graph representing the classification of pancreatic 
islets according to the severity of leukocyte infiltration (insulitis) in 

each experimental group. Grade: 0, no insulitis; 1: < 25% infiltrate; 2: 
25–50% infiltrate; 3: 50–75% infiltrate; and 4: > 75% infiltrate. Bars 
show mean ± SEM of independent individuals. Control d28 after 
adoptive transfer (n = 2), CpdA-treated d28 (n = 3), CpdA-treated 
d100 (n = 3), NODscid sham control (n = 2). d Islet immunostaining 
for insulin expression from each experimental group. Representative 
islets are shown. Scale bar 50 μm. Arrows (➤) indicate the infiltrat-
ing leukocytes. Insulitis: NODscid sham, grade 0; Control d28, grade 
4; CpdA-treated d28, grade 2; CpdA-treated d100, grade 1
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cells induced a reduction in the cumulative secreted insu-
lin over a period of 16 h (75% reduction, p < 0.05; Fig. 5e); 
CpdA counteracted the CYT effect (p < 0.01; Fig. 5e). The 
GSIS that was severely affected by CYT exposure (0.75-
fold CYT vs. 3.57-fold veh, p < 0.05; Fig. 5f) was partially 
recovered by CpdA (p < 0.05; Fig. 5f). Dex showed a simi-
lar beneficial effect on cumulative insulin secretion as well 
as under glucose-stimulated conditions (Fig. 5e,f).

The protective effect of CpdA on INS-1E cells was 
confirmed in isolated murine islets; a pronounced reduc-
tion in the percentage of apoptotic cells (12.5 ± 4.8% vs. 
30.3 ± 6.9%, p < 0.01; Fig. 5g) and enhancement of GSIS 
(p < 0.01; Fig. 5h) were observed in CYT-stressed islets.

The efficacy of CpdA in improving β-cell functional-
ity under the challenge of proinflammatory cytokines was 
confirmed with human isolated islets from three organ 
donors. CpdA treatment improved GSIS in CYT-chal-
lenged human islets (n = 2, Fig. 6a,b). Previous reports 
indicated that ER stressors like proinflammatory cytokines 
or palmitate [21, 22] induce the expression of cytokines 
in human islets. CpdA pre-treatment hampered the incre-
ment observed in IL-6 (p < 0.01; Fig. 6c), IL-1β (p < 0.01; 
p < 0.01; Fig. 6d) and TNF-α (p < 0.001; Fig. 6e) mRNA 
in CYT-exposed isolated human islets.

CpdA delays the onset of hyperglycemia 
and reduces the number of diabetic mice 
after adoptive transfer of disease

Vehicle-treated mice developed hyperglycemia from day 
21 and reached an incidence of 100% (10/10) on day 39 
with a median of 24 days. CpdA delayed the onset of dia-
betes with a median of 44 days and led to 38% (8/21) 
of diabetes-free mice at day 100 (p < 0.0001 vs. control) 
(Fig. 7b). CpdA neither affected mice´s body weight (Fig. 
S2a) nor displayed any other adverse side effects.

To determine whether the delay in the onset of hyper-
glycemia in CpdA-treated mice was due to changes in 
insulin sensitivity, an intraperitoneal insulin tolerance test 
(IITT) was performed in adoptively transferred NODscid 
mice (non-diabetic) after 40  days of CpdA-treatment, 
hereby revealing no significant differences in glucose 
clearance when compared to two different control groups: 
non-transferred age-matched NODscid mice and young 
4-week-old NOD mice (Fig. S2b).

At the end of the study, an intraperitoneal glucose toler-
ance test (IGTT) was performed to assess the physiological 
capacity of β-cells in maintaining glucose homeostasis in 
CpdA-treated NODscid mice (n = 3, Fig. S2c). For compari-
son, we utilized non-manipulated female young 4-week-old 

Fig. 8   Compound A impacts several cell targets with potential thera-
peutic effects on autoimmune diabetes. Schematic outline of results. 
We previously reported that CpdA is an effective modulator of effec-
tor T and dendritic cells, and macrophages in  vitro and in  vivo. In 
this study, we found that CpdA improves UPR and attenuates ER 
stress-related apoptotic pathways, favoring the survival and function 
of β-cells exposed to an environment of proinflammatory cytokines. 

CpdA administration to NODscid mice adoptively transferred with 
diabetogenic splenocytes attenuated the progress of the autoimmune 
attack leading to a delay of disease onset and reduction of diabetes 
incidence. These findings together with our previous reports justify 
further studies on the administration of this small molecule as a novel 
therapeutic strategy with dual targets (effector immune and β-cells) 
during autoimmune diabetes
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NOD mice (n = 2). IGTT showed that normoglycemic CpdA-
treated NODscid mice were able to reach basal glycemia lev-
els after 120 min of glucose bolus, similarly to young NOD 
mice (Fig. S2c, AUC: 24,553 ± 7607 vs. 13,302 ± 653).

Taken together, these results indicate that CpdA delayed 
the onset of hyperglycemia and improved glycemic control 
in this autoimmune diabetes model. Furthermore, IITT 
results suggest that CpdA treatment did not affect glucose 
uptake in peripheral tissues, as has been previously shown 
[45].

CpdA treatment reduces leukocyte infiltration 
and preserves insulin expression in islets

Islet infiltration by leukocytes (insulitis) initiates the β-cell 
destruction and autoimmune diabetes. To investigate the 
mechanism exerted by CpdA on the beneficial effects in the 
diabetes adoptive transfer model, we harvested pancreas for 
histological analysis at 28 days after splenocyte transfer and 
at the end of the experiment (100 days) (Fig. 7c,d). At day 
28, diabetic mice from the control group (vehicle-treated) 
presented 75% of islets with infiltration grade 4, 16.5% with 
grade 3 and 8.5% with grade 1 (Fig. 7c). Most of the islets 
in diabetic mice did not express immune-reactive insulin 
(Fig. 7d). In animals treated with CpdA, we observed at day 
28, 13% of islets infiltrated with grade 4, 32% with grade 3, 
19,5% grade 2 and 15,5% grade 0. CpdA-treated mice that 
reached 100 days normoglycemic showed 79% of islets with-
out infiltration (grade 0) and 21% with grade 1. In the latter 
group, insulin staining was normal and islets conserved an 
intact architecture with normal size (Fig. 7d). Aged-matched 
NODscid mice (sham treated) presented strong insulin stain-
ing without leukocyte infiltration (Fig. 7c,d). These results 
showed that CpdA reduced the severity of insulitis compared 
with diabetic non-treated mice, preserving insulin stores in 
β-cells.

Discussion

Here, we describe the ability of CpdA to effectively attenu-
ate ER stress induced by proinflammatory cytokines in 
β-cells, to improve metabolic fitness of inflamed β-cells and 
to display clear therapeutic benefit in an aggressive murine 
model of autoimmune diabetes (Fig. 8).

The ER is key in the production and secretion of insu-
lin in accordance with the physiological demand and poses 
a continuous great challenge for the β-cell to maintain its 
homeostasis. Islet inflammation contributes to the pathogen-
esis of both type 1 and type 2 diabetes [23, 24]. Infiltrating 
effector immune cells during type 1 diabetes cause cellular 
dysfunction that may ultimately culminate in β-cell demise. 

IL-1β, TNF-α and IFN-γ were shown to induce ER stress [3, 
25–27]. IL-1β mediated ER stress and apoptosis in β-cells 
are partially triggered by an increase in NO production 
through NF-κB pathway activation, although its magnitude 
is species-specific [27, 28]. We found that one of the mecha-
nisms by which CpdA reduces cytokine-induced ER stress 
and apoptosis in INS-1E is by impairing NF-κB signaling, 
iNOS transcription and translation, and ultimately NO gen-
eration. In this same direction, insulin promoter-driven over-
expression of the iNOS transgene induced diabetes, while 
genetic ablation of iNOS abrogates streptozotocin-induced 
diabetes in mice [29, 30].

Moreover, inhibition of the NF-κB-iNOS-NO axis pro-
tects β-cells from cytokine-induced apoptosis in vitro and 
in experimental diabetes [31–34]. The latter agrees with 
the fact that the action of CpdA by decreasing NO produc-
tion protects INS-1E cells from inflammatory cytokines. 
It remains to be determined whether the same protective 
mechanisms exerted by CpdA occur in our model of adop-
tively transferred autoimmune diabetes.

ER stress links inflammation to initiation of β-cell dys-
function and activates UPR. In pathological conditions, UPR 
can lead to β-cell dysfunction and death [1]. In addition, 
NO contributes to the change in UPR signaling toward sur-
vival or death [26]. CpdA modulates UPR by counteracting 
ER stress induced by proinflammatory cytokines, as dem-
onstrated by the significant reduction of the ER stress arm 
(ATF4/CHOP) and increases in XBP1 and ATF6 that pro-
mote the adaptive/restorative UPR phase. The importance of 
restorative UPR in β-cells is manifested in experimental [35, 
36] and type 1 diabetes [37]. ER stress markers have been 
detected in islets of naturally occurring diabetic mice [2] 
and type 1 diabetic patients [38]. In type 1 diabetes models, 
the stress-relieving UPR improves the function and extends 
β-cell survival [6]. As a first step for stress adaptation, the 
UPR transiently restores ER homeostasis by decreasing 
protein translation through p-eIF2α. We found that CpdA 
reduces p-eIF2α suggesting the return of protein synthesis 
in cytokine-perturbed β-cells.

The canonical ER stress transducer IRE1 facilitates 
XBP1s expression, expands ER and induces the expres-
sion of foldases and chaperones all as useful adaptations to 
restore ER homeostasis [39]. Marked observations distin-
guished CpdA from Dex actions. We found that CpdA but 
not Dex attenuates the cytokine-mediated reduction of BiP 
in INS-1E cells. Also, the ER-resident chaperones ORP150 
(also called Grp170) and PDI were specifically increased in 
CpdA-treated β-cells under basal as well as cytokine-stim-
ulated conditions. Taking these results into account, CpdA 
helps maintain or even increase ER chaperone levels under 
the challenge of proinflammatory cytokines in INS-1E cells.

All these CpdA actions on the activation of the adapta-
tion phase of cytokine-challenged β-cells were positively 



Compound A attenuates proinflammatory cytokine‑induced endoplasmic reticulum stress in…

1 3

Page 13 of 15  587

reflected in their viability, lowered apoptosis levels and 
improvement of GSIS. Βeta-cells are highly sensitive to 
apoptotic stimuli when faced with additional cellular stress, 
in part due to the constitutive low expression of anti-apop-
totic proteins and free radical scavenging enzymes [15, 40].

The relative expression of Bax and Bcl-2 proteins regu-
lates apoptosis [41]. Also, DP5 is induced by cytokines lead-
ing to caspase-3 activation and β-cell death [20]. The reduc-
tion of both Bax/Bcl-2 ratio and DP5 mRNA expression 
contribute to CpdA improvement of INS-1E cells viability, 
when impaired by cytokine stimulation.

The synthesis of TNF-α by IL-1β stimulation amplifies 
the inflammatory response in β-cells [21]. We found that 
CpdA reduced TNF-α mRNA transcription, which could 
disrupt the positive loop of Bax/Bcl-2 ratio stimulation 
and may reduce apoptosis through NF-κB signaling [42]. 
The latter observation reflected the recovery of cumulative 
insulin secretion, as well as that stimulated by glucose in 
INS-1E-CpdA cells challenged with cytokines. Also, CpdA 
improved GSIS and reduced inflammatory cytokine mRNA 
expression in cytokine-stimulated isolated murine and 
human islets.

GCs are widely used in the clinic. However, chronic 
administration presents deleterious side effects and resist-
ance to GCs. CpdA was shown to interfere with the activity 
of NF-κB by a GR-dependent transrepression mechanism 
explaining its anti-inflammatory activity [8, 43, 44]. Unlike 
Dex, CpdA does not induce GR-mediated transactivation. 
Accordingly, the administration of CpdA did not induce 
diabetogenic or HPA axis-suppressive side effects in vivo 
[45]. Here, we show GR-independent effects of CpdA in 
β-cells, similarly to what was previously reported for other 
cell types [10, 46, 47].

Recently, autophagy induction by CpdA was described 
as a contributory mechanism to its anti-inflammatory phe-
notype in stimulated macrophages [48]. Opposite regula-
tions between CpdA and Dex at the level of the autophagy 
receptor SQSTM1 (p62) could attribute to CpdA’s anti-
inflammatory effects, regardless of the binding to GR [48]. 
Therefore, it would be important to determine whether the 
induction of autophagy by CpdA, in addition to reducing 
ER stress, may additionally contribute to an efficient pro-
tection of β-cells against inflammatory stimuli.

The beneficial effect of CpdA on diabetes by streptozo-
tocin (STZ) administration has been previously reported 
[49]. However, STZ induces the death of β-cells by chemi-
cal toxicity with the appearance of necrotic β-cells and 
insulitis as early as 2-4 h and 3–4 days after its adminis-
tration, respectively [50]. We used the transfer of diabe-
togenic splenocytes as a model to resemble the state of 
immune activation of an individual at the time of diag-
nosis of type 1 diabetes. We found that CpdA administra-
tion delayed and, in some cases, completely halted the 

progression of hyperglycemia by diminishing islets infil-
tration of inflammatory cells characteristic of insulitis. 
Likewise, CpdA has been successful in other animal and 
cellular disease models showing potent anti-inflammatory 
properties [44, 45, 51, 52].

We reported that CpdA affects dendritic cells that sub-
sequently generate weak contact hypersensitivity response 
and T lymphocytes, favoring the Th2-type response over 
Th1 [9, 10]. These findings suggest that CpdA could also 
act in vivo by affecting both antigen-presenting cells and 
effector T lymphocytes responsible for β-cell damage, as 
well as explain the reduction of insulitis in normoglycemic 
mice that received diabetogenic splenocytes.

Type 1 diabetes remains a disease without a cure and 
multidrug therapy has been suggested as an option. The 
use of small-molecules with a dual anti-inflammatory tar-
geting potential are of high relevance in strategies to com-
bat autoimmune diabetes. CpdA meets the criteria of what 
is called combined therapy for autoimmune diabetes by 
modulating effector immune cells to dampen islet inflam-
mation and also by protecting β-cells.
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