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Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are charac-
terized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of 
cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular 
disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, 
calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as 
p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic 
and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways 
through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and 
apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family mem-
bers, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative 
diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological 
intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential 
role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to 
treat neurodegenerative diseases.

Graphical abstract
Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the 
ubiquitin–proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause 
cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways 
through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and 
caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which 
are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead 
to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in 
the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act 
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as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds 
act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.

Keywords Neurotoxicity · Neurological diseases · Neuroinflammation · Micro RNAs · Long non-coding RNAs · NF-κB · 
VEGFR2 · Ubiquitin proteasome system · ER stress · Flavonoid · Flavones · Flavanones

Abbreviations
NDD’s  Neurodegenerative diseases
AD  Alzheimer’s disease
PD  Parkinson’s disease
ALS  Amyotrophic lateral sclerosis
HD  Huntington’s disease
MS  Multiple sclerosis
UPR  Unfolded protein response
miRNA  Micro RNAs
ULK  UN51-like Ser/Thr kinases
Atg13  Autophagy-related protein 13

PI3K  Phosphatidylinositol-3-kinase
Vps34  Vacuolar protein sorting 34
VPS15  P15
Atg6  Beclin-1
Atg14  Barkor
LC3  Light chain 3
SNAREs  Soluble NSF attachment protein 

receptor
PCD  Programmed cell death
Bcl-2  B-cell lymphoma 2
TNF  Tumor necrosis factor
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FADD  Fas-associated death domain protein
TRAIL  TNF-related apoptosis-inducing 

ligand
BH3  Bcl-2 homology region 3
Smac/DIABLO  Second Mitochondria-derived Acti-

vator of Caspases/ Direct IAP-Bind-
ing protein with Low PI

AIFs  Apoptosis-inducing factors
BAX  Bcl-2 associated X protein
BAK  Bcl-2 homologous antagonist/killer
IAP  Inhibitor of apoptosis
XIAP  X-linked inhibitor of apoptosis
ROS  Reactive oxygen species
NOS  Nitrogen oxygen species
JAK/STAT   Janus kinases/ Signal Transducer and 

Activator of Transcription proteins
NF-κB  Nuclear factor kappa-light-chain-

enhancer of activated B cells
RIPK1  Receptor interacting protein kinase 1
RIPK3  Receptor interacting protein kinase 3
DAMP’s  Damage-associated molecular 

patterns
MLKL  Mixed lineage kinase domain-like
TRADD  Tumor necrosis factor receptor type 

1-associated DEATH domain protein
TRAF2  TNF receptor associated factor 2
Akt  Protein kinase B
ERAD  Endoplasmic-reticulum-associated 

protein degradation
PKR  Protein kinase RNA
PERK  Protein kinase RNA like ER kinase
IRE1α  Inositol-requiring protein 1α
ATF6  Activating transcription factor 6
CHOP/GADD153  X-linked inhibitor of apoptosis 

protein and co-operating with C/EBP 
homologous protein

ASK1  Apoptosis signal regulating kinase 1
JNK  Jun N-terminal kinase
PKC  Protein kinase C
PUMA  P53 upregulated modulator of 

apoptosis
NOXA  Phorbol-12-myristate-13-acetate-

induced protein 1
TPEN  N,N,N′,N′-tetrakis(2-pyridylmethyl) 

ethylenediamine
PARP  Poly (ADP-ribose) polymerase-1
AMPK  5' AMP-activated protein kinase
m-TORC1  Mammalian target of rapamycin com-

plex 1
DRAM  Damaged regulated autophagy 

modulator

TFEB/TFE3  The transcription factor EB/Tran-
scription Factor Binding to IGHM 
Enhancer 3

FOXO3a  Transcription factor forkhead box 
O3a

VEGF  Vascular endothelial growth factor
VEGF2  Vascular endothelial growth factor 

receptor 2
STAT3  Signal transducer and activator of 

transcription 3
Aβ  β-Amyloid
MPP+  1-Methyl-4-phenylpyridinium ion
FLICE  FADD-like IL-1β-converting enzyme
BBC3  Bcl-2 Binding Component 3
HMGB1  High mobility group box 1
DRGNs  Dorsal root ganglial neurons
RHEB  Ras homolog enriched in brain
MAPK  Mitogen activated protein kinase
Mcl-1  Myeloid leukemia cell differentiation 

protein
Hrk/DP5  Activator of apoptosis Harakiri/ 

death protein 5
MPTP+  1-Methyl-4-phenyl-1,2,3,6-tetrahy-

dropyridine
Cdk5  Cyclin dependent kinase 5
MEK/ERK  Mitogen-activated protein kinase 1
ERK1/2  Extracellular signal-regulated kinase 

1
CREB  CAMP-response element-binding 

protein
GAPDH  Glyceraldehyde 3-phosphate 

dehydrogenase
APAF1  Apoptotic protease activating factor 1
NLRP3  NLR family pyrin domain containing 

3
PYCARD  PYD and CARD domain containing
iNOS  Inducible nitric oxide synthase
AICAR   5-Aminoimidazole-4-carboxamide 

ribonucleotide
GSK3  Glycogen synthase kinase 3
GSK3β  Glycogen synthase kinase 3 β
GSK3α  Glycogen synthase kinase 3 α
NMDAR  N-methyl-D-aspartate receptor
Nrf2  Nuclear factor erythroid 2-related 

factor 2
NLRP1  NACHT-LRR-PYD domains-con-

taining protein 1
NLRP3  NACHT-LRR-PYD domains-con-

taining protein 3
NLRC4  NLR Family CARD Domain Con-

taining 4
ALR’s  Augmenter of liver regeneration
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PAMP and DAMP  Pathogen and damage associated 
molecular patterns

SNpc  Substantia nigra pars compacta
PBBI  Penetrating ballistic-like brain injury
ROF  Roflupram
CNS  Central nervous system
ER  Endoplasmic reticulum
MALAT1  Metastasis-associated lung adenocar-

cinoma transcript 1
NEAT2  Nuclear-enriched transcript 2
CRNDE  Colorectal neoplasia differentially 

expressed
GFAP  Glial fibrillary acidic protein
BrdU  Bromodeoxyuridine
SNHG12  Small nucleolar host gene 12

Introduction

Accumulation of protein aggregates in the cellular milieu is a 
major burden for neurons, and it greatly disturbs the nervous 
system homeostasis. These misfolded and aggregated proteins 
are hampering the activities and transmission of the neuronal 
cell. The accumulation of aggregates induces toxicity, which 
causes memory loss, cognitive decline, and impairment in 
the maturation of neuronal cells that result in the progression 
of several neurodegenerative disorders (NDDs), including 
Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyo-
trophic lateral sclerosis (ALS), Huntington’s disease (HD), 
and Multiple sclerosis (MS) [1, 2]. Excessive accumulation 
of abnormally aggregated/non-functional proteins in the cyto-
plasmic region of the cell leads to organelle damage, which is 
responsible for neuronal death in the central nervous system 
(CNS) and ultimately leads to cognitive defects and synaptic 
dysfunction. Apoptosis and autophagy are two degradation 
mechanisms that are currently known for eliminating the 
degraded components and quality control of cellular com-
ponents, which is necessary for maintaining cellular home-
ostasis. Autophagy is defined as the lysosomal-dependent 
degradation process of cytoplasmic constituents, whereas, 
apoptosis is considered as programmed cell death (PCD) of 
cells. Autophagy is of three types, namely macroautophagy, 
microautophagy, and chaperone-mediated autophagy that 
occurs through the formation of autophagosomes followed 
by association with lysosomes leads to the formation of the 
autophagolysosomal complex. On the contrary, apoptosis 
is described as morphological and physiological changes 
required to maintain cellular homeostasis by inducing nuclear 
membrane destruction, DNA fragmentation, and generation of 
apoptotic bodies [3, 4]. Recent studies demonstrated that the 
perturbation of autophagic machinery causes accumulation 
of misfolded proteins, and excessive induction of apoptotic 
mechanism leads to neuronal death that is involved in the 

pathogenesis of NDDs [5, 6]. Excessive loss of neuronal cells 
leads to cognitive defects, impaired neurogenesis and neural 
differentiation, synaptic dysfunction, and memory impair-
ment, which are characteristic features of NDDs [7, 8]. How-
ever, the molecular crosstalk between autophagic degradation 
and apoptotic cell death is a complicated phenomenon and has 
provided conflicting results but at the same time necessary for 
determining the fate of the cell. However, under physiological 
conditions, such as excessive oxidative stress, reactive oxy-
gen species (ROS) production, mitochondrial dysfunction, 
and endoplasmic reticulum (ER) stress, neuronal cells exhibit 
defective or incomplete autophagic degradation of misfolded 
protein aggregates and, therefore, apoptotic machinery that 
causes neuronal cell death. Extensive investigations identi-
fied the potential implementation of epigenetic regulator p53 
and pro-angiogenic marker vascular endothelial growth factor 
(VEGF) in the modulation and regulation of both apoptosis 
and autophagy machinery.

Moreover, autophagy is known to have a dual effect on 
apoptosis, which involves inhibition and induction of the 
apoptosis pathway. Under stress conditions, apart from mis-
folded protein degradation, autophagic machinery, either itself 
or through apoptotic induction, causes cell death depend-
ing upon the exposure of a stress condition [9, 10]. Both 
autophagy and apoptosis pathways regulate brain homeosta-
sis through the involvement of downstream targets such as 
the mammalian target of rapamycin (mTOR), Bcl and BH3 
family of proteins, caspases, 5' AMP-activated protein kinase 
(AMPK), class III phosphatidylinositol 3-kinase (PI3K), 
and glycogen synthase kinase 3β (GSK3β). Recent studies 
explored the potential of biomolecules, long non-coding 
RNAs (LncRNAs), and micro-RNAs (miRNAs) as therapeu-
tic modulators of these pathways involved in the pathogenesis 
and progression of NDDs.

Herein, we provided a comprehensive story derived from 
various literature sources to dissect the molecular mechanism 
between apoptosis and autophagy in NDDs. In the beginning, 
we have discussed about cell death pathways followed by the 
shared mechanism between three types of cell death pathways 
and the dual role of autophagy on apoptosis. The later part of 
the review discusses the molecular markers of cell death in 
NDDs with apoptosis and autophagy signaling. Finally, we 
discuss the potential application of miRNAs, LncRNAs, and 
biomolecules on different cell death pathways.

Overview of cell death pathways

Autophagic pathway: act as pro‑death 
and pro‑survival signaling cascade

Autophagy is a molecular phenomenon used to elimi-
nate damaged organelle and protein aggregates, which is 
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characterized by the formation of autophagosomes and 
interaction with the lysosome. Cytoplasmic component 
degradation in the lysosome is divided into three subtypes 
as follows: macroautophagy, microautophagy, and chap-
erone-mediated autophagy. The mechanism underlying 
autophagy includes phagophore membrane formation from 
the Golgi apparatus, mitochondria, plasma membrane, and 
ER, where misfolded proteins and degraded cytoplasmic 
material are wrapped, elongated and forms autophagosome. 
This autophagosome, through microtubule dynamics, trans-
ports to the lysosome, where the formation of autolysosome 
occurs through the fusion of autophagosome and lysosome 
[11, 12]. Further, autophagy is a multi-regulatory process 
initiated by two major clusters of proteins UN51-like Ser/
Thr kinases (ULK) complex and PI3K complex. The ULK 
complex consists of ULK1/2 family, FAK family kinase 
interacting protein of 200 kDa, autophagy-related protein 
13 (Atg13) whereas, PI3K complex consists of vacuolar 
protein sorting 34 (Vps34), p15 (Vps15), beclin1 (Atg6), 
and Barkor (Atg14) [13, 14]. Two ubiquitin complexes 
control the elongation and interaction of autophagosomes. 
Firstly, a complex Atg5/Atg7/Atg12 is formed due to cova-
lent interaction between Atg5/Atg7 and Atg12. Secondly, 
this Atg5/Atg7/Atg12 complex interacts with Atg16 to form 
another complex, Atg5/Atg7/Atg12/Atg16, that is required 
for autophagosomes elongation. Another complex associ-
ated with the molecular marker of autophagosome is formed 
through the proteolytic cleavage of microtubule-associated 
protein 1 light chain 3 (LC3) with Atg4B to generate LC3-
II [15–18]. However, autophagosomes require a motor and 
kinesin protein along with the recruitment of protein com-
plexes known as the soluble NSF attachment protein recep-
tor (SNAREs) for relocation along the microtubule, fusion 
with the lysosome, and protein degradation [19] (Fig. 1).

Apoptosis pathway: intrinsic and extrinsic cell death 
machinery

Apoptosis, an important molecular phenomenon, which 
is also known as PCD, is involved in the maintenance of 
tissue homeostasis. Apoptosis is best described as nuclear 
morphological changes characterized by chromatin regula-
tion, degradation of cytoskeletal proteins, nuclear membrane 
breakdown, DNA fragmentation, and generation of apoptotic 
bodies adjacent to the cell surface [20, 21]. The physical 
execution of apoptosis can be initiated by either the extrin-
sic or intrinsic apoptotic pathway. Moreover, death recep-
tors and internal stimuli such as DNA damage, activation of 
pro-apoptotic factors of B-cell lymphoma 2 (Bcl-2) family, 
and upregulation of p53 play a major function in regulating 
the apoptotic pathway [22, 23]. Extrinsic apoptotic path-
way induces the attachment of tumor necrosis factor (TNF) 
family receptor on the cell surface, which increases the 

recruitment of fas-associated death domain protein (FADD) 
and TNF-related apoptosis-inducing ligand (TRAIL) follow-
ing the binding of initiator caspases (caspase 8 and caspase 
9), which initiate its autoproteolytic processing. Initiation 
of autoproteolytic processing leads to activation of effector 
caspases (caspase 3 and caspase 7), resulting in cleavage 
of Bcl-2 homology region 3 (BH3) protein, which induces 
pro-apoptotic factors’ activation and alters inner mitochon-
dria membrane permeability [24–26]. On the contrary, the 
intrinsic apoptotic pathway, also called the mitochondrial 
apoptotic pathway, is a death receptor-independent mecha-
nism and requires Bcl-2 member proteins, consisting of the 
BH1-3 domain, to decide whether to undergo mitochondrial 
membrane permeabilization or not. Further, intrinsic apop-
totic pathway causes sequestration of pro-apoptotic factors 
from mitochondria to cytosol, including cytochrome C, a 
second mitochondria-derived activator of caspases/direct 
IAP-binding protein with low PI (Smac/DIABLO), HtrA2/
Omi, and apoptosis-inducing factors (AIFs), which results 
in the generation of apoptosome complex.

Bcl-2 associated X protein (Bax) and Bcl-2 homolo-
gous antagonist/killer (Bak), which have BH1-3 domain 
required for the execution of the mitochondrial apoptotic 
pathways in a caspase-dependent or caspase-independent 
manner [27–29]. Apoptosis is a highly regulated phenom-
enon controlled by the inhibitor of apoptosis proteins (IAP) 
and X-linked inhibitor of apoptosis protein (XIAP), which 
can interfere in the caspase activation process leading to 
caspase-dependent or caspase-independent apoptosis. Fur-
ther, ROS, nitrogen–oxygen species (NOS), and DNA dam-
age are considered to be inducers of apoptosis, resulting in 
the activation of signaling cascade that results in cell death 
in various disease models of NDDs. These agents lead to 
activation of janus kinases/signal transducer and activator 
of transcription protein (JAK/STAT) signaling pathway, 
through increased activity of cytokines, such as a nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-
κB) pathway and PI3K-like kinases, respectively, which pro-
motes cell apoptosis [30–32] (Fig. 1).

Necroptosis cell death machinery

Necroptosis is the well-characterized molecular phenomenon 
of unprogrammed cell death activated by cellular damage 
or pathogenic infiltration regulating necrosis mediated by 
receptor-interacting protein kinase 1 (RIPK1) and receptor-
interacting protein kinase 3 (RIPK3). Activation of RIPK1 
and RIPK3 eventually leads to plasma membrane permeabi-
lization, activation of cytokines and chemokines, sequester-
ing cell content, and exposure of damage-associated molec-
ular patterns (DAMP’s) [33]. RIPK1 initiated a signaling 
cascade, which phosphorylates and activates RIPK3 that 
further phosphorylates and activates mixed lineage kinase 
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domain-like (MLKL), forming a complex known as necro-
some. Necrosome cause cell rupture because of the pore-
forming ability of MLKL aggregates, modulation of ion 
channels, and the inflammasome formation in some cellular 
contexts [34–37]. Inhibition of RIPK1, RIPK3, and MLKL 
and activation of necrosome in concert with necrosis is the 
pharmacological feature of necroptosis. The number of lit-
eratures suggesting the role of caspase 8 inhibition in trans-
ferring the mitochondrial apoptotic pathway to necroptosis 
cell death pathway due to increased expression of RIPK3 

and MLKL and initiation due to immune-based ligands [38]. 
Necroptosis resembles the apoptotic cell death pathways due 
to the implication of caspase 8 and death receptors such 
as TNF alpha, FADD, Tumor necrosis factor receptor type 
1-associated DEATH domain protein (TRADD), and TNF 
receptor-associated factor 2 (TRAF2) and hence is called as 
alternative cell death signaling pathway [39]. In addition, 
FADD/RIP3 and FLIP/RIP3 knock out the model interplay 
between apoptosis and necroptosis due to the absence of 
FLIP and caspase 8-FLIP heterodimers. In another study 

Fig. 1  Molecular connection 
between apoptosis and necrop-
tosis as cell death pathways 
opening a new area of research 
in the field of neurodegenerative 
disorders. However, whether 
autophagy is a pro-death or pro-
survival pathway is still a matter 
of concern. From the past two 
decades, extensive research in 
this field has found the connec-
tion between three pathways 
involving different molecular 
mechanisms and biological pro-
cesses. Mitochondrial dysfunc-
tion, genotoxic stress, oxidative 
stress,  Ca2+ concentration, and 
ER stress were among the major 
external factors that activated 
the signaling cascade leading to 
cell death. Here, Bax and Bak 
were two pro-apoptotic proteins 
that activate the apoptosis 
pathway, while mTOR, TSC1, 
and TSC2 were important 
in regulating the autophagic 
pathway. Activation of mTOR 
causes inhibition of ULK1 
complex that further inhibits the 
autophagic pathway. Similarly, 
phosphorylation of TSC1 and 
TSC2 causes inhibition of Rheb, 
which leads to mTOR activa-
tion and subsequently inhibi-
tion of autophagy pathway. 
Besides external stress factors, 
Atg12 leads to activation of 
autophagosomes, cytochrome C, 
and caspase, followed by necro-
some leads to the autophagic, 
apoptotic, and necroptosis 
pathway, respectively
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function of protein kinase B (Akt) as a molecular switch 
between apoptosis and necroptosis through phosphorylation, 
production of TNFα, and blocking of pro-apoptotic factor 
response was demonstrated [40, 41] (Fig. 1).

Crosslinking autophagy and apoptosis 
signaling pathway

Calcium efflux and endoplasmic reticulum stress 
response

Misfolded protein aggregates cause activation of ER stress 
signaling, which involves the synthesis and degradation of 
proteins via autophagic pathway and endoplasmic-reticu-
lum-associated protein degradation (ERAD) pathway. Fur-
ther, eliminating the damaged organelle through apoptotic 
machinery decides the fate of the cell that depends on the 
intensity and time-duration of the implied stress condition 
[42]. During this process, molecular chaperone GRP78/BiP 
interacts with mechanistic UPR signaling molecules, namely 
activating transcription factor 6 (ATF6), protein kinase RNA 
(PKR), ER kinase (PERK), and inositol-requiring protein 1α 
(IRE1α). The complex between GRP78/BiP and UPR signal-
ing molecules activate respective transducers and assist in 
the folding of accumulated proteins. However, PERK attenu-
ates mRNA translation and thus inhibits the entry of newly 
synthesized protein in contact with the ER under stress con-
ditions along with eIF2α activation [43]. Moreover, eIF2α 
phosphorylation causes protein synthesis inhibition medi-
ated through a dedicated protein translational mechanism.

Under a high-stress environment, ATF4 causes both 
autophagy and apoptosis induction through regulation of 
Atg genes, and XIAP interacts with C/EBP homologous 
proteins (CHOP/GADD153) mediated through increased 
caspase activation [44]. Moreover, CHOP activates apoptotic 
pathways through increased expression of pro-apoptotic fac-
tors (such as BIM and death receptor 5), decreased expres-
sion of anti-apoptotic factors (Bcl members), and increased 
mitochondrial activity. Further, increased mitochondrial 
function leads to elevate cytochrome-c release from mito-
chondrial pores along with EROα and IP3R. Activation of 
EROα and IP3R causes an increase in mitochondrial cal-
cium influx, which induces the apoptosis pathway [45]. 
However, under the ER stress environment, JNK mediated 
Bcl-2 phosphorylation leads to Beclin-1/Bcl-2 dissociation 
and autophagy activation, while a prolonged stress envi-
ronment causes activation of the apoptotic pathway [46]. 
Further, ER stress increases calcium influx, which leads 
to AMPK activation and inhibits mTOR activity and thus 
induces the autophagy pathway. Similarly, ER stress also 
causes mitochondrial dysfunction through increased genera-
tion of mitochondrial pores leading to mitochondrial death 

via apoptotic machinery [47, 48]. Altogether, it may be con-
cluded that ER stress regulates both autophagy and apopto-
sis machinery through modulating downstream targets and 
increased calcium ion concentration leading to mitochon-
drial dysfunction.

The implication of ubiquitin–proteasome system

UPS machinery is the major protein degradation pathway 
involved in neuronal regeneration and plasticity, whereas 
apoptosis and autophagy are the major regulatory signal-
ing cascade involved in neuronal cell death that leads to 
neurodegeneration. Mounting evidence suggests the exten-
sive crosstalk between autophagy, apoptosis, and UPS, 
which are involved in regulating brain homeostasis [49]. A 
recent study by Tsai et al., demonstrated that administra-
tion of Maackiain (MK) in the SH-SY5Y cell line prevents 
PD pathology through apoptosis inhibition and autophagic 
degradation due to increased PINK1/parkin expression and 
enhanced UPS machinery [50]. Similarly, Mudawal et al. 
demonstrated that dose-dependent administration of lindane 
in aged rats at 2.5 mg/kg concentration for 21 days causes 
alteration in apoptosis and autophagic markers expression. 
The study concluded that administration of lindane causes 
significant upregulation of Bax, Bad, caspase 3, caspase 9, 
ATG5, ATG12, LC-III levels, and causes a decrease in Bcl-2 
expression. Thus, the analysis concluded that administration 
of lindane alters the expression of proteins associated with 
UPS machinery, autophagic cascade, and apoptotic pathway 
[51]. In post-traumatic brain injury, UPS machinery, axonal 
degeneration, apoptosis, and autophagic degradation play 
an important role, where enhanced expression of UCH-L1 
modulates the autophagic pathway and UPS pathway. Con-
gregation of UCH-L1 with TAT promotes neuronal trans-
duction where it causes inhibition of K48-linkage polyubiq-
uitination in the hippocampus but no effects on K65-linkage 
polyubiquitination. Further, the combination of UCH-L1 and 
TAT decreases autophagic degradation and neuronal apop-
tosis through decreased expression of Beclin-1 and LC3-II 
proteins [52].

Further, Guo et  al. demonstrated the involvement of 
p-p38α as a central mediator of autophagy and apoptosis 
in response to UPS impairment. Reduced phosphorylation 
of p-p38α in response to BIRB796 causes a decrease in 
autophagic flux and neuronal apoptosis [53]. Likewise, the 
interaction between E3-ubiquitin ligase FBXO32/atrogin-1 
and FOXO3A regulates autophagic and apoptotic cascade. 
Thus, administration of Endophilin-A in cultured neurons 
downregulates FBXO32 expression, which causes a decrease 
in neuronal apoptosis and increases autophagosome forma-
tion [54]. Similarly, administration of Trehalose in HD 
patients demonstrated a decrease in ROS levels, ubiqui-
tinated protein expression, caspase 3 expression. Further, 
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administration of Trehalose counteracts the decrease in LC-3 
levels induced by Epoxomicin [55].

Moreover, Dietary restriction is known to regulate 
autophagic and apoptotic cell death through the involvement 
of UPS machinery. Shruthi et al. demonstrated that dietary 
restriction increases autophagic degradation in a spontane-
ous obese rat model and decreases Bax and p53 activity, 
thus preventing neurodegeneration [56]. Further, Xu et al., 
in SH-SY5Y cell culture, demonstrated that SIAH silencing 
through siRNA suppressed apoptosis, promoted cell prolif-
eration, and decreases LC3-II expression [57]. Furthermore, 
XIAP, a ubiquitin E3 ligase, regulates mitochondrial depo-
larization, where XIAP in the absence of BH3 protein acti-
vates Bax-induced mitochondrial outer membrane potential 
(MOMP). XIAP targets the dysfunctional mitochondria for 
the autophagy-lysosomal pathway and delays cytochrome-
C release, hence lowering the mitochondrial apoptotic 
potential [58]. Altogether, it may be concluded that UPS 
machinery regulates both apoptosis and autophagy signal-
ing cascade through respective downstream targets in case 
of neurodegeneration.

Dual role of autophagy on the apoptotic 
signaling cascade

In the above sections, direct and indirect factors have been 
described through which the relationship between autophagy 
and apoptosis has been established, for instance, autophagic 
degradation of active caspases, the interaction between 
Beclin and proteins of family Bcl, expression activity of 
autophagic protein Atg, calpain-mediated cleavage of Atg, 
functional activity of cellular FLICE (FADD-like IL-1β-
converting enzyme)-inhibitory protein, and p53 medi-
ated regulation. [59–62]. Autophagy helps in degrading 
misfolded and unfolded protein structures, but only up to 
a certain threshold beyond which it may cause cell death 
either directly or via regulation of apoptosis through com-
mon regulators. Several autophagic proteins were regulating 
apoptotic cascade through direct involvement with apoptotic 
machinery without activation of the entire autophagic pro-
cess. Numerous studies demonstrated that genetic manipu-
lation in the autophagic pathway regulates the activation of 
the Fas-dependent death-inducing signaling complex, which 
activates pro-apoptotic genes and initiates apoptotic path-
ways [63]. Moreover, ER stress induced by tunicamycin and 
thapsigargin regulates caspase 8 ubiquitination, which forms 
a complex containing caspase 8, Atg5, FADD, and translo-
cation autophagosomal membrane. Further, this complex in 
the absence of caspase 9, Bax, and Bak leads to the activa-
tion of caspase 8 dependent apoptotic cell death. Moreover, 
knockdown of Atg5 and Atg7 resulted in the deficiency of 
caspase 8 dependent apoptosis [64, 65]. Different studies 

performed on the regulatory steps of autophagy concluded 
that inhibition of late steps of autophagy induced caspase 8 
activation, which leads to induction of apoptosis rather than 
knockdown of Atg5 and Atg7 at early stages. Thus, activa-
tion of apoptosis due to early inhibition of autophagy contra-
dicted findings of the experiments performed by Amir et al., 
2013, which stated that inhibition of Atg7 leads to caspase-
dependent apoptotic cell death [66, 67]. However, the molec-
ular mechanism and factor that trigger autophagosomes to 
initiate caspase activation and the apoptotic pathway are still 
poorly understood. Moreover, autophagy is also capable of 
apoptosis induction by inhibiting the conserved family of 
cytosolic protein known as IAPs by activating caspases [68]. 
During stress conditions, Atg5 and Atg12 have been evolved 
as an important regulator of an apoptotic pathway inde-
pendent of their specific functions in autophagy machinery, 
which is cleaved by calpains leading to translocation of its 
N-terminal fragment in mitochondria where it mediated the 
release of cytochrome c through pro-survival factors such 
as BCL and  BCLXL. Further, mitophagy is the molecular 
phenomenon through which autophagy reduces the tendency 
of the cell to undergo an apoptotic pathway. Mitochondria, 
as an initiator of apoptosis, release pro-apoptotic factors, 
namely cytochrome c and SMAC, which cause the failure of 
mitochondrial bioenergetics due to the rupture of the mito-
chondrial membrane. Thus, removal of damaged mitochon-
dria by the autophagic phenomenon can increase the thresh-
old for apoptosis induction [69–72]. Altogether, autophagy 
is not only capable of attenuating apoptosis through dam-
aged mitochondria but also the expression of caspases. Hou 
et al., demonstrated that autophagy inhibition mediated 
by Beclin-1 and Vps34 knockdown causes an increase in 
catalytic processing of caspase 8 prodomain, the release of 
cytochrome c, and generation of Annexin V-positive cells’ 
subpopulation in TRAIL-induced Bax-/-Hct cells and cispl-
atin-treated caspase 8 deficient mice cells [73]. Autophagy 
is considered a molecular phenomenon through which cells 
can evade apoptosis, but the molecular mechanism of such 
a process is poorly understood. However, different studies 
demonstrated the synergic effect of autophagy inhibitors and 
other drugs in estimating the relationship between autophagy 
and apoptosis. Fitzwalter et al. observed that autophagy reg-
ulating FOXO3a due to basal autophagy leads to a potential 
feedback loop, which on autophagy inhibition increases the 
expression of pro-apoptotic factors such as Bcl-2 Binding 
Component 3 (BBC3/PUMA), which sensitize apoptotic 
pathway [74]. Another study demonstrated that infracted 
high mobility group box 1 (HMGB1) upregulated autophagy 
by increasing the expression of proteins, including LC3, 
Beclin-1, and Atg7, along with the decrease in Bax, Bcl-2, 
Caspase 3, and mTOR expression activity [75]. Altogether 
it may be concluded that autophagy and apoptosis are two 
interconnected molecular phenomena in response to cellular 
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stress. However, the mechanism is still not yet understood. 
The cytoprotective function of autophagy involves negative 
regulation of apoptosis and vice-versa. p53 is another impor-
tant regulator of autophagy and apoptosis, which inhibits 
mTOR activity followed by downstream targets, regulates 
cell cycle progression and apoptosis pathway. This study 
observed that knockdown of p53 or autophagy inducers 
mediates the proteasomal degradation of p53 through the 
HDM3/E3 ubiquitin ligase system [76, 77].

Molecular phenomenon between apoptosis 
and autophagy

Involvement of p53 pathway

Tumor suppressor, TP53 gene encodes p53 protein from 
three transcription factor (TF) subunits such as p53, p63, and 
p73, which have a central role in transcriptional regulation 
involved in the pathogenesis of NDDs. P53, a gatekeeper of 
the cell, is activated by different post-translational modifica-
tions, namely acetylation, methylation, and ubiquitination. 
Further, it is known that p53 responds to a number of cell 
toxicity conditions, such as genotoxicity, oxidative stress, 
and metabolic stress [78–81]. p53 is a well-known regula-
tor of autophagy and apoptotic cell death pathways during 
the DNA damage response and cell cycle arrest [82, 83]. 
Moreover, p53 also promotes the activation of both extrin-
sic and intrinsic apoptotic pathways. In the extrinsic path-
way, nuclear p53 accelerates the expression of the APO-1/
Fas receptor and the TRAIL receptor, whereas cytoplasmic 
p53 increases the caspase 3 and caspase 8 activities. In 
the intrinsic pathway, nuclear p53 is known to upregulate 
pro-apoptotic factors such as PIDD, BH3 only protein, p53 
upregulated modulator of apoptosis (PUMA), Phorbol-
12-myristate-13-acetate-induced protein 1 (NOXA), Bax, 
and BID leads to caspase 9 and caspase 8 activation. Like-
wise, cytoplasmic p53 translocates towards mitochondria, 
promoting the activity of Bax and Bak proteins after forming 
a complex with Bcl-2/Bcl-XL and activation of crucial apop-
tosome protein APAF1 [84–87]. Kim et al. demonstrated 
that depletion of intracellular zinc in N,N,N′,N′-tetrakis(2-
pyridylmethyl) ethylenediamine (TPEN) induced mouse 
cortical neuronal cells regulate the apoptosis pathway by 
p53-induced protein synthesis, where poly(ADP-ribose) 
polymerase (PARP)-1 acts as an upstream effector of p53 
induced neuronal apoptosis [88, 89].

Different studies have also demonstrated the effect of p53 
on the autophagic cell death pathway through inhibition of 
the mTOR complex 1 by transcriptional activation of ses-
trin proteins and AMPK. Further, p53 induces the expres-
sion of damaged-regulated-autophagy-modulator (DRAM) 
through an unknown molecular mechanism that helps in 

regulating the expression of crucial autophagic genes such as 
LKB1 and ULK1/2 along with autophagosome maturation 
genes such as Atg4, Atg7, and Atg10 [90–92]. Moreover, 
p53 promotes the TFEB/TF binding to IGHM enhancer 3 
(TFEB/TFE3) nuclear translocation during the DNA dam-
age response through an increase in TF forkhead box O3a 
(FOXO3) expression and activity, which regulates upstream 
effectors of the autophagy pathway [93, 94]. However, fur-
ther studies need to be done to understand the mechanism 
of p53 in autophagy. p53 mediated increase in autophagic 
cell death may be implemented in several neuronal cell 
death, but the precise mechanism should be defined before 
any concluding remarks. Lee et al. demonstrated the inter-
relation between apoptosis and autophagy in mouse embryo 
fibroblasts, where the deficiency of Atg7 leads to induce p53 
dependent apoptosis. Moreover, Robin et al. demonstrated 
that the absence of p53 in Drosophila results in autophagic 
flux impairment, caspase activation, and mortality under 
oxidative stress [95] (Fig. 2A).

Angiogenic pathway: role of VEGF

VEGF is involved in biological processes, such as cell prolif-
eration, cell migration, and tube formation, which can induce 
diseases such as NDDs, cancer, arthritis, and diabetes [96]. 
Recent studies demonstrated the antiproliferative, apoptotic, 
and autophagic effects of anti-angiogenic drugs targeting 
VEGF, which induces cellular and molecular responses dur-
ing stress conditions. For instance, Liu et al. showed that 
apatinib, a highly selective inhibitor of vascular endothelial 
growth factor receptor 2 (VEGFR2) tyrosine kinase that is 
involved in the alteration of cell cycle arrest, apoptosis, and 
autophagy. Further, inhibition of autophagy increases apop-
totic effect through direct binding between VEGFR2 and 
signal transducer and activator of transcription 3 (STAT3). 
Inhibition of VEGFR2 mediated by siRNA resulted in the 
downregulation of STAT3 and Bcl-2 reinforced autophagy 
and apoptosis induced by apatinib [97]. Further, Endostatin 
activates autophagy through decreased Bcl-2 expression and 
increased Beclin-1 expression in Eahy926 human endothe-
lial cells [98]. Yang et al. 2014 demonstrated the inducing 
effect of convallatoxin on autophagy and apoptosis through 
increased cleavage of caspase 3 and PARP along with LC3 
conversion. Moreover, convallatoxin inhibits the mTOR/
p70S6K signaling pathway, resulting in autophagic induc-
tion and exerting anti-angiogenic activity in-vitro and in-vivo 
[99].

VEGF-B is the neuroprotectant lacking general angio-
genic activity that rescues neurons from apoptosis in rat and 
mouse cell lines. VEGF-B inhibits the expression activity of 
BH3 proteins along with p53, a member of the caspase fam-
ily mediated through activation of VEGFR1, thus hampering 
retinal neovascularization [100]. Similarly, Falk et al. 2009 
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demonstrated the neuroprotective implication of VEGF-B in 
the culture model of PD where expression of VEGF-B was 
upregulated while the activity of VEGF-A remains unaltered 
[101].

Moreover, the lentiviral-mediated expression of  VEGF165 
was found to be neuroprotective in both SHSY-5Y and rat 
primary striatal cultures, which attenuated DARPP-32+ 
mediated neuronal loss and rescued Exp-Htt aggregation 
[102]. Religa et al. 2013 studied the effect of VEGF on 

Fig. 2  A Molecular mecha-
nism of P53 involvement in 
the autophagic and apoptosis 
pathway. In the presence of 
oxidative stress and DNA 
damage response activation of 
MAPK. In the presence of oxi-
dative stress and DNA damage 
response activation of MAPK, 
NF-KB, ATR, and ATM genes 
were carried out, which ulti-
mately leads to the activation 
of p53. p53 activates m-TOR, 
HSF1, Sestrin ½, Bax, and 
NOXA, leading to the activation 
of different signaling cascades 
that regulate autophagic and 
apoptotic cell death pathways. 
Beclin-1 leads to the activa-
tion of PIP3 and Caspase 3, 
which activates autophagy and 
apoptosis, respectively. B VEGF 
is another essential protein 
that connects autophagy and 
apoptosis through different sign-
aling molecules and cascades. 
VEGF leads to activation of 
VEGFR and VEGFR2, followed 
by activation of downstream 
targets such as PI3K/Akt and 
MAPKT of autophagic pathway 
and eNOS, BAD, and Bcl-2 of 
the apoptotic pathway. VEGF 
also acts on AMPK, HIF-1, 
Caspase 3, and Integrins, which 
further regulates downstream 
targets of signaling cascade 
such as TSC1, TSC2, PI3P, 
ATGG, mTOR, and Beclin that 
leads to the regulation of an 
autophagic pathway. Similarly, 
VEGF's interaction with PI3K/
Akt, Ras, and EGFR activates 
pro-apoptotic factors that in turn 
activate signaling molecules 
like HSP90, cytochrome c, 
ASK1, MDM2, and Raf, lead-
ing to the initiation of apoptotic 
death pathway
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β-amyloid (Aβ) induced endothelial cells in-vitro. VEGF 
significantly prevents neuronal apoptosis and restored mem-
ory deficit in the transgenic AD mice model [103]. Further, 
the administration of batroxobin would exhibit neuroprotec-
tive effects in the spinal cord injury model mediated through 
neurotrophic factors and increased expression of VEGF, 
which reduces apoptosis [104]. Administration of VEGFR2 
inhibitor PTK787/ZK222584 on primary cerebellar granule 
neurons prevented 1-methyl-4-phenylpyridinium ion  (MPP+) 
induced neurotoxicity followed by neuronal apoptosis. Inhi-
bition of VEGFR2 activates PI3K/Akt and ERK pathways, 
which play the opposite role in  MPP+-induced neuronal 
apoptosis [105]. Studies in the past demonstrated the plau-
sible function and mechanism of VEGF-B in neurodegen-
eration, altering mitochondrial dysfunction and neuronal 
cell apoptosis while lacking traditional angiogenic activity, 
especially in the PD model. VEGF also acts as a therapeutic 
target in NDDs and can be an interesting topic for crosstalk 
between oxidative stress and mitochondrial biogenesis [106] 
(Fig. 2B).

Molecular markers of neuronal cell death

Mammalian target of rapamycin

mTOR is the key signaling mechanism of cell growth and 
is considered as the master regulator of autophagy, pro-
tein synthesis [107], and mRNA translation [108], tran-
scriptional regulation, and phosphorylation of other pro-
tein substrates. Inhibition of mTOR with rapamycin acts 
as an initiator for autophagy induction as mTOR activity 
inhibits autophagosome formation, which is crucial for the 
induction of autophagy signaling cascade. Alteration in 
autophagy cascade, possibly due to mTOR implication, has 
been observed in different neurological defects [109–111]. 
Further, the mTOR signaling cascade has been linked with 
the establishment of neuronal plasticity, shape, spine mor-
phology, and axonal development. In an in-vitro study, it 
was demonstrated that activation of the mTOR signaling 
pathway induces the growth and branching of dendritic cells 
along with the reduction of dendritic complexity through 
mTOR or S6K1 knockdown. Further, in rat hippocampal 
neurons, it was observed that activation of both mTOR1 and 
mTOR2 signaling is required for neuronal development and 
organization along with the change in expression activity of 
Calcium/calmodulin  (Ca2+/CaM) dependent protein kinase 
II [112–114]. Similarly, the mTOR pathway regulates axon 
outgrowth, as shown in mouse dorsal root ganglia neurons 
(DRGNs). Further, deletion of TSC2 and association of the 
mTOR with tuberin and GTP-binding protein Ras homolog 
enriched in the brain (RHEB) was found to promote axon 
outgrowth both in the in-vivo and in-vitro mouse model 

[115, 116]. Likewise, the mTOR signaling cascade modu-
lates excitatory and inhibitory neurotransmission regulating 
synaptic plasticity as observed in the phosphatase and tensin 
homolog protein model of the knockout mouse. The mTOR 
pathway increases synaptic vesicles, synapse response, and 
the number of synapses both in glutamatergic and GABAe-
rgic neurons [117]. Likewise, the mTOR antagonist rapamy-
cin treatment results in hippocampal neurons demonstrated 
long-term reduced potentiation promoted by high-frequency 
stimulations, together with inhibition of synaptic potentia-
tion promoted by brain-derived neurotrophic factors (BDNF) 
[118]. Moreover, rapamycin prevented 3,5-dihydroxypheny-
lalanine induced metabotropic glutamate receptor (mGluR) 
mediated long-term potentiation through Akt and mTOR 
phosphorylation in CA1 hippocampal neurons [119]. Abun-
dant evidence suggests the possible role of mTOR inhibi-
tion in the anti-aging effect through cellular senescence 
relevant to NDDs such as AD, PD, ALS, and HD [120]. 
In the 3XTg AD and S6K1 knockout mouse model, inhibi-
tion of the mTOR downstream signaling pathway resulted in 
decreased cognitive defects by reducing Aβ and Tau pathol-
ogy [121]. In-vitro and in-vivo models have demonstrated 
rapamycin-mediated neuroprotection from synaptic toxic-
ity, tau-induced neuronal cell death, and astrogliosis [122]. 
Altogether, rapamycin antagonist temsirolimus prevents tau-
induced toxicity and the formation of neurofibrillary tangles 
via enhanced autophagy [123]. Several studies have dem-
onstrated the effect of the increased number of autophago-
somes in α-synuclein-induced dopaminergic cell death, sug-
gesting a pivotal role of autophagy pathway induction in the 
PD model while inhibition of mTOR with rapamycin causes 
an increase in autophagy, which inhibits the accumulation of 
ubiquitinated α-synuclein [124, 125] (Fig. 3A).

Involvement of Bcl‑2 and BH3 family members

With the limitations of the apoptotic pathway in post-mitotic 
neuronal differentiation and maturation, Bcl-2 member was 
highly expressed in different forms with proliferating NPCs 
in the developing brain. However, the differentiated form in 
post-mitotic neurons, as demonstrated by restricted expres-
sion of Bak in post-mitotic neuronal differentiation, depends 
on Bax to promote neural apoptosis where the genetic knock-
out of Bax provides neuronal protection in multiple disor-
ders [126–133]. Interestingly, N-Bak, an alternative splicing 
form of Bak characterized by additional exon and generation 
of BH3 only proteins due to translation, is expressed in neu-
rons that further interact with anti-apoptotic protein Bcl-XL 
rather than Bax and induce apoptosis through Bax dependent 
pathway. Further, apart from neurotoxic function, N-Bak has 
neuroprotective abilities, as demonstrated in different stud-
ies [134–136]. For instance, Ginsenoside Re and Alcohol 
Dehydrogenase 1B suppresses Aβ induced neurotoxicity in 
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SHSY-5Y cell culture and AD mouse model, respectively, 
through increased Bcl-2/Bax ratio, caspase inactivation, and 
reduced cytochrome-c release [137, 138]. He et al. demon-
strated the potential implication of HECT, UBA, and WWE 
domain-containing 1 (Huwe1), an E3 ubiquitin ligase, in 
neuronal apoptosis. It was observed that induction of JNK 
inhibitor (SP600125) or a p38 mitogen-activated protein 

kinase (MAPK) inhibitor (SB203508) in pretreated Huwe1 
increases caspase 3 cleavage, Bax and Bak expression, and 
p53 activity involved in the progression of neuronal apop-
tosis [139].

Moreover, myeloid leukemia cell differentiation pro-
tein (Mcl-1), an anti-apoptotic member of the Bcl-2 fam-
ily, is highly expressed throughout the developing cortex 

Fig. 3  A mTOR is an anti-
autophagic molecule that 
acts on the ULK1 complex 
and P70S6K leads to activa-
tion of downstream signaling 
molecules to alter autophagy 
and apoptosis pathway. mTOR 
inhibits ULK complex followed 
by deactivation of autophagy, 
which inhibits mHTT and 
alpha-synuclein clearance and 
increases memory impairment, 
and cognitive decline. mTOR 
also increases SOD aggre-
gate and ALS and decreases 
expression of P70S6K, which 
increases Aβ aggregation fol-
lowed by Aβ toxicity, which 
causes memory impairment 
and ultimately leads to AD. B 
Neurotoxins cause oxidative 
stress, which activates AMPK, 
decreases phosphorylation 
of AMPK, activates p53, and 
increases mitochondrial dys-
function. ER stress increases the 
calcium influx, which activates 
calpain, caspase 4, and caspase 
12 results in increased neuronal 
apoptosis. Mitochondrial dys-
function activates cytochrome-c 
followed by caspase 9 and 
caspase 3 activation, which 
increases Tau phosphoryla-
tion, causes synaptic loss and 
cognitive decline, ultimately 
leading to neuronal apoptosis. 
Activation of AMPK decreases 
neuronal autophagy, followed 
by alpha-synuclein degradation, 
and leads to neuroprotection. 
Similarly, deactivation of phos-
phorylated AMPK decreases 
P-CREB, which causes the 
release of inflammatory 
cytokines followed by activa-
tion of inflammation signaling 
cascade, and leads to neuronal 
apoptosis
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regulating apoptotic pathways in differentiating and post-
mitotic neuronal cells. A study concluded that deletion of 
Mcl-1 results in the induction of apoptosis, where GCN pre-
cursor does not depend on Mcl-1 for apoptosis [140, 141]. 
As compared to Mcl-1, the expression pattern of Bcl-XL is 
different, which is expressed at a low level in the develop-
ing brain and at a high level in post-mitotic differentiating 
neuronal cells where the genetic knockout of Bcl-XL is not 
able to induce apoptosis in the developing brain but induces 
cell death in post-mitotic differentiating cells [142]. Lauren 
et al., demonstrated the anti-apoptotic function of Mcl-1 and 
Bcl-XL in mouse embryonic CNS during different stages 
of neurogenesis promoting cell survival. The authors con-
cluded that the sequential deletion of MCL-1 and BCL-x 
promotes cell survival during neurogenesis at embryonic day 
10 in proliferating NPC and at day 11 within the post-mitotic 
cell population. The same study observed that in the double 
knockout mouse model, caspase-dependent apoptosis was 
initiated in non-proliferating and proliferating cell popula-
tions [143]. Bcl-2, another member of the Bcl family, is also 
widely expressed in developing and mature brain, but unlike 
Mcl-1, loss of Bcl-2 does not induce apoptosis but the result 
in progressive degeneration of the peripheral and facial neu-
rons due to excessive accumulation of ROS involved in the 
regulation of oxidative stress pathways [144, 145]. Moreo-
ver, anti-apoptotic Bcl-w, whose expression is restricted 
during embryonic development but highly increased in 
post-mitotic differentiating neurons, regulates cell death 
signaling cascade. However, the deletion of Bcl-w neither 
induces neuronal apoptosis nor sensitizes hippocampal neu-
rons; rather, Bcl-w plays a neuroprotective function in axons 
of sensory neurons during axonal degeneration [146–150].

BH3 is a pro-apoptotic protein highly expressed in the 
embryonic brain. At the same time, the expression reduces in 
the postnatal brain. However, BH3-interacting domain-con-
taining protein 3 (Hrk/DP5), a neuronal-specific BH3 pro-
tein, is significantly expressed in the postnatal brain rather 
than the embryonic brain [151–154]. Different experimental 
studies demonstrated that consistent deletion or inhibition 
of BH3 proteins hampers neuronal apoptosis. Administra-
tion of arsenite causes deletion of PUMA, which causes 
an upregulated activity of BH3 only protein and leads to 
neuroprotection [155–162]. Post-translational modifications 
such as cleavage of Bid and dephosphorylation of Bad along 
with modifications in Bim, PUMA, NOXA, Bmf, and Hrk/
DP5 activated BH3 only proteins transcriptionally induced 
by apoptotic stimuli. Interestingly, several apoptotic stimuli 
regulate TFs that activate BH3 only proteins such as Bim, 
PUMA, Hrk/DP5, and Bmf were transcriptionally activated 
by nerve growth factor (NGF) deprivation. Further, activa-
tion of activator protein 1 and TF c-Jun by phosphorylation 
result in Bim, PUMA, and Hrk/DP5 induction in response 
to neurotoxic elements [157, 160, 163–170]. Moreover, 

after the DNA damage response, the P53 signaling path-
way stimulates PUMA and NOXA in response to seizures 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine  (MPTP+) 
induced neurotoxicity, NGF withdrawal, and Aβ aggrega-
tion in the mature brain and neuronal cells [155, 171–174]. 
Activation of FoxO1 and FoxO3a downstream targets such 
as AMPK, tribbles pseudokinase 3, macrophage stimulat-
ing 1, and cyclin-dependent kinase 5 (Cdk5/p35) mediate 
Bim induction in response to external stimuli such as NGF 
withdrawal, oxidative stress, and Aβ aggregation through 
nuclear translocation of FoxO TF either by Akt or 14–3-3 
mediated inhibition or sequestering of FoxO TFs [175–181].

Moreover, ER stress induces PUMA and Bim activation 
through transactivating their promoters through the interac-
tion between CHOP, Cdk4, and FoxO3a TFs in neuronal 
cells, which upregulates the B-Myb required for Bim acti-
vation and neuronal death [182–186]. In healthy neurons, 
survival pathways, including PI3K/Akt and MEK/ERK, 
represses the expression of BH3 only proteins through inhi-
bition of FoxO3 or inhibition of Akt and ERK itself, which 
is involved in the induction of Bim activity via both tran-
scriptional and post-transcriptional mechanism [178, 187, 
188]. Further, MEK/ERK survival pathway promoted the 
proteasomal degradation of Bim via interaction with ubiq-
uitin ligase tripartite motif-containing 2 through phospho-
rylation on ser65 by ERK1/2 followed by polyubiquitina-
tion and proteasomal degradation, which was found to be 
neuroprotective under stress conditions [189, 190]. ERK5 
induces phosphorylation of Bad through CAMP-response 
element-binding protein (CREB) on ser112, ser136, ser155, 
and ser170 regulates Bad expression and pro-apoptotic func-
tions in the mature and adult brain. Similarly, phosphoryla-
tion of ser112 by MEK/ERK/RSK pathway and on ser136 
by Akt dissociates its interaction with Bcl-XL and increases 
its interaction with 14–3-3 regulatory protein to promote 
neuronal survival [188, 191–193].

AMPK and caspases

Being an essential regulator of neurodevelopment and neu-
roprotective activities, the mechanism of caspases in neu-
ronal cell death is still not well defined [194]. Although, 
decreased expression of Caspase 3, an effector caspase, was 
observed in neuronal cell death caused by neuronal injury in 
the ischemic brain model. Further, neurodevelopment activ-
ity was observed in adults as compared to the neonate rodent 
model. However, mature neurons reflect both apoptotic and 
non-apoptotic pathways, but the maturation of neurons is 
also associated with decreased activity of the caspase fam-
ily gene. Moreover, the activation of caspase 3 through the 
copper-induced ROS generation causes increased activity 
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
expression leading to neuronal cell death in the P19 cell 
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culture model [195]. Thus, caspase inhibition has the 
potential to minimize cell death caused by ER stress, oxida-
tive stress, and calcium withdrawal in NDDs both in-vivo 
and in-vitro conditions through a decrease in expressions 
of upstream and downstream targets, such as PERK, heat 
shock 70 kDa protein 5, CHOP, PARP, HIV-1 TAR RNA 
binding protein (TRBP), PKC, TNFα and protein activa-
tor [196, 197]. A study found that downregulation of apop-
totic protease activating factor 1 decreases the activation of 
effector caspases, possibly through apoptosome, leading to 
impaired neuronal development and reduced synaptic plas-
ticity [198]. Likewise, in PD murine model, the NLR family 
pyrin domain containing 3 (NLRP3) antagonist kaempferol 
promoted neuroprotection through decreased expression of 
caspase 1 along with disruption in NLRP3-PYD and CARD 
domain-containing (PYCARD)-caspase 1 complex assem-
bly [199]. Further, inhibition of caspase 1 via caspase 6 
resulted in downregulating the proteolytic cleavage at D586 
of mutant Htt, axon degeneration, and pathological lesions 
[200, 201] (Fig. 3B).

In different experimental studies, it was demonstrated 
that inhibition of caspase 1 and caspase 3 signaling path-
way in microglia promotes neuroprotection through reduced 
neuroinflammation in microglia, reduced impaired cogni-
tion and regulation of neuronal cell apoptosis, possibly 
through a decrease in beta-secretase 1 expression and mac-
rophage stimulating 1/JNK signaling cascade [202–207]. 
In the case–control study, two caspases 8 variants, that is 
p.K148R, and p.I298V are involved in neuronal cell loss, 
which on interaction with caspase 3 involved in synaptic 
plasticity, microglia inflammation, and memory impairment 
[208]. Extracellular adenosine increases the expression level 
of caspase 9, followed by caspase 3 through activation of 
two independent pathways. A1 adenosine receptor-mediated 
adenylate cyclase inhibition and adenosine uptake into cells/
conversion to AMP/activation of AMPK are two independ-
ent pathways, which leads to astrocytoma cell death through 
the apoptotic pathway [209]. Moreover, Song et al., dem-
onstrated the crosstalk between autophagy and apoptosis 
through AMPK and activated caspase. In this study, inhibi-
tion of the mTOR and the proteasome with rapamycin and 
Bortezomib respectively activates AMPK, which phospho-
rylate downstream target Beclin-1 resulted in autophagic 
cell death followed by its cleavage through activated cas-
pase resulted in apoptotic cell death through mitochondrial 
dysfunction [210, 211].

Further, neurotoxins such as 6-hydroxydopamine, oxy-
gen–glucose deprivation, and  MPP+ increase oxidative 
stress, followed by an increase in autophagy and apopto-
sis. Inhibition of AMPK phosphorylation and the activa-
tion of mTOR phosphorylation with antioxidants, such as 
propofol and alpha-lipoic acid, downregulates autophagic 
and apoptotic cell death, which causes an increase in 

synaptic plasticity, cognitive ability, and neuroprotection 
[212–215]. Similarly, Meares et al., 2013 observed that in-
vitro AMPK expression inhibits gene expression of C–C 
Motif chemokine ligand 2, TNFα, C-X-C motif chemokine 
10 and inducible nitric oxide synthase (iNOS), mediated by 
IFN-γ through signal transducer and activator of transcrip-
tion 1 [216]. Further, intraperitoneal treatment of lipopoly-
saccharide treated with 5-Aminoimidazole-4-carboxamide 
ribonucleotide (AICAR) in the disturbed neuronal mouse 
model demonstrated a reduction in TNFα-mRNA expres-
sion level along with increased mRNA expression level of 
peroxisome proliferator-activated receptor-gamma coac-
tivator 1-alpha (PGC-1α). The same study observed that 
after 24 h of lipopolysaccharide injection treatment with 
AICAR decreases glial fibrillary acidic protein (GFAP) 
activity. However, different studies demonstrated the detri-
mental effect of AMPK activation as treatment with AICAR 
increase apoptosis in SHSY-5Y and Neuro 2a cell culture 
models mediated through an increase in caspase 3 activity 
[217]. Likewise, it was found that Aβ induced neurotoxic-
ity in human neural stem cells decreases cell viability by 
decreasing AMPK activation and expression of neuropro-
tective genes such as Bcl-2 and CREB. The same study 
also concluded that Aβ neurotoxicity causes an increase in 
caspase 3, caspase 9, and cytochrome c expression [218, 
219]. Altogether, it may conclude that AMPK activation 
promotes apoptosis mediated through increased expression 
of pro-apoptotic genes such as caspases and cytochrome c.

PI3K/Akt/GSK3β pathway

GSK3 is ubiquitously expressed in the nervous system and 
involved in regulating neuronal plasticity, and neurological 
disorders with GSK3β remain the dominant form compared 
to GSK3α. Inhibition of GSK3β through Akt-dependent 
phosphorylation, PI3K activation, and PKC activation impli-
cated in glutamate-induced N-methyl-D-aspartate receptor 
(NMDAR) dependent neuronal plasticity and facilitates the 
surface transport of potassium voltage-gated channel sub-
family Q member 2 subunits that are involved in the regula-
tion of neuronal excitability [220–223]. It has been consid-
ered that the PI3K/Akt/GSK3β pathway is involved in Aβ 
induced neurotoxicity, which causes memory impairment 
and learning deficits. However, the mechanism behind this 
rationale is poorly defined. Further, Akt-dependent inhibi-
tion of GSK3β found to reverse learning and memory deficits 
[224, 225]. It has been observed that GSK3β activity causes 
hyperphosphorylation of tau protein and accumulation of 
amyloid precursor protein, which leads to detachment of 
tau from microtubule and decreases amyloidogenic process-
ing, respectively, resulting in neurite degeneration. Further, 
GSK3β has the potential to bind with NMDAR receptors, 
and modulating their function leads to the accumulation of 
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 Ca2+ ions causes degeneration of neurons, ultimately leading 
to neuronal cell death [226, 227]. Moreover, the active form 
of GSK3 was enhanced in patients suffering from PD, which 
is localized with the halo form of α-Synuclein, leading to 
memory impairment and neural degeneration [228]. Further, 
inhibition of GSK3 activity decreases the aggregation and 
phosphorylation of α-Synuclein and increases autophagic 
flux, while activation of GSK3β leads to impaired autophagy 
[229]. GSK3β has been found to regulate apoptosis through 
phosphorylating the downstream targets such as p53, Bax, 
p21, and initiate caspase cascade, which is regulated by 
many signaling events involved in the modification of mito-
chondrial activity [230, 231]. A study demonstrated that 
overexpression of inactive GSK3 mutant prevents apoptosis, 
which was later confirmed by studies using specific GSK3 
inhibitors. Altogether, reduction in GSK3β serine 9 phos-
phorylation causes increased cytochrome c release and cas-
pase 3 activity and direct involvement in cell death induced 
by PI3K/mTOR inhibitor and histone deacetylase inhibitor 
such as Trichostatin A in different cell lines [232–234]. Mcl-
2, another Bcl-2 family member, stabilizes mitochondrial 
outer membrane permeabilization through Bim and Bid, fol-
lowed by phosphorylation activity at serine 159 recognized 
for ubiquitination and degradation. [235, 236]. In neuronal 
cells, GSK3β dependent phosphorylation of Bcl-2 family 
member Bax at serine 163 induces its mitochondrial trans-
location exerting pro-apoptotic function [237, 238]. Mito-
chondria being the major producer and center of oxidative 
stress, undergo mitochondrial permeability transition result-
ing in apoptotic cell death due to GSK3 activation, which 
causes hyperphosphorylation of different downstream tar-
gets, namely oxidative damage associated cellular defense 
protein nuclear factor erythroid 2-related factor 2 (Nrf2) 
[239–242] (Fig. 4A).

Moreover, the implication of GSK3 has been extensively 
studied in manipulating autophagy from the last few years. 
GSK3β inhibits autophagy by activating mTOR complex 
1 through phosphorylation of mTOR associated scaffold 
protein raptor on serine 859. Inhibition of GSK3β activity 
inhibits mTOR complex 1 and raptor interaction and reduced 
phosphorylation of ULK1, followed by increased autophagic 
flux [243, 244]. Similarly, inhibition of GSK3β leads to an 
increase in AMP/ATP cause AMPK activation followed 
by autophagic induction through sequential phosphoryla-
tion of tuberin by AMPK and GSK3β, which causes mTOR 
inhibition [245–247]. Apart from its inhibition GSK3β in 
the absence of growth factors, activates acetyltransferase 
KAT/TIP60, followed by activation of the ULK1 complex 
to induce autophagy [248]. Inhibiting GSK3β expression 
through enhancing mTOR activity through overexpression 
of Aurora A kinase induces resistance to autophagic cell 
death while activation of GSK3β signal transduction path-
way mediated by cadmium promotes autophagic cell death 

in ROS elevated conditions [249–251]. Further, pharmaco-
logical and genetic knockdown of GSK3β expression and 
Akt activation significantly alleviate autophagic cell death 
in a neuronal cell, while GSK3β mediated phosphorylation 
of MCL1 has been observed to induce axonal autophagy 
and axonal degeneration [252–254]. Inhibiting the activity 
of calpain, Akt, and GSK3β reduces the autophagosome 
number and increases microtubule stability in paeoniflorin-
treated okadaic acid-induced tau hyperphosphorylated SH-
SY5Y cell model [255]. Also, the Wnt3a ligand promotes 
AMPK activation, followed by GSK3β inhibition modulat-
ing the autophagic phenomenon in hippocampal neurons 
[256]. These data suggested that GSK3 has potential rel-
evance in autophagic and apoptotic cell death and maybe a 
potential therapeutic target in NDDs.

p38 and JNK MAPK pathway

MAPK, due to its tremendous application in different cel-
lular functions such as apoptosis, cell survival and prolif-
eration, cell differentiation, inflammatory activities, and 
external ROS, has been considered as a potential therapeu-
tic target against NDDs. p38 MAPK inhibitors have been 
considered as potential therapeutic agents against chronic 
inflammatory diseases, including AD, PD, ALS, and HD. 
MAPK causes phosphorylation of its downstream targets, 
including P38, c-Jun, and JNK signaling, which is linked 
with neuronal apoptosis, where c-Jun activation is required 
for NGF withdrawal-induced apoptosis. In contrast, inhibi-
tion of c-Jun activity protects neuronal cell death.

Moreover, MAP3K-ASK1 has been associated with 
JNK’s activation and promotes neuronal apoptosis in PC12 
cells. However, different studies concluded that standalone 
JNK signaling was associated with reducing apoptotic cell 
death [257–262]. A series of experiments demonstrated the 
functional effect of MAPK inhibitors on HMGB1-induced 
neuronal apoptosis [263]. A study demonstrated that activa-
tor protein 1 and c-Jun act as both anti and pro-apoptotic 
factors depending on the level of stress and suggesting 
the implication of defective mitophagy in MAPK/c-Jun-
induced apoptosis [264]. Further, activation of the JNK and 
P38 MAPK pathway leads to activation of NF-κB-induced 
phosphorylation activity, which leads to proteasome degra-
dation. On the contrary, inhibition of p38 MAPK leads to 
impaired proinflammatory NF-κB transcriptional activity 
without altering its DNA binding activity. It downregulates 
the expression of inducible NO synthase through acetylation 
activity of p65 rather than phosphorylation activity [265]. 
An in-vitro study performed by Papademetrio et al. demon-
strated the autophagy inhibition and apoptosis induction in 
both caspase-dependent and caspase-independent patterns 
in MIA PaCa-2 and PANC-1 cells. Although, administra-
tion of caffeic acid phenethyl ester reverses autophagic 
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Fig. 4  A PI3K/Akt is a molecular marker that activates apoptosis 
and autophagy, which regulates neurodegenerative disorders. PI3K/
Akt activates GSK3β, which acts on downstream signaling molecules 
involved in neurodegenerative diseases. TSC1 and TSC2 activate 
mTOR, decreasing neuronal autophagy, followed by an increase in 
neuronal toxicity, while activated GSK3β decreases NRF2 expres-
sion and activates neuroinflammation signaling cascade. Activation of 
P-CRMP2 and NMDAR mediated through GSK3β increases caspase 
3 activations, and the calcium influx respectively lead to an increase 
in neuronal apoptosis, ultimately increases memory impairment and 
neuronal cell death. B Rotenone and MPTP activate P38 MAPK, 
which leads to activation of downstream signaling molecules such as 

JNK, ROS, and iNOS, followed by activation of the signaling mecha-
nism of neurodegenerative disorders. Activation of JNK activates 
BIM, increases the release of inflammatory cytokines, and decreases 
expression of GSK3β, which further activates Cytochrome-C, inflam-
mation signaling cascade, and neuronal toxicity, respectively, ulti-
mately leads to neurodegeneration. P38 MAPK increases ROS causes 
oxidative stress leads to activation of caspase 1 and caspase 2, which 
increases neuronal apoptosis followed by memory impairment and 
cognitive decline involved in the pathogenesis of neurodegenerative 
disorders. Similarly, activation of iNOS releases NO causes mito-
chondrial dysfunction, which increases neuronal toxicity leads to neu-
ronal cell death followed by neurodegeneration
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degradation and apoptotic cell death by inhibiting MAPK 
and NF-κB pathways. [266]. Recently, several studies con-
cluded the protective effect of inhibitors, namely doxycy-
cline, steppogenin, neferine, alantolactone, and indirubin, 
against lipopolysaccharide-induced primary microglial cells 
through inhibition of MAPK phosphorylation and NF-κB 
nuclear translocation. Altogether inhibition of MAPK and 
NF-κB pathways through the action of inhibitors lowers the 
expression of microglial activation markers, including IBA1, 
reduced ROS, NOS, and activation of proinflammatory 
cytokines [267–271]. The MAPK-activated protein kinase 2 
complexes are known to regulate the phenomenon of inflam-
mation through the production and activation of inflamma-
tory mediators. It has been observed that MAPK-activated 
protein kinase 2 knockout mice are resistant to endotoxic 
stress and involved in the regulation of TNFα, Interleukin 6, 
Interleukin 8, and other regulatory cytokines involved in the 
process of neuroinflammation [272–274] (Fig. 4B).

Pharmacological intervention targeting 
apoptotic and autophagic machinery

Implementation of microRNAs in the regulation 
of cell‑death pathway

The microRNAs are a family of 23–25 nucleotide sequences 
involved in transcriptional regulation that can be used as 
potential biomarkers in various diseases, including NDDs. 
miRNAs modulate several biological processes, such as 
cell cycle progression, apoptosis, autophagy, and inflam-
mation [275, 276]. Various studies demonstrated the role 
of miRNA in neuronal cell death, regulating apoptosis and 
autophagy. However, the functional mechanism of miR-
NAs in these processes must be elucidated. Table 1 lists the 
miRNA that regulates autophagy and apoptosis cascade in 
the pathogenesis and progression of NDDs. For instance, H. 
Jia et al. demonstrated the effect of the miR-499-5p hypoxic-
ischemic encephalopathy rat model, where it was found 
that the administration of miRNA significantly reduced the 
expression of C-reactive protein followed by a reduction in 
neuronal apoptosis. Further, the study indicated that miR-
499-5p increases spatial learning ability, spatial memory, 
and locomotor functions [277]. Similarly, miR-217/138-5p, 
miR-15a, and miR-129-5p regulate the expression of sir-
tuin 1, TNFα, IL-1β, BDNF, and SOX6 through oxidative 
stress, inflammatory pathway, and Akt/GSK3β signaling 
cascade, which resulted in decreased neuronal apoptosis in 
 MPP+-induced SH-SY5Y cells, oxygen–glucose deprivation 
neurons of rats, and AD rat model, respectively [278–280]. 
Likewise, miR-93 regulates the expression activity of the 
TLR4/NF-κB signaling pathway through inhibition of 
TNFα, IL-6, IL-1β, and VEGF, along with the decrease in 

pro-apoptotic molecules expression [281]. Further, H. Ge 
et al., demonstrated the neuroprotective effect of miR-410 in 
6-hydroxydopamine-induced SH-SY5Y and PC12 cellular 
PD model through inhibition PTEN/Akt/mTOR signaling 
cascade. At the same time, Wang et al. studied that miR-
124 exerts neuroprotective effects in the MPTP-induced PD 
model through the hedgehog signaling pathway targeting 
endothelin 2. Both studies demonstrated that induction of 
miRNA causes a reduction in apoptosis, caspase 3 expres-
sions, and ROS activity [282, 283]. Similarly, Chen et al. 
demonstrated that miR-98 reduces Aβ aggregation and 
improves oxidative stress and mitochondrial dysfunction 
through a notch signaling pathway targeting Hes-related 
with YRPW motif protein 2 and decreases hippocampal neu-
ronal apoptosis in the AD mice model [284]. Moreover, in 
the SH-SY5Y cell line, miR-764 protected the neuronal cell 
from hydrogen peroxide-induced neuronal apoptosis through 
regulating ninjurin-2 expression and motor neuron functions 
[285]. Likewise, miR-429 and miR-34a regulate neuronal 
damage by inhibiting apoptotic expression in mouse corti-
cal neurons and MPP-induced SH-SY5Y cells, respectively 
[286, 287]. Moreover, miRNA was also found to regulate 
the ER stress-induced apoptotic pathway. miR-211 inhibits 
ER stress and upregulates H3K27 methylation of the CHOP 
promoter leads to cell survival [288]. miR-378 and miR-155 
regulate caspase -3 activity resulted in decreased apoptotic 
expression, whereas, miR-106b attenuates apoptotic pathway 
targeting caspase 7 expressions [289–291].

Further, miRNA also modulates the autophagic pathway 
by regulating different proteins and complexes involved in 
the signaling cascade. It was reported that miR-20a, miR-
106b, miR-372, miR-26b, and miR-93 involved in the regu-
lation of autophagy-mediated through ULK1 and ULK2 
complex situated at the beginning of autophagic cascade 
[292–294]. Similarly, miR-338-5p, miR-30a, miR-376b, 
miR-216a, miR-630, miR-374a, and miR-17-5p suppress the 
autophagic pathway through negative regulation of class III 
PI3K complex [295–300] (Fig. 5).

Moreover, miR-101, miR-376b, miR-17, and miR-495 
modulate ATG4D, ATG4, ATG7, and ATG3 expression, 
which resulted in autophagy inhibition [298, 301–303]. 
Several studies indicated the potential of miRNA as thera-
peutic agents in neuronal autophagy. A study conducted by 
Wang et al. demonstrated that overexpression of miR-9a-5p 
reverses neurological deficits in MACO rat and SH-SY5Y 
cell lines through decreased autophagy and ATG5 expres-
sion [304]. miR-96 and miR-204 alleviate cognitive impair-
ment by suppressing autophagic signaling cascade and 
exerts neuroprotective effects through decreased expression 
of LC3, Beclin-1, and mTOR [305, 306]. Likewise, in the 
MPTP induced SH-SY5Y and PC-12 PD model, miR-124, 
miR-185, and miR-181b rescue memory deficits and cogni-
tive decline through AMPK/mTOR and PTEN/Akt/mTOR 
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pathway. In addition, Gong et al., 2016 demonstrated that 
miR-124 suppression significantly increased cell apoptosis 
and LC3-II/LC3-I ratio, whereas, overexpression of miR-
124 decreases the percentage of apoptotic cells and LC3-II/
LC3-I ratio. Similarly, overexpression of miR-185 and miR-
181b significantly downregulates the LC3-II/LC3-I ratio 
and apoptosis [307–309]. Moreover, miR-212-5p prevents 
dopaminergic cell death in the MPTP induced PD mouse 
model (C57BL/6 mice) through SIRT2 inhibition resulting 
in increased p53 acetylation and reduced autophagy [310]. 
Similarly, miR-124 in MPTP induced SH-SY5Y PD cell 
culture model regulates p62/p38, Bim, and Bax expression 
level resulted in increased autophagy and decreased neuro-
inflammation [311, 312]. Additionally, Zhao et al., demon-
strated that miR-326 inhibits NOS expression and promotes 
autophagy degradation through the JNK signaling cascade. 
miR-326 interacts with X‐box binding protein 1, resulting 
in increased expression of LC3-II, c-jun, and p-α-synuclein 
[313]. Similarly, miR-27a and miR-23b in post-traumatic 
brain injury attenuates neuronal deficits and improves cogni-
tive impairment and neurological functions through altered 
neuronal autophagy by FOXO3a and ATG12 regulation, 
respectively [314, 315].

Long non‑coding RNAs as a pharmacological target

LncRNAs are a set of RNAs having more than 200 nucleo-
tides that regulate gene expression, transcriptional activity, 
epigenetic modifications, and translational control. Differ-
ent studies indicate the involvement of altered LncRNAs 
expression in the progression and pathogenesis of neuro-
logical defects such as AD, PD, ischemic stroke, HD, trau-
matic brain injury, spinal cord injury, and ALS through the 
regulation of cell death pathways, namely apoptosis and 
autophagy. Table 2 discusses the different potential LncR-
NAs, which regulate the expression of both apoptosis and 
autophagy. For instance, LncRNA metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1), referred 
to as non-coding nuclear-enriched abundant transcript 2 
(NEAT2), was found to be expressed in the in vitro model 
of ischemic stroke. Guo et  al., 2017 demonstrated that 
down-regulation of MALAT1 suppresses neuronal apopto-
sis through downregulating Beclin-1 dependent autophagy 
degradation. In the same study, the authors concluded 
that the downregulation of autophagy is through regula-
tion of the MALAT1-miR30a-Beclin-1 axis [359]. Simi-
larly, Wu and Yi 2018 concluded that downregulation of 
MALAT1 reverses neurological defects by inhibiting exces-
sive autophagy and apoptosis through regulating PI3K/
Akt signaling pathway [360]. Further, LncRNA colorectal 
neoplasia differentially expressed (CRNDE) also regulates 
apoptosis and autophagy in different neurological defects. 
For instance, Chun-Hua et al. 2020 demonstrated that in Ta
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hypoxic-ischemic (HI) brain damage (HIBD), silencing of 
CRNDE promotes autophagy and inhibits neuronal apop-
tosis both in-vivo and in-vitro conditions [361]. Likewise, 
downregulation of CRNDE in traumatic brain injury inhibits 
autophagy and apoptosis through regulation of GFAP, BrdU, 
NGF, and Nestin [362]. Wei-Lan et al. 2019 concluded that 
LncRNA small nucleolar RNA host gene 12 (SNHG12) 
inhibits miR-199a, which upregulated the activity of SIRT1 
through activation of AMPK. Activation of AMPK leads 

to increased autophagy and decreases neuronal apoptosis 
[363]. Another member of the SNHG family known as 
SNHG14 was considered to be associated with the progres-
sion and pathogenesis of cerebral ischemia–reperfusion 
injury. Deng et al. 2020 in HT22 mouse hippocampal neu-
ronal cells demonstrated that SNHG14 promotes neuronal 
injury through excessive mitophagy and neuronal apoptosis 
by regulating the miR-182-5p/BINP3 axis [338]. Likewise, 
Cao et al., 2020 concluded that LncRNA SNHG3 promotes 

Fig. 5   microRNAs have 
been implemented to regu-
late autophagy and apoptosis 
signaling in the pathogenesis of 
neurological defects. Both over-
expression and downregulation 
of different microRNAs known 
to regulate the expression of 
apoptotic and autophagic pro-
teins by activating or inhibiting 
different signaling pathways that 
ultimately lead to the pathogen-
esis of NDDs
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autophagic degradation and neuronal cell apoptosis through 
increased activity of miR-485 and increased expression of 
ATG7 [364]. Thus, despite having several evidence, which 
concluded the potential role of LncRNAs in the regulation of 
apoptosis and autophagy, simultaneously in the pathogenesis 
and progression of neurological defects, there will be a need 
for in vivo studies (Fig. 6A).

Small‑molecule inhibitors in autophagy 
and apoptosis pathways in NDDs

Recent studies implicated the potential of cell death path-
ways, including the autophagic pathway and apoptosis path-
way, in the progression and pathogenesis of various diseases 
such as cancer, cardiovascular, and NDDs. These emerging 
discoveries led to expanding the pharmacological interven-
tions targeting PCD pathways and provided the opportunities 
for development and prosecutions of known drugs or novel 
compounds as a therapeutic approach. Autophagy and apop-
tosis were commonly involved in NDD progression mediated 
through different signaling cascades and molecules. Oxida-
tive stress, calcium imbalance, mitochondrial dysfunction, 
AMPK signaling, inflammatory response, and ER stress are 
commonly involved pathways in the autophagic degrada-
tion of accumulated toxic proteins and neuronal apoptosis 
due to aggregated misfolded proteins. Further, recent stud-
ies have shown that upregulation of autophagy through 

autophagy inducers causes a decrease in the accumulation 
of misfolded proteins and delays the progression of NDDs. 
Likewise, inhibition of pro-apoptotic proteins and activat-
ing anti-apoptotic proteins through synthetic or natural mol-
ecules delay the progression of NDDs. Thus, induction of 
autophagic degradation and inhibition of apoptosis signaling 
cascade can be used as a therapeutic strategy for NDDs. 
Table 3 discusses the drugs that undergo clinical trials for 
induction of autophagy in the pathogenesis of NDDs.

Another study indicated that Apelin-13 reverses amy-
loid-induced memory deficits by inhibiting apoptosis and 
autophagy, whereas administration of malathion in N2a neu-
roblastoma cells increases neuronal apoptosis and decreases 
autophagic flux through inducing lysosomal membrane per-
meabilization [375, 376]. Apart from NDDs, modulation 
of autophagy and apoptosis pathways could be protective 
in other neurological diseases, such as spinal cord injury, 
sleep deprivation, traumatic brain injury, ischemic stroke, 
and epilepsy. For instance, Modafinil protects hippocampal 
neurons by inhibiting autophagy and apoptosis pathway in 
the mice model, whereas metformin protects neuronal cells 
against spinal cord injury through inhibition of autophagy 
and apoptosis cascade by regulating mTOR/p70S6K sign-
aling pathway [377, 378]. Similarly, Ganoderma lucidum 
extracts reverse MPTP-induced neurodegeneration by 
inhibiting excessive autophagy and apoptosis by regulating 
oxidative stress and mitochondrial function [379]. Further, 

Table 2  Involvement of long non-coding RNAs in apoptosis and autophagic cascades simultaneously

LncRNA Experimental 
model

Disease Pathway Target Role in Apoptosis Role in 
Autophagy

References

MIAT OGD/R-induced 
PC12 cell injury

Ischemic stroke CUL4A-DDB1-
REDD1 axis

REDD1 Increases Increases [365]

BACE1-AS Aβ1-42-treated SH-
SY5Y cells and 
AD Tg mice

AD miR-214-3p/ATG5 ATG5 Increases Increases [366]

HOTAIR MPP+-induced 
SK-N-SH cells

PD miR-874-5p/
ATG10 axis

ATG10 Decreases Increases [367]

BDNF-AS MPP+-induced 
SH-SY5Y

PD BDNF/ miR-
125b-5p axis

miR-125b-5p Decreases Decreases [368]

17A Aβ-induced SH-
SY5Y cells

AD GABAB signaling – Increases Increases [369]

PVT1 Streptozotocin-
induced diabetic 
mice

Diabetic mice – NMDAR Increases Decreases [370]

RMRP OGD/R-induced 
injury in SH-
SY5Y cells

I/R injury PI3K/Akt/mTOR Bcl-2 and p62 Decreases Increases [371]

TCTN2 SH-SY5Y cell 
line and SCI rat 
model

SCI miR-216b-Bec-
lin-1

miR-216b Decreases Increases [372]

MEG3 RGC-5 s cell line Glaucoma – Beclin-1, Atg3 Increases Increases [373]
HAGLROS MPP+-induced 

SH-SY5Y
PD PI3K/Akt/mTOR miR-100/ATG10 

axis
Increases Increases [374]
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recent studies concluded the potential of flavanols, flavonols, 
flavones, flavones, and flavanones as therapeutic agents in 
the treatment of NDDs through reversing the effects of 
dysregulated autophagic degradation and apoptosis. For 
instance, Singh et al., demonstrated that administration of 
fisetin, a natural flavonol compound in D-galactosidase aged 
rats decreased the activity of pro-oxidants and increased the 
activity of antioxidants. Further, fisetin causes a decrease 
in neuronal cell apoptosis and upregulates the expression 

of autophagic genes, such as Atg-3 and Beclin-1 [380]. 
Likewise, Yang et al., demonstrated that administration of 
fisetin improves synaptic dysfunction through the decrease 
in neuronal apoptosis and neuroinflammation by inducing 
autophagy and activation of AMPK [381]. Further, admin-
istration of rapamycin leads to increased autophagy and pro-
tects the neuronal cell from oxidative stress and apoptotic 
cell death [382]. Further, catechin can protect hippocam-
pal neuronal cell apoptosis by inhibiting the JNK/MLCK 

Fig. 6  A long non-coding 
RNAs have been implemented 
to regulate autophagic and 
apoptosis signaling cascade 
through modulation of differ-
ent signaling cascades. For 
example, BACE1-AS, HAGL-
ROS, MIAT, 17A, and MEG3 
through miR-214-3p/ATG5 
axis, PI3K/Akt/mTOR pathway, 
CUL4A-DDB1-REDD1 axis, 
GABAB signaling, and Beclin-1 
signaling, respectively, increase 
autophagy and apoptosis simul-
taneously. Similarly, LncRNAs, 
such as HOTAIR, RMRP, and 
TCTN2 through miR-874-5p/
ATG10 axis, PI3K/Akt/mTOR 
and miR-216b-Beclin-1 axis, 
respectively, lead to an increase 
in autophagy and decrease in 
the apoptosis pathway. R2Q1 
B natural biomolecules act as 
a potential therapeutic agent 
in modulating autophagy 
and apoptosis pathway in the 
pathogenesis and progres-
sion of neurological disorders. 
For instance, Flavones and 
flavanols modulate mTOR, 
Akt, NF-κB signaling, and 
caspase 3, whereas phenolic 
acids and alkaloids modulate 
the expression of Atg3 and 
Beclin-1. Similarly, Flavanols, 
Flavanones, Isoflavones, Alka-
loids, and Flavones regulate 
the activity of Bcl-2, whereas 
Lignines, Flavones, Flavanols, 
and Flavanones regulates the 
expression of caspase 9 and 
Atg3
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Table 3  Autophagy inducer drugs undergo clinical trials in neurodegenerative disease involved different targets obtained from (https:// clini caltr 
ials. gov/)

Drug molecule Target signaling molecule Disease model Mechanism Clinical trails

Sb-742457 mTOR activator AD Improves cognitive defects NCT00708552, 
NCT00710684

Idalopirdine mTOR activator AD Improves cognition in the hip-
pocampal and frontal cortex 
region

NCT01019421

Nicotinamide Lysosomal acidification AD Reduces disease pathology and 
improves cognitive behavior 
in AD transgenic mice

NCT00580931

Resveratrol TORC1 antagonist AD Penetrates BBB to have CNS 
effects

NCT01504854

AMPK Age-related muscular degenera-
tion

NA NCT02625376

AMPK Mood and Depressive Disorders Enhances cognitive function NCT01794351
AMPK AD Reduces disease progression NCT00678431
AMPK Late-life exercise Slow disease progression NCT02523274
AMPK Aging Minimizes disease progres-

sion and improves cognitive 
dysfunction

NCT02909699
NCT01842399

AMPK HD Ameliorates disease phenotype NCT02336633
AMPK AD Decreases Aβ levels in CSF and 

plasma
PMID: 26,362,286

Lithium AMPK AD Reverses cognitive dysfunc-
tion and positive effects on 
biomarkers

PMID: 26,892,289

IP3-Ca2+, GSK3β pathway AD Reduces misfolded protein 
aggregates

NCT00088387

IP3-Ca2+, GSK3β pathway AD Inhibits disease progression NCT01055392
IP3-Ca2+, GSK3β pathway AD Improves cognitive function NCT03185208
GSK3β PD Inhibits inositol monophos-

phate, leading to elevated 
autophagy and decreases 
α-synuclein aggregates

NCT04273932

IP3-Ca2+, GSK3β pathway HD Rescues disease symptoms NCT00095355
IP3-Ca2+, GSK3β pathway Cognition Improves cognitive dysfunction PMID: 21,525,519
IP3-Ca2+, GSK3β pathway ALS Inhibits disease progression NCT00925847
IP3-Ca2+, GSK3β pathway ALS Inhibits disease progression NCT00818389

Latrepirdine mTOR antagonist HD Inhibits disease pathogenesis NCT00497159
Increases Lysosomal Degrada-

tion
HD Ameliorates disease phenotype NCT00387270

Increases Lysosomal Degrada-
tion

HD Slow disease pathological 
characteristics

NCT00920946

Increases Lysosomal Degrada-
tion

AD Inhibits misfolded protein 
accumulation

NCT00912288

Increases Lysosomal Degrada-
tion

AD Improves cognitive function NCT00939783

Increases Lysosomal Degrada-
tion

AD Improves cognitive function NCT00377715

Increases Lysosomal Degrada-
tion

AD Improves cognitive function NCT00954590

Metformin mTOR antagonist AD Enhances cognition NCT01965756
AMPK Cognition Enhances cognition NCT00620191

Rapamycin mTORC1 ALS Target autophagy and neuroin-
flammatory response

NCT03359538

https://clinicaltrials.gov/
https://clinicaltrials.gov/
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pathway and microglial activation [383, 384]. Further, 
theaflavin decreases neuronal apoptosis by inhibiting the 
inflammatory response and ROS-induced oxidative stress 
[385, 386]. Naringenin, a dietary flavanone, reduces apop-
totic cell death, inhibits oxidative stress, and improves mito-
chondrial function through Nrf2/ARE signaling pathway 
[387, 388], whereas, naringin inhibits neuronal apoptosis 
through inhibiting oxido-nitrosative stress and neuroinflam-
matory response [389]. Meng et al. 2021 in a mouse model 
of AD, demonstrated that naringin could improve cognitive 
function through decreased neuronal cell death by MAPK/
p38 pathway [390]. Further, Guo et al. 2020 demonstrated 
that administration of genistein promotes neuroprotection 
against Aβ-induced neuronal cell death through PI3K/Akt/
Nrf2 signaling pathway, whereas Jiang et al., 2017 con-
cluded that genistein attenuates isoflurane-induced neuro-
toxicity and improves spatial learning and memory abilities 
through cAMP/CREB and BDNF/PI3K/Akt pathway [391, 
392]. Similarly, equol, a dietary daidzein attenuates neuronal 
cell death and promotes neuroprotection through inhibiting 

microglial activation and cell cycle reentry [393, 394]. 
Moreover, apigenin also promotes neuroprotection through 
inhibition of neuroinflammatory response and oxidative 
stress-induced neuronal apoptosis [395, 396]. Kim et al., 
2021 concluded that administration of apigenin repressed 
scopolamine-induced neuronal damage and reduced cogni-
tive impairment. The authors also concluded that neuronal 
protection by apigenin is the result of enhanced BDNF activ-
ity, which decreases neuronal apoptosis and amyloidogenesis 
[397]. Similarly, luteolin promotes neuroprotection through 
reduced neuronal cell apoptosis by regulating SIRT3/
AMPK/mTOR and p62/Keap1/Nrf2 signaling pathway 
[398, 399]. In addition, administration of luteolin and api-
genin causes activation of autophagic degradation through 
HMOX1 and mTOR/AMPK/ULK1 complex, respectively, 
which promotes neuroprotection [400]. Peruru and Dodoala 
in 2021 concluded that diosmin, a citrus flavonoid, promotes 
neuroprotection by suppressing NOX4 and its subunits 
[401]. Moreover, apart from the above-mentioned polyphe-
nol compounds, studies demonstrated the protective effects 

Table 3  (continued)

Drug molecule Target signaling molecule Disease model Mechanism Clinical trails

MCI-186 (Edaravone) Antioxidant ALS Ameliorates disease phenotypes NCT00330681
SAGE217 GABAA receptor modulator Depressive Disorders Decreases disease pathology PMID: 31,338,688
Nilotinib AMPK PD Increases cognitive function NCT02954978

AMPK PD Increases cognitive function NCT02281474
AMPK PD Increases cognitive function NCT03205488
AMPK AD Increases cognitive function NCT02947893

Tamoxifen Autophagy pathway ALS Improves motor skills NCT01257581
Autophagy pathway ALS Improves motor skills NCT00214110
Autophagy pathway ALS Improves motor skills NCT02166944

Valproic Acid Epigenetic targets promote 
autophagy

AD Delays the progression of 
cognitive and functional 
measures of the illness

NCT00071721

Different autophagy induction 
targets

ALS Extends survival of patients NCT00136110

Statins AMPK PD Inhibits disease progression NCT02787590
AMPK PD Inhibits disease progression NCT03242499
AMPK AD Cognition increases NCT00939822
AMPK AD Cognition increases NCT00303277
AMPK AD Inhibits misfolded protein 

accumulation
NCT00486044

AMPK AD Inhibits misfolded protein 
accumulation

NCT00024531

AMPK AD Inhibits disease progression NCT00053599
AMPK AD Inhibits disease progression NCT01142336

Nicotinamide Sirtuin AD Improves cognition NCT00580931
Sirtuin AD Improves cognition NCT03061474

Hydroxychloroquine Lysosomal Inhibition AD Ameliorates disease phenotype PMID: 11,403,336
Lysosomal Inhibition AD Ameliorates disease phenotype PMID: 11,513,909
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of lignins and phenolic acid against neuronal apoptosis and 
autophagic cell death in NDDs and other neurological dis-
eases. For example, caffeic acid phenethyl ester, a phenolic 
compound, prevented neuronal cell apoptosis against Aβ1-42 
through the modulation of GSK3β in the mice model of AD, 
whereas, gallic acid protects from 6-OHDA induced neuro-
toxicity and cell apoptosis through inhibition of oxidative 
stress [402, 403]. Similarly, geraniin protected neuronal cells 
from apoptosis in PC12 cell culture against Aβ25-35 toxicity 
through the modulation of the NF-κB pathway, whereas arc-
tigenin protected PC12 cell culture against ethanol-induced 
nerve damage [404, 405]. Furthermore, recent studies dem-
onstrated the protective effects of natural alkaloids in pre-
venting neuronal cell viability [406–409]. For instance, tri-
cyclic pyridine, an alkaloid from Fusarium lateritium SSF2, 
prevents neuronal cell apoptosis against glutamate-induced 
oxidative stress in the HT22 hippocampal neuronal cell 
line by inhibiting caspase 9 and caspase 3 [410]. Similarly, 
dendrobium alkaloids enhanced neural function through 
reduced neuronal cell death by modulating the expression 
of inflammatory cytokines [411]. Thus, from the evidence 
mentioned above, it might be concluded that targeting apop-
tosis or autophagy pathways could be beneficial for reverses 
neurological defects. Table 4 lists the natural and synthetic 
biomolecules in the regulation of autophagy and apoptosis 
machinery (Fig. 6B).

Conclusion and future perspectives

This review displayed the intricacies between two major 
cell death pathways, viz. apoptosis and autophagy in NDDs, 
which provide a great avenue for therapeutics. These two 
pathways have several common mechanisms, such as ini-
tiator and effector molecules, genes and proteins, and sign-
aling pathways that form a connection. With the develop-
ment of research technologies and specific inhibitors, our 
understanding of cell death pathways is ready to be executed. 
Herein, we tried to elaborate the knowledge about molecu-
lar phenomena between the two death pathways involved 
in NDDs, for instance, interactions between targets and 
pathological mechanisms of molecular targets involved in 
cell death pathways and autophagy. However, many critical 
issues must be resolved while targeting cell death pathways 
concerning autophagy as a therapeutic approach in NDDs. 
Investigating molecular targets, regulatory mechanisms, and 
signaling cascade is a matter of extensive research to maxi-
mize the potential of cell death pathways. Moreover, regula-
tion of PCD and NDDs through miRNAs is a new direction 
for research in this field, where miRNA may target more 
than one component of the cell death pathways or sometimes 
may target more than one death pathway. In this review, we 
also discussed the molecular mechanism of autophagy and Ta
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apoptosis in NDD’s while focusing on the molecular mark-
ers, signaling cascades, and shared mechanisms such as ER 
stress and  Ca2+ concentration. Both autophagy and apoptosis 
can regulate each other mediated by inhibition of activation 
of apoptosis-associated caspases. However, to maximize the 
potential of cell death pathways as a therapeutic approach, 
further in-vitro and in-vivo studies are required.
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