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Abstract
Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, 
pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembra-
nous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). 
Due to CNC’s vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-β, Wnt, FGF, 
Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types 
in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse 
model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribu-
tion to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory 
network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic 
molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating 
CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory net-
work in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic 
mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the 
potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering 
with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel 
therapeutic strategies in the clinic.
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Abbreviations
CNC	� Cranial neural crest cells
BMP	� Bone morphogenetic proteins

FGF	� Fibroblast growth factors
Fb	� Frontal bone
Pb	� Parietal bone
PDGF	� Platelet-derived growth factor
TGF-β	� Transforming growth factor-β
Hh	� Hedgehog signaling

Cranial neural crest cell and its fate labeling

Cranial neural crest cell (CNC) is an embryonic structure 
with developmental potential in vertebrates. Morphologi-
cally, pre-migratory cranial neural crest cells (CNCs) are 
initiated in the dorsal folds of the neural tube during neurula-
tion (Fig. 1), pre-migratory CNCs undergo an epithelial-to-
mesenchyme transition, and then delaminate from the neural 
tube to become migratory CNCs, which will further migrate 
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into differently destined sites in early embryos. The migra-
tory CNCs can give rise to diverse types of cells including 
peripheral neurons and glia, melanocytes and the mesecto-
dermal derivatives, which include osteoblasts and chondro-
cytes at the craniofacial level, as well as the smooth muscle 
cells in cardiovascular structures.

The cell fate of the neural crest can be traced using 
transgenesis and genome editing technologies in mice. The 
Cre-loxP system is a frequently used tool, in which expres-
sion of a Cre-recombinase in CNCs or their derivatives 
genetically enables the expression of a Cre-reporter allele, 
thus permanently tracing CNC-derived cells [1]. Wnt1-Cre 
[2–4] and Pax3-Cre [5] have been used to genetically trace 
pre-migratory CNCs and their derivatives. Multiple Cre 
transgenic mouse lines have been generated to label migra-
tory CNCs and their derivatives, e.g., Dhh-Cre [6, 7], HtPA-
Cre [8], Sox10-Cre [9], Sox10ER(T2)-Cre [10], Mef2c-F10N-
Cre [11], and P0-Cre [12–14] (Fig. 1).

However, Wnt1-Cre transgene is observed to induce 
ectopic activation of Wnt signaling which results in defec-
tive midbrain development [15]. Using Cre immunosignals, 
we revealed the differences in P0-Cre/R26-lacZ and P0-Cre/
R26-RFP in E8.0–9.5 (4–19 somites) embryos in labeling 
CNC [16]. P0-Cre labels migrating CNC cells and are more 
extensive in the forebrain and hindbrain but not apparent in 
the midbrain. Wnt1-Cre labels extensive in the midbrain. 
The difference between P0-Cre and Wnt1-Cre in labeling 
CNC suggests a better explanation of the differential distri-
butions of CNC derivatives and the phenotypes caused by 
Cre-driven genetic modifications.

Neural crest and mesoderm lineage 
in vertebrate‑specific structure

Using a transgenic mouse with a permanent neural crest 
cell lineage marker, Wnt1-Cre/R26R showed that the fron-
tal bones are neural crest-derived and the parietal bones 

mesodermal [4], providing solid perspectives on skull 
evolution. Cranial neural crest and mesodermal lineages 
contribute to the development of most craniofacial struc-
tures. CNC-derived two frontal bones located anteriorly in 
the skull vault, and two mesoderm lineage-derived parietal 
bones located in the middle posterior part of the skull vault 
[4, 17, 18]. Interparietal bone is located in the posterior part 
of the skull containing mixed lineages from both neural crest 
and mesoderm [19]. Between the cranial bones, different 
sutures connect each other. Sagittal suture is from the neu-
ral crest, separating two mesoderm-derived parietal bones. 
Coronal suture is a mesoderm origin, separating the frontal 
and parietal bone [4].

Calvarial bones are essential to support and protect brain 
growth and expansion. The neural crest and mesoderm line-
ages endow a regional difference in vertebrate-specific struc-
tures during the development [20]. What is more, two dif-
ferent lineages in the cranial bones were found conserved in 
different species, such as in humans, chickens, and rats. The 
craniofacial structures from different tissue lineage exhib-
ited evolutional features, providing novel insights for the 
comparative analysis on the development and evolution of 
vertebrates and vertebrate-specific structures [21].

Gene regulatory network in CNCs 
and mesoderm‑derived osteoblasts 
and calvarial bone

The differences in the intrinsic osteogenic potential are 
highly associated with tissue lineage in cranial bone. CNC-
derived osteoblasts grow faster with less differentiation 
compared to mesoderm-derived osteoblasts [22]. When 
CNC-derived osteoblasts were cultured into mesodermal 
osteoblasts, CNC-derived osteoblasts are capable to nucle-
ate ossification centers [23]. CNC-derived osteoblasts dem-
onstrate to be low apoptosis and higher osteogenic capacity 
[24] (Fig. 2).

Higher levels of FGF ligands and receptors were 
observed in frontal bone [25], suggesting that FGF sign-
aling mediates osteogenic potential difference [26]. Later 
evidence showed that FGF1 is a positive regulator of 
Runx2 and functions as a unique molecule in CNC-derived 
osteoblast differentiation [27]. Canonical Wnt signaling 
and BMP signaling is active in CNC-derived frontal bone 
[20, 28]. Using Axin2 knockout model to activate the Wnt 
signaling, parietal bone is capable to reach a higher level 
of osteogenic potential similar to that in frontal bone [29]. 
TGF-β signaling is a main positive regulator of apopto-
sis in cranial osteoblasts [24, 30] (Fig. 2). A shared gene 
regulatory network in the canonical WNT, TGF-β, BMP, 
and FGF pathways was verified in the mouse and human to 
govern the regional differences upon osteogenic potential 

Fig. 1   Cranial neural crest and its cell fate labeling in mice. At the 
dorsal site of the neural tube, CNCs transiently formed, and then 
undergo delamination and migration. Different genetic models were 
used to label the pre-migratory (in green) and migratory CNC (in 
orange) in mice
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within the cranial bone [31], indicating that the findings 
from mouse models are suitable for the translational poten-
tial to human (Fig. 2).

High throughput sequencing from mouse and human 
frontal and parietal compartments showed a broad spec-
trum of differently expressed genes covering the cell 
matrix, transcriptional factors, cytokines and receptors [32, 
33]. At embryonic development, a large number of differ-
ently expressed genes were found at different axial levels of 
CNC-derived tissues using transgenic mouse lines, indicat-
ing again the potential regulatory networks in controlling 
the formation of specific skeletal elements and promoting 
migration through different molecular pathways [34].

Gene regulatory network from CNC 
patterning into osteoblasts

We previously revealed some genes to be functional dur-
ing the development of the skull [18], and proposed a gene 
regulatory network to maintain CNC-derived frontal bone 
characteristic [35]. A diverse set of interacting signals, tran-
scription factors, and downstream effectors have been indi-
cated to endow CNC cell features to influence fate decision, 
migration and differentiation [36]. Therefore, we summa-
rized recent discoveries from conserved signaling pathways 
including BMP, TGF, FGF, Wnt, Hippo, PGDF, Notch, 
Hedgehog signaling, and integrated them together to be a 
gene regulatory network within CNCs to orchestrate spatial 
orientation, developmental stability and plasticity, which are 
hallmarks of osteoblast differentiation and calvarial bone 
development.

BMP signaling

BMP signaling is transduced through the binding of BMP 
ligands to BMP receptor (BMPR) type I and type II (BMPRI 
and BMPRII), which further activate the intracellular Smads 
(Smad1, Smad5, and Smad8) proteins to form a complex 
with Smad4, which can translocate into the nucleus and 
trigger target gene expressions [20]. Bmp2 deletion in mice 
lacks both branchial arches and detectable migratory CNCs 
[37] and plays a crucial role in craniofacial bone develop-
ment [38]. CNC inactivation of Bmp2, Bmp4 and Bmp7 
leads to multiple loss of CNC-derived skeletal elements [39]. 
Double loss of Bmp5 and Bmp7 in mice exhibited under-
developed branchial arches due to defective proliferation of 
migrating CNCs [40]. Bmp4 exposure to mouse embryonic 
stem cells in vitro can induce neural ectodermal differentia-
tion [41]. Bmp4-treated CNCs were capable to differentiate 
into osteocytes [41]. Noggin and chordin, the secreted Bmp 
antagonists, were used as an early inducer to CNC induction 
and regulated the emigration of CNC from the neural tube 
[42]. Gremlin 1, a secreted Bmp antagonist, is expressed in 
CNC and required for neural crest development [43]. Dur-
ing the differentiation from iPSC to CNC in vitro, precise 
regulation of BMP activity is critically needed for efficient 
differentiation [44].

At the receptor level, BMPR1A is a major type 1 BMP 
receptor for BMP-Smad signaling during skull development 
[45]. Enhanced BMPR1A in CNC can cause premature 
suture fusion in mice [46] and result in midline craniosynos-
tosis via mTOR activation [47]. Mice lacking a BMP type I 
receptor called activin A receptor type 1 (ACVR1) in CNCs 
display an alteration of cell fate from odontoblasts to osteo-
blasts [48]. The constitutively activated Acvr1(ca-Acvr1) 

Fig. 2   A shared gene regula-
tory network in cranial bones 
in mouse and human. CNC-
derived frontal bone (in green) 
and osteoblasts show higher 
proliferation and osteogenesis 
and strong activities of BMP, 
FGF and WNT signaling. 
Mesoderm derived parietal bone 
(in gray) and osteoblasts display 
a higher level of differentiation, 
apoptosis and TGF signaling
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mouse line was generated to investigate the functions of 
BMP-dependent signaling [49], and found that constitutively 
active ACVR1 in CNCs caused CNC fate switch to a chon-
drogenic fate in mice [50]. Suture mesenchymal stem cells 
(SuSC) are controversial for the tissue origins due to differ-
ent transgenic mouse models that have provided the tracing 
properties in SuSC [20]. BMPR1A deletion in SuSC-specific 
cells triggered precocious differentiation, resulting in cranio-
synostosis in mice [51]. Therefore, BMP signaling is vitally 
important for CNC migration, fate commitment and shaping 
the development of craniofacial structures in mice (Fig. 3).

TGF‑β signaling

Transforming growth factor-β (TGF-β) superfamily mem-
bers signal through a heteromeric receptor (TGF-β type II 
receptor, Tgfbr2; TGF-β type I receptor, Alk5) complex 
to induce intracellular Smads (Smad2/3) in response to 
regulate CNC patterning during craniofacial develop-
ment. Tgfbr2 loss in CNCs showed craniofacial skeletal 
malformations [52] and skull defects [53]. Alk5 controls 
CNC survival and regulates the fate of CNCs [54]. TGF-β 

signaling removal in CNC leads to alterations in prolifera-
tion and differentiation of CNC-derived osteogenic cells 
[55].

At a cellular level, Smad4 mutants display the underde-
velopment of craniofacial structures [56]. For mesoderm-
derived bone, TGF-β signaling can influence the fate of mes-
oderm-derived cells via a TGF-β/Msx2 cascade to regulate 
the skull development [57]. Modulation of TGF-β signaling 
in CNC is found useful for the prevention of congenital cran-
iofacial birth defects [58]. What is more, transferrin receptor 
(Tfrc) deletion in CNC can cause craniofacial malformation 
by working as a facilitator to TGF-β/BMP signaling path-
ways [59]. For Smad-independent TGF-β signaling, TGF-
β-activated kinase 1 (Tak1) provides a critical interaction 
between the canonical and noncanonical TGF-β signaling. 
Tak1 deficiency in CNC displays the round skull, hypoplas-
tic maxilla and mandible [60]. Splicing factor Rbfox2 is 
expressed in CNC, and functions through Rbfox2-TGF-β-
Tak1 interaction to control CNC patterning. Rbfox2 deletion 
in CNC leads to defective craniofacial bone development 
[61] (Fig. 3). Therefore, TGF-β signaling plays a critical 
role in instructing CNCs to form the craniofacial skeleton.

Fig. 3   An integrated gene regulatory network from CNC pattern-
ing into osteoblast lineage. CNC undergoes induction, delamination 
and migration at an early stage. The migratory CNCs follow a gene 
regulatory network pathway to differentiate into osteoblast to shape 
the development of craniofacial structures. Multiple signaling path-

ways (e.g. BMP, TGF, Wnt, Hippo, PGDF, Hedgehog) can integrate 
together to converge into specific transcription factors to control CNC 
spatial orientation, developmental stability and plasticity during cal-
varial bone development
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Wnt signaling

Most Wnt genes will result in distinct phenotypes once elim-
inated from the genome. Through the binding of Wnts ligand 
to Frizzleds (FZDs) receptors, it will lead to elevated levels 
of β-catenin [62]. Wnt signaling is an early signal for CNC 
specification, induction, delamination and migration during 
craniofacial development [63]. Temporal control by Wnt/β-
catenin is an important factor for CNC fate decisions [64]. 
Wnt ligands secretion and Wnt/β-catenin signaling in cranial 
mesenchyme are dispensable for specification and prolifera-
tion of early meningeal progenitors, which are derived from 
CNCs [65]. Knockout of β-catenin in CNC causes increased 
apoptosis in pre-migratory CNCs [66]. Enhanced activation 
of Wnt signaling using Axin2 knockout mice can increase 
the osteogenic potential and osteogenesis in mesoderm 
derived cranial bones [29] (Fig. 3).

Tcf7l1, a transcriptional repressor of Wnt target genes, 
is expressed in the anterior neural fold region during neu-
rulation and is required for forebrain development [67]. 
Conditional inactivation of Tcf7l1 using AP2α-Cre leads 
to CNC fate conversion and aberrant activation of Wnt/β-
catenin signaling [67]. The other Wnt antagonist Dkk1, 
which is secreting by the prechordal mesoderm, can inhibit 
CNC formation and prevent the formation of neural fold in 
mouse [68]. Protein arginine methyltransferase 1 (Prmt1) 
can negatively regulate canonical Wnt signaling. Disruption 
of Prmt1 in CNC causes craniofacial defects [69]. CNC-
secreted Bmp4 genetically interacts with Msx1, which fur-
ther represses Osr2-dependent expression of Wnt antago-
nists Dkk2 and Sfrp2 in mouse to result in craniofacial 
malformation [70]. In short, the gradient of Wnt/β-catenin 
signaling is crucial for CNC-derived osteoblasts differentia-
tion at a cellular and molecular level.

Hippo signaling

Hippo is a fundamentally conserved signaling pathway in 
regulating cell proliferation, survival, and differentiation for 
normal CNC development. YAP/TAZ are transcriptional fac-
tors responding to MST1/2 and LTS1/2 activities to induce 
target gene expressions [71]. Nf2 acts as upstream of Hippo 
signaling, transgenic mice carrying a 2.4-kb Nf2 promoter 
to drive β-galactosidase (β-gal) with a nuclear localization 
signal were generated to visualize Nf2 expression pattern. 
Strong Nf2 promoter activity was observed in the develop-
ing brain and migrating neural cells, suggesting a specific 
function of Nf2 in CNC migration [72].

The knockout of the Hippo pathway gene Nf2, Mst1/2, 
or Lats2 leads to embryonic lethality in the mouse germline. 
Yap and Taz deletion in CNC using Wnt1-Cre and Wnt1-
Cre2SOR resulted in reduced proliferation in branchial arch 
mesenchyme, and transcriptional factor Foxc1 was found 

involved in regulating YAP/TAZ activity [73]. In addition, 
BAF complex works through interaction with Hippo-Yap 
signaling to modulate gene regulatory networks for neural 
crest development [74]. Therefore, CNC-specific deletion 
of BAF155/BAF170 leads to a wide range of craniofacial 
defects [74]. The transcription factor FoxO6 in CNC was 
found to be an activator of Hippo signaling. FoxO6 is spe-
cifically expressed in craniofacial tissues. FoxO6 knockout 
mice lead to the expanded face and skull. Mechanically, 
FoxO6 activates Lats1 expression, which further increases 
the level of Yap phosphorylation to activate Hippo signal-
ing. Accordingly, FoxO6 knockout mice result a decrease 
in Lats1 expression, which significantly reduced Shh and 
Runx2 activities, suggesting that Shh and Runx2 are inter-
played with Hippo signaling [75]. Interestingly, PITX2 is 
able to activate FoxO6 expression, suggesting that PITX2-
FoxO6-Hippo interaction is capable to coordinate the osteo-
genic differentiation and skull growth during CNC pattern-
ing [75] (Fig. 3).

FGF signaling

Fibroblast growth factor (FGF) signaling consists of 22 
ligands that interact with 4 receptors (Fgfrs), and the intra-
cellular signaling is mediated by multiple pathways includ-
ing PI3K-AKT, PLCγ, STAT and MAPK [76]. FGF is essen-
tial in CNC-derived skeletogenic differentiation [76]. Fgf8 
is a negative regulator to control osteogenic fate and is suf-
ficient to switch CNC-derived mesenchyme into cartilage 
[77]. Fgfr1 loss in CNC induced multiple malformations 
including heterotopic chondrogenesis and osteogenesis at 
the interface of the anterior portions of frontal bones [78], 
defective cleft palate and severe craniofacial pattern [79]. 
Conditional expression of the Fgfr2-S252W mutation in 
CNC results in severe craniofacial phenotype [80], and 
simultaneous expression of Fgfr2 (S252W) is sufficient to 
induce craniosynostosis [81]. Ectopic expression of Fgfr2 
has been implicated in the development of craniosynostosis 
in mice and humans [82] through the induction of Runx2-
dependent osteogenic program [82].

Interaction with FGF signaling pathway is crucial for the 
CNC-derived craniofacial bone development. Bcl11b, a tran-
scriptional factor, expresses in osteogenic and sutural mes-
enchyme [82], Bcl11b acts as a regulator to Fgfr2. Bcl11b 
knockout in CNCs exhibits increased osteoprogenitors, 
premature osteoblast differentiation, and enhanced cranial 
mineralization [82]. Homeoprotein engrailed 1 (EN1) inter-
acts with Fgfr2 during osteogenic differentiation [83]. Robo1 
deficiency in CNC showed defective cranial frontal and pari-
etal bones [84] in part through the interaction with FGF 
signaling [84]. Additionally, Dex, a common used drug in 
treating benign and malignant conditions, can disrupt CNC 
development via the inhibition of FGF signaling, which in 
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turn causes defective cranial bones [85]. Recent evidence 
using Fgfr1 and Fgfr2 allelic knock-in mouse strains showed 
that Fgfr1 and Fgfr2 play combinatorial roles in craniofacial 
development, uncoupling a novel Fgfr kinase-dependent cell 
adhesion property in CNCs [86].

Hedgehog signaling and primary cilium

The Hedgehog signalling (Hh) pathway consists of sonic 
hedgehog (Shh), desert hedgehog (Dhh), and Indian hedge-
hog (Ihh). In the presence of Hh, Hh binds to its receptor 
Ptc, so that the Ptc inhibition to Smo is released, which leads 
to activation of Gli transcriptional factors [87]. Ihh deletion 
in CNC displays the gradual dwarfism in mice [88]. Shh 
sends signals to multipotent CNCs to control normal crani-
ofacial development [89]. Disruption of Hh signals leads to 
abnormal CNC development and malformed skull base [90]. 
Hh-responsiveness removal in CNC results in the absence 
of CNC-derived skeletal components [91], suggesting Hh 
signaling is essential to establish intrinsic and extrinsic pat-
terning cues for the craniofacial skeleton [92]. Fox mediates 
the action of Shh in regulating facial development [91], so 
Shh-Fox interactions are crucial for CNC proliferation. Inac-
tivation of suppressor of Fused (Sufu) in CNC or mesoderm, 
which is a critical repressor of Hedgehog signaling, results 
in abnormal osteogenic differentiation [93].

The primary cilium is a microtubule-based organelle, 
where intraflagellar transport (IFT) plays a pivotal role in 
assembling primary cilia. The cilia are also the main center 
for Hh signaling transduction. IFT20 mutants in CNC did 
not secrete procollagen and results in skeletal dysplasia via 
the dysregulation of intracellular collagen trafficking [94]. 
Mechanically, IFT20 disruption in CNC down-regulates 
PDGFRα production, which further causes the suppression 
of PDGF-Akt signaling, resulting in decreased osteogenic 
proliferation and increased apoptosis [94]. IFT88 deletion 
in CNC results in a decreased rate of cell proliferation at 
early stages [95]. Motor proteins within primary cilia are 
also essential for the signaling and development of the skull, 
such as Kif3a is a motor protein. Kif3a loss in CNC causes a 
dramatic defect in intramembranous ossification, resulting in 
the missing of Shh signaling in Kif3a-deficient CNC-derived 
mesenchyme [96]. Polycystin 2 (Pkd2) is localized in pri-
mary cilia, and Pkd2 deletion in CNC exhibits malformed 
skull structures [97] (Fig. 3).

Ciliary proteins EVC and EVC2 are positive regulators of 
Hedgehog signaling and express in craniofacial tissues [98]. 
EVC2 removal in CNC does not cause obvious skull defects 
[99] but shows distinct defects in the skull base [100]. How-
ever, malfunction of EVC2 in mice and human shows strik-
ing phenotype, which is paralleling to human-chimpanzee 
craniofacial differences, suggesting that a regulatory diver-
gence of Hedgehog signaling may contribute to the unique 

craniofacial morphology in human [101]. Besides, Fuz, 
serving as a crucial regulator of ciliogenesis, Fuz removal 
in CNCs results in expanded frontal bone mainly via the 
excessive Fgf8 expression [102].

Notch signaling

Notch signaling consists of delta-like (DLL1, DLL3, DLL4) 
and the Jagged (JAG1, JAG2) families, which serve as 
ligands. Ligand-receptor binding leads to a structural change 
in the Notch receptor, and the intracellular domain (NICD) 
can translocate into the nucleus for the association with tran-
scription factors. Conditional gain or loss of Notch signaling 
in CNC results in craniofacial abnormalities, suggesting an 
autonomous role for gradient Notch signaling in CNC migra-
tion, proliferation, and differentiation [103].

As a membrane-bound Notch ligand JAG1, deletion of 
Jagged1 in CNC exhibited underdeveloped mesenchyme 
and aberrant growth of craniofacial structure [104]. JAG1 
stimulates osteoblast-specific genes expressions in CNCs, 
contributing to the differentiation and mineralization of 
osteoblasts [105]. Exogenous JAG1 exposure to CNCs can 
induce osteoblast differentiation and maturation along with 
target genes expressions of Notch signaling such as Hes1 
and Hey1 [105]. Using synthetic hydrogels to deliver exog-
enous JAG1 in CNC cell line is sufficient to induce in vivo 
osteogenesis [106].

PDGF signaling

The platelet-derived growth factor (PDGF) family has 
four ligands (PDGF-A, PDGF-B, PDGF-C, PDGF-D) and 
two tyrosine kinase receptors (PDGFRα and PDGFRβ). 
PDGFRα and PDGFRβ are expressed in the craniofacial 
mesenchyme [107]. PDGFRα is expressed in the migratory 
progenitors including the CNCs. PDGFRα disruption in 
CNCs resulted in defective craniofacial development [108]. 
Conditionally expressing an auto-activated PDGFRα in 
CNC enhances osteoprogenitor proliferation and osteoblasts 
ossification [109]. The defective cell survival and pattern-
ing in PDGFRα deleted CNC is a cause of malformation of 
early embryogenesis [110] (Fig. 3). PDGF-responsive SRF-
driven transcriptional program has been identified [111]. 
SRF and PDGFRα mutants genetically interact in regulating 
CNC proliferation and migration during craniofacial bone 
development.

PDGFRβ contributed to CNC-derived craniofacial bone 
development [112].PDGFRs genetically interact with 
each other but play distinct mechanisms to regulate CNC 
activity and subsequent craniofacial development, such 
as PDGFRα plays a predominant role in CNC migration 
whereas PDGFRβ primarily contributes to the proliferation 
of mesenchyme [113].
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Signaling crosstalk and transcriptional 
factors

Signaling crosstalk

Integrated signaling pathways and factors are converged 
into specific transcriptional factors to regulate CNC plas-
ticity and patterning. FGF, BMP and Shh mediated sign-
aling pathways are required for cranial suture morpho-
genesis and calvarial bone development [138]. SMAD4 as 
the common mediator of TGF-β/BMP signaling, Smad4 
loss results in increased Wnt/β-catenin activity partially 
through the downregulation of Dkk1 and Sfrp1, indicat-
ing the crosstalk between TGF-β/BMP and WNT sign-
aling to ensure the proper CNC cell fate decision dur-
ing organogenesis [139]. Fhl3, a scaffold LIM domain 
protein, modulates BMP gradient interpretation during 
CNC induction. Differential Fhl3 expression in underly-
ing paraxial mesoderm cells can ensure a finely tuned 
coordination of BMP and WNT signaling at several stages 
of CNC patterning [140].

BMP/Wnt signaling, mTORC and autophagy interac-
tion have been found to be functional in CNC fate deter-
mination. Using a constitutively active ACVR1 mouse 
model, the increased BMP signaling can induce a higher 
level of Sox9 activity in CNC, which further driving CNC 
to adopt a chondrogenic fate and results in the ectopic 
formation of craniofacial cartilage [50]. Additionally, 
autophagy plays a central role in degrading Wnt/β-catenin 
activities, which can be activated by BMP-mediated 
mTORC1 activities, suggesting that coordinated signal-
ing pathways are crucial for CNC cell fate selection and 
performance in vivo [50] (Fig. 3).

Sox (SRY‑related HMG‑box) transcriptional factor

Sox genes play diverse functions in CNC patterning. Sox9 
is a crucial factor for the chondrogenic lineage commit-
ment in CNCs. Sox10 is one of the earliest CNC-specify-
ing genes and plays an autonomous role in driving CNC 
delamination and directly regulates numerous downstream 
effectors [114]. SoxE contains cis-regulatory sequences 
which can direct its expression in migrating CNCs [115]. 
Murine Sox2 plays an essential role in controlling pro-
genitor behavior. Sox2 mutant embryos deregulate CNC 
progenitors, resulting in aberrant Sox10+ CNC migration 
and exacerbated branchial arches [116]. Med23 binds to 
the promoter region of Sox9 to repress Sox9 expression 
in vitro. Med23 mutants in CNC showed the enhanced 
interaction of Sox9 binds to beta-catenin, which in turn 
resulted in altered skeletal differentiation [117] (Fig. 3).

Transcription factor AP2 and Alx3

AP2 mutant mice died with severe malformed face and skull 
[118]. AP2 can specify CNC commitment as an early cell-
autonomous factor, but induce osteogenesis as a non-auton-
omous factor at a later stage [119]. AP2α is prominently 
expressed in migrating CNC, and later expresses in the 
regulatory regions during craniofacial development [120]. 
AP2α-IRES-Cre mice displayed perturbed cranial bones 
[121]. AP-2β is expressed in CNC and its derived tissue. 
AP-2β deletion in CNCs results in post-natal ocular defects 
[122]. Our previous findings show that CNC-derived frontal 
bone has a high level of AP-2β at the embryonic stage, sug-
gesting that AP-2β is an important factor in CNC-derived 
frontal bone [33]. The stage-dependent function of AP2 was 
due to its ability to target distinct genomic regions, suggest-
ing that AP2 can be an evolutionary strategy to diversify the 
regulators to control embryonic development.

Single-cell RNA sequencing analysis shows that Alx tran-
scription factor is enriched in the frontonasal population of 
neural crest cells. Alx3 regulates the timing of distinct dif-
ferentiation and cellular morphologies among frontonasal 
CNC subpopulations. Alx3/Alx4 double mutant newborn 
mice show malformed CNC-derived skull elements, which 
are anatomically manifest at embryonic 10.5, suggesting that 
the Alx factor is crucial to control developmental timing to 
shape craniofacial skeletal elements [123] (Fig. 3).

Msx1/2, Twist1/2, Dlx and Runx2

Msx1 and Msx2 are early identified genes associated with 
craniofacial formation. Msx2 is an important factor to drive 
CNC differentiation and establish a balance between CNC 
survival and apoptosis for proper craniofacial morphogenesis 
[124]. Msx2 deletion in CNC shows defective skeletogenic 
mesenchyme and frontal bone [125]. Double deletion of 
Msx1 and Msx2 display defective CNC patterning and cra-
nial bones development [126]. Msx2 can interact with Twist 
to coordinate proliferation and differentiation of skeletogenic 
mesenchyme and calvarial bone formation. Double mutants 
of Twist1 and Msx2 reduce the population of cranial mesen-
chyme [127]. Special deletion of Twist1 in the mesoderm-
derived parietal bone leads to defective cranial bones and 
extracellular matrix production and cell–matrix interaction 
[128]. Of note, Twist1, Msx2 and EphA4 can form a com-
plex to regulate coronal synostosis [129]. EphA4 works as a 
Twist1 effector which further regulates the development of 
frontal and parietal bones [130]. Twist1 can trigger a selec-
tive downregulation of Fgf23 on mesoderm-derived osteo-
blasts to interfere with the osteogenic activity in mesoderm-
derived parietal bone [131] (Fig. 3).

Dlx2 controls CNC-derived craniofacial skeleton. Dlx2 
and Dlx3 deletion leads to defective calvaria morphogenesis 
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[132]. Dlx5 and Dlx6 coordinate together in shaping crani-
ofacial development. MEF2C is required for the expressions 
of the Dlx5 and Dlx6 within the pharyngeal [133]. Besides, 
Dlx5 expression requires Msx1, so the Msx1/Dlx5 interac-
tion is crucial for osteogenic induction during frontal bone 
development [134]. Msx2 is reported to be a direct down-
stream target of BMP signaling and Twist1 is found to be a 
downstream target of the WNT signaling pathway in crani-
ofacial bone development [135] (Fig. 3).

Runx2 is a master transcriptional factor to control osteo-
blast differentiation. Msx genes are critical for the Runx2 
activity in CNC-derived osteogenic lineage. Runx2 is hetero-
geneously expressed in Prx1-GFP+ cells, which are located 
at the intracutural mesenchyme in the calvaria. Runx2 activ-
ity starts at the Prx1+Sca1+ mesenchymal stem cell stage 
and ends at the Osx+Prx1−Sca1− osteoblast precursor stage 
[136]. Runx2 deficiency in CNC resulted in defective cranio-
facial bones. Both mesoderm-derived cells and CNC-derived 
cells require Runx2 activity to differentiate during intram-
embranous ossification, suggesting that distinct dependency 
upon Runx2 for proper ossification in the calvaria [137].

Epigenetic factors

Epigenetic factors pose precise timing in controlling CNC 
differentiation during craniofacial development. Polycomb 
domains provide a chromatin template to regulate CNC posi-
tional identity in vivo [141]. Deletion of histone H3 lysine 
9 methyltransferase (G9A) in CNC results in incomplete 
ossification. G9A and H3K9me2 physically interacted to 
regulate Twist activity to control its temporal and tissue-spe-
cific expression [142]. G9A can enhance the transcriptional 
activity of Runx2. Lacking G9A expression in Sox9-positive 
CNC-derived cells displayed severe hypo-mineralization in 
cranial vault bone [143]. Ezh2 catalyzes trimethylation of 
lysine 27 in histone 3 (H3K27me3), Ezh2 removal in CNC 
leads to abnormal formation of craniofacial bones [144].

A highly conserved acetyltransferase Gcn5 (or KAT2A) 
is required for murine craniofacial development. Gcn5 muta-
tion in CNC demonstrated defective craniofacial skeleton 
and abnormal activity of histone 3 lysine 9 (H3K9) acetyla-
tion [145]. Gcn5 acts as an epigenetic regulator of H3K9 
acetylation, and the underlying pathway of Gcn5 is via direct 
activation of mTORC1 [146]. Ankyrin repeat domain 11 
(ANKRD11) is another chromatin regulator in CNC cell fate 
modulation. Ankrd11 deletion in CNC leads to a defective 
reduction in intramembranous ossification [147].

Histone deacetylase (Hdac) activity is essential to guide 
CNC patterning. Hdac8 mutation in CNC develops skull 
instability [148]. Hdac3 knockout in CNC exhibits penetrant 
craniofacial abnormalities in part through the upregulations 
of Msx1, Msx2 and BMP4 in the CNC-derived mesen-
chyme [149]. Ubiquitin proteasomal pathway is involved 

in epigenetic regulation. Wwp2 E3 ubiquitin ligase can 
work with paired-like homeobox transcription factors dur-
ing craniofacial development. Conditionally deletion APC 
(Cdh1) E3 ubiquitin ligase in CNC displays bone malforma-
tion, similar defective phenotypes were found compared to 
that in Wwp2-deficient mice such as a domed skull, a short 
snout and a twisted nasal bone [150]. Nedd4 works as an E3 
ubiquitin ligase. Ablation of Nedd4 in CNC or osteoblasts 
showed profound craniofacial defects with a marked reduc-
tion in cranial bones [151].

CNC patterning dysregulation and associated 
human diseases

Birth defects are the most common craniofacial anomalies, 
frequently involving defective CNC migration, proliferation, 
and fate determination. Defects in post-migratory CNC can 
result in similar phenotypes of developing craniofacial skel-
eton and craniosynostosis in the clinic, such as premature 
fusion of cranial bones/cranial sutures. Activated mutations 
of Fgfr1-3 or inactivation of Twist1 in CNC are the most 
common causes of the occurrence of craniosynostosis [81, 
130]. Treacher Collins syndrome is an autosomal dominant 
congenital disorder with a characterization of craniofacial 
deformities [152]. TCOF1 encodes a serine/alanine-rich 
nucleolar phosphoprotein protein called TREACLE, which 
plays a role in ribosome biogenesis in CNC. TCOF1 defi-
ciency in CNCs in mice contributes to a high similarity to 
the clinical phenotype of Treacher Collins syndrome [153].

Excessive intake of vitamin A can lead to decreased Shh 
signaling and elevated CNC apoptosis during early preg-
nancy, resulting in an increased incidence of cleft palate 
in offspring in humans and animal models [154], which 
is a congenital craniofacial anomaly in humans. Constitu-
tively active ACVR1 in CNCs can result in ectopic crani-
ofacial cartilage [50], and this defect is similar to the phe-
notype found in fibrodysplasia ossificans progressiva (FOP) 
patients. Richieri-Costa-Pereira syndrome (RCPS) is an 
autosomal recessive condition mainly characterized by cran-
iofacial and limb malformations. EIF4A3 mutation in CNCs 
causes multiple defects in mice, which looks like the pheno-
type in RCPS patients, suggesting a valuable mouse model 
to study RCPS disorders [155]. Age-related hearing loss is 
a progressive pathophysiological process. A disfunction of 
Kir4.1 in CNC was found to be an important contributing 
factor in the aged human cochlea [156].

Transcriptional factor ALX1 has been associated with 
frontonasal dysplasia (FND) pathogenic. ALX1(L165F/
L165F) mutants in CNC lead to more sensitivity to apop-
tosis and migration [157]. Kabuki syndrome (KS) is a 
congenital craniofacial disorder. KMT2D in CNC knock-
out mice demonstrates hypoplasia with reductions in 
frontonasal bone [158]. Ankrd11 inactivation can cause 
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a rare autosomal dominant congenital disorder. Ankrd11 
deletion in CNC leads to reduced ossification in midfa-
cial bones, suggesting transgenic Ankrd11 can serve as 
pre-clinical models in humans [147]. The phenotype of 
the Pierre Robin Sequence (PRS) consists of cleft palate, 
glossoptosis and micrognathia. Transferrin receptor (Tfrc) 
deletion in CNC demonstrated multiple disorders, which 
are highly resemble human PRS. Tfrc deletion dramati-
cally suppressed TGF/BMP signaling in CNC-derived 
mandibular tissues [59]. Besides, the phenotypes of Bmp2 
deletion [38] and Mycn ablation [159] in CNC were also 
similar to that of PRS in humans, suggesting different 
genes may involve in the regulation of PRS pathology.

Alagille syndrome included biliary, cardiac and crani-
ofacial anomalies. Deleted Jagged1 in CNC leads to a 
similar phenotype of Alagille syndrome, such as reduced 
cellular proliferation and aberrant craniofacial growth 
[104]. Anterior segment dysgenesis (ASD) encompasses 
a group of developmental disorders and 50% of patients 
develop glaucoma. The phenotype of AP-2β deletion in 
CNC resulted in post-natal ocular defects typified by 
opacity, suggesting that AP-2β in CNC knockout mice can 
serve as a new and exciting model to study the pathology 
of ASD and glaucoma in human [122] (Table 1).

CNC translational potential in regenerative 
medicine

CNC-derived MSC/progenitor cells are a promising source 
for tissue regeneration, especially due to CNC’s distinct cell-
autonomous and paracrine properties [160]. CNC-derived 
tissues exhibited superior properties for optimal translation 
in regenerative medicine [161], such as CNC-derived chon-
drocyte exhibits particular therapy in cartilage repair [162]. 
Scaffolds containing CNC-derived stem cell demonstrated 
superior bone formation in mouse calvarial bone injury 
model [163]. Using a biodegradable material to deliver 
suture stem cell is sufficient to regenerate normal cranial 
suture to restore skull deformity [164]. CNCs from the dif-
ferentiation of induced pluripotent stem (iPS) cells represent 
alternative sources [165] for translational potential in the 
clinic, optimizing the crucial parameters of CNC differentia-
tion will be valuable in tissue homeostasis and endogenous 
regeneration [166] (Fig. 4).

Suitable targets from scientific discoveries are capable 
to enhance CNC’s translational potential. JAG1 can induce 
CNC-derived osteoblast commitment during craniofacial 
intramembranous ossification. Exogenous JAG1 delivery 
using synthetic hydrogels containing CNCs into critical-
sized calvarial defects can promote robust bone regenera-
tion in mice, demonstrating exogenous JAG1 delivery is a 
potential bone-regenerative pathway [106]. Fgf2, Fgf9 and 

Table 1   Factors associated with clinical diseases or disorders from defective neural crest patterning

Factor Clinical Disease CNC disorder Phenotype References

Activation Fgfr1-3, Twist1 
mutation

Craniosynostosis Defective migration Premature fusion of skull [81]

TCOF1 Treacher Collins syndrome Defective proliferation and 
differentiation

Craniofacial skeleton [153]

Excessive vitamin A Cleft palate Eevated CNC apoptosis Congenital craniofacial 
anomalies

[154]

ACVR1 activation Fibrodysplasia ossificans 
progressiva

Cell fate switch Ectopic craniofacial cartilage [50]

EIF4A3 mutation Richieri-Costa-Pereira syn-
drome

Decreased migratory capacity Craniofacial abnormalities [155]

Disfunction of Kir4.1 Presbyacusis Degeneration Hearing loss [156]
ALX1 missense Frontonasal dysplasia Defective migration and 

apoptosis
Craniofacial defects [157]

KMT2D mutation Kabuki syndrome Defective differentiation A congenital craniofacial 
disorder

[158]

ANKRD11 variant KBG syndrome Defective proliferation and 
differentiation

Variable neurodevelopmental 
and craniofacial defect

[147]

Tfrc or BMP2 or MYCN 
mutation

Pierre Robin Sequence Defective proliferation and 
differentiation

Micrognathia and disorder in 
craniofacial level

[38, 59, 159]

JAGGED1 mutation Alagille syndrome Reduced cellular proliferation Midfacial hypoplasia and aber-
rant craniofacial growth

[104]

AP-2β mutation Anterior segment dysgenesis Defective differentiation and 
increased degeneration

Post-natal ocular defects [122]
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Fgf18 treated parietal bone exhibits superior bone regenera-
tion both in juvenile and adult mice [28]. Active canonical 
Wnt signaling contributed to the superior intrinsic osteo-
genic potential and tissue regeneration in CNC-derived 
frontal bone [28]. Enhanced activation of Wnt signaling 
is capable to improve the capacity of bone regeneration in 
mesoderm-derived parietal bone similar to that in frontal 
bone [29] (Fig. 4).

Summary

Cranial neural crest patterning is a vital developmental pro-
cess to coordinate cell proliferation, migration and differen-
tiation at cellular and molecular levels. Most cranial bones 
are derived from CNCs, and CNC-derived cranial bones 
are endowed superior osteogenic potential and regenera-
tion in vivo and in vitro. The underlying differences from 
conserved signaling pathways have been demonstrated func-
tional in shaping the morphology of skull development in 
mice and human. Through the genetic mouse models, we 
bring forward integrated signaling pathways as gene regula-
tory network to better understand CNC spatial orientation 
and developmental stability and plasticity during cranial 
bone development.

What is more, the dysregulation of CNC patterning 
is highly relevant to birth defects in the clinic. However, 
less information or models are available to guide the basic 
research into clinical practice, which will be a severe 

hindrance to understand the molecular pathology of crani-
ofacial birth defects or diseases in the clinic. Advancing the 
scientific discoveries from transgenic mouse models will be 
essential to observe potential links to the phenotypes found 
in clinical diseases, which in turn will be very important to 
understand the causes of the diseases or birth defects, and in 
the long term, it will be possible to timely diagnose, prevent 
or alleviate disease occurrence in the clinic. Taken together, 
the gene regulatory network underlying CNC patterning 
in mice models provides novel insight into the interplays 
from different signaling pathways, transcriptional factors, 
downstream effectors and epigenetic factors, which will be 
beneficial to the identification of new targets to be consid-
ered for the translational potential to treat human diseases 
or disorders in clinic.
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