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Abstract
Hair cells play key roles in hearing and balance, and hair cell loss would result in hearing loss or vestibular dysfunction. 
Cellular and molecular research in hair cell biology provides us a better understanding of hearing and deafness. Zebrafish, 
owing to their hair cell-enriched organs, have been widely applied in hair cell-related research worldwide. Similar to mam-
mals, zebrafish have inner ear hair cells. In addition, they also have lateral line neuromast hair cells. These different types of 
hair cells vary in morphology and function. However, systematic analysis of their molecular characteristics remains lacking. 
In this study, we analyzed the GFP+ cells isolated from Tg(Brn3c:mGFP) larvae with GFP expression in all hair cells using 
single-cell RNA-sequencing (scRNA-seq). Three subtypes of hair cells, namely macula hair cell (MHC), crista hair cell 
(CHC), and neuromast hair cell (NHC), were characterized and validated by whole-mount in situ hybridization analysis of 
marker genes. The hair cell scRNA-seq data revealed hair cell-specific genes, including hearing loss genes that have been 
identified in humans and novel genes potentially involved in hair cell formation and function. Two novel genes were discov-
ered to specifically function in NHCs and MHCs, corresponding to their specific expression in NHCs and MHCs. This study 
allows us to understand the specific genes in hair cell subpopulations of zebrafish, which will shed light on the genetics of 
both human vestibular and cochlear hair cell function.
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Introduction

Hair cells, getting their name from the hair-like structure 
on the surface of the cell body [1], detect mechanical 
vibrations through the cilia. Mechanoelectrical trans-
duction (MET) channels on the tip of stereocilia open in 
response to stimuli, which cause the depolarization of the 
hair cells [2, 3] and the release of the neurotransmitters 
into the synaptic cleft between the hair cell and auditory 
neuron [4–6]. Inner ear mechanosensory hair cells, includ-
ing cochlear hair cells and vestibular hair cells, play cru-
cial roles in hearing and balance in mammals. The coch-
lear hair cells function as receptors of acoustic vibration, 
and they can be divided into outer hair cells (OHCs) and 
inner hair cells (IHCs) [7]. There are two types of vestibu-
lar sensory epithelia: maculae and cristae. The maculae 
are located in the utricle and saccule, and the cristae lie 
at the ends of the three semicircular canals. Both of the 
vestibular sensory epithelia are composed of hair cells and 
supporting cells. The vestibular hair cells can be divided 
into type I and type II hair cells [8]. The macula hair cells 
can sense linear acceleration and gravitational equivalent, 
and crista hair cells can sense angular acceleration and 
deceleration [8, 9]. In mammals, the cochlear hair cells get 
mechanical signals from the tectorial membrane, but the 
crista hair cells and macula hair cells sense the vibration 
from the endolymph and otolith, respectively.

As vertebrates, zebrafish have many organs similar to 
humans, which make them an excellent animal model for 
biological and medical research [10]. Zebrafish have an 
ear-like structure, otic vesicle; however, they do not have 
the cochlea. In the otic vesicle of zebrafish, there are five 
clusters of hair cells, three clusters of crista hair cells, and 
two clusters of macula hair cells. In the cristae, includ-
ing anterior crista (AC), lateral crista (LC), and posterior 
crista (PC), hair cells put their kinocilia into the endo-
lymph and detect the endolymph flow caused by head rota-
tion. In the maculae, including the utricular macula (UM) 
and saccular macula (SM), the cilia of hair cells are in 
contact with the otoliths, which would produce movement 
if acceleration occurs. Therefore, the macula hair cells can 
sense linear acceleration and gravity. It has been demon-
strated that the utricular macula is responsible for vestibu-
lar function [11] and the saccular macula is the hearing 
organ [12] in zebrafish. Unlike mammals, zebrafish have 
neuromast hair cells in their lateral line system. These hair 
cells are located on the surface of the skin, and are sensors 
of the surrounding water, which help them detect prey and 
avoid predators. Because they are easy to be administered 
to and imaged, the neuromast hair cells have been widely 
used in hair cell-related biomedical research, for example, 
in ototoxic drug screening.

The zebrafish model has been widely utilized in the hear-
ing research field [13–18]. However, the systematic analysis 
of molecular and morphological differences among these 
hair cells is so far lacking. In this study, scRNA-seq was 
used to analyze zebrafish hair cells’ gene expression, and 
uncover the molecular differences among the different sub-
types of hair cells.

Results

The morphological characteristics of the three types 
of hair cells in zebrafish

Hair cells play crucial roles in hearing and balance, and they 
are variable in morphology and function. The typical feature 
of hair cells that differ from other cells is the cilia, including 
kinocilia and stereocilia, on the surface of the cell body. The 
cilia of hair cells can detect mechanical vibration by stereo-
cilia bundle deflection, leading to the tension of the tip links, 
opening of the MET channels, and causing depolarization 
of hair cells. In zebrafish, except for the inner ear, there are 
hair cells in their lateral line system, and the hair cells can 
be divided into three types according to their morphology 
and location, namely crista hair cells, macula hair cells, and 
neuromast hair cells (Fig. 1A). The first two types are both 
located in the inner ear, and function importantly in hear-
ing and balance, and the third type is key component of the 
lateral line system, which are distributed on the surface of 
the skin, and help the fish to sense the environmental water. 
Although the cilia are the common structure of all hair cells, 
there are also differences among the three types of hair cells. 
The crista hair cells and macula hair cells have straight kino-
cilia, which seem inflexible, and the kinocilia of neuromast 
hair cells can bend themselves to detect the water movement 
(Fig. 1B–D). For the length of kinocilia, taking the zebrafish 
larva of 3 dpf as an example, the crista hair cells have the 
longest kinocilia, which are almost 30 μm in length, and the 
kinocilia of macula hair cells and neuromast hair cells are 
approximately 10 μm and 20 μm, respectively (Fig. 1E). For 
the size of cell bodies, the macula hair cells are the biggest 
ones, and the cell bodies of the neuromast hair cells are the 
smallest among them (Fig. 1F).

Single‑cell RNA‑sequencing reveals different 
subpopulations of hair cells in zebrafish

To further distinguish the different types of hair cells at the 
molecular level, we used single-cell RNA-sequencing to 
analyze the gene expression patterns. Here, the transgenic 
zebrafish line Tg(Brn3c:mGFP) [19], in which the hair cells 
and retinal ganglion cells (RGCs) were labeled by the mem-
brane-targeted green fluorescent protein (mGFP) (Fig. 2A), 
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was used as the animal model. The zebrafish larvae at 6 
dpf were dissociated into the single cells by trypsin, and 
the GFP-positive cells were sorted using the fluorescence 
activated cell sorting (FACS) method (Figs. S1, S2). After 
high-throughput sequencing based on the 10 × Genomics 
system, the gene expression data were obtained. Based on 
Seurat [20] analysis, the cells were divided into 21 clusters. 
By analyzing the gene expression patterns of the top genes 
in each cluster, the four clusters of cells from the cluster 0, 
5, 7, 12, were annotated as hair cells, and the cells from the 
cluster 2, 3, and 10 were identified as retinal ganglion cells. 
Both hair cells and retinal ganglion cells are GFP-expressing 
cells in the Tg(Brn3c:mGFP) zebrafish [19]. The rest were 
considered as other cells, which were GFP-negative and 

brought into the GFP-positive cells due to inevitable tech-
nical problems, including red blood cells, lymphocytes, mus-
cle cells, and so on (Figs. 2B, S3). The number of cells and 
marker genes detected in each cluster was shown (Figs. 2 C, 
D). For each cluster, the top marker genes were listed, and 
the expression patterns of these genes were also presented 
(Fig. 2E).

Validation of the gene expression in the subtypes 
of hair cells using whole‑mount in situ hybridization

Through our analysis, as shown above, the cells from cluster 
0, 5, 7, 12 were considered as hair cells. In our subsequent 
study, we focused on these cells, and further analysis showed 

Fig. 1   The morphological 
feature of the three different 
types of hair cells in zebrafish. 
A The diagram of the zebrafish 
larva with hair cell labeling. 
UO, utricular otolith; SO, sac-
cular otolith; UMHC, utricular 
macula hair cell; SMHC, sac-
cular macula hair cell; ACHC, 
anterior crista hair cell; LCHC, 
lateral crista hair cell; PCHC, 
posterior crista hair cell. B–D 
The fluorescent image at high 
magnification of the three dif-
ferent types of hair cells. The 
diagrams of the different hair 
cells are presented in the boxes 
drawn with white dotted lines at 
the bottom left. E–F The com-
parison of the kinocilia and the 
cell bodies of the three different 
types of hair cells. *P < 0.05, 
***P < 0.001, ****P < 0.0001
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Fig. 2   Single-cell RNA-sequencing (scRNA-seq) of zebrafish hair 
cells. A The fluorescent image of the Tg(Brn3c:mGFP) transgenic 
zebrafish larva at 3 dpf. The GFP-expressing cells in the optic tectum, 
which were circled by the orange dotted line, are the retinal ganglion 
cells (RGCs), and the other GFP-expressing cells in the otic vesicle 

and lateral line system are hair cells. B The UMAP analysis of the 
zebrafish scRNA-seq data. The four clusters of cells circled by the red 
dotted line were annotated as hair cells. C, D The number of cells and 
marker genes detected in each cluster. E The dotplot of the top genes 
in each cluster
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that these hair cells can be divided into three subpopulations, 
namely macula hair cells (cluster 5), crista hair cells (clus-
ter 12), and neuromast hair cells (cluster 0, 7) (Fig. 3A). We 
further analyzed the top marker genes expressed in the four 
clusters, and found that some genes were mainly expressed 
in one of the clusters specifically, for example, tectb in cluster 
5, zpld1a in cluster 12, calm1b in cluster 0 and 7 (Figs. 3B, 
S3). Functional enrichment analysis showed that many of the 
genes expressed in the four clusters of cells above have hair 
cell-related biological function (Fig. 3C–F), which indicated 
that these cells were hair cells. To further confirm the hair 
cell clustering and annotation, we performed the whole-mount 
in situ hybridization (WISH). As shown in Fig. 3G, the cells 
with high tectb gene expression were mainly gathering in the 
cluster 5, and the tectb gene was proved to be expressed spe-
cifically in the macula hair cells, including the utricular hair 
cells and saccular hair cells, by WISH. The zpld1a gene was 
mainly expressed in the crista hair cells, which were thought to 
be located in the cluster 12 according to our analysis (Fig. 3H), 
and this is consistent with the previous studies [21]. The cells 
from the cluster 0 and 7 were considered as neuromast hair 
cells because of the expression patterns of their marker genes, 
such as calm1b (Fig. 3I). As for cells from cluster 0 and 7, 
although they are both neuromast hair cells, they are different 
from each other. The cells from cluster 0 were classified to be 
mature neuromast hair cells, and the cluster 7 were classified to 
be young neuromast hair cells, according to the expression of 
the mature and young hair cell markers, s100s [22] and prox1a 
[23], respectively, in the two clusters (Fig. S4).

On the other hand, we analyzed the marker gene of 
supporting cells, klf17 [24], and found that it was mainly 
expressed in the cells of cluster 1 (Fig. S5), which suggests 
that this cluster of cells are supporting cells. Likewise, we 
also analyzed the genes that were reported to be expressed in 
mantle cells, such as tnfsf10, ponzr6, pkhd1l1, fat1b, crb3b, 
cts12, ovgp1, and cldne [17], and found that cells expressing 
these genes with high level were clustering in cluster 9 (Fig. 
S6). For cluster 14, these cells are closer to the supporting 
cells (cluster 1) in UMAP clustering (Fig. 1B); however, 
they express some of the genes that have been proved to 
be expressed in hair cells specifically, such as myo6b [25], 
myo7aa [26] (Fig. S7), which raises a possibility that they 
are supporting cells that can differentiate into hair cells. 
Therefore, we concluded that the cells from cluster 1 and 
9 were supporting cells and mantle cells, respectively, and 
the cells from the cluster 14 might be hair cell progenitors.

The molecular properties of the three types of hair 
cells

Given that different types of hair cells were clustered into 
different populations, we made a comparison among the dis-
tinguishable hair cells at the molecular level. As shown in 

Fig. 2D, the number of marker genes detected in the cluster 
0, 5, 7, 12 was 2352, 1023, 2029, 928, respectively. The two 
types of inner ear hair cells, macula hair cells and crista hair 
cells (cluster 5 and 12), share 568 genes, and 1677 marker 
genes were expressed in both the mature and young neuro-
mast hair cells (cluster 0 and 7). However, the neuromast 
hair cells and inner ear hair cells only share a small num-
ber of marker genes, which reveals their differences on the 
gene expression level (Fig. 4A). Furthermore, the top marker 
genes expressed in the different clusters were obviously dif-
ferent (Fig. 4B). We also performed gene enrichment analy-
sis through gene ontology (GO) term, and found that these 
different types of hair cells vary dramatically in biological 
process, molecular function, and cellular component. For 
example, the neuromast hair cells have more energy metab-
olism-related activity, which raises the possibility that they 
require more energy to work compared to the inner ear hair 
cells (Fig. 4C–E).

The neuromast hair cells were enriched with MET 
gene expression

The MET channels are required for functional hair cells and 
they are complex comprising of several components, such as 
TMC1, TMC2, TMIE, LHFPL5, and CIB2 [2, 27–31]. Hair 
cells with functional MET channels are crucial for normal 
hearing and balance. In addition, the tip links play important 
roles in the stereocilia deflection and MET channel-gating, 
and it was proved to be composed of two cadherins, CDH23 
and PCDH15 [32–34]. To determine whether these key mol-
ecules are also expressed in zebrafish hair cells and what 
differences there are among these different hair cells, we 
analyzed the expression patterns of the genes encoding these 
important proteins. As illustrated in Fig. 5A–F, the orthologs 
of mammalian MET complex components were expressed 
in most of the neuromast hair cells; however, only a small 
proportion of inner ear hair cells expressed these genes. The 
genes encoding the tip link components, cdh23 and pcdh15a, 
were expressed in a few hair cells (Fig. 5G–H).

The zebrafish hair cell scRNA‑seq reveals potential 
hearing loss genes

Hearing is one of the most important sensory functions, 
and it relies on functional hair cells. Healthy hair cells are 
the receptors of acoustic signals; therefore, genes respon-
sible for hair cell development, survival, and function are 
also important for normal hearing. 119 genes have been 
identified as non-syndromic hearing loss (NSHL) genes in 
humans (https://​hered​itary​heari​ngloss.​org/). Among these 
genes, 96 human genes have orthologous genes in zebrafish 
(Fig. 6A), which demonstrates that zebrafish are quite simi-
lar to humans in terms of NSHL genes. Furthermore, 51 

https://hereditaryhearingloss.org/
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human NSHL genes have 57 orthologous genes which are 
expressed in zebrafish hair cells (cluster 0, 5, 7, and 12), and 
the detailed information was shown in Fig. 6B. Except for 
the orthologs of identified human NSHL genes, there are 
still more than 3000 genes being specifically expressed in 
the zebrafish hair cells (Fig. 6C). Some of these genes are 
thought to be crucial for hair cell function, and it is quite 
possible that they are potential hearing loss genes. In other 
words, these data may provide us clear direction for our sci-
entific research in hearing loss gene identification. Under the 
guidance of this idea, we randomly selected some genes for 
further analysis, and found that these genes were specifically 
expressed in either or both of the zebrafish inner ear and 
neuromast hair cells (Fig. 6D), indicating that these genes 
function in hair cell-related biological processes, and may 
even be essential for hearing function.

Functional analysis of the candidate genes involved 
in hair cell development

Our scRNA-seq analysis revealed genes that are specifi-
cally expressed in zebrafish hair cells, some of which are 
orthologs of human NSHL genes; however, many genes have 
not been reported to play roles in hair cell development or 
function. To investigate the function of hair cell-enriched 
genes, we took the capgb and mb gene as examples, which 
were mainly expressed in neuromast hair cells and macula 
hair cells, respectively (Figs. 6D, S8). Here, we used mor-
pholino-mediated gene knockdown to down-regulate the 
gene expression (Fig. S9). As illustrated in Fig. 7A, B, the 
capgb-morphants exhibited decreased hair cells in their lat-
eral line neuromasts compared to the littermate control, and 
this abnormality can be rescued by supplying with wild-type 
capgb-mRNA. Furthermore, the capgb-morphants had less 
response to the acoustic stimuli in the startle response test 
(Fig. 7C, D), which indicated that their hair cells had lost 
their function to some extent. Likewise, in another experi-
ment, the mb gene knockdown resulted in reduced macula 
hair cells, which can be rescued by coinjecting with mb-
mRNA (Fig. 7E, F), and the mb-morphants showed severely 
abnormal balance ability in the vestibulo-ocular reflex 
(VOR) test (Fig. 7G, H).

Discussion

In mammals, inner ear hair cells can detect the mechani-
cal signals and transform them into physiological signals, 
which were then transmitted to the brain through the audi-
tory neurons [35]. Inner ear hair cells can be divided into 
cochlear hair cells and vestibular hair cells, which play 
important roles in hearing and balance, respectively. The 
two types of hair cells differ from each other in both struc-
ture and function [7].

As an excellent animal model, zebrafish have hundreds 
of hair cells, making it a good model to study hair cell 
function. Similar to mammals, zebrafish have inner ears, 
consisting of semicircular canals and otolith; however, 
zebrafish have no cochlea in their inner ear. Therefore, 
inner ear hair cells can be divided into macula hair cells 
and crista hair cells in zebrafish. Except for inner ear hair 
cells, zebrafish have a third type of hair cells, neuromast 
hair cells, in their lateral line system. The three different 
hair cells differ from each other in morphology; however, 
the molecular difference among them is unknown.

Here, we used the single-cell RNA-sequencing method 
to analyze the gene expression patterns in zebrafish hair 
cells, and uncovered the molecular difference among the 
different types of hair cells. In brief, after quality con-
trol, the scRNA-seq data received dimensional reduction 
processing using the UMAP method, and all of the cells 
sequenced were classified as 21 clusters. After annotating 
according to the known marker genes and gene expres-
sion patterns in the database (http://​zfin.​org/), we identi-
fied four clusters of cells as macula hair cells, crista hair 
cells, and neuromast hair cells. Further validation using 
WISH confirmed our cell clustering and annotation in our 
following analysis. As for other types of cells, such as 
supporting cells, mantle cells, and epithelial cells, they 
are GFP-negative (Fig. S3), but they cannot be filtered out 
in our FACS sorting. The possible mechanism involved is 
that they interact with the GFP-positive cells, namely hair 
cells and retinal ganglion cells, and they were also sorted, 
coupling with GFP-positive cells.

Furthermore, we performed a comparison among these 
different subtypes of hair cells, and found that the neuro-
mast hair cells have stronger expression of MET compo-
nents and energy metabolism-related activity compared 
to the inner ear hair cells. Moreover, we analyzed the 
relationship between the known human NSHL genes and 
zebrafish hair cell marker genes revealed by the scRNA-
seq, and found that 42.86% of human NSHL genes have 
orthologous genes expressed in zebrafish hair cells, which 
further reflects the reliability of our data. On the other 
hand, there are plenty of genes in our hair cell scRNA-
seq gene pool that have not been reported to function in 

Fig. 3   The hair cell classification in zebrafish. A The four clusters of 
hair cells can be further divided into three types, namely macula hair 
cells (cluster 5), crista hair cells (cluster 12), and neuromast hair cells 
(cluster 0 and 7). B The dotplot of top genes in the four clusters of 
hair cells. C–F The cnetplot of the genes expressed in the four clus-
ters of hair cells. G-I The results of the WISH. The genes presented 
here are expressed in the macula hair cells (G), crista hair cells (H), 
and neuromast hair cells (I), respectively. The images at the bot-
tom right in G and H show the dorsal and enlarged view of the gene 
expression. The red arrowheads and arrows indicate the inner ear hair 
cells and neuromast hair cells, respectively

◂

http://zfin.org/
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hair cells, which raises the possibility that these genes 
have potential value in hair cell function and even hearing 
loss gene identification. We randomly picked some of the 
marker genes for further analysis, and found that mb and 
capgb gene were specifically expressed in zebrafish inner 
ear macula hair cells and lateral line neuromast hair cells, 
respectively. Gene functional analysis also demonstrated 
that these two genes were required for hair cell develop-
ment or function; for that knockdown of these two genes 
can lead to hair cell loss and hair cell dysfunction.

As far as we know, myoglobin, encoded by the Mb gene, 
is a single-chain heme protein containing 153 amino acids. 
It mainly exists in cardiac and skeletal muscle, and recent 
studies showed that it also exists in a variety of non-mus-
cle tissues, such as the brain, kidney, gill, and liver [36]. 

Myoglobin functions in transporting and storing oxygen in 
muscle cells, and it can also promote the removal of reactive 
oxygen species (ROS) and NO in cancer cells [37]. How-
ever, the role of myoglobin in hair cells was not reported 
before, and it is the first time that the mb gene was proved to 
be expressed in zebrafish inner ear hair cells and important 
for hair cell development and function in our current study. 
Further investigation was needed to uncover the molecular 
mechanisms involved in hair cell function.

CAPG, encoding a gelsolin-like capping protein, as 
a proto-oncogene [38], is involved in the migration and 
invasion of various cancer cells [39–42]. Recently, a rare 
homozygous deletion of the chromosome 2p11.2 region 
was found in a Tunisian patient with autism, intellectual 
disability, and hearing impairment, and the affected genes 

E

A B

C D

Fig. 4   The molecular difference among the different hair cells. A The 
marker genes that are expressed in different hair cells and the rela-
tionship among them. B The heatmap of the top marker genes in each 

cluster of hair cells. C–E The GO analysis reveals the different prop-
erties among the different hair cells in biological process (C), molec-
ular function (D), and cellular component (E)
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mainly included ELMOD3, CAPG, and SH2D6 [43]. In our 
study, we found that the capgb gene was mainly expressed 
in zebrafish neuromast hair cells, and essential for hearing, 
indicating its crucial role in auditory function. Nevertheless, 
how CAPG contributes to hair cell development, as well as 
hearing, merits further investigation.

To sum up, in this study, we identified three subpopula-
tions of hair cells, which corresponded with macula hair 

cells, crista hair cells, and neuromast hair cells in zebrafish, 
through scRNA-seq. In addition, it also uncovered thousands 
of genes in zebrafish hair cells, which would be helpful for 
our research in hair cell biology in the future.

Based on differential gene expression, Lush., et al. [17] 
found that hair cells can be subdivided into young hair cells 
and mature hair cells, and these two different hair cells have 
distinct distribution and gene expression that the young hair 
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Fig. 5   The distribution of the cells expressing the genes encoding the MET and tip link components. The feature plot and violin plot are shown 
for each gene
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GRXCR1 grxcr1a; grxcr1b 0,7,14 

KARS kars1 0 
KITLG kitlga; kitlgb 1,5,12; 1,12 

LHFPL5 lhfpl5a 0,5,7 
LOXHD1 loxhd1a 0,7 
LRTOMT tomt 7,14 

MARVELD2 marveld2a 5,9 
MET met 1,12 

MSRB3 msrb3 0,5,7,14 
MYH14 myh14 0,7,14 

MYO15A myo15aa 0,7,14 
MYO6 myo6b 0,7,14 
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SIX1 six1a; six1b 0,5,7; 0,5,7,14 

SLC17A8 slc17a8 0,7 
SLC26A5 slc26a5 5 

SMPX smpx 0,7,14 
SPNS2 spns2 5 
STRC strc 0,7 
TECTA tecta 5 
TMC1 TMC1 0,7 
TMIE tmie 0,7,14 

TMPRSS3 tmprss3a 0,7,14 
TNC tnc 0,5 

TRIOBP triobpa; triobpb 0,7,14; 0,14 
USH1C ush1c 0,7 
WBP2 wbp2 0,7,14 
WHRN whrna 0,7,14 

588

47

1497
4

6

68
6

41

1
28

1

00

028

37

317

278

280

69

9

466

27

7

0

5

0

2

1 0 37

clu
ste

r 0

cluster 5

cluster 7

cluster 12

zebrafish orthologs

 of human NSHL genes



Single‑cell RNA‑sequencing of zebrafish hair cells reveals novel genes potentially involved…

1 3

Page 11 of 15  385

cells form a ring and express atoh1b. Differently, our current 
work revealed the molecular difference among three differ-
ent types of hair cells and specific marker genes for the first 
time, which could provide further insights into understand-
ing the mechanisms underlying hearing and balance.

Materials and methods

Zebrafish embryos

Zebrafish were maintained at 28.5 °C. Two zebrafish lines 
were used in the study, including the wild-type AB and the 
transgenic line Tg(Brn3c:mGFP), which was described in 
the previous work [19]. All animal procedures were per-
formed according to protocols approved by the Animal Care 
and Use Committee of Nantong University and were consist-
ent with the National Institutes of Health Guide for the Care 
and Use of Laboratory Animals.

Single‑cell RNA‑sequencing

The Tg(Brn3c:mGFP) transgenic zebrafish larvae at 6 days 
post-fertilization (dpf) were anesthetized and then treated 
with 0.25% trypsin to dissociate into single cells, which were 
divided into GFP-positive and GFP-negative cells through 
the fluorescent activated cell sorter, and the RNA expressed 
in GFP-positive cells were then obtained and sequenced 
using the 10 × Genomics platform.

Single‑cell sequencing analysis

The basic procedure for single-cell sequencing analysis 
was carried out as previously described [44]. Briefly, Seu-
rat V4.0.1 [20] was used for the integrated analysis of the 
single-cell sequencing data, including data filtering, data 
normalization, cell clustering, and cluster-level marker gene 
identification. First, the Seurat object was created by “Crea-
teSeuratObject” function and the raw data were primarily fil-
tered through the parameter settings “min.cells = 5,min.fea-
tures = 200”, which required that only the genes expressed 
in at least five cells were considered and only the cells with 
minimal 200 genes detected were kept. Then, the data were 
further filtered through the “subset” function in Seurat with 
the parameter settings “nFeature_RNA < 5000 & percent.

mt < 10”, which required the cells containing no more 
than 10% reads from mitochondrial genes and up to 5000 
detected genes. Second, “SCTransform” function in Seu-
rat was applied to data normalization, and the data were 
regressed by several factors(percentage of mitochondrial 
expression, total number of UMIs, and total number of genes 
detected) through a second non-regularized linear regression 
(variable.features.n = 1000,vars.to.regress = c(“nFeature_
RNA”,“nCount_RNA”,“percent.mt”)). For cell clustering, 
the principal component analysis (PCA) was first applied for 
extracting the top principal components (top 50 PCs), and 
then, the clusters were identified through shared k-nearest 
neighbor graph construction and cluster modularity function 
optimization (k.param = 20, resolution = 0.25). To identify 
marker genes for each cell type, “FindAllMarkers” func-
tion in Seurat was used with the parameter settings “only.
pos = TRUE, min.pct = 0.25,logfc.threshold = 0.25”. The 
default Wilcoxon rank-sum test in “FindAllMarkers” func-
tion was selected for differential expressed gene detection 
between clusters, where the p values were further adjusted 
by Bonferroni correction.

For GO enrichment analysis, the R package clusterPro-
filer [45] was used, and the marker genes identified by Seurat 
were used as input. The three GO categories: BP (Biologi-
cal Process), CC (Cellular Component), and MF (Molecu-
lar Function) were analyzed respectively against the marker 
genes for each cell cluster, and the p values were corrected 
by Benjamini & Hochberg (BH) method, where the signifi-
cantly enriched GO terms were defined as the ones with BH 
adjusted p value less than 0.05. The GO enrichment results 
were further visualized through the enrichplot method inte-
grated in clusterProfiler.

Whole‑mount in situ hybridization

The whole-mount in situ hybridization procedure was simi-
lar to our previous description [46, 47]. In brief, the gene-
specific primers targeting the coding sequence of interest 
were designed and synthesized. After amplification using 
the PCR method, the fragments were subcloned into the 
pGEM-T Easy vector (Promega). The DIG-labeling RNA 
probe was transcribed in vitro using the linearized recom-
binant plasmid as a template. For the hybridization step, 
the pretreated zebrafish embryos were incubated with the 
digoxigenin-labeling RNA probe overnight first, and then, 
alkaline phosphatase-conjugated primary antibody against 
digoxigenin was used to detect the RNA probe following 
three washes. Subsequently, for color reaction, the nonspe-
cific binding was washed out and the substrate of alkaline 
phosphatase, NBT/BCIP solution, was added to the reaction 
system. Finally, the samples were imaged and the gene-spe-
cific mRNA expression was visualized through the micro-
scope. The primers used for probe synthesis are as follows:

Fig. 6   The zebrafish hair cell scRNA-seq reveals potential hearing 
loss genes. A The relationship between the known human NSHL 
genes and zebrafish hair cell-enriched genes. B The list of the human 
NSHL genes, which have orthologs expressed in zebrafish hair cells. 
C Venn diagram of the zebrafish orthologs of human NSHL genes 
and marker genes expressed in each cluster of hair cells in zebrafish. 
The numbers indicate the number of the genes. D The expression pat-
terns of the hair cell-enriched genes in zebrafish embryos

◂
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tectb-F: GCC​GTG​TTT​AGC​CAA​AGA​GT;
tectb-R: ACA​ACT​TCT​CCC​CGT​CAC​AT;
zpld1a-F: CCA​CGG​TTG​TGC​TGT​TTA​GC;

zpld1a-R: GTT​GGT​GGC​TTT​TAC​AGC​GG;
calm1b-F: AAG​TGT​TGT​GTC​GTG​GGG​TT;
calm1b-R: GCA​GGG​GAG​ATT​TCA​CTG​GT;

Fig. 7   Functional analysis of 
the candidate genes involved 
in hair cell development. A, B 
The capgb gene knockdown 
resulted in decreased neuromast 
hair cells in zebrafish. C, D The 
capgb-morphants showed less 
response to the acoustic stimuli. 
E, F The mb gene knockdown 
resulted in reduced macula hair 
cells in zebrafish. G, H The 
mb-morphants showed dam-
aged balance ability. *P < 0.05, 
**P < 0.01, ****P < 0.0001
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capgb-F: ACC​TGG​TGC​TGG​ATA​ACA​GG;
capgb-R: ATC​TGA​GCT​TTG​CCG​TGT​CT;
C5H11orf1-F: TGA​TGT​CCA​ATA​AAA​GCC​AGGT;
C5H11orf1-R: CAC​ACA​TTG​AGG​CTC​TGA​AGT;
zdhhc16b-F: CCT​GTG​GAA​TTA​TGG​GAT​GG;
zdhhc16b-R: ATG​CTG​CAG​TGA​TGA​GTT​CG;
tekt3-F: AGA​TTT​CAG​CGC​TGT​CCG​AT;
tekt3-R: AAG​CAG​CAC​GTT​CAC​TCT​GA;
mb-F: TGA​TCT​GGT​TCT​GAA​GTG​CTG;
mb-R: GGC​AAA​TCC​GAT​CTC​CTT​GT;
s100s-F: CCA​AGA​TGC​CAC​GCT​CAA​AG;
s100s-R: CCC​GCT​AAC​ACT​TCT​CTC​GG.

Morpholino‑mediated gene knockdown

The gene-specific morpholinos (MOs) were synthesized by 
the Gene Tools, LLC. For gene knockdown, the 2–3 nL of 
0.3 mM of gene-specific morpholinos were microinjected 
into the 1–2-cell-stage zebrafish embryos. Here, the mor-
pholinos were used to block the splicing of the pre-mRNA, 
and therefore down-regulate the target gene expression. The 
sequences of the morpholinos used in this study were as 
follows:

capgb-MO: TCT​GGA​GGA​ACA​AAG​ATG​AGA​TGG​T;
mb-MO: ATC​AGA​GAG​TCC​TGC​TTT​ACC​CTG​A.

Reverse transcription‑polymerase chain reaction 
(RT‑PCR)

The RT-PCR was performed following the standard proce-
dure. Briefly, the total RNA was extracted from the zebrafish 
embryos and then reverse-transcribed into cDNA. The PCR 
experiment was performed to detect the gene expression 
using the cDNA as a template. Herein, the primers used for 
PCR were listed as follows:

capgb-F: TCT​GAC​AGC​ATG​CCG​GAG​C;
capgb-R: TAA​CAT​TGG​TGA​TCT​GAG​CTT​TGC;
mb-F: GAC​TTT​TCC​AAA​GCC​ACA​GGC;
mb-R: TCC​TGA​GAC​CCT​AAC​GAA​CCA.

mRNA rescue experiment

The rescue experiment was performed by coinjecting the 
specific mRNA with the morpholino. The mRNA was tran-
scribed in vitro using the linearized recombinant plasmid as 
a template, which contains the coding sequence of specific 
gene. The primers used in the PCR to amplify the specific 
genes were as follows:

capgb-mRNA-F: ACC​TAG​GTG​CAG​GAA​CAG​G;
capgb-mRNA-R: ACA​ACT​GGT​TGA​GTG​CAG​TTTA;
mb-mRNA-F: GCC​CCG​ATA​TTG​AAG​ACA​GGT;
mb-mRNA-R: TGA​CTC​CCA​TTT​GAG​ATC​TGGT.

Startle response test

The startle response test in zebrafish was carried out fol-
lowing the procedure [48, 49]. In this test, 20 zebrafish lar-
vae at 5 dpf were put into the culture dish for free swim-
ming. When acoustic stimuli occurred, the behavior of the 
zebrafish was recorded by a high-speed camera (500 fps). In 
response to the stimuli, the zebrafish with normal auditory 
function would have a characteristic C-bend motion lasting 
less than 10 ms; however, the zebrafish with damaged audi-
tory function would not. Herein, both the distance moved 
and the number of the C-bend motions were used to quantify 
the startle response.

VOR test

As previously described [49, 50], the VOR test was per-
formed according to standard procedure. Briefly, the 
zebrafish larva at 5 dpf was fixed in the chamber in a head-up 
position with 5% methylcellulose. The rotary platform, with 
the chamber unit fixed, rotated back and forth at a speed of 
30 rpm. The eye movements of the zebrafish were recorded 
by an infrared camera, and the periodical changes of the 
projection area of the eyes were used to evaluate the VOR.

Imaging and statistical analysis

For the confocal fluorescence microscopic analysis, the 
zebrafish were embedded in the 0.8% low melt agarose fol-
lowing anesthetization with MS-222, and the imaging was 
carried out by the Nikon A1 microscope. The Olympus 
MVX10 microscope was used for bright-field imaging in 
the WISH experiments. All data were presented as mean 
with SD, and the unpaired Student’s t tests were used to 
determine statistical significance. A value of P < 0.05 was 
considered statistically significant.
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