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Abstract

Objective The molecular heterogeneity of prostate cancer (PCa) gives rise to distinct tumor subclasses based on epigenetic
modification and gene expression signatures. Identification of clinically actionable molecular subtypes of PCa is key to
improving patient outcome, and the balance between specific pathways may influence PCa outcome. It is also urgent to iden-
tify progression-related markers through cytosine-guanine (CpG) methylation in predicting metastasis for patients with PCa.
Methods We performed bioinformatics analysis of transcriptomic, and clinical data in an integrated cohort of 551 prostate
samples. The datasets included retrospective The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
cohorts. Two algorithms, Least Absolute Shrinkage and Selector Operation and Support Vector Machine-Recursive Feature
Elimination, were used to select significant CpGs.

Results We found that PCa progression is more likely to occur after the third year through conditional survival (CS) analysis,
and prostate-specific antigen (PSA) was a better predictor of Progression-free survival (PFS) than Gleason score (GS). Our
study first demonstrated that PCa tumors have distinct expression profiles based on the expression of genes involved in
androgen receptor (AR) and PI3K-AKT, which influence disease outcome. Our results also indicated that there are multiple
phenotypes relevant to the AR-PI3K axis in PCa, where tumors with mixed phenotype may be more aggressive or have worse
outcome than quiescent phenotype. In terms of epigenetics, we obtained CpG sites and their corresponding genes which
have a good predictive value of PFS. However, various evidences showed that the predictive value of CpGs corresponding
genes was much lower than GpG sites in Overall survival (OS) and PFS.

Conclusions PCa classification specific to AR and PI3K pathways provides novel biological insight into previously estab-
lished PCa subtypes and may help develop personalized therapies. Our results support the potential clinical utility of DNA
methylation signatures to distinguish tumor metastasis and to predict prognosis and outcomes.
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SVM-RFE Support Vector Machine-Recursive Feature
Elimination

EMT Epithelial-mesenchymal transition

Introduction

Prostate cancer (PCa) is the first common cancer of the geni-
tourinary tract in the old man and the incidence rate is ris-
ing still now [1-3]. The diagnosis and treatment of prostate
cancer have been continuously developed and improved in
recent years. For example, prostate-specific antigen (PSA)
is used for early screening of disease [4], and the decision
on how to treat a patient depends on tumor TNM stage and
Gleason score (GS). However, the majority of cancer-asso-
ciated deaths including PCa are due to metastases rather
than primary tumor burden [5]. Thus, decreasing mortality
of PCa depends on understanding the biology that underlies
metastasis such as the identification of biomarkers involved
in cancer metastasis that would benefit the design of more
effective clinical intervention strategies.

The androgen receptor (AR) is expressed in primary and
metastatic PCa which regulates multiple cellular events, such
as cell proliferation, migration, and invasion [6—8]. Tumors
which could not be cured by surgery or radiotherapy are
treated with therapies based on downregulation of andro-
gen levels in the circulation or blockade of the androgen
receptor (AR). Thus, AR downregulation is considered a
chemopreventive strategy for PCa [9, 10]. The AR axis is
not only the target of choice in androgen-sensitive PCa but
also remains a valuable target in castration-resistant prostate
cancer (CRPC). A number of novel experimental and clini-
cal therapies take into account the resistance mechanisms
leading to the reactivation of the AR pathway. Progression
of PCa on these novel therapies targeting the AR pathway
is often reflected by rising PSA levels, suggesting the per-
sistence of the AR pathway as the biological driver of the
disease [11]. Among other signalling pathways potentially
contributing to progression, the role of the PI3K-AKT path-
way may be particularly important in PCa due to the exist-
ence of signalling feedback between this pathway and the
AR pathway [12—14]. Therefore, the strategy of clinical
studies is either testing combinatory blockade of both path-
ways from the onset of treatment or evaluating the addition
of a PI3K/AKT inhibitor when progressing to AR pathway
modulation to counteract the eventual reciprocal feedback
loops. Here, we stratify PCa into subgroups based on the
genes expression patterns of PI3K and AR pathways and
report their association with metastasis, and prognostic gene
expression signatures.

DNA methylation abnormalities have been reported as
a critical event for cancer initiation and development. The
methylation pattern of CpG sites is an epigenetic regulator
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of gene expression. Several studies have compared DNA
methylation patterns between primary PCa and metastatic
prostate cancer [15—17]. The alterations of DNA methylation
cause changes in gene expression that promote oncogen-
esis. Cancer cells are frequently less methylated at CpGs
than normal cells, although hypermethylation at tumor CpG
islands has also been reported [18—20]. Herein, we perform
an integrative analysis aiming to uncover novel CpG sites
and their matched genes that may contribute to predict PCa
metastatic outcome.

Methods
Data selection and processing

The RNA-Seq gene expression profiles of patients with PCa
were downloaded from the cancer genome atlas (TCGA)
portal (https://cancergenome.nih.gov/). It contains 551 pros-
tate samples (499 prostate tumor samples and 52 normal
samples). Clinical data on tumors were also downloaded
from the TCGA database. The RNA expression data includ-
ing 5 localized PCa and 4 metastatic PCa were downloaded
from Gene Expression Omnibus (GEO, GSE27619) portal
(https://www.ncbi.nlm.nih.gov/geo/). The RNA expres-
sion data of cells with PCa (including 2 PC-3 cells and 2
PC-3 4+ TGF-f cells) were downloaded from GSE159116.
The DNA methylation level of CpG sites (including 8
aggressive prostate cancer tissues and 6 metastatic pros-
tate cancer tissues) was downloaded from GSE157272. R
software (4.0.5) was used for data extraction and sorting to
obtain the gene expression matrices and clinical data.

Differential expression analysis and functional
enrichment analysis

To identify differentially expressed genes (DEGs) or CpG
sites between 2 groups, we used the R language “limma”
package to screen them from GEO and TCGA transcriptome
data. Mann—Whitney test was performed to determine dif-
ferential expression levels of genes. Adjusted P value < 0.05
were considered to be statistically significant. Gene ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis were conducted with
R language “clusterProfiler”, “GOplot”, “AnnotationHub”
and “enrichplot” package, false discovery rate (FDR) <0.05
was set as the threshold. Bar chart was used to visualize
the biological process (BP), cellular component (CC), and
molecular function (MF) of GO enrichment. The bar chart
was also used to visualize the pathways of KEGG. Func-
tional similarity, which is defined as the geometric mean of
their semantic similarities in the MF and CC aspect of GO,
is designed for measuring the strength of the relationship
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between each protein and its partners by considering the
function and location of proteins. we measure the functional
similarity among proteins through the GOSemSim pack-
age. Gene Set Cancer Analysis (GSCA, http://bioinfo.life.
hust.edu.cn/GSCA/#/) is an integrated database for genomic
and immunogenomic gene set cancer analysis [21]. Pathway
Activity module in this database presents the difference in
genes expression between pathway activity groups (activa-
tion and inhibition) that defined by pathway scores. Meth-
ylation module in this database explores the differential
methylation between tumor and paired normal, the correla-
tion between methylation with expression and the survival
affected by methylation level for selected cancer types. The
linear correlation between the expression of 14 genes and
the small molecules from Genomics of Drug Sensitivity in
Cancer (GDSC) was analyzed using the Pearson correlation
coefficient.

Consensus clustering for genes in PI3K and AR
pathway

Gene sets PI3K (n=105) and AR (n=185) were belonged
to the PI3K-AKT pathway and AR pathway (http://netpa
th.org/index.html), respectively. The unsupervised cluster-
ing “Pam” method based on Euclidean and Ward’s linkage
was used in this analysis, executed by using the “Consensu-
ClusterPlus” R package, and repeated 1000 times to ensure
the classification stability. Patients were grouped into gene
clusters based on gene expression to identify genes associ-
ated with the pathways. DEGs among gene clusters were
determined by setting significance cutoff criteria to P <0.05,
which was implemented by employing the limma R pack-
age. Median expression levels of coexpressed PI3K and AR
genes were used to assign quiescent (PI3K <0, AR <0),
PI3K (PI3K >0, AR<0), AR (PI3K <0, AR >0), and mixed
(PI3K >0, AR > 0) subgroups to each sample.

Two algorithms to select significant CpGs

We choose differentially methylated CpG sites for filtra-
tion, a Least Absolute Shrinkage and Selector Operation
(LASSO) algorithm, with penalty parameter tuning con-
ducted by ten-fold cross-validation, was built to select can-
didate CpGs. Simultaneously, another algorithm, Support
Vector Machine-Recursive Feature Elimination (SVM-
RFE), was also used for CpGs selection. Finally, we com-
bined CpGs from either the LASSO or the SVM-RFE algo-
rithms, and then performed L1 penalized Cox analysis to
further narrow CpGs in the training cohort. SurvivalMeth
(http://bio-bigdata.hrbmu.edu.cn/survivalmeth/) were used
to investigate the effect of DNA methylation-related func-
tional elements on prognosis.

Clinical-pathologic factors

Tumors were assessed by histological grading using the
Gleason scoring system (6—10 score). PCa was further
classified into a low aggressive tumor (Gleason score < 7),
intermediate aggressive tumor (Gleason score=7, 3 +4
vs 44 3), and high aggressive tumor (Gleason score > 7).
PSA level over 4.0 ng/ml as a threshold for screening for
prostate cancer. PSA: G1: 0-4.0 ng/ml; G2: 4.1-10.0 ng/
ml; G3:10.1-20.0 ng/m; G4: > 20.0 ng/ml. Progression-free
survival (PFS) was defined as the first occurrence of a new
tumor event. Overall survival (OS) was calculated from the
date of diagnosis to the date of death or last follow-up.

Statistical analysis

The Kaplan—Meier plotter was employed to generate sur-
vival curves for the subgroups in each dataset. The log-rank
test evaluated the statistically significant differences. Con-
ditional survival (CS) was defined as the probability of sur-
viving an additional number of y years, given that a patient
had already survived for x years, and was calculated as
CS(xly) =S(x+y)/S(x), with S(x) representing the survival
at x years estimated using the Kaplan—Meier method. Each
column represents the years survived from therapy and each
row represents the percentage to reach a certain total survival
time from that point of survived years. The Kruskal-Wal-
lis test was used to compare more than two groups, and the
Wilcoxon test was used to compare two groups. ROC was
used to find the best cutoff of continuous variables, and two
groups were divided according to the cutoff for univariate
logistic regression. Risk factor analysis was performed using
univariate and multivariate logistic regression analyses.
Variables showing statistical significance of the univariate
analysis were included in the multivariate logistic regres-
sion analysis, and the forward stepwise method was used
to select the variables that were eventually included in the
model, all P<0.05 was considered significant. Above all,
ROC curve combined with log-rank test and logistic regres-
sion analyses confirmed the significant predictive value of
genes for metastasis.

Results
Clinical-pathologic factors predict outcome

In our research, the 5-year OS of PCa patients is 98%,
and the 5-year PFS is 73%. Kaplan—Meier estimates for
conditional survival up to 6 years in 499 PCa patients
given 0-5 years of survival were shown that there was no
significant difference in OS (Fig. 1A). The survival prob-
ability increased per year already survived relative to the
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«Fig. 1 Clinical-pathologic factors predict the outcome of PCa. A, B
Kaplan—Meier estimates for conditional survival (CS) up to 6 years in
499 PCa patients given 0-5 years’ OS (A) and PFS (B). C Pie charts
showing the Chi-squared test of clinic-pathological factors in PCa.
D PSA predicts Gleason score (GS) with a decent correlation coef-
ficient in both NO and N1 stage. E The difference of GS (left) and
PSA (right) among T1-T4 stages. F Time-dependent AUC of GS and
PSA models

total survival time. The probability of achieving 5-year PFS
after resection increased from 73 to 78%, 83%, 89%, and
96% per additional year survived (i.e. 1, 2, 3, and 4 years,
respectively). The 1-year CS (i.e. probability of surviving
the next year) decreased from 94 to 92% at 3 years after
therapy, and then increased to 96% at 5 years (Fig. 1B). The
chi-squared test showed that the progression group exhib-
ited higher TN staging, PSA and GS than the group without
disease progression, suggesting that highly malignant PCa
is associated with disease progression (Fig. 1C). Then, we
explored the relationship between PSA GS and TN stage,
respectively. Among the 383 NO samples, GS is highly cor-
related with PSA (r=0.19, P <0.001), and this correlation is
also in 86 N1 samples (r=0.20, P=0.079), (Fig. 1D). Both
GS (left) and PSA (right) in T3 and T4 groups with sig-
nificantly higher scores than T1 and T2 groups, as shown
in (Fig. 1E). Both GS and PSA models were shown a good
AUC, and the PSA model was better than the GS model in
predicting PFS (Fig. 1F). Our data indicate that clinical-
pathologic factors have a good prediction effect on PFS of
PCa.

Identification of DEGs in metastatic PCa
and enrichment analysis

The genes that met the cutoff criteria of an adjusted
P-value < 0.05 were considered DEGs. Gene expression
profiles of GSE27619 identified 4593 DEGs in PCa sam-
ples when compared with metastatic samples, GSE159116
identified 1264 DEGs in PC-3 cells when compared with
PC-3 +TGF-f cells (Fig. 2A). The results of venn analy-
sis showed that 257 genes were the common DEGs both in
tissues and cells (Fig. 2B). We found DEGs of GSE27619
mainly enriched in these 4 tumor-associated pathways:
EGEFR tyrosine kinase inhibitor resistance, PI3K-Akt sign-
aling pathway, TGF-beta signaling pathway, and TNF sign-
aling pathway. However, DEGs of GSE159116 are mainly
enriched in the pathways of HIF-1 signaling pathway, TNF
signaling pathway, PI3K-Akt signaling pathway, Focal adhe-
sion (Fig. 2C). To explore the biological functions of 257
DEGs, they were categorized into BP, CC, and MF. Under
stringent threshold conditions (P-adjust < 0.05), we identi-
fied 136 specific BP, 2 CC of GO terms were enriched in
these genes (Fig. 2D). Genes were enriched in the top 5 BP
terms related to cell proliferation (Fig. 2E). On the basis of

GO enrichment analysis, we found that these genes included
in the DEGs were highly associated with two CC terms, such
as caveola, plasma membrane raft (Fig. 2F). Thus, our find-
ings suggest a specific association between DEGs and tumor
metastasis.

Gene characteristics and pathway activity of PI3K
and AR pathways

The AR regulates multiple cellular events in PCa metasta-
sis, such as cell proliferation, migration, and invasion. There
is signal feedback between PI3K-Akt and the AR pathway,
and PI3K-Akt signaling pathway is also considered as an
important pathway related to metastasis in PCa cells and
tissues. Therefore, we stratify PCa samples into subgroups
based on the genes expression patterns of PI3K-Akt and AR
pathways. We performed the unsupervised clustering of 276
pathway genes, which classified the TCGA cohort into three
genomic clusters, namely, gene clusters A-C (Figure S1A).
The 105 gene signatures that were in PI3K-AKT pathway
were termed as the pathway gene signature A, and the 185
gene signatures that were in the AR pathway were termed as
the pathway gene signature B. Concurrently, to reduce the
noise or redundant genes, we used the Boruta algorithm to
perform dimension reduction in the pathway gene signatures
A and B. The heatmap delineated the transcriptomic pro-
file of the 276 genes identified across the genomic clusters
(Fig. 3A). Furthermore, we explored the prognostic implica-
tions of the gene clusters by integrating them with survival
information, and we found that were no significant differ-
ences in OS (Figure S1C) and PFS (Figure S1D) among the
three clusters. Then, we calculate the correlation between
genes and clusters. Positive correlation is defined as direct
A and negative correlation as direct B. The Kruskal-Wal-
lis test was used to detect the significant differences among
three clusters of top 10 related genes in direct A and direct
B, respectively. The expression of all genes was significantly
different among the three clusters (Fig. 3B, C). The results of
venn analysis showed that 14 genes were co-existing in AR
and PI3K pathways (Fig. 3D). Therefore, we considered that
these 14 genes may play a key role in these two pathways.
As we all know that these 14 genes were co-expressed in
AR and PI3K-AKT pathways, and most genes were nega-
tively correlated with clusters (Fig. 3E). Then, 14 genes of
Venn diagram both in PI3K and AR pathway were obvi-
ous differentially expressed among 3 clusters. (Fig. 3F).
Kaplan—Meier progression-free survival analysis of best
separation was performed based on TCGA survival data,
and only log-rank P value <0.05 was shown in Figure
S1B. Genes expression of SRC, AKT2, PIK3R1, FOXO1,
and MDM2 were significantly related to the PFS of PCa
patients. Statistically significant variables screened from
the univariate analysis were included in the non-conditional
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Fig.2 Identification of DEGs and enrichment analysis. A Vol-
cano plot of DEGs in PCa from GEO database. Red plots repre-
sent aberrantly expressed mRNAs with P<0.05 and absolute log
FC>0.5. Black plots represent normally expressed mRNA. Green
plots represent aberrantly expressed mRNAs with P<0.05 and log
FC<— 0.5. B Venn diagram summarize the common DEGs both
in PCa cells and tissues. C GSEA of representative KEGG terms in

binary multivariate logistic regression. AKT2 was the only
independent risk gene of PFS in PCa (Table 1). We divided
the PCa patients into the progression group and the non-
progression group, and to find the best cutoff of classifica-
tion variables used ROC curve, so that it has the minimum P
value when predicting the tumor progression, all AUC > 0.5
of 14 genes, (Figure S2).

To better illustrate the characteristics of 14 co-expressed
genes, we also tested the correlation between them. GSK3B
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tissues (left) and cells (right). D Bar-plot of GO enrichment in cel-
lular component terms and biological process terms. E Hierarchical
clustering of the gene expression profiles in each BP terms (left),
chord plot displays the relationship between genes and BP terms
(right). Fold enrichment of each GO term is indicated by the x-axis
and bar color. F Circle plot displays the relationship between genes
and CC terms

and CREB1 had the highest positive correlation (r=0.78),
while CREB1 and PIK3R2 had the highest negative cor-
relation in Fig. 4A (r=— 0.52). The distributions of func-
tional similarities were summarized as boxplots, the lines
in the boxes indicate the mean of the functional similarities.
MDM2, GSK3B, AKT1 were the three top-ranked proteins
potentially playing central roles in the 14 genes. MDM2
was the only protein with a cutoff value>0.65 which is
widely used to separate significant and non-significant
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correlation (Fig. 4B). Next, we analyzed RNA sequenc-
ing data for the 499 PCa patient samples, and found that
14 genes directly associated with the AR and PI3K-AKT
pathways were recurrently dysregulated (ie, either elevated
or suppressed compared with normal, AKT2 (61%), AKT1
(31%), GSK3B (25%). Cluster 3 demonstrate up-regulation
of 14 pathway genes (activated) to varying extents, whereas
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clusters 1 and 4 shows down-regulation of the pathway genes
(inactivated) and cluster 2 exhibits the least disruption of
the AR and PI3K-AKT pathways (Fig. 4C). Figure 4D dis-
played global activity of 14 genes in PCa. The results showed
that CREB1, PIK3R2, and GSK3B genes were not in the
TSC/mTOR pathway. The pie of gene in cor-response path-
ways means the activity/inhibition/non-significant effect
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«Fig. 4 The characteristics and pathway activity in cancers of 14 co-
expressed genes. A Correlations among 14 gene expression levels in
human PCa tissues. B Summary of functional similarities of the 14
genes. The dashed line represents the cutoff value. C Unsupervised
hierarchical clustering of the data revealed 4 distinct clusters (1-4).
D The global activity of 14 genes in cancer-related pathways. E The
percentage of cancers in which a gene has an effect (activation or
inhibition) on the pathway. F The profiles in cancer-related pathways
across cancer types

contributes to the pathways in PCa. Pathway analysis vali-
dated that these genes were mainly associated with the acti-
vation of the RTK pathway, and disruption of cell cycle
(Fig. 4E). The link between gene and pathway shows that
most genes activate EMT (epithelial-mesenchymal transition)
pathway and inhibit the Hormone AR pathway (Fig. 4F).
Because the nature of genetic alternations influences clinical
treatment intervention. Drug-sensitivity analysis in our study
demonstrated that the expression of GSK3B, PIK3R2, EGFR,
AKT1, RACI, and SRC were negatively correlated with most
drug resistance, and others were positively correlated with
most drug resistance (Figure S3A). Then, we found that
genes expression of SRC, FOXO1, PIK3R1 and genes meth-
ylation of FOXO1, MDM2, PIK3R1, PTEN, CREB1, EGFR
were significantly related to the PFS of PCa (Figure S3B-C).
The methylation level of 14 genes was negatively correlated
with the expression level except SRC (Figure S3D). Meth-
ylation analysis revealed that AKT2 was not methylated in
PCa tissues (Figure S3E). The above results in our research
suggest that these 14 Venn genes play an important role in
different processes of prostate cancer.

Dual analysis of PI3K and AR pathways identifies
four distinct subgroups of PCa

To stratify PCa tumors based on their relative expression lev-
els of AR and PI3K-AKT pathway genes, we utilized RNA-
seq data from PCa patient tumors of TCGA. Genes belong-
ing to gene sets AR (n=185) and PI3K-AKT (n=105) were
selected for analysis. To aid in selecting genes co-regulated
within each pathway and relevant to PCa biology, we used
consensus clustering (Ward. D2 and Euclidean distances
were used as the clustering algorithm and distance met-
ric, respectively) to identify robustly co-expressed AR and
PI3K pathway genes to be used for subtyping, and three
clusters were the optimal choice (Fig. 5SA). Median expres-
sion levels of co-expressed AR and PI3K genes were cal-
culated for each sample and used in assigning one of four
profiles specifically relevant to these two pathways: quies-
cent, AR, PI3K and mixed (Fig. 5B). Expression levels of
AR and PI3K genes across the subgroups are visualized in
Fig. 5C. Furthermore, we found that was no significant dif-
ferences in OS (Fig. 5D) among the four subgroups, and
mixed cases had a significantly worse outcome than cases in

Table 1 Univariate and multivariate logistic regression of 14 venn
genes

Gene Univariate analysis Multivariate analysis
OR (95% CI) P value OR (95% CI) P value

AKT1 1.038 (0.993-1.086) 0.100 NA

ESR2 2.545(0.267-24.225) 0416 NA

RACI1 1.010 (0.998-1.023) 0.109 NA

SRC 1.030 (0.994-1.067) 0.100 NA

FOXO1 0.817(0.713-0.937) 0.004 NA

PIK3R1 0.918 (0.852-0.990) 0.027 NA

PIK3R2 1.213(0.450-3.272) 0.702 NA

ESR1 1.016 (0.787-1.311) 0.906 NA

MDM2 0.950 (0.828-1.090) 0.467 NA

GSK3B 1.044 (0.974-1.119) 0.223 NA

PTEN 0911 (0.839-0.990) 0.027 NA

EGFR 0968 (0.919-1.021) 0.231 NA

CREB1 1.030(0.898-1.181) 0.673 NA

AKT2 1.139 (1.025-1.266) 0.016  1.124 (1.013- 0.027

1.247)

the other three groups (log-rank test P=0.009, Fig. 5E). Our
results indicate that there are multiple phenotypes relevant
to the AR-PI3K axis in PCa, where tumors with mixed phe-
notypes may be a more aggressive or have worse outcome
than quiescent phenotype.

Selection of candidate CpGs and building
a metastatic predictive signature

In our study, we compared the methylation values between 8
aggressive prostate cancer samples and 6 metastatic prostate
cancer samples from GSE157272 datasets. Using the pri-
mary filter criteria (adjusted P-value < 0.05 and llogFCI> 1),
we derived a list of 2824 differential CpGs, and the differ-
ential CpG sites between these 2 groups were shown in Fig-
ure S4A. Next, we used two different algorithms to select
the most significant CpGs for classifying with and without
metastatic patients. First, we used the LASSO algorithm to
identify a set of 9 CpGs (Fig. 6A). Second, we performed
the SVM-RFE algorithm and selected a set of 19 CpGs
(Fig. 6B). Heatmap analysis showed the differential CpGs
level between aggressive PCa samples and metastatic PCa
samples (Fig. 6C). Gene set analysis demonstrated that the
23 global CpGs methylation profiles were highly correlated
with PCa metastasis (Fig. 6D). After combining the CpGs
selected by the LASSO and SVMREFE algorithms, 23 CpGs
were identified, with 5 CpGs selected simultaneously by the
two algorithms (Fig. 6E). These data verify that methylation
values of CpGs might have an important value in the predic-
tion of prostate cancer metastasis.
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«Fig. 5 Stratification of PRAD tumors based on the expression of AR
and PI3K genes. A Heatmap depicting consensus clustering solu-
tion (k=3) for AR and PI3K genes in PRAD samples. B Scatter
plot showing median expression levels of coexpressed AR (x-axis)
and PI3K (y-axis) genes in each PRAD sample. Subgroups were
assigned on the basis of the relative expression levels of AR and
PI3K genes. C Heatmap depicting expression levels of coexpressed
AR and PI3K genes across each subgroup. D Kaplan—-Meier overall
survival analysis of patients stratified by subgroup. E Kaplan—-Meier
progression-free survival analysis of patients stratified by subgroup

The value of CpGs and their corresponding genes
in predicting PCa metastasis

To better illustrate the characteristics of 5 CpGs selected
simultaneously by the above two algorithms from
GSE157272 datasets, we also tested the correlation between
them. There was a high correlation of methylation levels
among the five CpGs, either positive or negative relationship
(all Ir1>0.75, Fig. 7A). Subsequent ROC Curve analysis used
by GSE157272 datasets showed that the above 5 CpGs could
perfectly distinguish patients with or without PCa metasta-
sis (Fig. 7B). Then, we retested the AUC value with TCGA
data to avoid overfitting, and the results of AUC were shown
in Figure S5 (all AUC > 0.63). The results also showed that
the above 5 CpGs could perfectly distinguish patients with
or without PCa metastasis. We analyzed the clinicopatho-
logical characteristics of these CpGs, and found the methyla-
tion levels of 4 CpGs were significantly correlated with OS
(Fig. 7C). We compared the DNA methylation levels of 5
CpGs in different T, N and M stages and found that the CpGs
methylation levels of N1 and M1 were lower than that of
NO and MO, but there was little change of DNA methylation
levels in different T stages (Figure S6A-C). To investigate the
prognostic value of these 5 CpGs, we built the risk prediction
model which uses these 5 CpGs. All samples were divided
into two (high and low) groups according to the risk score
of our model (Table S1), and the methylation levels were
significantly lower in the low-risk group than in the high-risk
group (Figure S7A). Then, we found that the samples of the
prognostic index were significantly higher in the high-risk
group compared to the low-risk group (Figure S7B), and
there were also significant differences between the high-risk
and low-risk groups in terms of survival (P <0.001), (Fig-
ure S7C). Finally, the heatmap shows the methylation levels
of CpGs between the high-risk and low-risk groups (Figure
S7D). The above results indicated that these 5 CpGs play an
important role in predicting PCa metastasis.

Then, we identified the corresponding genes (only
mRNA) based on the locations of 23 CpGs screened out
by two algorithms, and the results were shown in Table S2.
Heatmap (Fig. 8A) and boxplot (Fig. 8B) analysis showed
that the most corresponding genes of CpGs have differen-
tial expression profiles between normal and PCa samples.

To better illustrate the characteristics of 13 corresponding
genes, we also tested the correlation between them, and the
expression levels of most genes were positively correlated
(Fig. 8C). To find the best cutoff of progression variables
used the ROC curve, so that it has the minimum P value
when predicting the tumor progression, all AUC > 0.5 of 13
corresponding genes, (Fig. 8D). After that Kaplan—Meier
progression-free survival analysis of best separation was
performed based on TCGA survival data, and 8 genes in
which log-rank P value <0.05 were shown in Fig. 8E. Uni-
variate and multivariate logistic regression analysis of PFS
was performed based on the expression levels of the genes
from TCGA. ALG10, SKOR2, and WDR63 were the inde-
pendent risk genes of PFS in PCa (Table 2). The pie of the
CpGs corresponding genes in cor-response pathways means
the activity/inhibition/ non-significant effect contributes to
the pathways in PCa (Figure S4B). Pathway analysis vali-
dated that 7 genes were mainly associated with the activa-
tion/inhibition of AR and RTK pathway, activation of EMT
(Figure S4C). The above suggested that although the cor-
responding genes of CpGs showed a good predictive value
of PFS, the AUC values and their correlation of expression
were lower than the predictive value of methylation of CpGs.

Discussion

As we all know that metastasis is the main cause of death in
patients with PCa. Survival estimates are traditionally calcu-
lated from the time of diagnosis or surgery [22]. PFS is an
effective reference standard for predicting OS of PCa patients.
However, in patients for PCa, predicted PFS changes consid-
erably during follow-up. CS is the survival probability after
already surviving a predefined time period, may, therefore,
provide better insight [23]. CS is usually used in cancers with
a poor survival prognosis as the survival estimates change
considerably after surviving the first year in previous studies.
In our study, CS was not only used to evaluate the OS of PCa
patients, but also to predicted PFS, and the 1-year CS was
equivalent to the 3 years after therapy (94% vs 94%). This
indicates that tumor progression in the second and third years
after therapy is equal to the first year after therapy. This also
suggests that prostate cancer progression is more likely to
occur after the third year. The following results we found that
although prostate cancer had a better prognosis, its progres-
sion was still affected by clinicopathological factors (includ-
ing TN stage, PSA, and GS). We also found that PSA and GS
were associated with tumor size and lymph node metastasis,
and PSA was a better predictor of PFS than GS. Current evi-
dence suggests that clinicopathological factors can predict
the progression of PCa. Many biomarkers have been evalu-
ated for their ability to discriminate between metastasis and
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Fig.7 The characteristics of
CpGs selected by the above
two algorithms. A The cor-
relation among 5 common
CpGs. B ROC curve of 5 CpGs
to divided PCa group and the
metastatic group. C Overall
survival difference between
high and low methylation levels
of CpGs

A

0.8

Sensitivity (TPR)

05 07 09

03

0.6

0.4

0.2

0.0{ "

Survival Probability

0.4

Survival Probability

0.8

0.6

0.6

04

0.2

Survival Time(days)

©g00902147: Overall Survival

—— High: 318,censored: 218
—— Low: 132,censored: 78

Survival Time(days)

©g22488158: Overall Survival

03 05 0.7 09 00 02 04 06 08 B 0900902147
1.0
3 Best cutoff = 0.83
< 0.8 =
00902147 -0.97 —0.89 K E
3 &
o £ 06
£
] E
] g 0.4
] ©g12397981 -0.88 02
1 - 0.0
y 3 00 02 04 06 08 10
¢g13932794 -0.87 j 1-Specificity (FPR)
° cg12397981
S 1.0
Best cutoff = 0.84
) 08{| AUC =1
] ©g22894896 z
£ 06
| z
N =
- G 04
L= 5
° [%]
26383138 [ & 02
g 0.0
0‘2 0‘4 0‘5 U‘E 0‘.2 04 0‘6 0‘8 0‘2 0‘4 0‘.6 0‘3 0.0 0.2 0.4 0.6 0.8 1.0
1-Specificity (FPR)
cg13932794 €g22894896 €g26383138
1.0 1.0
Best cutoff = 0.59 Best cutoff = 0.74
08]| AUC=1 08{| AUC =1
3 : 3
o o
£ 06 £ 06
z z
=
G 04 G 04
5 5
(%2} [%]
0.2 0.2
Best cutoff = 0.38
AUC = 0.979 00 00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
1-Specificity (FPR) 1-Specificity (FPR) 1-Specificity (FPR)
¢g12397981: Overall Survival cg07777540: Overall Survival
e |
=
4 E g 4
8
=
g
i s
@
-4 — High: 345,censored: 337 3 4 —— High: 80,censored: 76
—— Low: 153,censored: 153 —— Low: 418 censored: 414
4 Pvalue= 0.0363568342 2 4 Pvalue=0.040103143
T T T T T T T T T T
o 1000 2000 3000 4000 o 1000 2000 3000 4000

- Pvalue= 0.0343593797

Survival Probability

o - — High: 262,censored: 255
— Low: 236,censored: 235

2 4 Pvalue=0.0273186968

T T T T T
0 2000 4000 6000 8000 10000

Survival Time(days)

T

T T T
[ 1000 2000

T T
3000 4000

Survival Time(days)

@ Springer



436 Page140f17

Y.Zhao et al.

A

i Type I | s &
SKOR2 f
KCNH5 & J—i
0 H]
IRX1 3 .
5 . L - s
MYTIL L= i l. i 4
E MIR193A ° r; ﬁ | B
Hi
P
LHX4 i -
EE s
CANT1 s
HHIPLY ] % L E
3 3
ALG10 < -
{ ZMAT1 ° j 3 6
E ADAMTS9 —: . §
WDR63 H 1Z| s
B D oce 5% 008 020
1.0 pacon ADAMTS9 ALG10 CANT1
o001 10{ AUC=0526 1.0{ AUC=0596 10{ AUC=051
S o0s | P peooor
@ p<0.001 08 0.8
] P0.001 p=0364 z =
g oo pe0001 & estoutoff=0.05 £ 06|
[} P<0.001 z . z
s s
Q 04 fp-0110 2 2 04
8 6 . est cutoff = 0.03 & 8 -
02 peopt 02 Best cutoff = 0.03
£ s
0o | 00 ool
> 0\0 < S Q\/ ?j_ ‘;\.\ Q§ ij 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
@vsé & o‘;\ & PR < 1-Specificity (FPR) 1-Specificity (FPR) 1-Specificity (FPR)
FAMS3A HHIPL1 IRX1 KCNH5 LHX4
10{ AUC=05: 10{ AUC=0521 10{ AUC=0503 1.0{ AUC=0505 1.0{ AUC=0504
Best cutoff = 0.21
0.8: 0.8 0.8
2 2 2
3 g 3
(S E 06 £ 0.6
g z z z
est cutoff = 0.21 204 H _Best cutoff = 0.11 2 “Best utoff = 0.06
est cutoff = 0.44
0.2: -
0.0 0.0
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10 04 06 08 10
1-Specificity (FPR) 1-Specificity (FPR) 1-Specificity (FPR) 1-Specificity (FPR) 1-Specificity (FPR)
SELENOS MYTIL SKOR2 WDR63 ZMAT1
10{ AUC=052 10 AUC=0579 F’_/ 10{ AUC=059 1.0{ AUC=0601 1.0{ AUC =055
08 0.8Best cutoff = 0.78 08 08
2 2 2 . 2
[ 3 & B g
£ 06 £ 06 £ 06 Best cutoff = 0.3 £ o8 fest cutoff = 0.23
£ z z : £ st utoff = 0.11
% 04 % 04 % 04 % 04
3 est cutoff = 0.13 3 & &
0.2 / 0.2 0.2 0.2
0.0 0.0 0.0 0.0 0.01°
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10

E

Survival probability

@
o
[}
s
T
2
2
=1
12}

@ Springer

1-Specificity (FPR)

ALG10 — >0.05(220) — <0.05(275)

1-Specificity (FPR)

FAM53A = >0.21(345) = <0.21(150)

1-Specificity (FPR)

KCNH5 — >0.1(345) = <0.1(150)

1-Specificity (FPR)

1-Specificity (FPR)

MYTIL — >0.78(187) — <0.78(308)

1.00 1.00 1.00 1.00
0.75 2075 2075 2075
g Qo Qo
© © ©
Q Q2 Q
2 Q <
0.50 4 0.50 4.0.50 4 0.50
£ £ £
05| P <0001 2 05| P=0008 € 5] P=0047 g 5 P0002
: Hazard Ratio = 2.1 @ Hazard Ratio = 0.58 (Zhe Hazard Ratio = 0.65 [z Hazard Ratio = 0.46
95% Cl: 1.39 - 3.18 95% Cl: 0.37 - 0.9 95% CI: 0.41 - 1.04 95% CI: 0.3 - 0.71
0.00 0.00 0.00 0.00
0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
Time(years) Time(years) Time(years) Time(years)
SELENOS — >0.19(317) — <0.19(178) SKOR2 — >0.38(225) — <0.38(270) WDR63 — >0.23(195) — <0.23(300) ZMAT1 — >0.11(185) — <0.11(310)
1.00 1.00 1.00 1.00
> >
0.75 Z075 £075
o o
© © ©
a a e
[ <] o
0.50 4 0.50 4 0.50 4 0.50
E £ K
05| P=0024 T 05] P=0005 2 5| P00 2,5 P=0005
Hazard Ratio = 0.63 2 Hazard Ratio = 1.79 »n Hazard Ratio = 2.26 2] Hazard Ratio = 1.76
95% Cl: 0.41 - 0.97 95% Cl: 1.19 - 2.69 95% Cl: 1.49 - 3.45 95% Cl: 1.15 - 2.71
0.00 0.00 0.00 0.00
0 5 10 15 0 5 10 15 [ 5 10 15 0 5 10 15
Time(years) Time(years) Time(years) Time(years)



Alternations of gene expression in PI3K and AR pathways and DNA methylation features contribute...

Page150f 17 436

«Fig. 8 The characteristics of 13 corresponding genes in PCa. A Heat-
map analysis of expression profiles between normal and PCa samples
from TCGA. B Boxplot analysis of expression profiles between nor-
mal and PCa samples from TCGA. C Correlations among 13 genes
expression levels in human PCa tissues. D ROC curve of 13 genes
to divided PCa progression group and the non-progression group.
E Kaplan-Meier progression-free survival analysis of best separa-
tion was performed based on TCGA

non-metastasis conditions. However, which angle to explore
meaningful biomarkers is the focus of this study.

In addition to surgery and radiotherapy, downregulation
of androgen levels in the circulation or blockade of the AR
is a common therapy for PCa [24]. Continuous progress
in the understanding of metastatic pathways is needed to
inhibit the development of PCa metastasis. In our study, we
found DEGs of tumors and cells both enriched in PI3K-AKT
pathway. Two landmark papers defined the interplay between
PTEN loss/PI3K activation and AR signaling in the develop-
ment of prostate cancer [25, 26]. Carver et al. demonstrated
the inverse relationship with AR inhibition being associ-
ated with upregulated AKT signaling as a result of increased
phosphorylation of AKT target genes such as GSK-alpha and
PRAS40 [25]. Our study first demonstrated that PCa tumors
have distinct expression profiles based on the expression of
genes involved in AR and PI3K-AKT, which influence dis-
ease outcomes and provide functional context to previously
identified gene expression subtypes. Therefore, our study is
the first to explore the regulation of AR and PI3K-Akt path-
ways on PCa metastasis from different perspectives.

In the current study, we hypothesized that the compre-
hensive characterization of the gene clusters and pathway-
related gene expression patterns would be an approach in
predicting the risk of PCa metastasis. Within these gene
clusters, we found that the expression levels of all top 10
genes in both direct A and B were significantly different in
the three clusters. It was clear that our clusters were useful
for distinguishing genes expression, but not for evaluating
prognosis. Then, our primary concern was the molecular
characterization of co-expressed genes, and so we first
fetched the venn genes based on AR and PI3K-AKT path-
ways. The results showed that there were significant dif-
ferences in the expression of all co-expressed genes in
three clusters. The pathway analysis of 14 co-expressed
genes validated that these genes were mainly associated
with the activation of RTK pathway, and disruption of cell
cycle. The link between gene and pathway shows that most
genes activate EMT pathway and inhibit the Hormone AR
pathway. These results suggested that most of the 14 co-
expressed genes may be related to the metastasis of PCa.

There is significant molecular heterogeneity in PCa giving
rise to distinct tumor subclasses based on epigenetic modifi-
cation and gene expression signatures [27, 28], leading to a
growing interest in translating this information into clinical

practice for outcome prognostication and the development of
targets prediction based on each tumor's unique molecular sig-
nature. Aberrations in PI3K/AKT/mTOR signaling have been
identified in approximately 40% of early prostate cancer cases
and 70-100% of advanced disease [29]. Therefore, the PI3K
Pathway is indispensable for in-deep exploration of PCa metas-
tasis, which is consistent with our results obtained by KEGG
analysis. Activation of the PI3K pathway is associated with
resistance to androgen deprivation therapy, disease progression
and poor outcomes in PCa. Given the complexity of the AR
and PI3K pathways, they likely interact at numerous levels.
Mulholland et al. [30] found that dual pathway inhibition with
androgen deprivation and a PI3K-AKT inhibitor could lead to
significant tumor regression as compared to single pathway
inhibition. Our results indicated that there are multiple pheno-
types relevant to the AR-PI3K axis in PCa, where tumors with
mixed phenotypes may be a more aggressive or have worse
outcome than quiescent phenotype. Our results also confirmed
previous studies from another perspective. Furthermore, the
correlation of gene expression heterogeneity along the AR-
PI3K axis and prognostic subtypes of PCa indicates that differ-
ent therapeutic strategies targeting tumor dependency on AR
or PI3K could have clinical benefit in subsets of PCa patients.

As mentioned earlier, the molecular heterogeneity of PCa
is not only related to gene expression characteristics but also
may be regulated by epigenetic modifications. Locus-specific
DNA methylation alterations in PCa have been known for dec-
ades, and these events impact gene expression potentially[31].
Combined panels of candidate DNA methylation markers have
been shown to have high sensitivity and specificity for the dis-
crimination of prostate cancers from benign tissue [32], and
few studies for the metastasis of PCa. In addition, metastatic
sites have been reported to show greater divergence for DNA
hypomethylation within some patients [33]. Studies showing
clonal stability of DNA hypermethylation, and evidence of
a subset of clones that are more closely related to metastatic
disease, support the idea of using DNA methylation markers
for prostate cancer detection and prognosis. Although genomic
and transcriptomic subtypes of PCa have been described in
some studies [34, 35], we have identified a new epigenetic
marker of PCa that was distinguishing primary PCa and PCa
metastasis by methylation level of CpGs islands. Unlike previ-
ous studies, our study used a combination strategy that incor-
porated CpGs from two distinct algorithms to minimize the
possibility of losing or ignoring important markers. In this
study, we used a methylation microarray to screen differen-
tial CpGs in a discovery cohort and selected 23 significant
CpGs by using two algorithms. Subsequently, we narrowed
the selection to 5 candidate CpGs and built a signature. We
found that the methylation levels of these 5 CpGs not only had
a high correlation but also had a very high area under ROC
curve, which could perfectly distinguish primary PCa and PCa
metastasis by global methylome changes. We compared the
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Table 2 Univariate and multivariate logistic regression of corresponding genes
Gene Univariate analysis Multivariate analysis

OR (95% CI) P value OR (95% CI) P value
ADAMTSY9  2.329814e+04 (5.900000e—02 to 9.260592e+09) 0.126 NA
ALGI10 2.260193e+09 (2.328720e+02 to 2.193683e+16) <0.05  5.179742e+07 (1.867000e+00 to 1.437294e+15)  0.042
MYTIL 0.207 (0.036 to 1.180) 0.076 NA
CANT1 0.039(0.000 to 11,458,907.607) 0.744 NA
HHIPL1 3.022 (0.291 to 31.392) 0354 NA
SELENOS 0.739 (0.139 to 3.921) 0.723 NA
KCNHS5 0.817 (0.032 to 21.009) 0903 NA
SKOR2 17.582 (2.368 to 130.526) <0.05  1.032400e401 (1.258000e+00 to 8.470100e+01)  0.030
FAMS53A 0.605 (0.029 to 12.461) 0.745 NA
LHX4 1.043 (0.000 to 11,249,864.546) 0996 NA
ZMAT1 5.912529e+404 (3.096000e+00 to 1.129217e+09) <0.05 NA
WDR63 13.476 (3.380 to 53.725) <0.05  8.441000e400 (1.965000e+00 to 3.625700e+01)  0.004
IRX1 0.950 (0.093 t0 9.691) 0965 NA

DNA methylation levels of 5 CpGs in different T, N and M
stages and found that the CpGs methylation levels of N1 and
M1 were lower than that of NO and MO, but there was little
change in DNA methylation levels in different T stages. The
above results indicated that the 5 CpGs, which were selected
by integrating the union of features from LASSO and SVM-
RFE, were reliable in further validations in this study, suggest-
ing that the integration strategy was feasible.

Then, we identified the corresponding genes based on
the locations of 23 CpGs screened out by two algorithms,
and the results were shown that most corresponding
genes of CpGs were the DEGs of normal and PCa sam-
ples. Kaplan—Meier progression-free survival analysis of
best separation was performed based on TCGA survival data,
and 8 genes were P value <0.05. Univariate and multivariate
logistic regression analysis of PFS was performed also based
on the expression levels of the genes from TCGA. ALG10,
SKORZ2, and WDR63 was the independent risk genes of PFS
in PCa. Combined with our objectives, we obtained CpG
sites and their corresponding genes which have a good pre-
dictive value of PFS. However, various evidences showed
that the predictive value of CpGs corresponding genes was
much lower than GpG sites in OS and PFS.

Conclusions

In summary, we found that PCa progression is more likely to
occur after the third year through CS analysis. The molecular
heterogeneity of PCa giving rise to distinct tumor subclasses
based on epigenetic modification and gene expression sig-
natures. PCa-specific pathways analysis demonstrates that
some reprogrammed pathways are less detrimental than

@ Springer

others to clinical outcomes depending on the cancer type,
which may be exploited for the development of more precise
therapeutic strategies targeting unique pathways dependen-
cies. We also identified a CpG methylation panel for the
prognosis of PCa with high sensitivity and specificity. Our
results support the potential clinical utility of DNA methyla-
tion signatures to distinguish tumor metastasis and to predict
prognosis and outcomes.
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