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Abstract
Single-cell sequencing is widely used in biological and medical studies. However, its application with multiple samples is 
hindered by inefficient sample processing, high experimental costs, ambiguous identification of true single cells, and technical 
batch effects. Here, we introduce sample-multiplexing approaches for single-cell sequencing in transcriptomics, epigenomics, 
genomics, and multiomics. In single-cell transcriptomics, sample multiplexing uses variants of native or artificial features as 
sample markers, enabling sample pooling and decoding. Such features include: (1) natural genetic variation, (2) nucleotide-
barcode anchoring on cellular or nuclear membranes, (3) nucleotide-barcode internalization to the cytoplasm or nucleus, 
(4) vector-based barcode expression in cells, and (5) nucleotide-barcode incorporation during library construction. Other 
single-cell omics methods are based on similar concepts, particularly single-cell combinatorial indexing. These methods 
overcome current challenges, while enabling super-loading of single cells. Finally, selection guidelines are presented that 
can accelerate technological application.

Keywords  Cell Hashing · scRNA-seq · scATAC-seq · Multi-omics · Spatial transcriptomics

Introduction

Cells are the basic structural and functional units of life, 
and multicellular organisms are composed of individual 
cells with varied gene expression profiles and functions. 
Single-cell RNA sequencing (scRNA-seq) has been devel-
oped rapidly since its inception [1]. In contrast to traditional 
bulk transcriptional profiling, scRNA-seq enables tran-
scriptomic analysis of numerous individual cells in parallel 
[2–4], thereby helping to elucidate cellular heterogeneity 

and characterize rare cells in research related to tumors [5, 
6], stem cells [7], the immune microenvironment [8], neu-
robiology [9–11], reproduction [12], and embryonic devel-
opment [13–17]. Commercial scRNA-seq platforms such 
as 10 × Genomics Chromium [18] and BD Rhapsody [19, 
20] routinely provide high throughput (103–105 cells) [21], 
which has catalyzed the development of numerous cell atlas 
projects, such as The Human Cell Atlas [22], The Fly Cell 
Atlas [23], and Plant Cell Atlas [24].

While the throughput has increased and the per-cell cost 
has fallen with rapid advancements in scRNA-seq, several 
major challenges still remain when processing multiple 
samples, which impede further adoption and evolution. In 
general, performing scRNA-seq for multiple individual sam-
ples is labor-intensive and requires expensive reagents and 
consumables. In the early stage, scientists eliminated false 
singlets (negatives and multiplets) subjectively using the 
unique molecular identifier (UMI) “cut-off,” resulting in the 
retention of false single cells and the loss of true cells with 
RNA contents that are too high or low. Afterward, more and 
more R packages have been developed to remove negatives 
or multiplets, such as scrublet [25], doubletFinder [26], and 
scuttle. However, these statistical methods can only partially 
solve the problem. Additionally, technical batch effects can 
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mask biological signals when scRNA-seq profiles are inte-
grated [27]. Fortunately, effective solutions to mitigate these 
challenges have been successfully applied.

Here, we principally discuss sample-multiplexing 
approaches for scRNA-seq benefiting from bioinformatic 
and biochemical techniques. These methods overcome 
common challenges facing scRNA-seq and enable the 
super-loading of single cells in a single run. More single 
cells can be obtained by super-loading, which is especially 
important for the detection and characterization of some 
rare cell subsets. However, uncontrolled overloading when 
too many samples are multiplexed will lead to an ultra-
high rate of multiplets, which although can be removed 

when the data is obtained but will consume sequencing 
power. Although scRNA-seq is the most sophisticated 
solution, other methods of single-cell omics are gradu-
ally being developed with comparable strengths in terms 
of their applications. Therefore, we also discuss other 
sample-multiplexing methods, such as single-cell assay 
for transposase-accessible chromatin with high-through-
put sequencing (scATAC-seq), single-cell whole-genome 
sequencing (scWGS), single-cell DNA-methylation analy-
sis, single-cell high-throughput chromosome conformation 
capture (scHi-C), and single-cell multi-omics (scMulti-
omics) (Fig. 1, Table 1). Finally, we provide selection 
guidelines and application models for these multiplexing 
methods.

Fig. 1   A Hierarchy of sample-multiplexing approaches used for 
single-cell sequencing. The different shapes represent different strat-
egies, which are also mentioned in (B). B Timeline of sample-mul-

tiplexing approaches for single-cell sequencing. Omics targeted are 
distinguished by various colors. The strategies are represented by dif-
ferent shapes
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Sample multiplexing for single‑cell 
transcriptome sequencing

According to the central dogma of molecular biology, RNA 
bridges the gap between DNA and proteins, thereby reflect-
ing the nature and genetic profiles of cells. Proteins are diffi-
cult to amplify and sequence, while high-throughput scWGS 
and scWES, requiring a large amount of sequencing, are too 
expensive to apply. Therefore, scRNA-seq is currently the 
most popular single-cell omics tool. Here, we present five 
categories of scRNA-seq sample-multiplexing approaches 
(Fig. 2).

Natural genetic variation

Demultiplexing scRNA‑seq data by genetic variations 
with reference genotypes

Genetic variation, particularly single-nucleotide polymor-
phisms (SNPs), distinguishes different individuals, qualify-
ing SNPs as natural barcodes for assigning cells to donors 
and identifying doublets from different donors (Fig. 2A). 
Multiple methods for demultiplexing cells from different 
individuals based on SNPs have been developed in recent 
years. Kang et al. [28] introduced demuxlet, the first method 
for harnessing genetic barcodes to identify cells. The demux-
let method assigns each cell to its individual source by calcu-
lating the maximum likelihood of obtaining RNA-seq reads 
with overlapping SNP sets, the genotypes of which are given 
in parallel as a reference for each individual. Using simu-
lated data, demuxlet showed that 50 genetic variations are 
sufficient to assign cells for up to 64 individuals. In the same 
study, the performance of demuxlet was evaluated by ana-
lyzing pooled peripheral blood mononuclear cells (PBMCs) 
from eight patients with lupus.

Demultiplexing scRNA‑seq data by genetic variations 
without reference genotypes

While the above-mentioned methods enable demultiplex-
ing of mixed samples, they require additional genotyping 
information to assign individual cells back to the donors. 
These factors limit the utility of genotype-specific methods, 
as genotype data might be unavailable, or insufficient tissue 
may be available for DNA extraction. Recently, approaches 
were developed that do not require a genotype reference. Xu 
et al. [29] introduced scSplit, a hidden-state model approach 
for demultiplexing individual samples from mixed scRNA-
seq data without extra genotype information. ScSplit identi-
fies putative variant sites from scRNA-seq data and models 
the allelic counts into clusters using an expectation–maxi-
mization framework. This tool requires only FASTQ files Ta
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and a cell barcode list as inputs. Huang et al. [30] presented 
Variational Inference for Reconstructing Ensemble Origins 
(Vireo), a principled Bayesian method for demultiplexing 
pooled samples independently of the genomic information. 
Vireo can also leverage genotype information when avail-
able (termed Vireo-GT). They evaluated the performance 
of Vireo-GT for singlet assignment. As expected, Vireo-GT 
performed slightly better than Vireo when using 16 geneti-
cally distinct scRNA-seq samples (AUC​Vireo = 0.999, AUC​
Vireo-GT = 1.000). More recently, the computational tool, 
Souporcell, was designed for clustering scRNA-seq data by 
genotype without reference genotypes [31]. Souporcell fits 
a mixture model using a deterministic annealing variant of 
the expectation–maximization algorithm to cluster cells. The 
advantage of mixture model clustering over hard clustering 
is that cells can be assigned to different clusters, benefiting 
both doublet calling and ambient RNA estimations. Soupor-
cell achieved high accuracy in terms of genotype cluster-
ing, doublet detection, and ambient RNA estimation. This 
method even surpassed demuxlet (the gold-standard method 
requiring genotype information a priori) in cell assignments 
and doublet accuracies. When more challenging scenarios 
involving multiple cell types are involved, 21 cells that 
demuxlet had labeled as maternal or fetal appeared in the 
cell clusters of the counterpart individual by Souporcell. 

Based on the reference genotypes, they are of an error by 
demuxlet assignments rather than that by Souporcell. Nota-
bly, Souporcell includes a low signal-to-noise ratio due to 
decreased numbers of UMIs per cell and high numbers of 
donors, resulting in increased local maxima.

Nucleotide‑barcode anchoring on cellular or nuclear 
membranes

Oligo‑tagged antibodies

Cells with higher expression levels of specific surface pro-
teins can be labeled with more corresponding antibod-
ies. Therefore, the cellular indexing of transcriptomes 
and epitopes by sequencing (CITE-seq) [32] and RNA-
expression and protein-sequencing assay (REAP-seq) [33] 
approaches can simultaneously measure gene- and protein-
expression levels in single cells with oligo-tagged antibod-
ies. These antibodies link ssDNA instead of the fluorophores 
applied to Fluorescence Activating Cell Sorter (FACS), 
and barcoded ssDNA integrated with antibodies will be 
captured along with mRNAs. Stoeckius et al. used oligo-
tagged antibodies (hashtags) that bound to ubiquitous cell-
surface membrane proteins to mark and pool experimental 
samples, demultiplexed the data according to the barcoded 

Fig. 2   Schematic overview of five sample-multiplexing strategies 
used for scRNA-seq. A Natural genetic variation. Without additional 
labeling, computational demultiplexing is conducted based on SNPs. 
B Nucleotide-barcode anchoring on cellular or nuclear membranes. 
The example shown here is Cell Hashing, where oligo-tagged anti-
bodies (hashtags) bind to ubiquitously expressed cell-surface pro-
teins. Oligos with a poly (A) tail are captured along with mRNA. 

Cells can be assigned to their sample of origin based on different 
barcodes in the hashtags. C Nucleotide-barcode internalization into 
the cytoplasm or nucleus. Barcoded DNA traverses the cellular or 
nuclear membrane by liposomal transfection or directly diffuses into 
the nuclei. SBO: short barcode oligonucleotide. D Vector-based bar-
code expression in cells. E Nucleotide-barcode incorporation during 
library construction
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antibody signals, and assigned cells to the original samples 
(Fig. 2B). This method was named “Cell Hashing,” as it is 
based on the concept of hash functions in computer science 
to index datasets with specific features. Eight human PBMC 
samples were labeled, pooled, and analyzed [34]. Class-I 
major histocompatibility complex, β-2-microglobulin, and 
the sodium–potassium ATPase-subunit CD298 are broadly 
expressed on the surface of human cells [34], and combining 
these two corresponding antibodies fulfills the purpose of 
double assurance for labeling all cells successfully.

The performance of single-nucleus RNA sequencing 
(snRNA-seq) has been compared with that of scRNA-seq 
[35–37]. Although snRNA-seq usually captures fewer 
genes, it has significant advantages in addressing complex 
tissues that are challenging to dissociate or are frozen, or 
comprise large or irregularly shaped cells, while avoiding 
bias caused by the loss of certain cells during single-cell 
suspension preparation [38–40]. Following Cell Hashing, 
Nucleus Hashing was developed for multiplex snRNA-seq 
and to profile human brain cortex samples [41]. The Nucleus 
Hashing approach utilizes DNA-barcoded antibodies to tar-
get the nuclear pore complex, which has a relatively con-
served sequence between species and expands the applica-
tion range.

Commercial oligo-tagged antibodies produced by Bio-
Legend and BD are currently available and should stream-
line such research. However, some cells may not express 
the nearly ubiquitous targeted surface proteins, resulting in 
labeling and decoding failures.

Lipid‑tagged indices

Lipid and cholesterol are basic cell-membrane components 
that are required for all life. Lipid- and cholesterol-modified 
oligonucleotide (LMOs and CMOs, respectively) scaffolds, 
used as “anchors,” can be rapidly and stably integrated into 
live cell membranes [42]. McGinnis et al. adapted LMOs 
and CMOs into MULTI-seq, a multiplexing method for 
scRNA-seq and snRNA-seq using lipid-tagged indices. 
Briefly, conjugation with a 5′ lignoceric acid amide and a 3′ 
palmitic acid amide increased the hydrophobicity of LMOs 
and enabled them to stably associate with membranes. 
MULTI-seq sample barcodes are constituted of a 3′ poly-A 
capture sequence, an 8-bp sample barcode, and a 5′ polymer-
ase chain reaction (PCR) handle. In their study, McGinnis 
et al. used MULTI-seq to reveal the dynamics of T-cell acti-
vation with Jurkat cells, to perform a 96-plex perturbation 
assay with primary human mammary epithelial cells, and to 
perform multiplex analysis of cryopreserved primary tumors 
and metastatic lungs dissected from the patient-derived xen-
ograft (PDX) mice of triple-negative breast cancer [43].

For practical applications, one type of LMO scaffold 
is sufficient to assemble with different DNA barcodes, 

increasing the method’s capability for multiplexing numer-
ous samples in parallel. Furthermore, this method is not 
limited by species or genetic background differences and 
has little impact on cell viability and endogenous gene 
expression patterns because the labeling is extremely mild 
and requires only 5 min.

Concanavalin A (ConA)‑based sample barcoding

Glycoproteins are ubiquitous on the plasma membrane. 
Based on the glycoprotein-binding ability of Concanava-
lin A, a ConA-based sample-barcoding strategy (CASB) 
was developed by Fang et  al. Three components, i.e., 
biotinylated single-stranded DNA (ssDNA; as barcodes), 
streptavidin, and biotinylated Concanavalin A, self-assem-
ble into the CASB complex. CASB has been leveraged 
to dissect the transcriptomic dynamics of MDA-MB-231 
cells perturbed with five compounds and to demonstrate 
the IFN-γ-mediated epigenomic and transcriptomic 
changes in HAP1 cells by combining scRNA-seq and 
scATAC-seq [44].

CASB enables cell and nucleus labeling independently 
of the genetic background. In addition, the CASB complex 
binds to the target quickly and stably, even at low tempera-
tures, without degrading the sample integrity. ssDNA bar-
code synthesis and complex assembly are extraordinarily 
convenient, flexible, and easy to be adapted to different 
single-cell sequencing workflows. Furthermore, CASB com-
bines simultaneously combinatorial barcoding and sequen-
tial split-pool barcoding, making it capable of multiplexing 
more samples and further eliminating multiplets than previ-
ous methods.

ClickTags

Methyltetrazine-modified oligonucleotides can be cou-
pled with surface proteins on methanol-fixed cells via a 
two-step chemical reaction using inverse electron-demand 
Diels–Alder chemistry and the heterobifunctional amine-
reactive cross-linker NHS-trans-cyclooctene. Using these 
modified oligonucleotides as “ClickTags,” Gehring et al. 
achieved highly multiplexed scRNA-seq with fixed cells. 
They applied this strategy in a 96-plex perturbation experi-
ment using neural stem cells treated with various concentra-
tions of decitabine and Scriptaid, epidermal growth factor 
and basic fibroblast growth factor, retinoic acid, and bone 
morphogenic protein 4 [45].

However, the method is currently only suitable for meth-
anol-fixed cells (rather than live cells) because competitive 
NHS-ester hydrolysis in aqueous buffer tends to result in a 
poor signal-to-noise ratio with scRNA-seq libraries.
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Nucleotide‑barcode internalization 
to the cytoplasm or nucleus

Liposomal transfection with short barcoding oligos

Similar to bio-membranes, liposomes are widely used as vec-
tors to transport drugs and exogenous nucleic acids into cells 
in research and clinical applications. Shin et al. established 
a universal sample-barcoding method using liposomal trans-
fection with short barcode oligonucleotides (SBOs; Fig. 2C). 
SBOs consisting of a barcode and a poly-A sequence were 
implemented to label various samples. They applied this 
method in a 5-plex time-course experiment using K562 cells 
treated with a BCR-ABL-targeting drug (imatinib) and in a 
48-plex assay performed to screen 45 selected drugs [46].

This method is characterized by a simple experimental 
process and low-cost sample labeling. SBO synthesis is flex-
ible and convenient, and the number of labeled samples can 
be largely expanded; therefore, this strategy is very suitable 
for conducting numerous parallel experiments, such as broad-
spectrum drug-screening assays. As this method is based on 
liposomal transfection, it can be universally adapted to vari-
ous species and potentially applied to the nucleus. However, 
additional perturbations may occur when SBOs are transfected 
using Lipofectamine 3000 at 4 h before library construction.

Staining nuclei with polyadenylated ssDNA 
oligonucleotides

Evidence suggests that ssDNA selectively diffuses into the 
nuclei of permeabilized cells instead of intact cells (Fig. 2C). 
Therefore, Srivatsan et al. used a straightforward approach 
with unmodified polyadenylated ssDNA oligonucleotides 
(hash oligos) to mark nuclei followed by single-cell combi-
natorial indexing RNA-seq (sci-RNA-seq). With this nuclear 
hashing strategy (known as the “sci-Plex” strategy), the 
combination of two oligos (one for plates and another for 
wells) contributed to the exponential scalability of sample 
indexing. Using sci-Plex, they acquired data from approxi-
mately 650,000 single cells across nearly 5000 independent 
samples in one experiment by screening three cancer cell 
lines exposed to 188 compounds at different doses [47].

The labeling capacity of sci-Plex is extremely high. None-
theless, it functions only in the nuclei and remains limited by 
significantly low mRNA-capture efficiency in sci-RNA-seq.

Vector‑based barcode expression in cells

Lentiviral barcodes facilitate cell tagging, pooling, 
and tracking

In previous studies, virus transduction along with high-
throughput scRNA-seq was successfully used for lineage 

tracing. Subsequently, Guo et al. adapted this method to 
develop a novel lentiviral barcode-based multiplexing 
approach, called CellTag Indexing (Fig.  2D). With the 
design, 8-nt CellTags representing distinct sample indices 
are located in the 3′ untranslated region of the green fluores-
cent protein gene (which enables measurement of the trans-
duction efficiency), followed by an SV40 polyadenylation 
signal sequence. Barcoded viruses are used to transduce the 
cells to be tagged. Guo et al. used this method to profile 
cultured cells in vitro and track cell engraftment and dif-
ferentiation in vivo [48].

CellTag Indexing has been used to successfully achieve 
long-term stable tracing and multiplexing of live cells. How-
ever, it is incompatible with clinical samples and frozen 
tissues because CellTag barcodes need to be expressed in 
immortalized cells. Additionally, compared to other labeling 
technologies, the tagging method is time-consuming due to 
the need for transducing cells with viruses and expressing 
viral RNA.

Clustered regularly interspaced short palindromic 
repeats (CRISPR) and short‑hairpin RNA (shRNA) enable 
multiplexed single‑cell screening

Genetic screens enable gene-function analysis and accelerate 
biological discoveries, while confronting trade-offs between 
the number of perturbations probed and the complexity of 
phenotypes evaluated. To bridge this gap, Dixit et al. devel-
oped Perturb-seq by combining scRNA-seq and CRISPR-
based perturbations. In their experiments, cells were infected 
with a pool of lentiviruses that expressed single-guide RNAs 
and guide barcodes to be captured together with mRNA dur-
ing reverse transcription. They applied Perturb-seq to profile 
200,000 cells, focusing on transcription factors that regulate 
the responses of dendritic cells to lipopolysaccharide [49]. 
In a companion study, Perturb-seq was used with CRISPR 
interference to investigate the mammalian unfolded-protein 
response [50]. Similarly, Jaitin et al. developed CRISP-seq to 
dissect immune circuits [51], and Datlinger et al. developed 
CROP-seq (also known as CRISPR droplet sequencing) 
[52]. Consequently, Daniel and Allon co-authored a paper 
entitled, “Genetic screening enters the single-cell era” [53].

shRNA is more stable and lasts longer in cells than small 
interfering RNA and can be expressed from lentiviruses. 
Thus, Aarts et al. integrated scRNA-seq with a shRNA 
screen to investigate senescence-based restraint of cell-fate 
conversion when expression of the transcription factors 
OCT4, SOX2, KLF4, and c-MYC reprograms somatic cells 
into induced pluripotent stem cells. Their findings explained 
why mTOR plays a dual role and how it imposes opposing 
effects on reprogramming by regulating senescence [54].

A large number of exploratory conditions are ana-
lyzed in parallel with CRISPR or shRNA screens and 
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high-throughput scRNA-seq. Therefore, CRISPR and 
shRNA screens are essentially a replacement of, or kind of 
alternative of sample-multiplexing strategies. In addition, 
different combinations of gene knockout can be used as dif-
ferent sample barcodes thus adapted to conventional sample 
multiplexing for scRNA-seq.

Incorporating nucleotide barcodes during library 
construction

Barcode assembly for targeted sequencing (BART‑Seq)

Uzbas et al. developed BART-Seq as a sample-multiplexing 
technique for targeted transcriptome or genome sequencing 
at single-cell level or in bulk cells. Based on their design, 
in 96-well plates, forward and reverse primers for targeted 
genes were hybridized with partially complementary ssDNA 
barcodes, followed by fill-in reactions and strand removal, 
resulting in the formation of dual barcoded primers. The 
target regions of genes captured by these barcoded prim-
ers were subjected to PCR and next-generation sequencing. 
They used BART-Seq to profile thousands of single human 
pluripotent stem cells exposed to different maintenance 
media and activation of the Wnt/β-catenin pathway [55].

In terms of targeted sequencing, BART-Seq is cost-effec-
tive, highly suitable for transcriptome and genome analysis 
of genes of interest, and can be generalized for other omics 
methods in the future. Moreover, BART-seq can be used 
to analyze a broader range of RNA species (more than just 
mRNAs), including non-polyadenylated long non-coding 
RNAs. However, when detecting limited genes, BART-Seq 
fails to cover the whole transcriptome or genome. Further-
more, UMIs have not been adapted to BART-Seq, which 
hinders counting of the absolute number of transcripts.

Single‑cell combinatorial fluidic indexing (scifi)‑RNA‑seq

Loading a single-cell suspension into a microfluidic device 
at very low concentrations reduces the probability that two 
cells enter the same droplet (i.e., a doublet) as much as pos-
sible, resulting in waste as most “empty emulsion droplets” 
enclose fully functional barcoded microbeads and reverse 
transcription reagents, but no cells, thereby failing to capture 
any valid single-cell transcriptomes. For example, ~ 90–99% 
of gel bead-in-emulsions contain no cells when generated 
using the 10 × Genomics Chromium Single Cell 3' Reagent 
Kit v2, with a pool of ~ 750,000 barcodes to separately index 
each cell’s transcriptome, and possibly more exist with the 
v3 and v3.1 kits, with ~ 3,500,000 10 × barcodes. Inspired 
by combined indexing protocols [10–12], Paul et al. estab-
lished the ultra-high-throughput scifi-RNA-seq system. 
Whole-transcriptome preindexing (round 1) was conducted 
by capturing barcoded primers and conducting reverse 

transcription inside permeabilized cells or nuclei, in “split 
pools,” within 96-well or 384-well plates (Fig. 2E). Follow-
ing preindexing, cells or nuclei were pooled, and standard 
droplet-based scRNA-seq was performed with overloading 
and another round of indexing (round 2); thus, most droplets 
encapsulated several cells or nuclei (Fig. 3). Subsequently, 
many effective droplets, including those containing multi-
plets or singlets, were obtained because the combination of 
the two barcodes (round 1 and round 2) reached a huge quan-
tity that almost all single cells received a unique identity 
tag. Paul et al. applied scifi-RNA-seq in various human and 
mouse cell lines, primary human T cells, and a highly mul-
tiplexed CRISPR screen for T-cell receptor activation [56].

Using scifi-RNA-seq, 151,788 single cells were identified 
in four pooled human cell lines, a 15-fold increase over the 
recommended output on the 10 × Genomics Chromium sys-
tem, further demonstrating that 1.53 million nuclei could be 
loaded into a single channel if necessary [54]. Undoubtedly, 
scifi-RNA-seq has built-in support for sample multiplexing 
because of the different reverse transcription primers used in 
the round-1 barcoding process. Additionally, scifi-RNA-seq 
technology can potentially function as an alternative system 
for scRNA-seq, including subnanoliter well plates, and also 
enhance the throughput of other single-cell omics sequenc-
ing approaches. Notably, permeabilized cells or nuclei (but 
not live cells) are required for scifi-RNA-seq.

Single‑cell combinatorial indexing (sci)‑RNA‑seq 
and split‑pool ligation‑based transcriptome sequencing 
(SPLiT‑seq)

In sci-RNA-seq, fixed and permeabilized cells (or nuclei) 
are implemented in two or three rounds of split-pool barcod-
ing in 96- or 384-well plates (Fig. 3); therefore, large-scale 
combinatorial barcodes are sufficient to label a considerable 
number of single cells. Using this method, approximately 
50,000 Caenorhabditis elegans cells (covering their somatic 
cell compositions) were investigated [57]. This technology 
has since been upgraded to sci-RNA-seq3, where a “mouse 
organogenesis cell atlas” was constructed within the criti-
cal window profiling of approximately 2 million cells [58]. 
Similar to sci-RNA-seq, SPLiT-seq involves four rounds of 
combinatorial barcoding (Fig. 3), and 156,049 single nuclei 
from mouse brains and spinal cords were analyzed [59].

When performing sci-RNA-seq or SPLiT-seq, each round 
of indexing gives sample multiplexing a chance, especially 
in round 1. In addition, neither method requires expensive 
platforms or regents. However, sci-RNA-seq and SPLiT-seq 
capture fewer genes and currently require more experimental 
time relative to popular commercial scRNA-seq technolo-
gies, which makes them less preferable options.
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Sample multiplexing for single‑cell 
epigenome and genome sequencing

Below, we present sample-multiplexing approaches for sin-
gle-cell epigenome and genome sequencing together, which 
share considerable similarities.

Sample multiplexing for scATAC‑seq

Chromatin accessibility is vital for regulating gene expres-
sion. ATAC-seq provides information regarding cis-acting 
DNA elements, including promoters, enhancers, and silenc-
ers, and the binding of trans-acting factors to DNA in open 
chromatin regions [60, 61]. Here, we introduce three strate-
gies for sample multiplexing in scATAC-seq.

Fig. 3   Main processes during library construction of the “sci family.” 
Each round of indexing provides an opportunity for sample multi-
plexing to occur, especially in round 1. With the inherent ability of 

sample multiplexing, combinatorial indexing occupies an important 
position in multiplexed single-cell sequencing



Sample‑multiplexing approaches for single‑cell sequencing﻿	

1 3

Page 15 of 23  466

sci‑ATAC‑seq

Most single-cell technologies are based on the principle that 
single cells are individually compartmentalized, and the 
early library construction proceeds in independent biochemi-
cal reaction systems that each cell owns, making it difficult 
to simultaneously handle massive numbers of single cells 
per assay. Fortunately, single-cell combinatorial indexing as 
adapted to scATAC-seq (termed sci-ATAC-seq) overcomes 
this limitation. In this method, nuclei are molecularly tagged 

with barcoded Tn5 transposases in each of the wells, pooled, 
and then randomly redistributed into a second set of wells 
so that a second barcode is introduced during PCR (Fig. 3). 
Over 15,000 GM12878 and HL60 cells have been profiled 
using sci-ATAC-seq [62].

This method enables sample multiplexing but captures a 
relatively limited number of fragments from nucleosome-
free regions per nucleus compared to common droplet-based 
scATAC-seq technology.

Fig. 3   (continued)
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Droplet‑based scATAC‑seq (dscATAC‑seq) combined 
with combinatorial indexing (dsciATAC‑seq)

To boost the breadth and depth of chromatin accessibility 
profiling, Lareau et al. developed dscATAC-seq technol-
ogy, where a microfluidic device was utilized to simultane-
ously encapsulate PCR reagents and barcoded beads into 
a single droplet with nuclei that were transposed using 
the Tn5 transposon to link sequencing adaptors into open 
chromatin regions. Based on this technology, they further 
designed dsciATAC-seq by combining dscATAC-seq with 
combinatorial indexing through barcoded transpositions, 
which is conceptually parallel to scifi-RNA-seq, thereby 
massively scaling up throughput (up to 105 single cells/
experiment; Fig. 3). Subsequently, they applied dscATAC-
seq or dsciATAC-seq to assay 46,653 cells from an adult 
mouse brain, or 136,463 resting and stimulated human bone 
marrow-derived cells, respectively [63].

dscATAC-seq produced high-quality data with 105 
nuclear fragments/cell, while dsciATAC-seq increased the 
cell throughput tenfold using 24 transposon barcodes, with 
accessibility to larger output with 48 or 96 barcodes. Addi-
tionally, barcoded Tn5 transposon provides an opportunity 
to multiplex samples for scATAC-seq [63].

CASB for scATAC‑seq

CASB has also been designed to suit sample multiplexing 
for both scATAC-seq and scRNA-seq. Indeed, the CASB 
barcodes remained abundant and showed minimal cross-
contamination after a reaction of 1 h transposition at 37 °C, 
without influencing the epigenomic profiles. In the work-
flow, a 222-nt ssDNA barcode, with S5-ME and S7-ME 
adapter sequences attached by primers during scATAC-seq 
library amplification, flanked a sequence containing sample 
barcodes [44].

Wang et al. developed SNuBar to multiplex scATAC-seq 
and scATAC and RNA co-assay with unmodified oligonu-
cleotides [64]. Furthermore, in Wang’s study, SNPs-based 
multiplexing was successfully used to verify the reliability 
of SNuBar, and a high correlation was acquired between 
two methods, which inspires us that sample multiplexing 
depending on natural genetic variation is also suitable for 
single-cell epigenome and genome sequencing.

Sample multiplexing for scWGS

Whole-genome sequencing facilitates genome assembly 
from various species and provides information pertaining 
to genetic variations, including single-nucleotide variants 
(SNVs), small indels, and copy-number variants (CNVs) 

[65]. scWGS is advancing in two directions: deep sequenc-
ing for detecting SNVs and shallow sequencing to identify 
CNVs and aneuploidy [66].

sci-ATAC-seq only targets open chromatin regions (1–4% 
of the genome), which is desirable for epigenetic profiling. 
However, this property or restriction is confusing when 
detecting single-cell CNVs because of biological bias and 
severely limits read counts (~ 3000/per cell). Therefore, 
Vitak et al. designed two strategies to unbind nucleosomes 
from genomic DNA without disturbing the nuclear integ-
rity. One is lithium-assisted nucleosome depletion (LAND), 
which employs the chaotropic agent lithium diiodosalicylate 
to disrupt DNA–protein interactions, thereby releasing 
DNA from histones. The other is cross-linking with sodium 
dodecyl sulfate (xSDS), utilizing the detergent to denature 
histones and dissociate them from DNA (cross-linking is 
necessary before denaturation because SDS disrupts the 
nuclear integrity). They further developed a scWGS method 
for CNV detection incorporating combinatorial indexed 
sequencing, termed SCI-seq, which is highly consistent with 
sci-ATAC-seq during all experimental steps, except for the 
nucleosome removal step (Fig. 3). Subsequent assessment 
revealed substantially better coverage uniformity using 
xSDS than LAND. SCI-seq was used to analyze 16,698 
single cells from cultured cell lines, primate frontal cortex 
tissue, and two human adenocarcinomas [66].

Mission Bio Tapestri platform enables simultaneous 
single-cell DNA and protein analysis using oligo-tagged 
antibodies provided by BioLegend. Thus, we suggest that 
this strategy may be applicable to multiplexed scDNA-seq 
according to the concept of Cell Hashing.

Sample multiplexing for single‑cell 
DNA‑methylation analysis

DNA methylation regulates gene expression by recruiting 
relevant proteins or by suppressing transcription factor bind-
ing to DNA, and 5-methylcytosine is the most common type 
of DNA methylation in plants and animals [67, 68].

Based on the principle that sodium bisulfite (BS) con-
verts cytosine (but not methylcytosine) to uracil in genomic 
DNA [69], DNA methylation can be detected at single-base 
resolution from a limited fraction of the genome to the 
whole-genome scale using bisulfite sequencing (WGBS) 
[70], in bulk or at single-cell level (scWGBS) [71–76]. To 
increase the cell-count throughput of scWGBS, Mulqueen 
et al. established sci-MET, which is highly similar to SCI-
seq, with the two largest differences occurring during library 
construction (i.e., transposition with adaptors depleted of 
cytosines and BS conversion; Fig. 3). They applied sci-MET 
to discriminate three human cell lines (after mixing them) 
and to analyze mouse cortical tissue, which mainly com-
prised excitatory and inhibitory neuronal cells [77].



Sample‑multiplexing approaches for single‑cell sequencing﻿	

1 3

Page 17 of 23  466

Sample multiplexing for scHi‑C

Hi-C helps shed light on three-dimensional genome archi-
tectures and DNA interactions in eukaryotes. For example, 
topologically associating domains are visible by Hi-C analy-
sis and frequently involve dynamic promoter–enhancer inter-
actions that influence gene expression [78–81].

As a type of single-cell combinatorial-indexing tech-
nology, sciHi-C has successfully bridged the gap between 
high-throughput and single-cell chromosome conforma-
tion analyses. These experimental procedures were derived 
mostly from traditional Hi-C assays (such as fixation, diges-
tion, proximity ligation, affinity purification, and library 
amplification), while utilizing biotinylated bridge adaptors 
and custom-barcoded Illumina Y-adaptors to link the first 
and second round of barcodes in two 96-well plates, respec-
tively, mirroring a combinatorial indexing design (Fig. 3). 
In the proof of concept, sciHi-C was leveraged to generate 
six libraries including 10,696 single cells from mixed mouse 
cells (primary mouse embryonic fibroblasts and the “Pat-
ski” embryonic fibroblast line) and human cells (HeLa S3, 
HAP1, K562, and GM12878) [82].

Sample multiplexing for scMulti‑omics

Multiomics considers multiple types of molecules simul-
taneously and generates a comprehensive understanding 
of biological processes [83, 84]. Here, we introduce some 
sample-multiplexing ideas for scMulti-omics.

First, Cell Hashing plus CITE-seq (or REAP-seq) enables 
researchers to pool samples and to simultaneously quantitate 
mRNA transcripts and proteins in the same cells [32–34]. 
Furthermore, REAP-seq can be merged with expanded 
CRISPR-compatible cellular indexing of transcriptomes 
and epitopes by sequencing (ECCITE-seq), which simul-
taneously profiles proteins, mRNAs, T cell receptors, and 
CRISPR perturbations [85]. Secondly, sci-CAR jointly 
profiles single-cell chromatin accessibility and mRNA 
(CAR) with an inherent ability of combinatorial indexing 
for sample multiplexing [86] (Fig. 3). Additionally, using 
the 10 × Genomics Chromium microfluidics platform, Mimi-
tou et al. developed ATAC with select antigen profiling by 
sequencing (ASAP-seq) to detect proteins, chromatin acces-
sibility, and mitochondrial DNA mutations in thousands 
of single cells, and gene-expression levels (beyond those 
three levels) can be measured via DOGMA-seq (named for 
DNA, RNA, and protein spanning the central dogma of gene 
regulation) [87]. Similarly, Swanson et al. developed inte-
grated cellular indexing of chromatin landscape and epitopes 
(ICICLE-seq) and TEA-seq (named for transcriptomics, 
epitopes, and chromatin accessibility) [88]. Both teams’ 
methods are amenable to sample multiplexing with barcoded 

antibodies. Finally, theoretically natural genetic variations 
can be used to demultiplex scMulti-omics profiles derived 
from mixed non-isogenic samples.

Most of the multiplexing strategies reviewed above 
can potentially be integrated with various scMulti-omics 
research techniques to meet experimental needs.

Selection guidelines and applications 
of sample‑multiplexing approaches 
for single‑cell sequencing

The suitability of a given sample-multiplexing method 
depends on several factors, namely:

(1)	 whether the focus of the study is on transcriptomics, 
epigenomics, genomics, or multiomics;

(2)	 experimental materials, e.g., Cell Hashing is designed 
for live cells, ClickTags for fixed cells, Nucleus Hash-
ing and sci-Plex for nuclei, and MULTI-seq and CASB 
for both cells and nuclei;

(3)	 the number of samples pooled together, e.g., oligo-
tagged antibodies is sufficient for labeling a low num-
ber of samples, whereas some sci technologies can 
label thousands of samples;

(4)	 the cell count per sample and the median number of 
genes captured per cell. A limited number of cells per 
sample with a low median number of captured genes/
cell may be acquired using sci-Plex, sci-RNA-seq, or 
SPLiT-seq, despite their capacity for analyzing a mas-
sive number of samples;

(5)	 research needs. The CRISPR system and shRNAs are 
appropriate tools for screening gene functions broadly, 
whereas CellTag is a favorable choice for studying stem 
cell differentiation; and

(6)	 extra disturbances. Various labeling strategies and 
experimental times result in different levels of extra 
disturbances. For instance, it takes 4 h to conduct lipo-
somal transfection with short barcoding oligos (prob-
ably followed by severe impacts), whereas using natu-
ral genetic variations minimizes extra disturbances to 
almost zero without additional labeling procedures. In 
addition, the factors such as the cost, experimental plat-
form, processing time, and labor are also well worth 
considering.

Some sample-multiplexing technologies among the 
mentioned have greatly facilitated single-cell studies. For 
the purpose of appropriate use, we still need to be aware of 
their respective technical highlights and potential caveats 
(Table 2). For example, demuxlet has the prominent advan-
tage that avoids additional process of labeling, and addi-
tional damage of the cells, but is inapplicable when samples 
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share the same genetic background or reference genotypes 
cannot be obtained. ScSplit, Vireo, and Souporcell have fur-
ther reduced sequencing costs depending on machine learn-
ing rather than reference genotypes, yet researchers still need 
additional information when they assign cell clusters to the 
specific samples.

In general, Cell Hashing can label almost all cell types 
[89]. However, it has been found that combining the two cor-
responding antibodies (against CD298 and 2M2) is ineffec-
tive for labeling a few human tumor cell lines that have been 
cultured for multiple generations in vitro. It should be noted 
that the expression of membrane proteins used for sample 
barcoding in some stem cells is unclear. BioLegend’s anti-
body combination for mouse Cell Hashing performs poor 
at marking egg cells, some stem cells, C3 and B16-BL6 
melanoma cells. In addition, attention should also be paid 
to the presence of membrane protein damage in samples that 
are sensitive to digestion with trypsin. Therefore, it may be 
a good choice to use FACS to verify whether cells can be 
labeled before Cell Hashing is applied, and different antibod-
ies may be chosen to label a minority of special cell types.

Compared to Cell Hashing, Nucleus Hashing is more 
friendly to complex tissues that are challenging to dissociate 
or are frozen, and the labeling target, nuclear pore complex 
has a relatively conserved sequence between species thus 
expanding the application. Nevertheless, Nucleus Hashing 
generally shows a less effectiveness of nucleus labeling than 
lipid-tagged methods, due to the destruction of nuclear pore 
complex during cell lysis and nucleus isolation.

MULTI-seq and 10 × Genomics CellPlex break the lim-
its of species and cell types, but requires high quality of 
single cell (or nucleus) suspension. 10 × Genomics has 
reminded on its website that FACS or Fluorescence Acti-
vating Nucleus Sorter (FANS) to purify substandard sam-
ples before or after labeling is needed to improve the ratio 
of signal to noise. Recently, Viacheslav et al. compared 
antibody- and lipid-based multiplexing methods for single-
cell RNA-seq, and drew a conclusion that antibody-based 
hashing is a more efficient protocol on human cell lines and 
PBMCs, while lipid hashing delivers a better result on nuclei 
[90]. In addition, our laboratory finds that antibody-based 
hashing is more stable and effective than lipid hashing when 
cell viability is low or apparent debris exists in single cell 
suspension, while lipid hashing suffers from the tendency of 
cross-contamination which may be attributed to the fluidity 
of lipids.

Sample-multiplexing approaches for single-cell sequenc-
ing have numerous applications, including: (1) massive 
screening of drugs or genes, (2) studying stem cell differen-
tiation and lineage tracing, (3) constructing spatiotemporal 
cell atlases for various species, (4) discovering and iden-
tifying rare cell subpopulations, and (5) exploring tumor 
heterogeneity and the immune microenvironment (Fig. 4). 

These applications are becoming flexible and convenient 
owing to the native characteristics of sample multiplexing, 
such as the ability to overload single cells and to reduce 
experimental costs.

Concluding remarks

Here, we describe sample-multiplexing approaches for sin-
gle-cell sequencing in transcriptomics, epigenomics, genom-
ics, and multiomics, illustrate their respective strengths and 
disadvantages, and briefly provide selection guidelines and 
applications. Researchers are paying increasing attention 
to these methods, and innovations such as single-nucleus 
barcoding (SNuBar) [64] are being developed continu-
ously. Sample multiplexing makes library construction more 
economically efficient while the cost of sequencing is still 
decreasing, which is very significant when a large number of 
samples or/and cells are desired in analysis, thereby sample 
multiplexing increases its impact on the broad fields of life 
science research.

Obviously, single-cell transcriptome sequencing pro-
vides the maturest solution to profile cell states and molec-
ular characterizations by measuring mRNA information, 
and consequently relevant studies have been blossoming. 
Recently, Cheng et al. summarized sample-multiplexing 
approaches for scRNA-seq [91], and witnessed the thriving 
development in this field. Compared to single-cell transcrip-
tome sequencing, there is a significant lag in experimental 
techniques and analytical pipelines for single-cell epig-
enome and genome sequencing. And in the latter case, the 
research costs are generally more expensive; the technologi-
cal obstacles are even harder, so sample multiplexing is more 
desired. The good news is that we can see these challenges 
being overcome, and multiplexed single-cell epigenome 
and genome sequencing are driving to maturity out of their 
infancy. Especially, scATAC-seq matching scRNA-seq well 
has been widely applied and sample-multiplexing methods 
for it have emerged increasingly. In addition, Mission Bio 
Tapestri platform provides single-cell DNA-seq and DNA 
and protein co-assay, probably accessible to sample multi-
plexing based on the concept of Cell Hashing. Great impor-
tance should be attached to multiplexed scMulti-omics, 
which provides multidimensional and more comprehensive 
data, deepening the understanding of the central dogma 
associating with different physiological and pathological 
status of cells.

Notably, a dozen of popular technologies are available 
to explore spatial information of tissues, such as Slide-Seq 
[92], HDST [93], DBiT-seq [94], 10 × Genomics VISIUM, 
and BGI Stereomics. At present, there is no relevant lit-
erature of technology about sample multiplexing for spa-
tial transcriptomics, which is of the future direction. In our 
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laboratory, we have successfully implemented sample mul-
tiplexing on 10 × Genomics VISIUM by embedding multiple 
tissue samples together in OCT, or placing several tissue 
sections in one capture area. Further progress may include 
the adaptation of sample multiplexing to many emerging 
sequencing technologies, such as Cleavage Under Targets 
and Tagmentation (CUT&Tag) [95]. These elegant and pow-
erful methods will fuel insights into complex biological pro-
cesses at single-cell level.
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