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Abstract
Probiotics currently available on the market generally belong to a narrow range of microbial species. However, recent studies 
about the importance of the gut microbial commensals on human health highlighted that the gut microbiome is an unexplored 
reservoir of potentially beneficial microbes. For this reason, academic and industrial research is focused on identifying and 
testing novel microbial strains of gut origin for the development of next-generation probiotics. Although several of these are 
promising for the prevention and treatment of many chronic diseases, studies on human subjects are still scarce and approval 
from regulatory agencies is, therefore, rare. In addition, some issues need to be overcome before implementing their wide 
application on the market, such as the best methods for cultivation and storage of these oxygen-sensitive taxa. This review 
summarizes the most recent evidence related to NGPs and provides an outlook to the main issues that still limit their wide 
employment.

Keywords Next-generation probiotics · Live biotherapeutics · Gut microbiome · Faecalibacterium prausnitzii · 
Akkermansiamuciniphila · Prevotella copri

Introduction

The importance of the gut microbiome in influencing human 
health is widely recognized [1]. Indeed, an alteration in the 
gut microbiome composition (dysbiosis) has been linked to 
several intestinal and systemic diseases, such as inflammatory 
bowel and Crohn’s disease, obesity, diabetes and metabolic 
syndrome, allergies, immune and cardiovascular diseases 
[2, 3]. Although a causative effect is yet to be demonstrated, 
independent observational studies highlighted the presence 
of common microbial signatures, specific for each disease.

Microbiome‑targeted intervention 
to promote host health

Dietary interventions for the modulation of the gut 
microbiome

Diet is considered as one of the main factors influencing 
the gut microbiome. Long-term, habitual diet shapes the 
gut microbiome composition and activities. Several studies 
demonstrated that the gut microbiome of non-Westernized 
populations living in Africa or South-America and habitu-
ally consuming a diet richer in undigestible fiber and phyto-
chemicals compared to urbanized, Western subjects, show 
higher abundance of fiber-degrading microbial taxa in their 
gut microbiome [4]. These microbes are able to degrade 
complex polysaccharides and phytochemicals entrapped in 
the matrix, producing health-promoting metabolites from 
their catabolism, such as short-chain fatty acids (SCFA) 
from fiber fermentation, isothiocyanates or urolithins from 
polyphenols, that are usually enriched in the metabolome 
of these subjects [5, 6]. Consistently, Western subjects con-
suming a habitual diet rich in products of vegetable origin 
(e.g., vegetarian/vegan diet, Mediterranean diet) present 
features in their gut microbiome similar to non-Western 
populations, such as higher Bacteroidetes/Firmicutes ratio 
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and higher levels of fiber-degrading bacteria (e.g., Prevo-
tella, Faecalibacterium, Roseburia, Lachnospira) [5, 7–10]. 
In addition, these studies demonstrated that a dietary pat-
tern rich in vegetable-based products is associated with a 
beneficial metabolome and positive health effects, such as 
a reduced inflammation, lower cardiometabolic risk and an 
improved glucose homeostasis [6, 9, 10]. However, it was 
highlighted that both the type of fibre and its structure may 
influence the effect of the gut microbiome and metabolome 
[11, 12]. In recent years, the possibility of manipulating the 
gut microbiome composition and activities as a therapeutic 
or preventive approach was explored. Dietary interventions 
targeting the gut microbiome in healthy and diseased popu-
lations were carried out, either evaluating the effect of a sup-
plementation with specific foods (e.g., products rich in fiber 
or polyphenols) or the influence of a more complex dietary 
pattern (e.g., Mediterranean or vegan diets). Despite the dif-
ferences in the study design, target population and methods 
used, most of these studies highlighted the strong impact of 
the dietary intervention on the gut microbiome and on the 
host health. A recent study evaluated the effect of a 2-month 
intervention with a Mediterranean diet in obese/overweight 
adults [8]. The intervention promoted the increase of Fae-
calibacterium prausnitzii, a microbial species well known 
for the ability to degrade complex polysaccharides and 
produce beneficial SCFA. On the contrary, a decrease in 
the pro-inflammatory Ruminococcus gnavus was observed. 
These changes were associated with a decrease in plasma 
cholesterol, inflammatory markers and insulin resistance [8]. 
Consistently, Ghosh et al. [11] observed a similar effect in 
a longer intervention (1 year) with the Mediterranean diet 
on elder subjects. However, these and other studies high-
lighted that the effect of the dietary intervention cannot be 
generalized. Indeed, the effects of a dietary treatment differ 
inter-individually and may be influenced by a combination 
of host and microbiome features [12, 13]. It was suggested 
that the baseline composition of the gut microbiome may 
be responsible for the individualized response to the same 
meal. In addition, building a complex model integrating 
the microbiome and host-specific features, it was possible 
to predict the individual’s metabolic response with good 
accuracy [14, 15], demonstrating that dietary recommenda-
tions should not be generalized. Therefore, the individual’s 
microbiome should be considered to inform the design of a 
personalized diet.

Modulation of the gut microbiome by probiotics

Probiotics are defined as “live microorganisms that, when 
administered in adequate amounts, confer a health benefit on 
the host” [16]. Probiotic microorganisms may interact with 
the host and its microbiome through different mechanisms, 

directly interplaying with human intestinal cells or produc-
ing active metabolites, that can indirectly act on the host 
microbiome by changing the gastrointestinal environment 
(e.g., pH lowering). In addition, ingested probiotics may 
compete with commensal microbes for nutrients and bind-
ing sites, or by producing antimicrobial compounds (organic 
acids, bacteriocins). Metabolites produced by probiotic 
microbes can act at the interface of human cell, binding to 
receptors on intestinal epithelial, immune, endocrine, and 
nervous cells [17, 18]. Probiotic strains may explicate their 
activity in different ways. Some strains promote the pro-
duction of β-defensin and immunoglobulin A (IgA), thus 
suppressing the growth of pathogens or reducing the perme-
ability of the intestinal barrier, inducing mucin production 
and strengthening tight junctions [17–20]. Other strains have 
an immunomodulatory activity, stimulating the production 
of anti-inflammatory cytokine, or can produce neuroactive 
molecules from dietary precursors, such as γ-aminobutyric 
acid (GABA), kynurenic acid, serotonin, catecholamines and 
acetylcholine [19–21].

Most of the probiotic strains available on the market 
belong to a limited number of genera, mainly Lactic Acid 
Bacteria (LAB; e.g., Lactobacillus, Lactococcus) or Bifido-
bacterium spp. and the main isolation sources are fermented 
foods or the human gut [18, 22]. These taxa have been 
granted the status of Generally Regarded as Safe (GRAS) 
in the United States or of Qualified Presumption of Safety by 
the European Food Safety Authority. Although their activity 
is strain-specific, the influence on human health and on the 
human microbiome has been widely studied in animals and 
humans and was recently and extensively reviewed [22–24]. 
However, recent advances in the knowledge of the gut micro-
biome suggested that the range of potentially beneficial 
microbes is much wider, and the human gut microbiome may 
be considered as an unexplored reservoir of novel probiotics.

Mining the gut microbiome 
for next‑generation probiotics

Next-generation probiotics (NGPs) are microbial taxa that 
conform to the traditional definition of probiotics, but do 
not have an history of use for health promotion. They also fit 
well in the definition of live biotherapeutic products (LBP) 
given by the US Food and Drug Administration: “a biologi-
cal product that: (1) contains live organisms, such as bac-
teria; (2) is applicable to the prevention, treatment, or cure 
of a disease or condition of human beings; and (3) is not a 
vaccine” [25]. Regulation about NGPs is still lacking and 
varies across countries. In Europe, all microorganisms that 
have not been used in foods before 1997, must be carefully 
evaluated by EFSA before being admitted on the market, 
either as a novel food or as a drug [26].
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Several microbial commensals have been evaluated 
as NGPs. Of these, Akkermansia muciniphila, Faecali-
bacterium prausnitzii, Eubacterium hallii, Prevotella 
copri, Bacteroides spp. are the most promising. NGPs 
are phylogenetically distant from LAB, that belong to Fir-
micutes (Bacilli class) or Actinobacteria phyla (Fig. 1). 
Most of these taxa (Prevotella, Bacteroides, Akkerman-
sia) are from different phyla (Bacteroidetes, Verrucomi-
crobia), while others (Faecalibacterium, Roseburia and 

Eubacterium) belong to the Firmicutes phylum but are 
from a different class (Clostridia; Fig. 1).

Akkermansia muciniphila

Akkermansia muciniphila is the only cultured member 
of Verrucomicrobia phylum. It can degrade the intestinal 
mucus layer to obtain energy [27], which has been suggested 
as one of the factors giving it a competitive advantage in the 

Fig. 1  Phylogenetic tree of species from common probiotics Lactic 
Acid Bacteria ore recently investigated next-generation probiotics. 
Outer ring is colored according to the phylum, while branch back-
ground is colored according to the class. Phylogenetic tree was based 
on concatenated marker genes as inferred by PhyloPhlAn 3.0 (https:// 
github. com/ bioba kery/ phylo phlan) and visualized using iTOL v6 
(https:// itol. embl. de). Genomes used are from strains: Eubacterium 
hallii DSM3353; Akkermansia muciniphila DSM22959; Bacteroides 
fragilis NCTC9343; B. thetaiotaomicron DSM2079; B. uniformis 
ATCC8492; Faecalibacterium prausnitzii A2165; Prevotella copri 

DSM18205; Roseburia intestinalis R1.82; Bifidobacterium adoles-
centis ATCC15703; Bif. animalis subsp. animalis ATCC25527; Bif. 
animalis subsp. lactis BLC1; Bif. bifidum ATCC29521; Bif. breve 
DSM20213; Bif. catenulatum DSM16992; Bif. longum subsp. infantis 
ATCC15697; Bif. longum subsp. longum KCTC3128; Lacticaseiba-
cillus casei DSM20011; Lc. paracasei ATCC25302; Lc. rhamnosus 
DSM20021; Lactiplantibacillus plantarum DSM20174; Lactobacil-
lus acidophilus DSM20079; Lb. gasseri ATCC33323; Lb. johnsonii 
GHZ10a; Limosilactobacillus reuteri subsp. reuteri DSM20016

https://github.com/biobakery/phylophlan
https://github.com/biobakery/phylophlan
https://itol.embl.de


 F. De Filippis et al.

1 3

76 Page 4 of 18

animal gut niche [28]. Evidence from several independent 
studies suggested that it is usually depleted in gut inflam-
matory conditions (Inflammatory Bowel Diseases, IBD 
and inflammatory bowel syndrome, IBS), as well as in obe-
sity and diabetes (Fig. 2). Indeed, several studies reported 
a negative correlation of A. muciniphila abundance and 
obesity [29, 30] and detected an increase in its abundance 
during weight-loss [31]. However, a recent genome-based 
study reported the presence of five putative different spe-
cies, closely related to A. muciniphila [32]. Interestingly, 
only one species was negatively associated with Body Mass 
Index, highlighting the need of an accurate taxonomic 
classification within Akkermansia genus [32]. The possi-
bility to modulate A. muciniphila abundance by diet was 
also observed: A. muciniphila increased upon an interven-
tion with prebiotic fructo-oligosaccharides (FOS) in obese 
mice and rats [33–35], as well as upon the consumption of a 

polyphenols-rich pomegranate extract [36]. In addition, the 
presence of A. muciniphila was associated with an improved 
metabolic response upon a 6-weeks calorie restriction diet: 
Dao et al. [30] demonstrated that only the group of sub-
jects with higher abundance of A. muciniphila displayed an 
improvement in insulin sensitivity upon the diet [30], while 
the group with low A. muciniphila received the same diet, 
but did not display the same beneficial effects. All these 
data supported the role of A. muciniphila in human health, 
particularly in glucose homeostasis, and fostered studies on 
its use as probiotic supplementation (Table 1). Several stud-
ies carried out on mice models demonstrated an effect of A. 
muciniphila supplementation on reducing chronic inflam-
mation (endotoxemia) and fat mass gain, improving glucose 
homeostasis and insulin sensitivity, and increasing energy 
expenditure, either consuming a normal or a high-fat diet 
(Table 1). Therefore, most of the existing evidence suggests 

Fig. 2  Average relative abun-
dance in the human gut of spe-
cies investigated as Next-Gen-
eration Probiotics. Data were 
extracted from curatedMetagen-
omicData Bioconductor 
package on July 2021 (https:// 
waldr onlab. io/ curat edMet ageno 
micDa ta/). IBD, Inflammatory 
Bowel Disease; IBS, Inflamma-
tory Bowel Syndrome

https://waldronlab.io/curatedMetagenomicData/
https://waldronlab.io/curatedMetagenomicData/
https://waldronlab.io/curatedMetagenomicData/
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the use of A. muciniphila as probiotic to ameliorate the 
metabolic state associated with obesity and diabetes. How-
ever, a recent study also highlighted that A. muciniphila was 
able to reduce the decline associated with aging, attenuat-
ing inflammation, immune disorders, and intestinal mucus 
layer thinning, thus promoting healthy aging [37]. Moreover, 
the positive effect of the consumption of A. muciniphila on 
experimentally induced periodontitis was also suggested: 
the gavage with A. muciniphila in mice infected by Por-
phyromonas gingivalis (a primary periodontal pathogen), 
reduced the bone loss typical of this condition compared 
with controls not receiving the microbial supplement [38]. 
Finally, the positive effect on reducing colitis and associated 
tumorigenesis was also suggested [39, 40].

The mechanisms leading to these beneficial outcomes 
have not been fully elucidated yet. A primary role in medi-
ating these effects was given to the protein Amuc_1100, pre-
sent on the bacterium outer membrane, that seems to be able 
to interact with the intestinal Toll-like receptors (TRL2) and 
promote tight junctions occlusion, thus restoring the gut bar-
rier function. Interestingly, some studies highlighted that the 
positive effects mediated by A. muciniphila supplementation 
were also obtained by the pasteurized bacterial cells [41, 49] 
or the purified Amuc_1100 protein [40, 49], supporting the 
important role played by the cell membrane components. In 
addition, a recent study identified a novel peptide secreted 
by A. muciniphila (named P9) that can improve glucose 
homeostasis and promote thermogenesis, thus counteract-
ing obesity in high-fat fed mice [44].

To date, only one pilot A. muciniphila intervention study 
on human exists. Depommier et al. [43] carried out a ran-
domized, double-blind, placebo-controlled study in over-
weight/obese volunteers with metabolic syndrome, that 
consumed live or pasteurized A. muciniphila  (1010 CFU/
day) for 3 months [43]. The authors demonstrated that both 
the formulas were safe and well tolerated by humans, and 
that the intervention reduced inflammation and improved 
insuline sensitivity, with the pasteurized bacteria showing a 
better effect than live cells [43]. Indeed, the use of the pas-
teurized A. muciniphila as novel food was recently approved 
by EFSA, making this species the first next-generation pro-
biotic that will be soon available on the market (https:// open. 
efsa. europa. eu/ quest ions/ EFSA-Q- 2019- 00767). This result 
will surely boost further investigations on this microbe as 
NGP directed to the prevention or treatment of diabetes and 
metabolic syndrome.

Faecalibacterium prausnitzii

Faecalibacterium prausnitzii is a Gram-positive bacterium 
belonging to the Ruminococcaceae family, also known as 
Clostridium cluster IV (phylum Firmicutes). F. prausnitzii 
is considered as extremely sensitive to oxygen and is the 

only isolated species of the Faecalibacterium genus [47]. 
However, a recent study based on genomes reconstruction 
from human gut metagenomes highlighted the presence of at 
least 12 different species commonly found in the human gut, 
most of them never isolated, and suggested the definition of 
Faecalibacterium complex [48]. The interest in F. praus-
nitzii is associated with its capacity to produce beneficial 
metabolites, mainly the short-chain fatty acid butyrate, that 
is known to play several health-promoting effects. SCFAs 
have an anti-inflammatory, anti-carcinogenic and immu-
nomodulatory activity, it is an energy source for the colono-
cytes, and it can improve the metabolic syndrome [46, 82]. 
Consistently, F. prausnitzii is usually considered as a bio-
marker of intestinal health, since it is depleted in inflamma-
tory states, such as IBD/IBS (Fig. 2) [46], while a diet rich 
in complex fiber can promote its growth [5, 8, 11]. Indeed, 
several trials on mice demonstrated a protective role of F. 
prausnitzii in experimentally induced colitis (Table 1). A 
treatment with F. prausnitzii or concentrated growth super-
natant were able to reduce inflammation and tissue damage 
in mice with induced colorectal colitis [83–85]. In addition, 
F. prausnitzii gavage in high-fat fed mice was also associated 
with a reduction of visceral adipose tissue inflammation and 
fibrosis [86]. Besides butyrate, several other metabolites may 
be implicated in these beneficial effects. An uncharacterized 
peptide [66] or salicylic acid [64] were both identified in F. 
prausnitzii culture supernatant and were shown to exert an 
anti-inflammatory activity and to prevent colitis in mice. 
Nevertheless, contrasting results about this species are pre-
sent in literature. In fact, higher F. prausnitzii abundance 
has been reported in allergic diseases [65, 72]. However, 
these discrepancies might be due to the presence of differ-
ent and unidentified species/strains. As reported above, at 
least 12 different species closely related to F. prausnitzii 
were recently identified [48]. The same study also suggests 
that a misidentification of some F. prausnitzii strains likely 
occurred and some of them may belong to different species 
[48]. These species may be differently linked with health 
and disease [48]. In addition, different Faecalibacterium 
species may co-occur in the same subject. A decrease in 
Faecalibacterium diversity was found in obesity and inflam-
matory diseases, while the consumption of a diet rich in fiber 
may promote it [48]. These considerations should guide the 
development of NGPs, that should include more than one 
strain to take advantage of the wide diversity existing in 
this species. Therefore, although further investigations are 
needed, F. prausnitzii can be considered as a promising NGP 
for IBD/IBS and other inflammatory conditions.

Prevotella copri

Prevotella copri (Bacteroidetes phylum) is an obligate anaer-
obic Gram-negative rod and it is one of the dominant taxa in 

https://open.efsa.europa.eu/questions/EFSA-Q-2019-00767
https://open.efsa.europa.eu/questions/EFSA-Q-2019-00767
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the human gut microbiome. P. copri is traditionally consid-
ered as a beneficial microbe, since it is often associated with 
a diet rich in fiber from vegetable products and normally 
shows higher levels in non-Western populations [87]. The 
interest in P. copri is due to the proposed positive effect in 
modulating glucose homeostasis, as recently demonstrated 
in a cohort of more than 1000 subjects [71]. Indeed, subjects 
with higher basal levels of P. copri showed higher glucose 
tolerance and insulin sensitivity upon a 3-day intervention 
with barley kernel fiber [88]. This mechanism seems to be 
linked with the ability to promote glycogen storage in the 
liver, probably activated by the production of succinate [89]. 
In addition, other studies demonstrated that a Prevotella-rich 
microbiome predisposes to higher weight loss [77, 79, 90, 
91] or cholesterol decrease [92] upon the consumption of 
a fibre-rich diet. Consistently, mice gavaged daily with P. 
copri showed improved glycemic control [88, 89] (Table 1). 
However, also in this case literature data about the role of P. 
copri in relation to human health are contrasting [93]. Sub-
jects with higher P. copri abundance reported higher serum 
levels of branched-chain amino acids (BCAA) that promote 
insulin resistance [94]. The same authors demonstrated that 
P. copri was able to produce BCAA and that mice fed with 
one P. copri strain for 3 weeks aggravated glucose tolerance, 
increased insulin resistance and showed higher circulating 
levels of BCAA [94] (Table 1). In addition, higher baseline 
abundance of P. copri was associated with a lower decrease 
in insulin resistance in obese subjects following a Mediter-
ranean diet intervention [8]. P. copri was also linked with 
arthritis onset [95] and gavage with P. copri in mice with 
experimentally induced colitis exacerbated colitis gravity 
and inflammation [95] (Table 1). Interestingly, the same P. 
copri strain (P. copri CB7, Table 1) was tested in these two 
studies [94, 95], demonstrating that different strains may 
explicate totally opposite effects. Indeed, a recent study 
highlighted that different P. copri strains have a specific 
functional potential and may be selected by diet [96]. In 
addition, it was demonstrated the presence of at least four 
different species closely related to P. copri (P. copri com-
plex) [97], suggesting that isolated strains previously identi-
fied as P. copri might belong to different species. Specific P. 
copri strains may be selected by diet [80, 96] and display a 
different polysaccharides utilization pattern [80]. Therefore, 
although P. copri might be a promising taxon to be used 
as NGP for glucose metabolism regulation, this beneficial 
activity cannot be generalized to all strains and further inves-
tigations are needed.

Bacteroides spp.

Bacteroides spp. are anaerobic, non-spore-forming, Gram-
negative rods and some species (B. uniformis, B. fragi-
lis, B. xylanisolvens, B. thetaiotaomicron) are considered 

interesting as NGP [81]. B. fragilis has been considered a 
pathogen for several years. Indeed, some B. fragilis strains 
can produce a zinc-dependent metalloprotease that is consid-
ered a toxin and can disrupt the intestinal mucosa. Therefore, 
according to the occurrence of the toxin-encoding gene bft, 
B. fragilis has been classified into two subgroups: non-enter-
otoxigenic (NTBF, lack of bft) and enterotoxigenic (ETBF, 
with bft) B. fragilis. Other pathogenic factors are associated 
with the presence of lipopolysaccharide (LPS) or ferritin 
that should also be considered in B. fragilis safety evaluation 
[98]. However, NTBF strains may exert several beneficial 
effects owing to an anti-inflammatory and immunomodula-
tory activity [99] (Table 1). This activity seems to be medi-
ated by the production of a capsular polysaccharide A that 
showed these properties even when purified and adminis-
tered to mice [100].

Among other Bacteroides species, B. uniformis and B. 
thetaiotaomicron were suggested as NGP for the manage-
ment of metabolic syndrome, glucose homeostasis, and obe-
sity in mice fed with high-fat diet (Table 1). Indeed, oral gav-
age with B. uniformis can reduce liver steatosis, weight gain, 
and immune dysfunctions associated with obesity [101], 
while an intervention with B. thetaiotaomicron reduced adi-
posity and weight gain [102]. However, a B. thetaiotaomi-
cron isolate was reported to induce colitis in mice [103].

All these findings suggest that, although Bacteroides spp. 
are potentially interesting as NGP, the strains should be care-
fully evaluated for safety both in vitro and in vivo.

Eubacterium hallii

Eubacterium hallii (Firmicutes, Clostridium cluster XIVa) 
includes non-spore forming, obligately anaerobic rods and is 
considered a beneficial microorganism since it can produce 
several SCFAs [104], that play a major role in the modula-
tion of gut inflammation, promoting epithelial integrity and 
regulating the immune response. Several studies report a 
decrease in E. hallii abundance in IBD/IBS and a reduc-
tion of SCFA producers, including Eubacterium, in diabetic 
subjects (Fig. 2) [56, 60]. Consistently, oral administration 
of E. hallii to obese and insulin-resistant mice improved 
insulin sensitivity and energy metabolism [105]. In addi-
tion, it was reported an increase in Eubacterium spp. and an 
improvement in insulin sensitivity after a fecal microbiota 
transplantation from lean to obese donors [106]. Although 
the mechanism was not yet fully elucidated, it seems that 
SCFA can bind to receptors, regulating satiety hormones 
such as ghrelin and glucagon-like peptide-1 (GLP-1), thus, 
inhibiting food intake [107].
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Current issues and future paths

NPGs are attracting more and more interest both at aca-
demic and industrial research levels. However, several points 
should be addressed before proceeding to their introduction 
on the market.

First of all, wider and thorough studies about safety and 
tolerability of these novel microbial taxa need to be car-
ried out, by both animal and human trials. Trials involving 
humans are still not available for most of the candidate NGPs 
and when performed, they are mainly exploratory, with small 
sample sizes and do not include sensitive populations (frailty 
subjects, elderly, or children). These studies should also con-
sider that different subjects may show a specific response to 
the same strain. Indeed, the same drug, dietary treatment or 
probiotic supplementation may have a subject-specific effect, 
that may be caused by several factors, including genetics 
and gut microbiome composition. Therefore, a personalized 
application of NGPs should also be considered. In addition, 
an update in current regulation would be necessary. Indeed, 
the introduction of new taxa on the market may follow the 
novel foods framework or the pharmaceutical path, being 
commercialized as LBPs. In both cases, a thorough charac-
terization of several strains from these new species will be 
required, including phenotypic and genomic analyses, with 
a focus on the research for the presence of genes related 
to antibiotic resistance, toxin production, virulence factors, 
and mobile elements. For this purpose, large-scale culturo-
mics studies are extremely important [74, 108], not only to 
discover novel interesting strains, but also to highlight the 
wide diversity existing within each species and characterize 
the largest possible number of strains of the candidate NGP 
species. Finally, our knowledge about NGP mode of action 
is still scarce. In vitro and in vivo trials, as well as genomic 
screening, are needed, to understand the functional mecha-
nisms leading to a positive effect on human health.

Another issue is related to NGP cultivation and stabiliza-
tion for storage. Indeed, all these taxa are extremely sensitive 
to oxygen, much more than common probiotic LAB, that 
constitute the major hurdle to be overcome for their produc-
tion and commercialization. Microbial biomass production 
usually takes place in bioreactors that can work anaerobi-
cally. However, guaranteeing strict anaerobiosis in the fol-
lowing phases, such as during microbial cells collection, 
freeze-drying and storage during the product shelf life, can 
be more challenging. In addition, the viability of the strains 
after the gastrointestinal passage should also be evaluated, 
as well as the number of cells to be assumed to obtain the 
desired effects. The use of appropriately designed coating 
systems might be tested to protect cell viability during shelf 
life and gastrointestinal transit [109].

Although there are several obstacles that need to be 
overcome before these products can be introduced into the 
probiotics products market, the development of NGPs hold 
promises for innovation in both food and pharmaceutical 
industry and it will be possible in following years as an 
output of interaction between research centers, regulatory 
boards, and industry.
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