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Abstract

Hair cells play key roles in hearing and balance, and hair cell loss would result in hearing loss or vestibular dysfunction.
Cellular and molecular research in hair cell biology provides us a better understanding of hearing and deafness. Zebrafish,
owing to their hair cell-enriched organs, have been widely applied in hair cell-related research worldwide. Similar to mam-
mals, zebrafish have inner ear hair cells. In addition, they also have lateral line neuromast hair cells. These different types of
hair cells vary in morphology and function. However, systematic analysis of their molecular characteristics remains lacking.
In this study, we analyzed the GFP+cells isolated from Tg(Brn3c:mGFP) larvae with GFP expression in all hair cells using
single-cell RNA-sequencing (scRNA-seq). Three subtypes of hair cells, namely macula hair cell (MHC), crista hair cell
(CHC), and neuromast hair cell (NHC), were characterized and validated by whole-mount in situ hybridization analysis of
marker genes. The hair cell scRNA-seq data revealed hair cell-specific genes, including hearing loss genes that have been
identified in humans and novel genes potentially involved in hair cell formation and function. Two novel genes were discov-
ered to specifically function in NHCs and MHCs, corresponding to their specific expression in NHCs and MHC:s. This study
allows us to understand the specific genes in hair cell subpopulations of zebrafish, which will shed light on the genetics of
both human vestibular and cochlear hair cell function.
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Introduction

Hair cells, getting their name from the hair-like structure
on the surface of the cell body [1], detect mechanical
vibrations through the cilia. Mechanoelectrical trans-
duction (MET) channels on the tip of stereocilia open in
response to stimuli, which cause the depolarization of the
hair cells [2, 3] and the release of the neurotransmitters
into the synaptic cleft between the hair cell and auditory
neuron [4-6]. Inner ear mechanosensory hair cells, includ-
ing cochlear hair cells and vestibular hair cells, play cru-
cial roles in hearing and balance in mammals. The coch-
lear hair cells function as receptors of acoustic vibration,
and they can be divided into outer hair cells (OHCs) and
inner hair cells (IHCs) [7]. There are two types of vestibu-
lar sensory epithelia: maculae and cristae. The maculae
are located in the utricle and saccule, and the cristae lie
at the ends of the three semicircular canals. Both of the
vestibular sensory epithelia are composed of hair cells and
supporting cells. The vestibular hair cells can be divided
into type I and type II hair cells [8]. The macula hair cells
can sense linear acceleration and gravitational equivalent,
and crista hair cells can sense angular acceleration and
deceleration [8, 9]. In mammals, the cochlear hair cells get
mechanical signals from the tectorial membrane, but the
crista hair cells and macula hair cells sense the vibration
from the endolymph and otolith, respectively.

As vertebrates, zebrafish have many organs similar to
humans, which make them an excellent animal model for
biological and medical research [10]. Zebrafish have an
ear-like structure, otic vesicle; however, they do not have
the cochlea. In the otic vesicle of zebrafish, there are five
clusters of hair cells, three clusters of crista hair cells, and
two clusters of macula hair cells. In the cristae, includ-
ing anterior crista (AC), lateral crista (LC), and posterior
crista (PC), hair cells put their kinocilia into the endo-
lymph and detect the endolymph flow caused by head rota-
tion. In the maculae, including the utricular macula (UM)
and saccular macula (SM), the cilia of hair cells are in
contact with the otoliths, which would produce movement
if acceleration occurs. Therefore, the macula hair cells can
sense linear acceleration and gravity. It has been demon-
strated that the utricular macula is responsible for vestibu-
lar function [11] and the saccular macula is the hearing
organ [12] in zebrafish. Unlike mammals, zebrafish have
neuromast hair cells in their lateral line system. These hair
cells are located on the surface of the skin, and are sensors
of the surrounding water, which help them detect prey and
avoid predators. Because they are easy to be administered
to and imaged, the neuromast hair cells have been widely
used in hair cell-related biomedical research, for example,
in ototoxic drug screening.
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The zebrafish model has been widely utilized in the hear-
ing research field [13—-18]. However, the systematic analysis
of molecular and morphological differences among these
hair cells is so far lacking. In this study, scRNA-seq was
used to analyze zebrafish hair cells’ gene expression, and
uncover the molecular differences among the different sub-
types of hair cells.

Results

The morphological characteristics of the three types
of hair cells in zebrafish

Hair cells play crucial roles in hearing and balance, and they
are variable in morphology and function. The typical feature
of hair cells that differ from other cells is the cilia, including
kinocilia and stereocilia, on the surface of the cell body. The
cilia of hair cells can detect mechanical vibration by stereo-
cilia bundle deflection, leading to the tension of the tip links,
opening of the MET channels, and causing depolarization
of hair cells. In zebrafish, except for the inner ear, there are
hair cells in their lateral line system, and the hair cells can
be divided into three types according to their morphology
and location, namely crista hair cells, macula hair cells, and
neuromast hair cells (Fig. 1A). The first two types are both
located in the inner ear, and function importantly in hear-
ing and balance, and the third type is key component of the
lateral line system, which are distributed on the surface of
the skin, and help the fish to sense the environmental water.
Although the cilia are the common structure of all hair cells,
there are also differences among the three types of hair cells.
The crista hair cells and macula hair cells have straight kino-
cilia, which seem inflexible, and the kinocilia of neuromast
hair cells can bend themselves to detect the water movement
(Fig. 1B-D). For the length of kinocilia, taking the zebrafish
larva of 3 dpf as an example, the crista hair cells have the
longest kinocilia, which are almost 30 pm in length, and the
kinocilia of macula hair cells and neuromast hair cells are
approximately 10 pm and 20 pm, respectively (Fig. 1E). For
the size of cell bodies, the macula hair cells are the biggest
ones, and the cell bodies of the neuromast hair cells are the
smallest among them (Fig. 1F).

Single-cell RNA-sequencing reveals different
subpopulations of hair cells in zebrafish

To further distinguish the different types of hair cells at the
molecular level, we used single-cell RNA-sequencing to
analyze the gene expression patterns. Here, the transgenic
zebrafish line Tg(Brn3c:mGFP) [19], in which the hair cells
and retinal ganglion cells (RGCs) were labeled by the mem-
brane-targeted green fluorescent protein (mGFP) (Fig. 2A),
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Fig. 1 The morphological
feature of the three different
types of hair cells in zebrafish.
A The diagram of the zebrafish
larva with hair cell labeling.
UO, utricular otolith; SO, sac-
cular otolith; UMHC, utricular
macula hair cell; SMHC, sac-
cular macula hair cell; ACHC,

anterior crista hair cell; LCHC,
lateral crista hair cell; PCHC,
posterior crista hair cell. B-D
The fluorescent image at high
magnification of the three dif-
ferent types of hair cells. The
diagrams of the different hair
cells are presented in the boxes
drawn with white dotted lines at
the bottom left. E-F The com-
parison of the kinocilia and the
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was used as the animal model. The zebrafish larvae at 6
dpf were dissociated into the single cells by trypsin, and
the GFP-positive cells were sorted using the fluorescence
activated cell sorting (FACS) method (Figs. S1, S2). After
high-throughput sequencing based on the 10X Genomics
system, the gene expression data were obtained. Based on
Seurat [20] analysis, the cells were divided into 21 clusters.
By analyzing the gene expression patterns of the top genes
in each cluster, the four clusters of cells from the cluster 0,
5,7, 12, were annotated as hair cells, and the cells from the
cluster 2, 3, and 10 were identified as retinal ganglion cells.
Both hair cells and retinal ganglion cells are GFP-expressing
cells in the Tg(Brn3c:mGFP) zebrafish [19]. The rest were
considered as other cells, which were GFP-negative and

brought into the GFP-positive cells due to inevitable tech-
nical problems, including red blood cells, lymphocytes, mus-
cle cells, and so on (Figs. 2B, S3). The number of cells and
marker genes detected in each cluster was shown (Figs. 2 C,
D). For each cluster, the top marker genes were listed, and
the expression patterns of these genes were also presented
(Fig. 2E).

Validation of the gene expression in the subtypes
of hair cells using whole-mount in situ hybridization

Through our analysis, as shown above, the cells from cluster

0, 5, 7, 12 were considered as hair cells. In our subsequent
study, we focused on these cells, and further analysis showed
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Fig.2 Single-cell RNA-sequencing (scRNA-seq) of zebrafish hair
cells. A The fluorescent image of the Tg(Brn3c:mGFP) transgenic
zebrafish larva at 3 dpf. The GFP-expressing cells in the optic tectum,
which were circled by the orange dotted line, are the retinal ganglion
cells (RGCs), and the other GFP-expressing cells in the otic vesicle
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Features

and lateral line system are hair cells. B The UMAP analysis of the
zebrafish scRNA-seq data. The four clusters of cells circled by the red
dotted line were annotated as hair cells. C, D The number of cells and
marker genes detected in each cluster. E The dotplot of the top genes
in each cluster
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that these hair cells can be divided into three subpopulations,
namely macula hair cells (cluster 5), crista hair cells (clus-
ter 12), and neuromast hair cells (cluster 0, 7) (Fig. 3A). We
further analyzed the top marker genes expressed in the four
clusters, and found that some genes were mainly expressed
in one of the clusters specifically, for example, tectb in cluster
5, zpldla in cluster 12, calmib in cluster 0 and 7 (Figs. 3B,
S3). Functional enrichment analysis showed that many of the
genes expressed in the four clusters of cells above have hair
cell-related biological function (Fig. 3C-F), which indicated
that these cells were hair cells. To further confirm the hair
cell clustering and annotation, we performed the whole-mount
in situ hybridization (WISH). As shown in Fig. 3G, the cells
with high tectb gene expression were mainly gathering in the
cluster 5, and the fectb gene was proved to be expressed spe-
cifically in the macula hair cells, including the utricular hair
cells and saccular hair cells, by WISH. The zpldia gene was
mainly expressed in the crista hair cells, which were thought to
be located in the cluster 12 according to our analysis (Fig. 3H),
and this is consistent with the previous studies [21]. The cells
from the cluster 0 and 7 were considered as neuromast hair
cells because of the expression patterns of their marker genes,
such as calmlib (Fig. 3I). As for cells from cluster 0 and 7,
although they are both neuromast hair cells, they are different
from each other. The cells from cluster O were classified to be
mature neuromast hair cells, and the cluster 7 were classified to
be young neuromast hair cells, according to the expression of
the mature and young hair cell markers, s/00s [22] and proxla
[23], respectively, in the two clusters (Fig. S4).

On the other hand, we analyzed the marker gene of
supporting cells, klIf17 [24], and found that it was mainly
expressed in the cells of cluster 1 (Fig. S5), which suggests
that this cluster of cells are supporting cells. Likewise, we
also analyzed the genes that were reported to be expressed in
mantle cells, such as tnfsf10, ponzr6, pkhdlll, fatlb, crb3b,
cts12, ovgpl, and cldne [17], and found that cells expressing
these genes with high level were clustering in cluster 9 (Fig.
S6). For cluster 14, these cells are closer to the supporting
cells (cluster 1) in UMAP clustering (Fig. 1B); however,
they express some of the genes that have been proved to
be expressed in hair cells specifically, such as myo6b [25],
myo7aa [26] (Fig. S7), which raises a possibility that they
are supporting cells that can differentiate into hair cells.
Therefore, we concluded that the cells from cluster 1 and
9 were supporting cells and mantle cells, respectively, and
the cells from the cluster 14 might be hair cell progenitors.

The molecular properties of the three types of hair
cells

Given that different types of hair cells were clustered into
different populations, we made a comparison among the dis-
tinguishable hair cells at the molecular level. As shown in

Fig. 2D, the number of marker genes detected in the cluster
0,5,7, 12 was 2352, 1023, 2029, 928, respectively. The two
types of inner ear hair cells, macula hair cells and crista hair
cells (cluster 5 and 12), share 568 genes, and 1677 marker
genes were expressed in both the mature and young neuro-
mast hair cells (cluster 0 and 7). However, the neuromast
hair cells and inner ear hair cells only share a small num-
ber of marker genes, which reveals their differences on the
gene expression level (Fig. 4A). Furthermore, the top marker
genes expressed in the different clusters were obviously dif-
ferent (Fig. 4B). We also performed gene enrichment analy-
sis through gene ontology (GO) term, and found that these
different types of hair cells vary dramatically in biological
process, molecular function, and cellular component. For
example, the neuromast hair cells have more energy metab-
olism-related activity, which raises the possibility that they
require more energy to work compared to the inner ear hair
cells (Fig. 4C-E).

The neuromast hair cells were enriched with MET
gene expression

The MET channels are required for functional hair cells and
they are complex comprising of several components, such as
TMC1, TMC2, TMIE, LHFPLS, and CIB2 [2, 27-31]. Hair
cells with functional MET channels are crucial for normal
hearing and balance. In addition, the tip links play important
roles in the stereocilia deflection and MET channel-gating,
and it was proved to be composed of two cadherins, CDH23
and PCDHI15 [32-34]. To determine whether these key mol-
ecules are also expressed in zebrafish hair cells and what
differences there are among these different hair cells, we
analyzed the expression patterns of the genes encoding these
important proteins. As illustrated in Fig. 5A-F, the orthologs
of mammalian MET complex components were expressed
in most of the neuromast hair cells; however, only a small
proportion of inner ear hair cells expressed these genes. The
genes encoding the tip link components, cdh23 and pcdhli5a,
were expressed in a few hair cells (Fig. SG-H).

The zebrafish hair cell scRNA-seq reveals potential
hearing loss genes

Hearing is one of the most important sensory functions,
and it relies on functional hair cells. Healthy hair cells are
the receptors of acoustic signals; therefore, genes respon-
sible for hair cell development, survival, and function are
also important for normal hearing. 119 genes have been
identified as non-syndromic hearing loss (NSHL) genes in
humans (https://hereditaryhearingloss.org/). Among these
genes, 96 human genes have orthologous genes in zebrafish
(Fig. 6A), which demonstrates that zebrafish are quite simi-
lar to humans in terms of NSHL genes. Furthermore, 51
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«Fig. 3 The hair cell classification in zebrafish. A The four clusters of
hair cells can be further divided into three types, namely macula hair
cells (cluster 5), crista hair cells (cluster 12), and neuromast hair cells
(cluster 0 and 7). B The dotplot of top genes in the four clusters of
hair cells. C-F The cnetplot of the genes expressed in the four clus-
ters of hair cells. G-I The results of the WISH. The genes presented
here are expressed in the macula hair cells (G), crista hair cells (H),
and neuromast hair cells (I), respectively. The images at the bot-
tom right in G and H show the dorsal and enlarged view of the gene
expression. The red arrowheads and arrows indicate the inner ear hair
cells and neuromast hair cells, respectively

human NSHL genes have 57 orthologous genes which are
expressed in zebrafish hair cells (cluster 0, 5, 7, and 12), and
the detailed information was shown in Fig. 6B. Except for
the orthologs of identified human NSHL genes, there are
still more than 3000 genes being specifically expressed in
the zebrafish hair cells (Fig. 6C). Some of these genes are
thought to be crucial for hair cell function, and it is quite
possible that they are potential hearing loss genes. In other
words, these data may provide us clear direction for our sci-
entific research in hearing loss gene identification. Under the
guidance of this idea, we randomly selected some genes for
further analysis, and found that these genes were specifically
expressed in either or both of the zebrafish inner ear and
neuromast hair cells (Fig. 6D), indicating that these genes
function in hair cell-related biological processes, and may
even be essential for hearing function.

Functional analysis of the candidate genes involved
in hair cell development

Our scRNA-seq analysis revealed genes that are specifi-
cally expressed in zebrafish hair cells, some of which are
orthologs of human NSHL genes; however, many genes have
not been reported to play roles in hair cell development or
function. To investigate the function of hair cell-enriched
genes, we took the capgb and mb gene as examples, which
were mainly expressed in neuromast hair cells and macula
hair cells, respectively (Figs. 6D, S8). Here, we used mor-
pholino-mediated gene knockdown to down-regulate the
gene expression (Fig. S9). As illustrated in Fig. 7A, B, the
capgb-morphants exhibited decreased hair cells in their lat-
eral line neuromasts compared to the littermate control, and
this abnormality can be rescued by supplying with wild-type
capgb-mRNA. Furthermore, the capgb-morphants had less
response to the acoustic stimuli in the startle response test
(Fig. 7C, D), which indicated that their hair cells had lost
their function to some extent. Likewise, in another experi-
ment, the mb gene knockdown resulted in reduced macula
hair cells, which can be rescued by coinjecting with mb-
mRNA (Fig. 7E, F), and the mb-morphants showed severely
abnormal balance ability in the vestibulo-ocular reflex
(VOR) test (Fig. 7G, H).

Discussion

In mammals, inner ear hair cells can detect the mechani-
cal signals and transform them into physiological signals,
which were then transmitted to the brain through the audi-
tory neurons [35]. Inner ear hair cells can be divided into
cochlear hair cells and vestibular hair cells, which play
important roles in hearing and balance, respectively. The
two types of hair cells differ from each other in both struc-
ture and function [7].

As an excellent animal model, zebrafish have hundreds
of hair cells, making it a good model to study hair cell
function. Similar to mammals, zebrafish have inner ears,
consisting of semicircular canals and otolith; however,
zebrafish have no cochlea in their inner ear. Therefore,
inner ear hair cells can be divided into macula hair cells
and crista hair cells in zebrafish. Except for inner ear hair
cells, zebrafish have a third type of hair cells, neuromast
hair cells, in their lateral line system. The three different
hair cells differ from each other in morphology; however,
the molecular difference among them is unknown.

Here, we used the single-cell RNA-sequencing method
to analyze the gene expression patterns in zebrafish hair
cells, and uncovered the molecular difference among the
different types of hair cells. In brief, after quality con-
trol, the scRNA-seq data received dimensional reduction
processing using the UMAP method, and all of the cells
sequenced were classified as 21 clusters. After annotating
according to the known marker genes and gene expres-
sion patterns in the database (http://zfin.org/), we identi-
fied four clusters of cells as macula hair cells, crista hair
cells, and neuromast hair cells. Further validation using
WISH confirmed our cell clustering and annotation in our
following analysis. As for other types of cells, such as
supporting cells, mantle cells, and epithelial cells, they
are GFP-negative (Fig. S3), but they cannot be filtered out
in our FACS sorting. The possible mechanism involved is
that they interact with the GFP-positive cells, namely hair
cells and retinal ganglion cells, and they were also sorted,
coupling with GFP-positive cells.

Furthermore, we performed a comparison among these
different subtypes of hair cells, and found that the neuro-
mast hair cells have stronger expression of MET compo-
nents and energy metabolism-related activity compared
to the inner ear hair cells. Moreover, we analyzed the
relationship between the known human NSHL genes and
zebrafish hair cell marker genes revealed by the scRNA-
seq, and found that 42.86% of human NSHL genes have
orthologous genes expressed in zebrafish hair cells, which
further reflects the reliability of our data. On the other
hand, there are plenty of genes in our hair cell scRNA-
seq gene pool that have not been reported to function in
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Fig. 4 The molecular difference among the different hair cells. A The
marker genes that are expressed in different hair cells and the rela-
tionship among them. B The heatmap of the top marker genes in each

hair cells, which raises the possibility that these genes
have potential value in hair cell function and even hearing
loss gene identification. We randomly picked some of the
marker genes for further analysis, and found that mb and
capgb gene were specifically expressed in zebrafish inner
ear macula hair cells and lateral line neuromast hair cells,
respectively. Gene functional analysis also demonstrated
that these two genes were required for hair cell develop-
ment or function; for that knockdown of these two genes
can lead to hair cell loss and hair cell dysfunction.

As far as we know, myoglobin, encoded by the Mb gene,
is a single-chain heme protein containing 153 amino acids.
It mainly exists in cardiac and skeletal muscle, and recent
studies showed that it also exists in a variety of non-mus-
cle tissues, such as the brain, kidney, gill, and liver [36].

@ Springer

cluster of hair cells. C-E The GO analysis reveals the different prop-
erties among the different hair cells in biological process (C), molec-
ular function (D), and cellular component (E)

Myoglobin functions in transporting and storing oxygen in
muscle cells, and it can also promote the removal of reactive
oxygen species (ROS) and NO in cancer cells [37]. How-
ever, the role of myoglobin in hair cells was not reported
before, and it is the first time that the mb gene was proved to
be expressed in zebrafish inner ear hair cells and important
for hair cell development and function in our current study.
Further investigation was needed to uncover the molecular
mechanisms involved in hair cell function.

CAPG, encoding a gelsolin-like capping protein, as
a proto-oncogene [38], is involved in the migration and
invasion of various cancer cells [39—42]. Recently, a rare
homozygous deletion of the chromosome 2p11.2 region
was found in a Tunisian patient with autism, intellectual
disability, and hearing impairment, and the affected genes
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Fig.5 The distribution of the cells expressing the genes encoding the MET and tip link components. The feature plot and violin plot are shown

for each gene

mainly included ELMOD3, CAPG, and SH2D6 [43]. In our
study, we found that the capgb gene was mainly expressed
in zebrafish neuromast hair cells, and essential for hearing,
indicating its crucial role in auditory function. Nevertheless,
how CAPG contributes to hair cell development, as well as
hearing, merits further investigation.

To sum up, in this study, we identified three subpopula-
tions of hair cells, which corresponded with macula hair

cells, crista hair cells, and neuromast hair cells in zebrafish,
through scRNA-seq. In addition, it also uncovered thousands
of genes in zebrafish hair cells, which would be helpful for
our research in hair cell biology in the future.

Based on differential gene expression, Lush., et al. [17]
found that hair cells can be subdivided into young hair cells
and mature hair cells, and these two different hair cells have
distinct distribution and gene expression that the young hair
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«Fig.6 The zebrafish hair cell scRNA-seq reveals potential hearing
loss genes. A The relationship between the known human NSHL
genes and zebrafish hair cell-enriched genes. B The list of the human
NSHL genes, which have orthologs expressed in zebrafish hair cells.
C Venn diagram of the zebrafish orthologs of human NSHL genes
and marker genes expressed in each cluster of hair cells in zebrafish.
The numbers indicate the number of the genes. D The expression pat-
terns of the hair cell-enriched genes in zebrafish embryos

cells form a ring and express atohb. Differently, our current
work revealed the molecular difference among three differ-
ent types of hair cells and specific marker genes for the first
time, which could provide further insights into understand-
ing the mechanisms underlying hearing and balance.

Materials and methods
Zebrafish embryos

Zebrafish were maintained at 28.5 °C. Two zebrafish lines
were used in the study, including the wild-type AB and the
transgenic line 7g(Brn3c:mGFP), which was described in
the previous work [19]. All animal procedures were per-
formed according to protocols approved by the Animal Care
and Use Committee of Nantong University and were consist-
ent with the National Institutes of Health Guide for the Care
and Use of Laboratory Animals.

Single-cell RNA-sequencing

The Tg(Brn3c:mGFP) transgenic zebrafish larvae at 6 days
post-fertilization (dpf) were anesthetized and then treated
with 0.25% trypsin to dissociate into single cells, which were
divided into GFP-positive and GFP-negative cells through
the fluorescent activated cell sorter, and the RNA expressed
in GFP-positive cells were then obtained and sequenced
using the 10 X Genomics platform.

Single-cell sequencing analysis

The basic procedure for single-cell sequencing analysis
was carried out as previously described [44]. Briefly, Seu-
rat V4.0.1 [20] was used for the integrated analysis of the
single-cell sequencing data, including data filtering, data
normalization, cell clustering, and cluster-level marker gene
identification. First, the Seurat object was created by “Crea-
teSeuratObject” function and the raw data were primarily fil-
tered through the parameter settings “min.cells =5,min.fea-
tures =200”, which required that only the genes expressed
in at least five cells were considered and only the cells with
minimal 200 genes detected were kept. Then, the data were
further filtered through the “subset” function in Seurat with
the parameter settings “nFeature_RNA <5000 & percent.

mt < 10”, which required the cells containing no more
than 10% reads from mitochondrial genes and up to 5000
detected genes. Second, “SCTransform” function in Seu-
rat was applied to data normalization, and the data were
regressed by several factors(percentage of mitochondrial
expression, total number of UMIs, and total number of genes
detected) through a second non-regularized linear regression
(variable.features.n = 1000,vars.to.regress = c(“nFeature_
RNA”,“nCount_RNA”,“percent.mt”)). For cell clustering,
the principal component analysis (PCA) was first applied for
extracting the top principal components (top 50 PCs), and
then, the clusters were identified through shared k-nearest
neighbor graph construction and cluster modularity function
optimization (k.param =20, resolution=0.25). To identify
marker genes for each cell type, “FindAllMarkers” func-
tion in Seurat was used with the parameter settings “only.
pos =TRUE, min.pct=0.25,logfc.threshold =0.25”. The
default Wilcoxon rank-sum test in “FindAllMarkers” func-
tion was selected for differential expressed gene detection
between clusters, where the p values were further adjusted
by Bonferroni correction.

For GO enrichment analysis, the R package clusterPro-
filer [45] was used, and the marker genes identified by Seurat
were used as input. The three GO categories: BP (Biologi-
cal Process), CC (Cellular Component), and MF (Molecu-
lar Function) were analyzed respectively against the marker
genes for each cell cluster, and the p values were corrected
by Benjamini & Hochberg (BH) method, where the signifi-
cantly enriched GO terms were defined as the ones with BH
adjusted p value less than 0.05. The GO enrichment results
were further visualized through the enrichplot method inte-
grated in clusterProfiler.

Whole-mount in situ hybridization

The whole-mount in situ hybridization procedure was simi-
lar to our previous description [46, 47]. In brief, the gene-
specific primers targeting the coding sequence of interest
were designed and synthesized. After amplification using
the PCR method, the fragments were subcloned into the
pGEM-T Easy vector (Promega). The DIG-labeling RNA
probe was transcribed in vitro using the linearized recom-
binant plasmid as a template. For the hybridization step,
the pretreated zebrafish embryos were incubated with the
digoxigenin-labeling RNA probe overnight first, and then,
alkaline phosphatase-conjugated primary antibody against
digoxigenin was used to detect the RNA probe following
three washes. Subsequently, for color reaction, the nonspe-
cific binding was washed out and the substrate of alkaline
phosphatase, NBT/BCIP solution, was added to the reaction
system. Finally, the samples were imaged and the gene-spe-
cific mRNA expression was visualized through the micro-
scope. The primers used for probe synthesis are as follows:
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tectb-F: GCCGTGTTTAGCCAAAGAGT;
tectb-R: ACAACTTCTCCCCGTCACAT;
zpldla-F: CCACGGTTGTGCTGTTTAGC;
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zpldla-R: GTTGGTGGCTTTTACAGCGG;
calmlb-F: AAGTGTTGTGTCGTGGGGTT;
calmlb-R: GCAGGGGAGATTTCACTGGT;
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capgb-F: ACCTGGTGCTGGATAACAGG;
capgb-R: ATCTGAGCTTTGCCGTGTCT;
C5HI1orfl-F: TGATGTCCAATAAAAGCCAGGT;
C5HI11orfl-R: CACACATTGAGGCTCTGAAGT;
zdhhc16b-F: CCTGTGGAATTATGGGATGG;
zdhhc16b-R: ATGCTGCAGTGATGAGTTCG;
tekt3-F: AGATTTCAGCGCTGTCCGAT;

tekt3-R: AAGCAGCACGTTCACTCTGA;

mb-F: TGATCTGGTTCTGAAGTGCTG;

mb-R: GGCAAATCCGATCTCCTTGT;

s100s-F: CCAAGATGCCACGCTCAAAG;
5100s-R: CCCGCTAACACTTCTCTCGG.

Morpholino-mediated gene knockdown

The gene-specific morpholinos (MOs) were synthesized by
the Gene Tools, LLC. For gene knockdown, the 2-3 nL of
0.3 mM of gene-specific morpholinos were microinjected
into the 1-2-cell-stage zebrafish embryos. Here, the mor-
pholinos were used to block the splicing of the pre-mRNA,
and therefore down-regulate the target gene expression. The
sequences of the morpholinos used in this study were as
follows:

capgb-MO: TCTGGAGGAACAAAGATGAGATGGT,;

mb-MO: ATCAGAGAGTCCTGCTTTACCCTGA.

Reverse transcription-polymerase chain reaction
(RT-PCR)

The RT-PCR was performed following the standard proce-
dure. Briefly, the total RNA was extracted from the zebrafish
embryos and then reverse-transcribed into cDNA. The PCR
experiment was performed to detect the gene expression
using the cDNA as a template. Herein, the primers used for
PCR were listed as follows:

capgb-F: TCTGACAGCATGCCGGAGC;

capgb-R: TAACATTGGTGATCTGAGCTTTGC;

mb-F: GACTTTTCCAAAGCCACAGGC;

mb-R: TCCTGAGACCCTAACGAACCA.

mRNA rescue experiment

The rescue experiment was performed by coinjecting the
specific mMRNA with the morpholino. The mRNA was tran-
scribed in vitro using the linearized recombinant plasmid as
a template, which contains the coding sequence of specific
gene. The primers used in the PCR to amplify the specific
genes were as follows:
capgb-mRNA-F: ACCTAGGTGCAGGAACAGG;
capgb-mRNA-R: ACAACTGGTTGAGTGCAGTTTA;
mb-mRNA-F: GCCCCGATATTGAAGACAGGT;
mb-mRNA-R: TGACTCCCATTTGAGATCTGGT.

Startle response test

The startle response test in zebrafish was carried out fol-
lowing the procedure [48, 49]. In this test, 20 zebrafish lar-
vae at 5 dpf were put into the culture dish for free swim-
ming. When acoustic stimuli occurred, the behavior of the
zebrafish was recorded by a high-speed camera (500 fps). In
response to the stimuli, the zebrafish with normal auditory
function would have a characteristic C-bend motion lasting
less than 10 ms; however, the zebrafish with damaged audi-
tory function would not. Herein, both the distance moved
and the number of the C-bend motions were used to quantify
the startle response.

VOR test

As previously described [49, 50], the VOR test was per-
formed according to standard procedure. Briefly, the
zebrafish larva at 5 dpf was fixed in the chamber in a head-up
position with 5% methylcellulose. The rotary platform, with
the chamber unit fixed, rotated back and forth at a speed of
30 rpm. The eye movements of the zebrafish were recorded
by an infrared camera, and the periodical changes of the
projection area of the eyes were used to evaluate the VOR.

Imaging and statistical analysis

For the confocal fluorescence microscopic analysis, the
zebrafish were embedded in the 0.8% low melt agarose fol-
lowing anesthetization with MS-222, and the imaging was
carried out by the Nikon A1l microscope. The Olympus
MVX10 microscope was used for bright-field imaging in
the WISH experiments. All data were presented as mean
with SD, and the unpaired Student’s t tests were used to
determine statistical significance. A value of P <0.05 was
considered statistically significant.
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