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Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with 
the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are 
secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite 
effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts 
similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its 
receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. 
We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.

Keywords  NUCB2 · Brain-gut peptide · X/A-like cells · Growth hormone secretagogue receptor · Food intake · Diabetes 
mellitus

Introduction

Ghrelin and nesfatin-1 are both produced by the same kind 
of cells, X/A-like cells in the gastric fundus. Ghrelin, an 
orexigenic peptide, was first discovered to stimulate the 
release of growth hormone (GH) by Kojima in 1999 [1], 
while nesfatin-1 was identified as an anorexigenic peptide 
by Oh-I in 2006 [2]. Although nesfatin-1 and ghrelin exhibit 
opposite effects on some physiological functions, such as 
energy metabolism, glucose metabolism, gastrointestinal 
functions and regulation of blood pressure, they have similar 
effects in some aspects as for anti-inflammation and neuro-
protection. The receptor for nesfatin-1 is still not identified; 
however, emerging evidences suggest that nesfatin-1 could 
exert its effects through the ghrelin receptor, growth hor-
mone secretagogue receptor (GHSR) [3, 4]. Co-incubation 
or pre-incubation with nesfatin-1 or nesfatin-1-like peptide 
could block the stimulatory effects of ghrelin on GH mRNA 
and protein expression possibly through the same adenylate 
cyclase (AC)/protein kinase A (PKA)/cAMP-response 

element-binding protein (CREB) signaling pathway [3]. 
Our previous study also showed clearly that GHSR was 
essential for the effects of nesfatin-1 on regulating glucose 
metabolism [4]. Therefore, there might be several mecha-
nisms underlying the effects of nesfatin-1, for example, 
direct effects on GHSR or modulation GHSR function by 
various pathways, which is of vital importance in the normal 
physiological functions. We herein compared the effects of 
nesfatin-1 and ghrelin in several aspects and gave some clues 
for their possible interactions.

Structure and distribution

Nesfatin-1 is derived from the 396-amino acid precursor, 
namely nucleobindin 2 (NUCB2) through the post-transla-
tional processing [2]. It gains almost all the attentions due to 
the absence of observed effects of the other two products of 
NUCB2, that is, nesfatin-2 and nesfatin-3 (Fig. 1). NUCB2/
nesfatin-1 is detected in both peripheral tissues and the cen-
tral nervous system (CNS). In the periphery, nesfatin-1 is 
mainly secreted by the gastric oxyntic mucosa, which is the 
main source for the majority of circulating nesfatin-1 [5]. 
It is also present in the liver, heart, testis, ovaries, uterus, 
adipose tissue and pancreas [5]. Nesfatin-1 could penetrate 
the blood–brain barrier (BBB) in a bidirectional pathway 
without saturation [6]. In the CNS, NUCB2/nesfatin-1 is 

Cellular and Molecular Life Sciences

 *	 Hong Jiang 
	 hongjiang@qdu.edu.cn

1	 Department of Physiology, Shandong Provincial Key 
Laboratory of Pathogenesis and Prevention of Neurological 
Disorders and State Key Disciplines: Physiology, School 
of Basic Medicine, Qingdao University, Qingdao 266071, 
People’s Republic of China

http://orcid.org/0000-0003-1524-7519
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-022-04193-6&domain=pdf


	 X. Chen et al.

1 3

169  Page 2 of 24

mainly found in the brain stem, midbrain, hypothalamus, 
central amygdaloid nucleus, cerebellum, etc. [7]. It is also 
expressed in the autonomic preganglionic neuronal group in 
the spinal cord [8].

Ghrelin is a 28-amino acid brain-gut peptide, derived from 
its precursor, proghrelin which also yield another peptide, 
obestatin, with post-translational modification [9]. Ghrelin 
exists in two forms: unacylated ghrelin and acylated ghrelin 
whose acylation is catalyzed by ghrelin O-acyltransferase 

(GOAT) (Fig. 1) [10]. In accordance with nesfatin-1, ghrelin 
is also mainly secreted by the gastric oxyntic mucosa, which 
is the main source for the majority of circulating ghrelin. It 
is also present in other sites of gastrointestinal tract, such 
as duodenum, jejunum, ileum and colon. Lower expression 
of ghrelin could be found in the pancreas, adipose tissue, 
kidneys, testes, placenta and hypophysis. Central source of 
ghrelin remains questionable and there appears no irrefu-
table evidence supporting that ghrelin is synthesized in the 

Fig. 1   The production of nesfatin-1 and ghrelin in gastric X/A-like 
cell. The structure of proghrelin contains both obestatin and ghre-
lin which is transformed to active peptide after acylation by GOAT. 
NUCB2 yields three kinds of peptides, nesfatin-1, nesfatin-2, and 

nesfatin-3. It is known majority of nesfatin-1 and ghrelin co-exist 
in X/A-like cells of oxyntic gland in stomach, where the PC 1/3 is 
responsible for the processing of both peptides
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CNS [11, 12]. Ghrelin signals might be sent to the CNS 
through the vagal afferent nerve and the blood circulation, 
but the accessibility of plasma ghrelin to the CNS is lim-
ited [13]. Circulating ghrelin might access neurons through 
fenestrated capillaries of the median eminence (ME) and 
the area postrema (AP) with incomplete BBB [11, 14]. A 
recent study reported that circulating ghrelin might cross 
the blood-cerebrospinal fluid (CSF) barrier mainly through 
GHSR-dependent pathway [15].

Nesfatin-1 and ghrelin co-exist in X/A-like cells of oxyn-
tic gland in the stomach, where the prohormone convertase 
(PC) 1/3 is responsible for the processing of both peptides 
(Fig. 1) [16, 17]. The co-localization was also observed in 
the pancreatic islets of rats [18] and hypothalamus of gold-
fish [19]. Besides, the study in pejerrey showed that nes-
fatin-1 co-localized with ghrelin in enteroendocrine cells, 
absorptive cells and lamina propria cells of intestine [20]. 
By comparing with ghrelin, whether the central nesfatin-1 
might also at least partly originate from the periphery, is 
worthy of further investigation.

Receptors and interactions

Up to now, nesfatin-1 remains an orphan ligand because its 
own receptor has not been identified. The autoradiography 
showed that the receptors of nesfatin-1 were distributed in 
the gastrointestinal tract and endocrine tissues, such as the 
pituitary, pancreas, adrenal gland, testis and adipose tissue, 
and possibly in some viscera including heart, lung, liver, 
kidney, and skeletal muscle [21]. In the brain, nesfatin-1 
receptors are distributed in the dorsal vagal complex (DVC) 
of brainstem, hypothalamic paraventricular nucleus (PVN), 
cerebellum, and cortex (Table 1) [21].

The unknown receptor of nesfatin-1 is presumed to 
be a kind of G-protein-coupled receptor (GPCR), which 
is involved in a variety of signaling pathways [22]. Nes-
fatin-1 could induce the phosphorylation of CREB through 
the mitogen-activated protein kinase (MAPK) and Ca2+ 
signaling pathway in neural cell lines [23]. In interleukin 
(IL)-1β-treated chondrocytes, nesfatin-1 could attenuate 
inflammation and matrix metalloproteinases expression 
through the inhibition of the NF-κB and MAPK signal-
ing pathways [24]. Knockdown of hypothalamic nes-
fatin-1 reduced the phosphorylation of mammalian target 
of rapamycin (mTOR), as well as signal transducer and 
activator of transcription 3 (STAT3), and thus increased 
the expression of phosphoenolpyruvate  carboxykin-
ase (PEPCK) and glucose-6-phosphatase (G6pase) to 
regulate glucose metabolism [25]. In trophoblast cells, 
nesfatin-1 promoted proliferation, migration, invasion 
and suppressed oxidative stress by activating phospho-
inositide 3-kinase (PI3K)/protein kinase B (AKT)/mTOR 

and AKT/glycogen synthase kinase 3β (GSK3β) signaling 
pathways [26]. In type 2 diabetes mellitus (T2DM) mice, 
nesfatin-1 stimulated free fatty acid utilization through 
AMP-activated protein kinase (AMPK)-acetyl-CoA car-
boxylase (ACC) signaling pathway in skeletal muscle 
cells (Fig.  2A) [27]. Meanwhile, nesfatin-1 promoted 
anorexia effects through receptors of other hormone, such 
as corticotropin-releasing 1/2 receptor (CRF 1/2-R) and 
histamine 1/3 receptors (H1/3-R) [28]. The weight loss 
effects in obese rats were mediated by elevated nesfatin-1 
levels via melanocortin receptors (MC-Rs)-extracellular 
signal-regulated kinase (ERK) signaling pathway [29]. In 
adult ventricular myocytes, nesfatin-1 modulated L-type 
Ca2+ channel through MC4-R resulting in negative ino-
tropic effects [30]. Central administration of oxytocin 
receptor (Oxy-R) blocker antagonized hypertension and 
anorexia induced by nesfatin-1 [31, 32], suggesting the 
involvement of oxytocin system in nesfatin-1’s effects. 
It was also reported that cholecystokinin receptor (CCK-
R) was involved in the effects of nesfatin-1, since CCK 
receptor selective antagonist reversed the anorectic effect 
and appetite-related factor expressions induced by nes-
fatin-1 (Fig. 2B) [33].

GHSR, the ghrelin receptor, was found as an orphan 
receptor in 1996, prior to the discovery of ghrelin. The gene 
of ghrelin receptor encodes two kinds of receptor, GHSR 
1a and 1b, thereinto, GHSR1a is the effective receptor of 
ghrelin. GHSR1a is a kind of GPCR, which is distributed in 
both peripheral tissue and the CNS. GHSR1a mRNA exists 
in peripheral tissue including the pituitary gland, pancreas, 
adipose tissue, thyroid gland, spleen, kidney, adrenal gland 

Table 1   Distribution of nesfatin-1 and ghrelin receptor in the CNS in 
rats

“+”, weak; “++”, medium; “+++”, strong; “±”, inconsistent visuali-
zation; “–”, no report or not detectable

Distribution in the CNS Receptor of nes-
fatin-1 (unidenti-
fied)

Receptor 
of ghrelin 
(GHSR)

Cerebral cortex +++ ±
Hippocampus and septum – +++
Arcuate nucleus (ARC) – +++
Paraventricular nucleus (PVN) +++ +
Ventromedial hypothalamus 

(VMH)
– +++

Cerebellum  +++  –
Ventral tegmental area (VTA) – +++
Nucleus ambiguous – +++
Substantia nigra (SN) – +++
Nucleus of the solitary tract (NTS) – ++
Area postrema (AP) +++ +++
Dorsal motor nucleus (DMV) +++ +
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and cardiac muscles [34], and in the CNS including the hind-
brain, midbrain, hypothalamus, and hippocampus (Table 1) 
[14, 35].

Various signaling pathways are involved in the effects 
of ghrelin, including PKA, Ca2+, MAPK, mTOR, AMPK, 
and PI3K/AKT [36]. After binding to GHSR1a, ghre-
lin activated the subsequent G-protein, Gq or Gi/o, then 
simulated phospholipase C (PLC)-inositol 1,4,5-triphos-
phate (IP3)-Ca2+-calmodulin-dependent  protein  kinase 
II (CaMKII)/AMPK or cAMP-PKA signaling pathway, 

respectively [37, 38]. It could prevent apoptosis in corti-
cal neuronal cell through the PI3K/AKT-mediated inacti-
vation of GSK-3β pathway [39]. It could inhibit lipogen-
esis and stimulated fatty acid oxidation via sirtuin1 (Sirt1)/
p53/AMPK signaling pathways in the hypothalamus [40]. 
It promoted cell proliferation and decreased cell apoptosis 
via MAPK dependent pathway (Fig. 2A) [41]. The seem-
ing paradox that wide distribution of GHSR1a is accom-
panied by the low expression of ghrelin in the CNS could 
be explained by the constitutive activity of GHSR and the 

Fig. 2   The receptor signaling pathways of nesfatin-1 and ghrelin 
and interactions with other receptors. A The receptor of nesfatin-1 
remains unknown and it is supposed to be a G-protein coupled 
receptor. Nesfatin-1 and ghrelin regulate food intake in the DVC 
and synthesis of GH through the same signaling pathway with com-

pletely opposite effects. B The actions of nesfatin-1 are dependent on 
CRF1/2-R, H1/3-R, CCK-R, MC-R and Oxy-R, while GHSR heterodi-
merize with MC-R, Oxy-R, D1/2-R, 5-HT2C-R and SST5. Both pep-
tides are correlated with MC-R and Oxy-R
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formation of heterocomplexes. Actually, even in the absence 
of ghrelin, GHSR1a could activate intracellular signal trans-
duction and display a strikingly strong constitutive activ-
ity which accounted for approximately 50% of its maximal 
capacity [42]. Notably, GHSR1a heterodimerized with a 
variety of receptors, including dopamine receptor (D-R), 
MC3-R, 5-serotonin 2c receptor (5-HT2c-R), orexin 1 recep-
tor (OX1-R), Oxy-R, somatostatin receptor 5 (SST5). Biolu-
minescence resonance energy transfer (BRET) showed the 
existence of heterodimers formed by D1-R and GHSR1a, 
which amplified the dopamine (DA) signaling in the pres-
ence of ghrelin [12, 43]. The similar effects were observed 
in the dimerization between D2-R and GHSR1a in hypotha-
lamic neurons [44]. The heteromerization influenced DA-
mediated Gi protein activation by modulating the confor-
mation of its α-subunit [45]. The inhibitory effects of D2-R 
agonist on food intake were dependent on the formation of 
D2-R and GHSR1a heteromers [46]. The receptors of ghre-
lin and melanocortin (an anorexigenic peptide) could form 
MC3-R-GHSR1a dimers identified in the hypothalamic arcu-
ate nucleus (ARC) to enhance melanocortin-induced intra-
cellular cAMP accumulation and impair GHSR signaling of 
both agonist-independent and ghrelin-induced activity [47]. 
The formation of 5-HT2C-R-GHSR1a heterodimers inhibited 
orexigenic signaling whereas 5-HT2c-R antagonist attenu-
ated the formation of dimer and increased GHSR1a-induced 
food intake [48, 49]. Orexin is another kind of orexigenic 
peptide, whose receptor OX1-R could form heterodimers 
with GHSR1a in HEK293 cells. Ghrelin, but not orexin, 
could activate Gα protein through GHSR1a/OX1-R heter-
odimers [50]. Oxytocin is a pleiotropic peptide hormone 
with broad functions, and its receptor, Oxy-R, could also 
form heterocomplex with GHSR in cultured hypothalamus 
and hippocampus to impair the downstream Oxy-R signal-
ing pathways [51]. The heteromers of GHSR1a and soma-
tostatin receptor 5 (SST5) could regulate insulin secretion 
(Fig. 2B) [52].

In summary, nesfatin-1 receptor shares the overlapping 
distribution and similar intracellular signaling transduction 
with ghrelin receptor and interacts with analogous recep-
tors (Fig. 2). Several studies simultaneously focused on 
the interaction of nesfatin-1 and GHSR. Ozturk et al. [53] 
observed that nesfatin-1 displayed anti-inflammatory and 
antioxidant effects on colitis via Oxy-Rs and ghrelin recep-
tors. Kerbel et al. [20] demonstrated exogenous nesfatin-1 
altered the central expression of ghrelin and GHSR1a in 
goldfish. Our previous study clearly stated that GHSRs 
were essential for nesfatin-1 to control glucose metabolism 
because GHSR antagonist and knockout of ghrelin receptor 
blocked the effect of peripheral nesfatin-1 on food intake and 
glucose metabolism [4]. For GH synthesis, nesfatin-1 and 
ghrelin exerted completely opposite effect via similar sign-
aling pathway, cAMP/PKA/CREB signaling pathway [3]. 

Even co-incubation or pre-incubation with nesfatin-1 antag-
onized the stimulatory effects of ghrelin on GH secretion. 
Therefore, nesfatin-1 might act on GHSRs indirectly, nev-
ertheless, there exits such a possibility that nesfatin-1 could 
act on GHSRs directly, which deserve further investigations.

The roles of nesfatin‑1 and ghrelin 
in the central functions

Energy metabolism

Plasma nesfatin-1 levels were increased with elevated body 
mass index (BMI) [54], and a negative correlation between 
plasma ghrelin concentration and BMI was observed in 
humans [55]. Nesfatin-1 decreased energy intake and 
potentiated energy consumption, whereas ghrelin displayed 
opposite effects. The mechanisms underlying their effects on 
energy metabolism were discussed hereinafter from lower 
center to higher center (Fig. 3) [56].

In the medulla

In the medulla, the DVC, a central structure involved in the 
control of food intake, consists of three parts: the nucleus of 
the tractus solitarius (NTS), which receives and integrates 
afferent signals from viscera; the dorsal motor nucleus of the 
vagus (DMV), where the preganglionic vagal motor neurons 
are located; and the AP, which contains incomplete BBB and 
permits some circulating substances to contact with.

Peripheral nesfatin-1 might convey signals to NTS 
through the vagal afferent nerve, since nesfatin-1 could 
activate vagal afferent neurons by stimulating Ca2+ influx 
through N-type channels [57]. Nesfatin-1 is expressed in all 
the three parts of DVC [58] and other appetite suppressing 
hormones, such as leptin, glucagon-like peptide-1 (GLP-1) 
and cholecystokinin (CCK)-8 could inhibit food intake via 
activation of nesfatin-1-positive neurons in the brainstem 
[59]. Local administration of nesfatin-1 in the DVC inhibited 
food intake and body weight gain, as shown in our previous 
study [60]. Peripheral injection of nesfatin-1 midsegment 
only activated the proopiomelanocortin (POMC, the pre-
cursor of alpha-melanocyte-stimulating hormone (α-MSH)) 
positive neurons in the NTS but not in the ARC, indicating 
the important role of the NTS in feeding control [61]. In 
fact, oxytocinergic neurons originating from the PVN, which 
could be activated by nesfatin-1, enhanced the production 
of POMC from the NTS [62]. Besides, nesfatin-1 colocal-
izes with neuropeptide Y (NPY, an orexigenic peptide) and 
amphetamine-regulated transcript (CART, an anorexigenic 
peptide) in the NTS [58] and exogenous nesfatin-1 downreg-
ulated NPY expression, while CART expression remained 
unchanged [63].



	 X. Chen et al.

1 3

169  Page 6 of 24

GHSRs are expressed in all the three parts of the DVC, 
where c-fos expression increased after intracerebroven-
tricular (i.c.v) injection of ghrelin [64]. Hyperphagia could 
be induced by injection of ghrelin into either the third ven-
tricle near the ARC or the fourth ventricle near the DVC 
[65]. However, the essential amount for direct induction 
of hyperphagia in the DVC [65] is much lower than that 
in ARC [66]. Despite this, merely selective expression of 
GHSR in the brainstem was insufficient to reserve periph-
eral ghrelin-induced feeding [67]. The vagus nerve also 
plays an important role in ghrelin orexigenic effect, since 
ghrelin failed to stimulate feeding after vagotomy [68] or 
impairment of gastric vagal afferent fibers [69]. In addi-
tion, antagonist of ghrelin receptor increased the ability 
of CCK to activate GLP-1 and prolactin-releasing peptide 
neurons in the hindbrain [70].

Nesfatin-1 and ghrelin shared a common signaling path-
way in feeding control by DVC, with decreased food intake 
through inhibition of mTOR signaling by nesfatin-1 and 

increased food intake through activation of mTOR signal-
ing by ghrelin [71].

In the pons

The parabrachial nucleus (PBN), a feeding-related center, is 
located in the pons of the brainstem and transmits gustatory 
and visceral information to higher centers, which attracts 
an ever-growing number of concerns [72]. Nesfatin-1 is 
expressed in the lateral parabrachial nucleus (LPBN) [58] 
and local injection of nesfatin-1 into the LPBN suppressed 
food intake and body weight gain, possibly due to the modu-
lation of activities of glucose sensitive neurons, since nes-
fatin-1 inhibited most glucose-excitatory (GE) neurons and 
excited most glucose-inhibitory (GI) neurons, respectively 
[73]. However, ghrelin reversed all above effects [74]. In 
addition, injection of nesfatin-1 into the LPBN upregulated 
the expression of uncoupling protein 1 (UCP1) in brown adi-
pose tissue to generate heat with its underlying mechanism 

Fig. 3   The central mechanisms underlying the effects of nesfatin-1 
and ghrelin on energy metabolism. In the hypothalamus, nesfatin-1 
inhibits NYP/AgRP neurons and activates Oxy neurons in the PVN 
which terminates POMC neurons in the DVC. Ghrelin activates NYP/
AgRP neurons in the ARC and Ore neurons in the LHA, while inhib-
its Oxy neurons in the PVN and AMPK activity in the VMH. In the 

midbrain, nesfatin-1 inhibits DAergic neurons, thereby decreasing 
DA release in the NAc, whereas ghrelin exerts completely opposite 
effects. In the LPBN of pons, nesfatin-1 inhibits and excites GE and 
GI neurons, respectively, while ghrelin reverses these effects. In the 
hindbrain, nesfatin-1 activates POMC neurons and inhibits mTOR 
activity in the DVC, while ghrelin activates mTOR activity
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related to melanocortin system, as these effects could be 
blocked by MC3/4-R antagonist [73]. GHSRs are abun-
dantly expressed in the LPBN and functional silencing of 
GHSR-expressing cells prevented mice from body weight 
gain and fat accumulation under the condition of a high-fat, 
high-sugar diet [75]. Most GHSR-positive cells belong to 
glutamatergic population rather than calcitonin gene-related 
peptide (CGRP, an anorexigenic peptide) cell [75]. Whether 
the inhibitory effect of nesfatin-1 on food intake is through 
CGRP-positive neurons and the relationship between glu-
cose sensitive neurons and CGRP-positive neurons are wor-
thy of further studies.

In the midbrain

In the midbrain, DAnergic rewarding pathway from the ven-
tral tegmental area (VTA) to the nucleus accumbens (NAc) 
is responsible for hedonic control of feeding. The opposite 
results are obtained in this pathway between nesfatin-1 and 
ghrelin.

Our data demonstrated that local administration of nes-
fatin-1 in the VTA reduced nocturnal food intake through 
inhibition of DAergic neurons in the VTA and the subse-
quent DA release in the NAc [76], which has been confirmed 
by Dore R et al. [77]. Ghrelin reversed all above effects [78, 
79], moreover, blockage of D-Rs in the NAc attenuated the 
effect of ghrelin in the VTA [80]. Central injection of nes-
fatin-1 abolished the fasting-induced increase in the reward 
value of sucrose [81], while ghrelin potentiated the reward-
ing value of high-fat diet [82]. GHSRs are densely expressed 
in the VTA [35] and GHSR selective antagonist [78] or 
GHSR knockout blunted the orexigenic effect of ghrelin 
[83], but reexpression of GHSR1a in DAnergic neurons 
including those in the VTA partially restored food intake 
[83]. Ghrelin also interacts with opioid and endocannabi-
noids system to influence the reward-associated behaviors, 
since antagonist of opioid receptor or cannabinoid receptor 
partly blocked the ghrelin-induced food intake and moti-
vated behavior or ghrelin-dependent DA release in the NAc 
[84], that might inspire to explore the correlation between 
nesfatin-1 and other transmitters in the midbrain.

In the hypothalamus

The hypothalamus is a classical central area regulating 
appetite and energy homeostasis. Two types of “first-order” 
neurons located in the ARC play important roles in the con-
trol of energy metabolism. The neurons coexpressing NPY 
and AgRP are responsible for orexigenic effects, whereas 
anorexigenic POMC and CART co-exist in the other group 
of neurons. Bilateral communications between the ARC 
and other hypothalamic nuclei such as the ventromedial 

hypothalamus (VMH), PVN and lateral hypothalamic area 
(LHA) compose the network to regulate energy homeostasis.

Central administration of nesfatin-1 suppressed food 
intake in rodents or goldfish [85]. The PVN seems to be the 
key acting site of nesfatin-1. In the PVN, NUCB2/nesfatin-1 
expression was significantly decreased under starved condi-
tions [2]. Third ventricle injection of nesfatin-1 upregulated 
c-fos expression in the PVN [62, 86]. Both oxytocin and 
melanocortin system are involved in the effects of nesfatin-1 
in the PVN, since nesfatin-1 activated PVN oxytocinergic 
neurons which terminated at the POMC neurons in the NTS 
and antagonist of Oxy-R [62] or MC3/4-R abolished the ano-
rexigenic effects of central nesfatin-1. In addition, peripheral 
injection of CCK activated nesfatin-1-positive neurons in the 
PVN, indicating the interaction between nesfatin-1 and CCK 
system [87]. The NPY-positive neurons in the ARC seem 
to be another acting site for nesfatin-1. Application of nes-
fatin-1 decreased hypothalamic NPY mRNA levels [2] and 
hyperpolarized NPY-positive neurons [88], but did not influ-
ence the POMC/CART mRNA expression [2]. In addition, 
the CRF2-R-dependent pathway is involved in the inhibitory 
effect of nesfatin-1 on food intake in forebrain [89].

The ARC serves as the most important central site for 
the effects of ghrelin on appetite. Ghrelin increased the 
spontaneous firing rate [90] and miniature frequency of 
excitatory synaptic current of NPY/AgRP neurons in vivo 
or in vitro [91]. Gene knockout and antagonist application 
confirmed the role of NPY/AgRP neurons, since the orexi-
genic effects of ghrelin could be eliminated in NPY/AgRP 
ablated mice [92] and antagonists of NPY/Y1 receptor abol-
ished ghrelin-induced feeding [93]. The dense expressions 
of GHSRs in NPY/AgRP neurons play an important role 
in orexigenic effect of ghrelin [94] because only deletion 
of GHSR in AgRP neurons attenuated diet-induced obesity 
[95]. In contrast to NPY/AgRP neurons, GHSRs are less 
expressed in POMC/CART neurons [96], suggesting that 
ghrelin might exert nearly no direct action on POMC/CART 
neurons. However, due to the reciprocal inhibitory projec-
tions between the two groups of first-order neurons, POMC/
CART neurons were hyperpolarized after ghrelin application 
which stimulated the γ-aminobutyric acid (GABA) release 
from NPY/AgRP to POMC/CART neurons [97]. In addi-
tion, central injection of α-MSH inhibited ghrelin-stimulated 
hyperphagia, suggesting the crosstalk between ghrelin and 
melanocortin system [98]. The PVN seems to be another 
important site for ghrelin actions. Administration of ghrelin 
in the PVN alone is known to stimulate food intake and 
inhibit fat oxidation [99]. Fasting enhanced the density and 
strength of ARC nerve fibers projecting to PVN and the 
activation was impaired in mice lacking GHSR or pretreat-
ment with blockage of GHSR signaling [100]. Inhibition of 
oxytocinergic neurons in the PVN contributed to orexigenic 
effects of ghrelin [3]. In the VMH, i.c.v. administration of 
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ghrelin decreased fatty acid synthase mRNA expression 
via inhibition of AMPK activity [101]. In the LHA, ghre-
lin depolarized orexin-positive neurons and enhanced the 
c-fos expression in these neurons [102]. Pretreatment of 
orexin receptor antagonist partially abolished central ghrelin 
appetite-stimulating effects [103]. The LHA even serves as 
a critical downstream site for hippocampus ghrelin-mediated 
hyperphagia [104]. In the hypothalamus, ghrelin not only 
promoted food intake but also decreased energy expenditure 
via inhibition of sympathetic projections to the brown adi-
pose tissue [105]. Even after selective knockout of GHSR 
in hypothalamic AgRP neurons, mice fed with a high-fat 
diet exerted elevated energy expenditure and upregulated 
thermogenesis in both brown and white adipose tissue, sug-
gesting GHSR inhibition in AgRP neurons could increase 
sympathetic activity [95].

From the above, it is known that nesfatin-1 inhibits NPY-
positive neurons in the ARC, different from the activation 
by ghrelin. Moreover, mTOR signaling is involved in the 
ghrelin action on NPY/AgRP neurons, since inhibition of 
mTORC1 abolished ghrelin-induced upregulation of NPY 
and AgRP [40, 106], while majority mTOR-positive neu-
rons in the ARC are also immunoreactive for nesfatin-1 
[107]. One study observed the effects of nesfatin-1 on ghre-
lin, which showed that i.c.v. administration of nesfatin-1 
suppressed preproghrelin,  GHSR and NUCB2 mRNA 
expression in the forebrain of goldfish [51]. In contrast to 
the effects of nesfatin-1 on promoting activity of oxytocin-
ergic neurons, GHSR forms heterocomplex with Oxy-R 
and impairs the oxytocinergic signaling [51]. In addition, 
nesfatin-1 promotes oxytocin release [62], whereas ghre-
lin inhibits oxytocin expression in the PVN [3]. In neonatal 
chicks, ghrelin inhibits food intake, opposite to the orexi-
genic effects of ghrelin in rodents [108, 109]. Coincidentally, 
both ghrelin and nesfatin-1 inhibit food intake through the 
CRF-R pathway in chicks [28, 108].

Anxiety, depression and stress

Anxiety

Nesfatin-1 exerts anxiogenic effect in rodents. Central infu-
sion of nesfatin-1 [110] or its middle fragment [111] induced 
the anxiety-like behaviors in several maze tests, or in unfa-
miliar environment, while central blockage of endogenous 
nesfatin-1 with antibody attenuated anxiety-like behavior 
in male rats [112]. Peripheral continuous administration of 
nesfatin-1 also exhibited anxiogenic effect by downregulat-
ing expression of phosphorylated-ERK1/2 and the brain-
derived neurotropic factor (BDNF) in the prefrontal cortex 
and hippocampus [113]. Human studies showed that altera-
tion of nesfatin-1 levels in anxiety was inconsistent between 
genders. In male patients suffering from anxiety disorder, 

plasma nesfatin-1 levels were decreased [114], whereas in 
female obese patients, NUCB2/nesfatin-1 levels were upreg-
ulated [115]. However, improvement of anxiety did not alter 
NUCB2/nesfatin-1 levels [116].

Ghrelin seems to exert dual effects on anxiety. I.c.v. 
[117], amygdala, hippocampus [118] and hypothalamus 
[119] injections of ghrelin induced anxiety-like behaviors 
in the open field test, plus-maze test, or elevated plus maze, 
while antisense DNA for ghrelin exerted an anxiolytic 
effects in the elevated plus maze test, black and white test, 
or conditioned fear tests [120]. Conversely, Jensen et al. 
[121] reported overexpression of GHSRs in the amygdala 
or peripheral injection of ghrelin caused anxiolytic effect, 
which could be abolished in GHSR knockout mice. Acute 
energy restrictions stimulated endogenous ghrelin secre-
tion and thus exerted anti-anxiety effects and the anxiolytic 
effects could be abolished by GHSR1a antagonist [122] and 
GHSR knockout [123], confirming the GHSR-dependent 
pattern.

Depression

Nesfatin-1 levels were profoundly increased in subjects 
suffering from depression [124] and in depressed patients 
with subclinical hypothyroidism [125]. NUCB2 mRNA con-
tents in Edinger–Westphal (EW) nucleus were significantly 
higher in male depressed suicide victims than those in the 
control, but not in female ones [126]. The rats exhibited 
more despair after chronic nesfatin-1 application in forced 
swimming test and open field test, accompanied by hypotha-
lamic–pituitary–adrenal (HPA) axis activation [127]. The 
higher nesfatin-1 levels in depressive disorder were cor-
related with elevated corticosterone, IL-6, and C-reactive 
protein (CRP) levels [128, 129]. Pretreatment with a tradi-
tional Chinese antidepressant medicine, Xiaoyaosan, down-
regulated nesfatin-1 levels in the PVN [130]. In contrast to 
above studies, Korucu et al. reported serum nesfatin-1 levels 
were decreased obviously in major depressive disorder with 
suicidal ideation [131]. In adolescent depression, nesfatin-1 
levels were significantly lower than in the control group 
[132]. Hence, we performed a meta-analysis on 567 depres-
sive patients and 447 control subjects and the result showed 
higher plasma levels of nesfatin-1 were associated with 
an increased risk of depression, indicating that nesfatin-1 
might act as a potential novel biomarker for the diagnosis of 
depressive disorder [133].

Similar to the controversial effects of ghrelin on anxi-
ety, the links between ghrelin and depression are also incon-
sistent. In humans [134–136] and rodents [137, 138], ghrelin 
levels were elevated in depressive status. Exogenous ghrelin 
generated antidepressant-like effect in tail-suspended mice 
and in the bilateral olfactory bulbectomy mice [139]. In 
humans, ghrelin exerted antidepressant effects in patients 
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with major depression [140]. However, in contrast to above 
results obtained from adult rodents, Jackson et al. [141] 
reported that acute i.c.v. administration of ghrelin displayed 
depressive-like effects in male juvenile rats by prolonging 
immobility time in forced swimming test. Similarly, Guo 
et al. [142] observed that GHSR knockout mice did not 
exert apparent depression after chronic social, but the con-
trol mice did, possibly due to the differential expressions of 
brain BDNF and IL-6.

One study simultaneously focusing on nesfatin-1 and 
ghrelin in depression showed that plasma levels of both pep-
tides were increased in depressive patients and even associ-
ated with the severity of depression [129].

Stress

Restraint stress mobilized nesfatin-1-positive neurons 
in the hypothalamus, NTS [143], locus coeruleus (LC), 
rostral raphe pallidus (rRPa), and the non-preganglionic 
Edinger–Westphal nucleus (npEW) [144], most of which 
could also be activated by abdominal surgery, a kind of vis-
ceral stressor [145]. Only acute stress, instead of chronic 
stress, increased the plasma and hypothalamic nesfatin-1 
levels in rats [146]. The elevated nesfatin-1 levels attributed 
to the activation all the three parts of HPA axis during stress. 
In the hypothalamus, nesfatin-1 activated the CRH-positive 
neurons by increasing cytosolic Ca2+ concentration [147]. 
Central administration of nesfatin-1 elevated ACTH and 
corticosterone levels in pituitary and adrenal gland, respec-
tively [148]. In mouse corticotrophs, nesfatin-1 stimulated 
the synthesis of POMC which serves as the precursor of 
ACTH [149]. Glucocorticoid receptors were detected in 
nesfatin-1-positive neurons in the PVN [150], indicating a 
possible feedback control through adrenal signaling. Actu-
ally, nesfatin-1 expression is negatively regulated by adrenal 
steroids, as bilateral adrenalectomy triggered an increase in 
nesfatin-1/NUCB2 mRNA expression in the HPA axis [148]. 
Similar results were obtained in goldfish. NUCB2/nesfatin-1 
was detected in all the three parts of the stress axis in gold-
fish [151] and restraint stress upregulated NUCB2/nesfatin-1 
mRNA levels in hypothalamus and pituitary; moreover, 
nesfatin-1 application stimulated the release of cortisol and 
ACTH in vivo and in vitro [151].

When stress occurs, the changes in ghrelin levels seem 
to be controversial. Under acute stress, ghrelin levels were 
decreased by orderly activation of CRF1-R, 5-HT(1B)/(2C)-R 
and MC4-R in mice [152]. However, Kristenssson et al. 
[153] reported that acute psychological stress led to elevated 
ghrelin levels. Chronic social defeat stress increased ghrelin 
levels in rats [137], while ghrelin mRNA levels of hypothal-
amus were significantly decreased by chronic restraint stress 
[154]. Nahata et al. [155] even found that plasma ghrelin 
concentration was not altered by restraint stress. In humans, 

one meta-analysis based on the data of 348 patients showed 
a short-term increase of ghrelin level following acute stress 
[156]. The altered ghrelin levels seem to influence the HPA 
axis, while the results also remain controversial. In rodents 
[157] and humans [158], ghrelin increased CRH, ACTH 
or corticosterone levels. However, Jensen M. et al. [121] 
reported no effect of ghrelin on plasma ACTH levels in 
mice. Alterations in HPA axis induced by stress also affect 
ghrelin secretion. Cortisol decreased serum ghrelin levels 
and its mRNA expression in the stomach in tilapia [159]. 
In patients with Cushing’s syndrome, hypercortisol reduced 
plasma ghrelin levels, which were restored by surgical treat-
ment [160].

Learning and memory

There are only a few studies that focus on the effects of 
nesfatin-1 on learning and memory and the results remain 
conflicting, while ghrelin exerts dual effects on learning and 
memory.

As demonstrated by Zhu Q et al. [161], nesfatin-1 did not 
affect learning and memory after infusion into the lateral 
amygdala or area CA1 of the dorsal hippocampus. Similarly, 
Ge et al. [113] verified that continuous intraperitoneal (i.p) 
injection of nesfatin-1 did not alter the performance of rats 
in the Morris water maze. In rat model with non-alcoholic 
fatty liver disease, increased plasma nesfatin-1 levels were 
found to be at least partly associated with impaired learning 
and memory [162]. Only one study showed that nesfatin-1 
improved memory impairment induced by transient global 
cerebral ischemia/reperfusion (I/R), and the underlying 
mechanism might be related to its inhibitory effects on acti-
vation of microglial cells and caspase-3 [163].

GHSR mRNA is profoundly expressed in the CA1, 
CA2, and CA3 regions of hippocampus and the dentate 
gyrus in rat brain [35]. Memory could be improved in a 
dose-dependent manner through administration of ghrelin 
in the cerebroventricles, hippocampus, amygdala and dor-
sal raphe nucleus (DRN) [117, 118]. In ghrelin knockout 
mice, the exploration time of novel object decreased, which 
could be rescued by ghrelin re-supplement [164]. Blocking 
GHSR1a worsened memory encoding [165], while ghrelin 
receptor agonists ameliorated object recognition memory 
[166]. The mechanisms underlying memory enhancement 
of ghrelin partly lie in synaptic plasticity and hippocampal 
neurogenesis, since ghrelin increased the spine synapse den-
sity in CA1 region [164, 167] and promoted proliferation 
and differentiation of adult hippocampal progenitors [168]. 
In depressed mice, lower ghrelin levels caused decreased 
hippocampal BDNF levels and resulted in cognitive decline 
[169]. NMDA receptor is another site for ghrelin action. 
Ghrelin attenuated memory impairment induced by antag-
onist of NMDA receptor [170] and upregulated NMDA 
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receptor and MAPK1 expressions to improve memory 
[171]. In contrast, some studies documented the negative 
effects of ghrelin on memory. Spitznagel et  al. demon-
strated that cognitive function was negatively associated 
with ghrelin levels in non-demented elder adults [172]. In 
GHSR1a knockout mice, spatial memory was improved 
[173]. In addition, injection of ghrelin into lateral amygdala 
prevented acquisition of conditioned taste aversion [174]. A 
study done by Li N et al. might explain these contradictory 
results. They found that a selective increase of GHSR1a 
expression in hippocampus CA1 excitatory pyramidal neu-
rons impaired hippocampus-dependent memory, whereas 
its upregulation in CA1 inhibitory interneurons improved 
hippocampus-dependent memory. [175].

Neuroprotection

Nesfatin-1 reduced the gene expression of NF-κB, levels 
of tumor necrosis factor alpha (TNF-α), IL-1β, IL-6 and 
activity of caspase-3 in traumatic brain of rat, which implies 
its anti-inflammatory and anti-apoptotic effects in the CNS 
[176]. In patients with traumatic brain injury (TBI), nes-
fatin-1 reflected severity of trauma and even served as a 
prognostic biomarker following TBI [177]. Nesfatin-1 pro-
tected PC12 cells against high glucose-induced cell injury 
by inhibition of apoptosis, autophagy and ROS production 
[178]. In chronic high-fat diet mice, obesity was associated 
with upregulated pro-inflammatory factors and NF-κB sign-
aling components in hypothalamus, which was accompanied 
by decreased NUCB2/nesfatin-1 levels and diet and/or exer-
cise interventions reversed above alterations [179].

Ghrelin ameliorated secondary brain injury induced by 
intracerebral hemorrhage through inhibition of nucleotide-
binding oligomerization domain-like receptor pyrin domain-
containing 3 (NLRP3)  inflammasome and activation of 
nuclear factor-E2-related factor 2 (Nrf2)/anti-oxidative 
response element (ARE) signaling pathway [180]. Ghrelin 
restored cerebral microvascular integrity, reduced vascular 
leakage [181] and improved neural survival [182] by inhi-
bition of apoptosis, inflammation or oxidative stress. In 
amyloid β induced AD mouse models, ghrelin ameliorated 
cognition, synaptic plasticity deficiency and neuroinflam-
mation [183].

Our previous data have elucidated the neuroprotec-
tive effect of both nesfatin-1 and ghrelin on Parkinson's 
disease (PD). Nesfatin-1 protected nigral DAergic neu-
rons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-
dine (MPTP)-induced neurotoxicity via C-Raf-ERK 1/2 
pathway in vivo and in vitro [184]. Moreover, nesfatin-1 
prevented the neurotoxicity of rotenone in DAergic cells 
[185]. Reduced nesfatin-1 in the brain might induce degen-
eration of nigrostriatal DAnergic system, which was medi-
ated via mitochondrial dysfunction-related apoptosis [186]. 

Paralleled with nesfatin-1, similar results were obtained with 
application of ghrelin which antagonized the impairment 
of 1-methyl-4-phenyl-pyridinium  (MPP+) [187], except 
that ghrelin increased [188] and nesfatin-1 decreased the 
firing rate of nigral DAergic neurons [189]. Stutz et al. found 
that the protective effect on DAergic neurons mediated by 
GHSR was independent of their electric activity, which 
could explain the similar protective effects and opposite 
actions on the firing of DAergic neuron between nesfatin-1 
and ghrelin [190]. In PD models, ghrelin blocked the activa-
tion of microglia, inducible nitric oxide synthase, reduced 
the expression of TNF-α and IL-1β [191], improved motor 
symptoms and partly restored tyrosine hydroxylase in sub-
stantia nigra via improving autophagic flux dysfunction and 
recovery of lysosome functions [192]. In PD patients, total 
and active plasma ghrelin levels were decreased [193]. Deep 
brain stimulation of subthalamic nucleus, as a type of treat-
ment of PD [191], increased active ghrelin levels and body 
weight gain [194].

The roles of nesfatin‑1 and ghrelin 
in the peripheral functions

Gastrointestinal functions

Nesfatin-1-positive neurons in the NTS were activated by 
gastric distension (GD) and exogenous nesfatin-1 modu-
lated mechanosensitivity of gastric vagal afferent fibers 
[195]. Nesfatin-1 affects not only gastrointestinal sensory 
input but also gastrointestinal motility. Central injections of 
nesfatin-1, such as lateral ventricle [196], ARC [197], PVN 
[198], VMH [199] and amygdala [200], inhibited gastric 
motility and the underlying mechanisms were linked to oxy-
tocin and melanocortin systems. Besides, nesfatin-1 affects 
gastric secretion. Central infusion of nesfatin-1 reduced gas-
tric acid secretion dependent upon the inhibition of H+/K+-
ATPase expression in the gastric mucosa [201]. The elevated 
nesfatin-1 levels also contributed to the protection of gastric 
mucosa impaired by stress, partly through the inhibition of 
gastric acid secretion [202]. In addition, nesfatin-1 affected 
the secretion of other gastrointestinal hormones, including 
CCK and peptide YY in mice intestine [203].

Ghrelin exerts different effects from nesfatin-1 on gastro-
intestinal functions. Activities of GD sensitive neurons in 
the DVC [204], hippocampus [205], and lateral septum [206] 
were modulated by micro-injection of ghrelin. Both ghrelin 
and GHSRs were detected in vagus nerve and ghrelin inhib-
ited the mechanosensitivity of vagal afferent [207], while 
ghrelin receptor inverse agonist increased the firing rate of 
vagal afferent fibers [208]. Ghrelin regulates gastrointesti-
nal motility during both digestive and interdigestive period. 
In rodents and humans, administration of ghrelin promoted 
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gastric emptying [98, 209, 210], which might be mediated by 
GABAergic neurons located in the AP [211]. During interdi-
gestive period, ghrelin promoted migrating motility complex 
(MMC) phase III-like movement [212] and the promotion 
extended to the small intestine [213]. Ghrelin stimulated 
gastric acid secretion through vagus nerve and the underly-
ing mechanism involved in the histamine and gastrin [214].

Despite the same origin in gastrointestinal tract, nes-
fatin-1 mainly exerts inhibitory effects on gastrointestinal 
functions, opposite to the major stimulatory effect of ghre-
lin. The studies focusing on nesfatin-1 and ghrelin showed 
that fasting generated opposite impacts on both peptides 
in the stomach, as ghrelin expression was upregulated and 
NUCB2/nesfatin-1 production was suppressed [215]. His-
tone deacetylases5 (HDAC5)-mTORC1 signaling served as 
common pathway leading to reciprocal changes in ghrelin 
and NUCB2/nesfatin-1 secretions [215]. In dogs, NUCB2 
mRNA was expressed in all digestive organs including 
digestive tract and digestive glands [216], while ghrelin 
gene was only detected in the stomach [217]. A research in 
dogs showed that plasma nesfatin-1 concentrations might 
mark the inversed kinetics for ghrelin during MMC, since 
plasma ghrelin hit its nadir just when plasma nesfatin-1 lev-
els peaked in late phase I [218]. Peripheral administration 
of nesfatin-1 inhibited gastric MMC in the fasted dogs, but 
did not affect gastrointestinal motility in the fed ones [218].

Blood glucose and diabetes mellitus

Nesfatin-1 is co-distributed with insulin in pancreatic β-cells 
and promotes the secretion of insulin, indicating the corre-
lation between nesfatin-1 and glucose metabolism. In vitro 
study showed that nesfatin-1 potentiated glucose-induced 
insulin production by activation of L-type Ca2+ channels 
[219] and inhibition of voltage-gated K+ channels [220] 
in isolated β-cells of pancreatic islet. In pancreatic β-cell-
specific NUCB2 knockout mice, blood glucose levels were 
elevated and insulin secretion was inhibited [221]. Notably, 
nesfatin-1 exhibited direct hypoglycemic effect in peripheral 
tissue, since it enhanced phosphorylation of AKT and glu-
cose transporter 4 (GLUT4) expressions in skeletal muscle 
and adipose tissue [222], decreased the glucose intake in 
the gut and increased glucose uptake in liver and muscle 
[223]. Nesfatin-1 exerts hypoglycemic effects in physiologi-
cal state, which makes nesfatin-1 a possible candidate for 
hypoglycemic hormones besides insulin. In T2DM rats, 
nesfatin-1 levels decreased in the blood, which could be 
reversed by hypoglycemic agents [224]. In T2DM mice, 
central injection of nesfatin-1 decreased plasma levels of 
free fatty acid and promoted fatty acid oxidation in skeletal 
muscle [225]. In T2DM patients, higher plasma nesfatin-1 
concentrations in the early stages might compensate for 
hyperglycemia and nesfatin-1 concentrations were reduced 

in patients receiving antidiabetic therapy [226]. In addi-
tion, NUCB2 gene polymorphism might be associated with 
T2DM, as a consequence of lower CG and GG genotype of 
NUCB2 gene in T2DM patients [227].

In contrast to the hypoglycemic effects of nesfatin-1, 
ghrelin exerts hyperglycemic actions. In rodents and 
humans, exogenous ghrelin suppressed glucose-induced 
insulin secretion [228–230] and increased plasma glucose 
levels [231]. In pancreatic β-cells, ghrelin reduced insulin 
secretion by activating voltage-dependent K+ channels and 
by weakening Ca2+ signaling [232]. In addition, ghrelin 
stimulated somatostatin secretion from pancreatic δ-cells, 
which in turn suppressed insulin secretion [233]. The forma-
tion of GHSR1a-SST5 heterocomplex also contributed to 
the inhibition of insulin secretion [52]. Moreover, ghrelin 
stimulated glucagon secretion from α-cells, which elevated 
plasma glucose levels [234]. In T2DM patient, plasma ghre-
lin levels were decreased and were associated with insulin 
resistance [235]. Due to hyperglycemic effects of ghrelin, 
GHSR1a receptor antagonist, PF-05190457, was explored 
to treat T2DM [208].

In short, nesfatin-1 stimulates insulin secretion and 
decreases plasma glucose levels, while ghrelin exerts oppo-
site effects. In T2DM, plasma nesfatin-1 levels are elevated 
and ghrelin levels are decreased. Bertucci et al. observed 
the alteration of both peptides after exposure to glucose in 
goldfish, concluding that preproghrelin was upregulated 
and  NUCB2/nesfatin-1 was downregulated in cultured 
intestine sections [236]. GHSRs are involved in insulin 
secretion, since GHSR knockout mice showed significantly 
lower blood glucose levels under caloric restriction [237] 
and the glucose-stimulated insulin secretion was inhibited 
both in vivo and in vitro after specific GHSR knockout in 
β cells [238]. The direct effect of ghrelin on insulin secre-
tion is inhibitory, but after deleting its receptors on β cells, 
insulin secretion was still inhibited, indicating the possible 
involvement of other insulinostatic hormones. It could not 
be ruled out that nesfatin-1 might be one of the candidates. 
Our results demonstrated that the improvement of nesfatin-1 
on glucose tolerance could be abolished by pretreatment of 
GHSR antagonist or GHSR knockout, which implies the 
dependence of nesfatin-1 on GHSR in the regulation of 
glucose metabolism [4]. Whether nesfatin-1 could regulate 
pancreatic insulin release through GHSRs is worthy of fur-
ther investigation.

Reproduction

The reproduction is mainly regulated by the hypothalamic-
pituitary–gonadal (HPG) axis, which originates from hypo-
thalamus, also serving as a feeding control center. In fact, 
reproductive functions are closely correlated with energy 
metabolism. It is vital for reproduction that the feeding 
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related hormones are maintained in appropriate range. The 
effects of nesfatin-1 and ghrelin on the three respective lev-
els of the HPG axis will be discussed, with regards to dif-
ferent species.

Protein or mRNA of NUCB2/nesfatin-1 was detected 
in all the three parts of the HPG axis indicating the link 
between nesfatin-1 and reproduction. The actions of nes-
fatin-1 on reproduction have been observed in different spe-
cies. In adult male rats, i.c.v. injection of nesfatin-1 sup-
pressed gene expression of gonadotropin-releasing hormone 
(GnRH) in hypothalamus, follicle-stimulating hormone β 
(FSHβ) and luteinizing hormone β (LHβ) in the pituitary 
gland, as well as genes for testosterone synthesis in the testis 
[239]. Most results obtained in male pubertal rats were simi-
lar to those of the adults except for the elevated genes for tes-
tosterone synthesis [239]. In female pubertal rats, elevated 
NUCB2/nesfatin-1 mRNA levels in hypothalamus promoted 
pubertal maturation, since the central infusion of nesfatin-1 
created a slight increase in circulating gonadotropins and 
continuous infusion of antisense morpholino oligonucleo-
tides of NUCB2 prevented vaginal opening and reduced 
ovarian weights and plasma LH concentration [240]. In 
both male and female goldfish, peripheral injection of nes-
fatin-1-like peptide suppressed hypothalamic GnRH mRNA 
expression, as well as pituitary LHβ and FSHβ. In gonads, 
nesfatin-1 downregulated LH receptor, FSH receptor and 
enzymes for sex hormone synthesis [241]. Accordingly, 
the circulating testosterone and estradiol were decreased 
[241]. Nesfatin-1-like peptide inhibited oocyte maturation 
in zebrafish [241]. In general, nesfatin-1 has an inhibitory 
effect on reproduction in vivo in adult rodents and fishes. 
However, some results obtained in vitro seem to be different. 
Synthetic nesfatin-1 increased GnRH and LHβ expressions 
in hypothalamic and pituitary cell lines [242] and nesfatin-1 
enhanced the testicular testosterone secretion in Leydig cells 
[239]. In addition to fishes and rodents, there were several 
studies focusing on porcine. I.c.v. administration of nes-
fatin-1 stimulated LH secretion in prepubertal gilts [243]. 
Nesfatin-1 significantly promoted the meiotic maturation 
[244] and stimulated cell proliferation and progesterone 
production in granulosa cells from large follicles [245].

The effects of ghrelin on reproduction have been stud-
ied in different species, with different results. In rodents, 
in vivo results showed that ghrelin inhibited hypothalamic 
GnRH secretion [246, 247], pituitary LH or FSH expres-
sions or secretion [248–250], ovarian and testicular steroid 
hormone secretion [250, 251]. In vitro results showed that 
ghrelin stimulated GnRH release in hypothalamic explant 
of the prepubertal [246], and enhanced basal LH and FSH 
secretions in pituitary tissue [247], but decreased testos-
terone secretion in testicular slices [252]. In female rats, 
the main effect of chronic subcutaneous injection of ghre-
lin on the ovaries was inhibitory, including the number of 

corpora lutea, the mean diameter of follicle, corpora lutea, 
luteal cell, theca layer, oocyte and zona pellucida, as well 
as the whole ovarian volume [253]. Ghrelin inhibited male 
puberty onset, as balano-preputial separation was delayed. 
However, in prepubertal female rats, daily subcutaneous 
administration of ghrelin failed to influence puberty onset 
and the sexual hormone secretions [254]. In humans, ghrelin 
decreased both LH and FSH levels in females [255], but 
only LH in males [256]. Ghrelin attenuated basal and hCG-
stimulated progesterone release in human luteal cells [257]. 
A human study showed that high serum ghrelin levels were 
correlated with constitutional delay of growth and puberty 
in adolescence [258]. In goldfish, ghrelin stimulated LH 
release in vivo and in vitro [259], while inhibited germinal 
vesicle breakdown of zebrafish oocyte maturation in vitro 
[260]. The effects of ghrelin on porcine reproduction were 
mainly concentrated in experiments in vitro and the results 
were not completely consistent. Some studies showed that 
ghrelin promoted reproductive functions: ghrelin reinforced 
estradiol and progesterone secretions, increased ovarian cell 
proliferation and enhanced blastocyst formation [261–263]. 
However, ghrelin inhibited LH and FSH induced follicular 
steroid secretion [264], as well as the organization of micro-
tubules and microfilaments, potentially being a contributing 
factor in the lowered maturation rate [265].

In general, the regulation of nesfatin-1 and ghrelin in 
reproductive axis are complicated, varying with different 
species, genders and stages of development. The main roles 
of nesfatin-1 and ghrelin in rodents are similar, with inhibi-
tory effects in vivo and excitatory effects in vitro. Nesfatin-1 
inhibits reproduction in fish and promotes reproduction in 
porcine, while the effects of ghrelin on reproduction are 
inconsistent in above two species.

Cardiovascular functions

The distribution of ghrelin and nesfatin-1 in the cardio-
vascular centers and in myocardium suggests their role in 
controlling cardiovascular functions. The effects of the two 
peptides on the heart and blood vessels will be discussed, 
respectively.

In myocardial I/R injury models, nesfatin-1 exerted car-
dioprotective effects through anti-inflammation, anti-apop-
tosis, anti-oxidative stress and anti-autophagy [266]. Nes-
fatin-1 decreased cardiac troponin-T and pro-inflammatory 
cytokines, increased the expressions of p-AKT/AKT and 
p-GSK-3β/GSK-3βa [267] and suppressed necroptosis via 
modulation of receptor interacting kinase 1 (RIPK1)-RIPK3-
the mixed lineage kinase domain-like protein (MLKL) axis 
and RhoA/Rho-associated coiled-coil-containing protein 
kinase (ROCK)/RIP3 signaling pathway [268] as well as 
attenuation of endoplasmic reticulum stress via AKT/ERK 
pathway after I/R injury [269]. In addition, high levels of 
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nesfatin-1 were probably associated with left ventricle myo-
cardial remodeling [270]. In blood vessels, nesfatin-1 could 
alleviate endothelial inflammation induced by free fatty 
acids via the growth factor independent-1 transcriptional 
repressor (GFI1)/NF-κB signaling pathway [271]. However, 
nesfatin-1 promoted vascular smooth muscle cells prolifera-
tion [272], migration and neointimal hyperplasia by increas-
ing matrix metalloproteinase 2 (MMP2)/MMP-9 levels and 
decreasing peroxisome proliferator-activated receptor γ 
(PPARγ) gene expression [273], indicating the role of nes-
fatin-1 in the formation of atherosclerotic plaque. Compared 
with the control group, higher plasma levels of nesfatin-1 
were found in patients with coronary artery stenosis [274]. 
In the regulation of blood pressure, central nesfatin-1 signifi-
cantly increased mean arterial pressure (MAP) by acting on 
MC3/4-Rs in the NTS and sympathetic nervous system, since 
the vasopressor effect could be abolished by pretreatment 
with the MC3/4-R antagonist or the alpha-adrenergic antago-
nist. In addition, after intravenous infusion of nesfatin-1, the 
arterial vessels contracted, resulting in increased peripheral 
resistance in rats [275] and chronic infusion of nesfatin-1 
induced severe hypertension [272].

Ghrelin plays a protective role in myocardial I/R injury. 
Ghrelin reversed the alteration of infarct size and the lev-
els of creatine kinase (CK), lactate dehydrogenase (LDH), 
TNF‑α, IL‑6, malondialdehyde (MDA), caspase-3, cas-
pase-9, iNOS, superoxide dismutase (SOD), and glutathione 
(GSH)‑peroxidase (PX) after myocardial I/R injury via the 
high mobility group box 1 (HMGB1)/Toll-like receptor 4 
(TLR4)/NF-κB pathway [276]. In addition to the anti-
inflammatory and antioxidant effects, ghrelin resisted myo-
cardial I/R injury by enhancing autophagy. After delivering 
ghrelin to the infarcted myocardium with an adeno-asso-
ciated virus 9 vector, the ratio of LC3-II/LC3-I, formation 
of autophagosomes and genes expression involved in the 
autophagic pathways were elevated [277]. Chronic applica-
tion of ghrelin improved ultrastructural changes after myo-
cardial infarction, including increased numbers of intracel-
lular organelles in endoplasmic reticulum, and decreased 
numbers of atrophic nuclei, phagocytes, irregular nuclear 
membrane and chromatin condensation [278]. Myocardial 
hypertrophy and myocardial fibrosis are important patho-
logical features of myocardial remodeling. Karcz-Socha I 
et al. reported that circulating ghrelin levels were associ-
ated with left ventricular mass index [279]. After transverse 
aortic constriction, ghrelin knockout mice exhibited severer 
cardiac hypertrophy and inhibition of parasympathetic 
activities, while re-application of ghrelin attenuated cardiac 
hypertrophy by activating the cholinergic anti-inflammatory 
pathway [280]. Both in vivo and in vitro experiments con-
firmed that ghrelin inhibited angiotensin-induced myocardial 
fibrosis via PPAR-γ/transforming growth factor-β1 (TGF-
β1) [281] or Nrf2/NADPH/ROS pathway [282]. Ghrelin 

protects not only the myocardium but also the vascular 
endothelium. Ghrelin ameliorated endothelial inflammation 
via AMPK/NF-κB signaling pathway [283], and inhibited 
atherosclerosis by preventing endoplasmic reticulum stress 
[284]. Ghrelin reduced intraplaque angiogenesis and lowered 
the thickness ratio of the intima to media by downregulat-
ing vascular endothelial growth factor (VEGF) and VEGF 
receptor 2 levels in an atherosclerotic rabbit model [285]. In 
the regulation of blood pressure, low circulating ghrelin lev-
els are correlated with elevated blood pressure [286]. Exog-
enous administration of ghrelin decreased MAP in rabbits, 
rats and even humans [287]. The underlying mechanisms 
included vasorelaxation, inhibition of sympathetic activity, 
kidney diuresis, alleviation of oxidative stress and regulation 
of renin–angiotensin system [287–290].

Both nesfatin-1 and ghrelin exert similar protective effects 
on the cardiovascular system, but they have hypertensive and 
hypotensive effects, respectively, in the regulation of MAP.

Anti‑inflammatory and anti‑oxidative effects

Despite their previously stated opposite effects, nesfatin-1 
and ghrelin exhibit similar anti-inflammation and antioxida-
tion effects in various organs and tissues. (The cardiovascu-
lar system is not covered in this section, as discussed above.)

Serum nesfatin-1 levels were elevated in patients with 
Crohn's disease and ulcerative colitis [291], which indicates 
the anti-inflammatory effects of nesfatin-1. Actually, exog-
enous nesfatin-1 ameliorated necrotizing enterocolitis [292] 
and acetic acid-induced colitis [53]. Nesfatin-1 improved 
gastric ulcer by downregulating myeloperoxidase (MPO), 
MDA, chemiluminescence, IL-6, TNF-α and by upregulat-
ing GSH levels [293], in a COX-dependent manner [294]. 
Nesfatin-1 attenuated inflammation and oxidative stress in 
alveolar epithelial cell and in animal models of acute lung 
injury by inhibiting HMGB1, p38MAPK and NF-κB signal-
ing pathways [295], while in NUCB2/nesfatin-1 knockout 
mice, acute lung injury caused by lipopolysaccharide was 
exacerbated [296]. In testicular torsion rat models, nesfatin-1 
regulated pro-inflammatory/anti-inflammatory cytokine bal-
ance and reduced AKT/CREB expressions [297]. Nesfatin-1 
alleviated osteoarthritis by suppressing the activation of 
NF-κB, MAPK, and the Bax/Bcl-2 signaling pathway [24].

Elevated plasma ghrelin levels have been observed in 
various inflammatory diseases, such as colitis [298], Crohn’s 
disease [299], sepsis [300] and pancreatitis [301]. Ghrelin 
inhibited the expression of pro-inflammatory cytokines such 
as IL-1β, IL-6 and TNF-α in human T lymphocytes and 
monocytes [302]. In sepsis-induced inflammation, ghrelin 
downregulated the pro-inflammatory cytokines mediated 
by the MAPK phosphatase-1 [303] and elevated the lev-
els of antioxidants such as GSH, catalase (CAT) and SOD 
against the oxidative stress [304]. Ghrelin improved acute 
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pancreatitis via inhibiting NF-κB signaling pathway, thus 
reducing the release of inflammatory cytokines [305].

Both nesfatin-1 and ghrelin possess anti-inflammatory 
and anti-oxidative effects. One group simultaneously 
observed the protective effects of both peptides on gastric 
ulcer. The results showed that a much lower dose of nes-
fatin-1 (0.02 nmol/Kg) appeared to be slightly less effective 
than ghrelin (4 nmol/Kg) according to the loss of gastric 
surface epithelium, glands erosion, cell inflammation and 
bleeding scores [306]. In colitis [53] and acute pancreatitis 
models [307], nesfatin-1 could alleviate inflammations via 
ghrelin receptor, since GHSR antagonist attenuated this pro-
tective effect, suggesting the interaction between nesfatin-1 
and GHSR.

Conclusion and perspectives

Generally, nesfatin-1 displays opposite effects compared to 
ghrelin in the regulation of energy metabolism, blood glu-
cose levels, gastrointestinal functions, blood pressure, but 
exhibits similar effects in cardiovascular protection, anti-
inflammation, antioxidation and neuroprotection via distinct 
or similar mechanisms (Fig. 4). The early identifications of 
ghrelin and GHSR have led to numerous related studies. 
Therefore, clinical applications of ghrelin could enlighten 
those of nesfatin-1. For example, it should help with explor-
ing the roles of nesfatin-1 in the treatment of obesity, neu-
rodegenerative diseases, diabetes, myocardial I/R injury, 
inflammation, oxidative stress-related diseases, etc. [308, 
309]. The antagonist of nesfatin-1 receptor might be applied 
in the treatment of cachexia, anorexia, GH deficiency and 

gastroparesis [310]. Therefore, the discovery of nesfatin-1 
receptor could potentially contribute to the treatment of cer-
tain diseases and further clarification of the mechanisms of 
nesfatin-1 actions. The overlapping receptor distribution and 
the interaction between nesfatin-1 and ghrelin indicate the 
potential crosstalk. The dependence of nesfatin-1 on GHSR 
provides some strategies for searching the receptor of this 
orphan ligand. It could not be ruled out that nesfatin-1 might 
serve as an endogenous ligand for other known receptors, 
that the unknown nesfatin-1 receptor might form hetero-
complex with other known receptors, or that nesfatin-1 even 
serves as an allosteric modulator for other GPCRs. Experi-
mental techniques such as Biacore, proximity ligation assay 
(PLA), co-immunoprecipitation and BRET, may be condu-
cive to exploring the interactions between nesfatin-1 and 
other receptors.
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Fig. 4   The comparison of nesfatin-1 and ghrelin in central and 
peripheral functions. In the CNS, nesfatin-1 inhibits food intake and 
induces anxiety. Stress activates nesfatin-1-positive neurons. Ghre-
lin stimulates food intake and exerts dual effects on learning and 
memory. Both nesfatin-1 and ghrelin exhibit neuroprotective effects. 

In peripheral system, nesfatin-1 inhibits gastrointestinal motility and 
secretion, stimulates insulin secretion, decreases blood glucose levels, 
and increases arterial blood pressure, while ghrelin reverses all above 
effects. Both nesfatin-1 and ghrelin attenuates myocardial I/R injury 
and exerts anti-inflammation and antioxidation effects
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