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Abstract
The Hsp70 and Hsp90 molecular chaperone systems are critical regulators of protein homeostasis (proteostasis) in eukaryotes 
under normal and stressed conditions. The Hsp70 and Hsp90 systems physically and functionally interact to ensure cellular 
proteostasis. Co-chaperones interact with Hsp70 and Hsp90 to regulate and to promote their molecular chaperone functions. 
Mammalian Hop, also called Stip1, and its budding yeast ortholog Sti1 are eukaryote-specific co-chaperones, which have 
been thought to be essential for substrate (“client”) transfer from Hsp70 to Hsp90. Substrate transfer is facilitated by the 
ability of Hop to interact simultaneously with Hsp70 and Hsp90 as part of a ternary complex. Intriguingly, in prokaryotes, 
which lack a Hop ortholog, the Hsp70 and Hsp90 orthologs interact directly. Recent evidence shows that eukaryotic Hsp70 
and Hsp90 can also form a prokaryote-like binary chaperone complex in the absence of Hop, and that this binary complex 
displays enhanced protein folding and anti-aggregation activities. The canonical Hsp70-Hop-Hsp90 ternary chaperone 
complex is essential for optimal maturation and stability of a small subset of clients, including the glucocorticoid receptor, 
the tyrosine kinase v-Src, and the 26S/30S proteasome. Whereas many cancers have increased levels of Hop, the levels of 
Hop decrease in the aging human brain. Since Hop is not essential in all eukaryotic cells and organisms, tuning Hop levels 
or activity might be beneficial for the treatment of cancer and neurodegeneration.

Keywords  Molecular chaperone · Proteostasis · Protein folding · Degradation · Proteasome · Aggregation · Stress response · 
Aging

Introduction

The 90 kDa and 70 kDa heat shock proteins (Hsp) Hsp90 and 
Hsp70, respectively, are ATP-dependent molecular chaper-
ones essential for eukaryotic life. Hsp70 is composed of two 
main domains: the N-terminal nucleotide-binding domain 
(NBD), and the C-terminal substrate-binding domain (SBD), 
which associates with substrate proteins by recognizing 
short exposed hydrophobic stretches in the initial stages of 
substrate folding [1–4]. Hsp70-driven protein folding is a 
concerted process with Hsp40 and a nucleotide exchange 
factor (NEF) [1, 2, 4]. Moreover, Hsp70 prevents protein 
aggregation, solubilizes aggregated proteins, and assists in 

clearing misfolded proteins and aggregates primarily via 
chaperone-mediated autophagy (CMA) [1, 2, 5–7].

The Hsp90 chaperone system works downstream of the 
Hsp70 chaperone system and is responsible for the final 
stages of folding and maturation of substrate proteins (dis-
cussed later in detail). There are two cytosolic isoforms of 
Hsp90 identified in mammals, Hsp90α and Hsp90β, and in 
budding yeast, Hsp82 and Hsc82, the inducible and consti-
tutively expressed isoforms of Hsp90, respectively [8–10]. 
Hsp90 paralogs are found in mitochondria (Trap1) and the 
endoplasmic reticulum (Grp94 or Gp96) along with orga-
nelle-specific paralogs of Hsp70 (Mortalin in mitochondria 
and Grp78 in the endoplasmic reticulum) [5, 10]. Hsp90 iso-
forms exist as dynamic homodimers. Each protomer of the 
homodimer is composed of three highly conserved domains: 
the N-terminal domain (NTD) involved in nucleotide (ATP) 
binding and hydrolysis, the middle domain (MD), which 
contributes the catalytic lysine residue for the ATPase activ-
ity and is responsible for binding many of the substrates, and 
the C-terminal domain (CTD) responsible for dimerization 
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[9–12]. The substrate proteins are collectively called Hsp90 
“clients” [4, 9, 11–14]. The current set of Hsp90 clients 
includes kinases, transcription factors, including steroid 
receptors, and many other proteins, sharing no common fea-
tures in terms of sequence or structure [9, 10, 12]. A com-
prehensive and continuously updated list of Hsp90 clients 
and other interactors is available at https://​www.​picard.​ch/​
downl​oads/​Hsp90​inter​actors.​pdf [15].

Hsp90-mediated client protein folding or assembly is 
a highly regulated process, which requires the sequential 
association and release of co-chaperones [9, 10, 12]. One 
of these co-chaperones is Hsp70–Hsp90 organizing protein 
(Hop), encoded by the gene STIP1 in vertebrates and STI1 in 
yeast. Justifying its name, Hop is an adaptor protein between 
Hsp70 and Hsp90 [10, 16]. It is proposed that Hop facilitates 
the client transfer from the Hsp70 to the Hsp90 chaperone 
systems and thereby promotes the protein folding process.

This review will discuss the significant discoveries around 
Hop in the last three decades and the progress in the under-
standing of its molecular functions and physiological rel-
evance. We mainly focus on the role and regulation of Hop 
and its impact on the Hsp70–Hsp90 molecular chaperone 
machines and protein homeostasis (proteostasis). Moreover, 
we propose the possible implications of modulating Hop as a 
therapeutic target in cancer and neurodegenerative diseases. 
A continuously updated literature overview on Hop is avail-
able at https://​www.​picard.​ch/​downl​oads/​Hopfa​cts.​pdf.

Discovery, expression, and localization 
of Hop

The gene for Hop was first discovered in budding yeast as 
a stress-inducible gene, hence named STI1 (or Sti1 for the 
protein) in that species [17]. Consistent with its heat shock-
induced overexpression, the core heat-shock element (HSE) 
TTC-GAA-TTC-GTA was found at position − 241 of the 
promoter region of the STI1 gene [17, 18]. The yeast STI1 
gene was found to encode a polypeptide of 589 amino acid 
residues with a calculated molecular mass of 66.246 kDa 
[17]. However, the experimental molecular mass of Sti1 
was determined to be approximately 73 to 75 kDa by SDS-
PAGE analysis [17]. Two-dimensional gel electrophoresis 
revealed four isoforms with isoelectric points from 5.75 to 
6.05 in yeast [17]. This finding indicated that the endog-
enous Sti1/Hop protein might be post-translationally modi-
fied, for example by differential phosphorylation. In this 
context, it is noteworthy that Hop is also known as stress-
induced phosphoprotein 1 (Stip1) in mammals. Hop was 
first identified and characterized in a human cell line as an 
SV40 transformation-induced protein [19]. Human Hop is 
a 543-amino acid protein with a calculated molecular mass 
of 62.6 kDa [19]. Sequence alignments revealed 42% amino 

acid sequence identity between the orthologs of Hop from 
humans and yeast [19].

Although Sti1/Hop was discovered as a stress-induced 
gene, the mechanism of this regulation is not well under-
stood. The existence of an HSE in the promoter sequence of 
STI1 would allow the binding of Hsf1, the master transcrip-
tional regulator of the heat-shock response (HSR). Inhibi-
tion of Hsp90 in human gastric cancer cells can also induce 
the HSR by activating Hsf1, which is then recruited to the 
promoters of STIP1 and other target genes, including BAG3, 
HSPA1A, HSPA1B, FKBP4, and UBB [20]. Alternatively, 
under hypoxic stress in primary cortical cultures from mice, 
transcriptional activation of STIP1 was shown to be driven 
by HIF1α, the master regulator of the hypoxic response [21]. 
A hypoxia response element (HRE) was found at positions 
-60 to − 63 of the promoter and thought to be responsible 
for its expression during oxygen deprivation in mammalian 
cells [21]. Furthermore, the HRAS oncogene and mutant 
p53 positively regulate the transcription of STIP1, whereas 
wild-type p53 inhibits it [22]. Although the expression of 
Hop under stress conditions has been explained, how it is 
regulated under normal physiological conditions remains to 
be investigated. Moreover, the translational control of Hop 
and the functions of the 5′- and 3′-UTRs of its mRNA need 
to be studied under both normal physiological and stress 
conditions.

Hop is primarily localized in the cytosol [23]. However, 
heat-shock treatment and hydroxyurea-induced G1/S cell 
cycle arrest promote nuclear localization of Hop [24, 25]. 
These findings suggest that Hop shuttles between the cyto-
sol and the nucleus. The post-translational modifications 
regulate the subcellular localization of Hop. There is evi-
dence that there are two distinct phosphorylation sites for 
murine Hop, S189 and T198, which are phosphorylated by 
casein kinase II and Cdk1, respectively [26]. Intriguingly, 
whereas S189 phosphorylation promotes nuclear localiza-
tion of murine Hop, T198 phosphorylation restrains it in 
the cytosol [24]. Since a cell cycle-specific kinase (Cdk1) 
phosphorylates Hop, it is proposed that Hop can differen-
tially localize in cells depending on the cell cycle phases. 
This further raises the possibility of cell cycle phase-specific 
functions of Hop, an idea that is supported by the observa-
tion that a Hop knockdown or knockout in human cancer 
cells leads to a slowdown in G1 [27–29]. Interestingly, the 
phosphorylation sites of Hop are conserved between its 
murine and human orthologs. Although these phosphoryla-
tion sites are well-characterized for murine Hop, functions 
of these sites are yet to be described for the human ortholog, 
which only differs by 14 amino acids. Mammalian Hop 
can also be SUMOylated by PIAS1, an E3 SUMO ligase 
[30]. Interestingly, the interaction with PAIS1 promotes the 
nuclear localization and retention of Hop independently of 
SUMOylation [30].

https://www.picard.ch/downloads/Hsp90interactors.pdf
https://www.picard.ch/downloads/Hsp90interactors.pdf
https://www.picard.ch/downloads/Hopfacts.pdf
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Apart from the cytosol and the nucleus, a fraction of the 
intracellular Hop resides in the Golgi apparatus [19] and at 
the cell membrane [31, 32]. Many cell types can also secrete 
Hop. Glial cells and astrocytes secret Hop as a neurotrophic 
ligand, which triggers prion protein (PrPc) signaling in neu-
rons with neuroprotective effects [32–35]. Hop was also 
reported to be secreted by hepatocellular, ovarian, brain, and 
gastric carcinoma cells and tissues [36–40]. For ovarian and 
gastric carcinoma, secreted Hop was proposed to be a diag-
nostic and prognostic marker [38, 39, 41]. Additionally, Hop 
is present in extracellular vesicles or exosomes released by 
mouse embryonic stem cells and astrocytes, and is thought 
to play a role in intercellular communication [42, 43]. Hop, 
together with Hsp90, was even shown to play an active role 
in promoting the release of exosomes in a Drosophila model 
system [44]. The secreted Hop and its cytokine-like func-
tions in CNS development and cancer have recently been 
reviewed [45]. Here, we will focus on the intracellular and 
physiological functions of Hop.

Structure of Hop

A prediction of the Sti1 protein structure was first proposed 
back in 1989 along with its discovery [17]. Its predicted 
amino acid sequence showed it to be a rather hydrophilic 
protein [17]. Secondary protein structure prediction indi-
cated that most of the regions of Sti1 exist in α-helical 
domains [17]. Sti1/Hop contains three tetratricopeptide 
repeat (TPR) domains and two aspartate-proline-rich 

polypeptide (DP) segments [16, 19, 46] (Fig. 1a). TPR 
domains comprise three or more TPR motifs (tandem array 
of two antiparallel α‐helices), and each motif consists of 
34 amino acid repeats [47]. The TPR domains of Sti1/Hop 
are called TPR1, TPR2A, and TPR2B, while the two DP 
domains are named DP1 and DP2 [48]. Overall, structur-
ally, the TPR domains are highly organized α-helices [47]. 
The TPR1, TPR2A, and TPR2B domain structures of yeast 
and human Sti1/Hop were evaluated either by X-ray diffrac-
tion or solution NMR [16, 49–51]. These studies experi-
mentally confirmed the predicted α-helical structures of 
the TPR domains of Hop. The DP domains were consid-
ered to be unstructured until solution NMR spectroscopy 
revealed highly homologous α‐helical folds with six helices 
in DP1 and five helices in DP2 of Sti1 [49]. While the indi-
vidual domain structures of yeast and human Sti1/Hop are 
known, the structure of full-length Sti1/Hop has yet to be 
solved. Several studies reported Hop to be a dimeric protein 
[52–55]; however, this was contradicted by others claiming 
that Hop is a monomeric protein [56, 57]. A cryo-EM analy-
sis of a Hop-Hsp90 complex suggested that a Hsp90 dimer 
binds only one Hop molecule [58].

Hsp70 and Hsp90: the major interactors 
of Hop

Hop was first discovered as one of the major interactors 
of Hsp90 by immunoaffinity purification of Hsp90 from 
chicken oviduct cytosol [46]. This Hsp90-Hop complex 
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Fig. 1   The Hsp70-Hop-Hsp90 ternary molecular chaperone com-
plex. a A schematic representation of the domain structure of Hop 
and of the mode of interaction of Hop with Hsp70 and Hsp90 in 
forming the Hsp70-Hop-Hsp90 ternary chaperone complex. Inset: 
a simplified model of the ternary chaperone complex used in subse-
quent figures. b Hsp70 and Hsp90 are the major interactors of both 
exogenously expressed and endogenous Hop. The images are of 

Ponceau S-stained membranes of immunoprecipitation experiments 
(IP) as indicated. TPR domain double mutant (K8A (TPR1), K229A 
(TPR2A)) Hop serves as a negative control (left panel) [28]. Normal 
mouse IgG serves as a control for the endogenous Hop immunopre-
cipitation (right panel). The position of immunoglobulin heavy chains 
is marked with an asterisk
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was found to be simultaneously associated with Hsp70. This 
finding strongly suggested the existence of a Hsp70-Hop-
Hsp90 ternary complex in the eukaryotic cytosol (Fig. 1a). 
Although immunoaffinity purification of Hsp90 co-precipi-
tates substoichiometric amounts of Hsp70 and Hop [46], we 
recently found that the use of an antibody to (HA-tagged) 
Hop co-immunoprecipitates almost equimolar amounts of 
Hsp70 and Hsp90 from HEK293T cells [28] (Fig. 1b). This 
indicated that most of the intracellular Hop molecules are 
complexed with Hsp70 and Hsp90 [28]. However, evidence 
has been emerging that intracellular Hop can interact with 
other proteins independently of its binding to either Hsp70 
or Hsp90 or both [59–64].

What is the molecular basis for the simultaneous interac-
tion of Hop with Hsp70 and Hsp90? The TPR1 domain of 
Hop is responsible for the binding to the extreme C-terminal 
heptapeptide PTIEEVD of Hsp70 (Fig. 1a). TPR2A serves 
as a high-affinity binding site for the extreme C-terminal 
peptide MEEVD of Hsp90 [16] (Fig. 1a). The conserved 
EEVD motifs at the C-termini of Hsp70 and Hsp90 behave 
like a dicarboxylic acid clamp and are responsible for the 
electrostatic interactions with the respective TPR domains 
of Hop [16, 49, 65–67]. The selectivity and specificity of 
binding of the respective TPR domains to the C-termini of 
Hsp70 and Hsp90 are conserved between humans and yeast 
[16, 49].

Unlike TPR1 and TPR2A, the TPR2B domain of Sti1/
Hop can bind both Hsp70 and Hsp90 without a marked pref-
erence for either one of the C-termini, but its binding is of 
relatively low affinity [49]. Thus, Sti1/Hop has one high-
affinity binding site each for Hsp90 (TPR2A) and Hsp70 
(TPR1), and an additional, less selective Hsp70/Hsp90 bind-
ing site (TPR2B). Hsp70 may initially bind to the TPR1 
domain of Sti1/Hop in an open conformation, and then 
transfer to TPR2B once Hop binds Hsp90 via TPR2A [68]. 
Moreover, additional contact sites with the CTD and MD of 
Hsp90 are also evident [49, 55, 69–71].

Different biophysical techniques, including surface plas-
mon resonance, isothermal calorimetry, analytical ultra-
centrifugation, hydrogen exchange mass spectrometry, 
and luminescence resonance energy transfer, have been 
used to determine and characterize the affinities [dissocia-
tion constants (KD)] of the respective TPRs of Hop for the 
C-terminal sequences of Hsp70 and Hsp90 [16, 48, 49, 72, 
73]. Tomm34, another multiple TPR domain-containing 
protein and Hsp90 co-chaperone of the outer mitochondrial 
membrane, has also been shown to bind simultaneously to 
Hsp70 and Hsp90 [74]. However, Hop cannot be function-
ally substituted by Tomm34, most notably in Hop knockout 
cells because the abundance of Tomm34 is too low [28]. 
Although it appears that Hop cannot be functionally replaced 
in the Hsp70–Hsp90 chaperone complex by another TPR-
containing protein, Hop competes for Hsp90 binding with 

several other TPR domain-containing proteins, such as 
cyclophilins, including FK506 binding proteins (FKBPs) or 
peptidyl-prolyl isomerase (PPIase), and Stub1/Chip [75–77]. 
In fact, there is evidence that mixed complexes such as 
Hsp90-FKBP52-Hop-Hsp70, Hsp90-FKBP52-p23-Hop, 
and Hop-PPIase-Hsp90 also exist in cells, albeit in reduced 
proportions [54, 57, 77, 78]. It was proposed that serine/
threonine phosphorylation just N-terminal to the EEVD 
motifs of the C-termini of Hsp70 and Hsp90 enhances the 
binding to Hop and prevents the binding to Stub1/Chip [79]. 
Posttranslational modifications on either Hsp70 or Hsp90 or 
the co-chaperones influence interaction preferences and need 
to be studied more thoroughly in the future.

Impact of Hop on the Hsp70–Hsp90 
chaperone cycle and client maturation

Hsp70 and Hsp90 are the evolutionarily conserved molecu-
lar chaperones that assist in the folding of nascent polypep-
tides and stress-induced misfolded proteins in the cytosol 
[4, 10]. Substrates are recognized by Hsp70 and a J-domain 
containing Hsp70 co-chaperone, typically Hsp40 in eukary-
otes [5, 80, 81] (Fig. 2a, b). J-domain protein (JDPs) such as 
Hsp40 stimulate the Hsp70 ATPase activity and enhance the 
substrate binding affinity of Hsp70 by promoting its conver-
sion to the ADP-bound state [82]. The NEF-dependent ADP 
release from Hsp70 allows the binding of ATP, which trig-
gers its substrate release [1]. Although Hsp70 was thought 
to be a solitary molecular chaperone for protein folding 
and refolding, the hydrophobic properties of its substrate-
binding cavity could even arrest folding for some substrates 
[4]. A recent finding experimentally supports the idea of 
Hsp70 acting as a preventer of protein folding. It was dis-
covered that Hsp70, when tested at physiological concentra-
tions in vitro, inhibits the folding of a model substrate [83]. 
Because of its hydrophilic nature, Hsp90 does not block pro-
tein folding as Hsp70 does [4, 83]. Thus, Hsp90 becomes 
essential to break this “deadlock” of the Hsp70 chaperone 
system by allowing the completion of the protein folding 
process and the subsequent release of active substrates [83]. 
As a result, Hsp70 and Hsp90 functionally collaborate to 
enhance the yield of folded proteins [83] (Fig. 2a, b).

In eukaryotic cells, the cooperation between Hsp70 and 
Hsp90 is mediated by Hop, as discussed above. Formation 
of the Hsp70-Hop-Hsp90 ternary chaperone complex may 
be the rate-limiting step for the substrate transfer from the 
Hsp70 system to the Hsp90 system [68] (Fig. 2a). Upon 
substrate binding, Hsp90 undergoes large conformational 
changes concerted with the sequential and highly regulated 
binding of other co-chaperones, including Aha1, PPlase, 
and p23 [10, 12, 84, 85] (Fig. 2a). Aha1 binds to the MD 
of Hsp90 and stimulates its ATPase activity, which is a 
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prerequisite for substrate protein folding and subsequent 
release [86]. Two molecules of p23 bind to the NTDs of 
the Hsp90 dimer in its closed state and facilitate the final 
steps of substrate-protein folding, maturation, and release 
in a concerted manner with Aha1 [87–90] (Fig. 2a). After 
completion of a successful ATPase cycle, the Hsp90 dimer 
transforms into an open conformation and is restored for 
the next chaperone cycle (Fig. 2a). Each co-chaperone 
acts uniquely on the ATPase activity of Hsp90 and the 

conformational dynamics of the entire Hsp90 dimer [10, 
12, 84, 85, 91].

Hop is the physiological allosteric inhibitor of the ATPase 
activity of Hsp90 [53, 57, 65]. Hop does so probably by 
stabilizing the open conformation of the Hsp90 dimer and 
blocking the N-terminal closure of Hsp90, which is required 
for its ATPase activity [65]. Although Hop blocks the 
ATPase activity of Hsp90, it does not inhibit ATP binding 
to the NBD of Hsp90 [65]. TPR2A-TPR2B is the minimally 
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required segment of Hop for maximum inhibition of the 
ATPase activity of Hsp90 [48, 49]. TPR2B of Hop/Sti1 
occupies a position at the MD of Hsp90, between the two 
protomers of the Hsp90 dimer, thereby sterically restrict-
ing the conformational rearrangement of the MD and NTD 
closure during the ATPase cycle [49]. A cryo-EM analysis 
showed that the TPR1 domain of Hop could also sterically 
block the Hsp90 N-terminal dimerization by being situated 
between the Hsp90 protomers and interacting with the adja-
cent NTD and MD [58].

By itself, the TPR2A–TPR2B domains of Hop are unable 
to facilitate the activation of Hsp90 clients in vivo despite 
the fact that this portion of Hop retains the full inhibitory 
capacity for the ATPase activity of Hsp90 [49]. For func-
tionality it needs DP2. The TPR2A–TPR2B–DP2 portion 
of Hop is the minimally required functional module to reca-
pitulate most of the in vivo activities of full-length Hop for 
Hsp90 client protein folding and maturation [49]. Remark-
ably, the TPR1 domain of Hop was proposed to be dispen-
sable for Hsp90-client protein folding [49]. This is further 
supported by the fact that the Caenorhabditis elegans Hop 
ortholog lacks a TPR1 domain and yet is fully functional 
[92–94]. In contrast to the inhibitory effect of Hop on the 
ATPase activity of Hsp90, Sti1 binding enhances the ATPase 
activity of Hsp70, thereby promoting the activity of Hsp70 
in yeast [95]. Human Hop is unable to activate the ATPase 
of human Hsp70 since its basal ATPase activity is higher to 
begin with [95]. A genetic analysis of the determinants of 
Sti1-dependence of Hsp90 in budding yeast yielded a wealth 
of Hsp90 point mutants [96]. Overall, the results are also 
consistent with Sti1 promoting the recruitment of client-
loaded Hsp70 and client transfer through a conformational 
change of Hsp90 favoring its N-terminal closure [96].

Little is known about the relevance of posttranslational 
modifications of Hop for Hsp70–Hsp90 functions. A study 
regarding a few phosphorylation sites of human and yeast 
Hop revealed that, in general, phosphorylation of Hop is 
counterproductive for the Hsp70–Hsp90-driven client pro-
tein folding and maturation processes [97, 98] (https://​www.​
phosp​hosite.​org/​prote​inAct​ion.​action?​id=​2638&​showA​llSit​
es=​true). Further studies are warranted to clarify additional 
functional modifications of Hop, the upstream regulators, 
and their relevance for cellular physiology and disease 
pathology.

One interesting question is whether Hop by itself can act 
as a molecular chaperone. Efficient conversion of chemical 
energy into mechanical energy was thought to be the prereq-
uisite for a protein to be a molecular chaperone. Recently, 
this idea has been experimentally proven for the Hsp70 
chaperone system [99]. Although Hop was reported to bind 
ATP and to have a slow ATPase activity [100], Hop is unable 
to fold substrates by itself [52, 101]. Therefore, since Hop 
fails to fulfill the criteria for being a molecular chaperone, 

it must be considered a co-chaperone of the Hsp70–Hsp90 
chaperone system.

Hsp70‑Hop‑Hsp90 ternary complex 
versus Hsp70–Hsp90 binary complex

Hop appeared during the evolution of eukaryotic organisms 
[17, 102] whereas no Hop-like protein has been discovered in 
bacteria. Bacterial Hsp70 (DnaK) and Hsp90 (HtpG) must, 
therefore, be able to interact directly during substrate trans-
fer [103–107]. The Escherichia coli (E. coli) Hsp70–Hsp90 
binary complex is further stabilized by the interaction with 
both clients and a DnaJ protein, the bacterial JDP [104]. 
Mutating surface residues that are essential for the direct 
interaction between E. coli Hsp70 and Hsp90 impair binary 
complex formation and prevent substrate protein folding 
[104]. A recent computational model places the client pro-
teins bound to the SBD of bacterial Hsp70 in the proxim-
ity of the client-binding site of bacterial Hsp90, which may 
facilitate substrate transfer from Hsp70 to Hsp90 [105]. The 
direct interaction of these bacterial molecular chaperones 
mutually and synergistically enhances their ATPase activity 
in the presence of substrate proteins [104–106].

The appearance of Hop in eukaryotes correlates with 
the modification of the C-termini of eukaryotic cytosolic 
Hsp70 and Hsp90, such that they contain the extreme 
C-terminal EEVD motif allowing Hop binding (Fig. 1a). 
And yet, recent discoveries show that eukaryotic Hsp70 
and Hsp90 can interact directly in the absence of Hop both 
in vitro and in vivo [28, 108] (Fig. 2b). This Hop-independ-
ent Hsp70–Hsp90 binary complex is functionally active for 
substrate folding/refolding and even with a higher rate and 
yield [28] (Fig. 2b). Since Hop is a physiological inhibi-
tor of the ATPase activity of Hsp90, we proposed that the 
Hsp70–Hsp90 binary complex has a higher folding capacity 
than the Hsp70-Hop-Hsp90 ternary complex. This may be 
the case, at least for some substrates, because the binary 
complex is not restrained anymore by Hop (Fig. 2b) [28].

Conserved surface residues that are essential for the direct 
interaction of bacterial Hsp70 and Hsp90 are also essential 
for the eukaryotic Hsp70–Hsp90 binary complex forma-
tion and for substrate refolding [28]. Therefore, Hsp70 and 
Hsp90 retain their ability to form a more ancient prokary-
ote-like functional chaperone complex even in eukaryotes 
(Fig. 2b). Further details of the functional aspects of these 
binary and ternary molecular chaperone complexes are dis-
cussed in the following sections.

The endoplasmic reticulum and mitochondria, which have 
paralogs of Hsp70 and Hsp90, lack Hop or Hop-like pro-
teins. Their Hsp70 and Hsp90 physically and functionally 
interact directly [109, 110, see also ref. 111] and also lack 
the extreme C-terminal EEVD motif. Whether Hsp70 and 

https://www.phosphosite.org/proteinAction.action?id=2638&showAllSites=true
https://www.phosphosite.org/proteinAction.action?id=2638&showAllSites=true
https://www.phosphosite.org/proteinAction.action?id=2638&showAllSites=true
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Hsp90 can interact directly in the eukaryotic cytosol in the 
presence of Hop and whether this alternative binary chap-
erone complex has any specialized functions are still open 
questions. Caenorhabditis elegans could be an interesting 
model organism to test this notion since its Hop lacks the 
TPR1 domain and competitively interacts with Hsp70 and 
Hsp90 [92, 93]. For Caenorhabditis elegans, it remains to 
be determined whether Hsp70 and Hsp90 interact directly or 
whether the TPR2A-TPR2B domains of Hop are sufficient 
to form a functional Hsp70-Hop-Hsp90 ternary complex.

Phenotypes of Hop mutants in eukaryotic 
organisms

Since Hop is specifically present only in eukaryotic organ-
isms, and strictly required for the client transfer to Hsp90 
and folding in some biochemical assays, Hop was thought 
to be indispensable for eukaryotic life. Therefore, deletion 
or dominant-negative mutations of the Hop encoding genes 
could be expected to be lethal. Contradicting this specula-
tion, we now know that budding yeast, worms (Caenorhab-
ditis elegans), flies (Drosophila melanogaster), and human 
cancer cell lines are viable without Hop [17, 28, 93, 112]. 
Whereas ∆sti1 yeast strains are viable, but heat- and cold-
shock sensitive [17]. These mutant yeast strains as well as 
human cancer cells lacking Hop are somewhat more depend-
ent on Hsp90 functions since they are hypersensitive to 
Hsp90 inhibitors [28, 113–116]. ∆sti1 strains are also hyper-
sensitive to molybdate, which stabilizes Hsp90 in the closed 
conformation even after ATP hydrolysis and is thought to 
constrain the dynamic rearrangements of Hsp90 [117]. This 
agrees with the fact that deletion of either hsc82 or hsp82 is 
synthetically lethal with ∆sti1 in yeast under normal growth 
conditions or at elevated temperature, respectively [76]. In 
line with these notions, a series of temperature-sensitive 
mutations in the MD of yeast Hsp90, which are defective 
for the interaction with yeast Hsp70, have been shown to be 
synthetically lethal with ∆sti1[108]. Several other mutations 
in yeast have been discovered to be synthetically lethal with 
∆sti1 including cpr7, cdc37, ydj1, mps1, sse1, sba1, ssl2, 
emc2, and utp21 [63, 116, 118–123].

Caenorhabditis elegans is viable in the absence of Hop, 
but the null mutant has decreased fertility, a shortened lifes-
pan, and an impaired heat-shock response [93]. Unlike yeast 
and worm models, several Hop knockout human cancer cell 
lines are either equally or rather less sensitive to acute heat 
shock compared to their wild-type counterparts [28]. One 
can imagine that the relatively hyperactive Hsp70–Hsp90 
binary complex in the absence of Hop might be protec-
tive upon heat shock. In contrast, the knockdown of Hop in 
human HEK293T cells with a doxycycline-inducible system 
was reported to reduce viability under basal and heat-shock 

conditions [124]. These differences between the knockout 
and knockdown models are striking and may be explained 
by the long-term adaptation to the Hop depletion during the 
clonal establishment of Hop knockout cells. This apparent 
discrepancy will have to be resolved methodically in the 
future. The sensitivity to other types of stresses [125–127] 
may also depend on the exact experimental conditions and 
on cell type, and will require further investigations.

Unlike the above-mentioned models of Hop mutants, Hop 
appears to be essential for mouse embryonic development 
[125] and for the viability of Leishmania donovani promas-
tigotes [128]. Hop knockout mouse embryos die at the stage 
of E10.5; the knockout causes improper neural tube forma-
tion, increased DNA damage and stress susceptibility, and 
apoptosis, which may all contribute to embryonic lethality 
[125]. Even heterozygotes display increased cellular stress 
and are more sensitive to cerebral ischemia [125]. Mice with 
a Hop TPR1 truncation can be born, but they have a high 
mortality rate, possibly because the truncation mutant accu-
mulates to considerably lower levels [126]. These mouse 
models clearly demonstrate that not every eukaryotic cell 
may be able to shift from the Hsp70-Hop-Hsp90 ternary 
complex to the Hsp70–Hsp90 binary complex functionally, 
and that even a reduced level of functional Hop is detri-
mental to the adult life in mouse. It has been proposed that 
the absence of extracellular and not just intracellular Hop 
in these mouse models might contribute to the lethality of 
neuronal cells [125]. However, the details of the molecu-
lar targets and mechanisms behind the death of the mouse 
embryos lacking Hop warrant further investigations.

Hop as a regulator of proteostasis

Proteostasis is the overall process by which the cellular 
proteome is maintained in a functional state. All axes of 
proteostasis, including protein translation, folding/refold-
ing, and degradation, are extensively regulated by molecular 
chaperones [129–132]. Both Hsp70 and Hsp90 are collec-
tively involved in ribosomal biogenesis, translation, and co-
translational protein folding [133–138]. Multidomain cyto-
solic proteins typically undergo chaperone-assisted protein 
folding by Hsp70 and Hsp90. Hsp90 can also transiently 
hold structurally labile or misfolded proteins to prevent their 
aggregation [139], similarly to how small Hsps use their 
“holdase” function [140]. Intriguingly, Hsp70 and Hsp90 
are not only responsible for protein synthesis and stabil-
ity, but they also regulate protein degradation. Hsp70 is the 
master regulator of chaperone-mediated autophagy (CMA) 
of degradation-prone substrate proteins carrying a KFERQ 
motif as a recognition peptide signal sequence [130]. With 
the assistance of its co-chaperone proteins, Hsp70 delivers 
the substrate proteins to lysosomes via an interaction with 
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a lysosomal receptor LAMP2A [6, 7]. Although Hsp90 and 
its co-chaperones were also proposed to be involved in the 
CMA process, the molecular basis has yet to be revealed 
[7, 141].

Hsp90 is involved in protein degradation by the protea-
some [28, 142]. Hsp90 was proposed to be a regulator of 
proteasome assembly and stability, and to facilitate protea-
some reassembly after a heat shock-induced disassembly 
in yeast [142]. In yeast, mutations in several proteasomal 
genes were found to be synthetically lethal with hsp82 and 
hsc82 mutations [142]. Intriguingly, co-expression of Hsp90 
is essential for the efficient formation of the recombinant 
proteasomal 19S lid complex in bacteria [143]. Several 
proteasome-dedicated chaperones are known for the 20S 
catalytic core and 19S base assembly, only Hsp90 has been 
proposed as a chaperone for 19S lid assembly to date [143]. 
Beyond the putative function of Hsp90 in lid assembly, for 
specific substrate proteins, Hsp90 serves as a chaperone for 
direct loading into the free 20S proteasomal core complex 
for degradation [144]. Thus, the Hsp70 and Hsp90 molecular 
chaperone systems are not only protein folding hubs, but 
they are also involved in many other aspects of proteostasis.

Hop in protein degradation We recently found that Hop 
promotes proteasome assembly and protein degradation [28] 

(Fig. 3), and that this novel function of Hop is evolutionar-
ily conserved between humans and yeast [28]. The ability 
of Hop to form the Hsp70-Hop-Hsp90 ternary chaperone 
complex is essential for this function [28] (Fig. 3). Hop TPR 
domain mutants, that can neither bind to Hsp70 nor Hsp90 
nor both are unable to rescue the defects of proteasomal 
assembly and protein degradation in Hop knockout cells 
[28]. We proposed that the Hsp70-Hop-Hsp90 ternary chap-
erone complex chaperones the docking of the 19S regulatory 
complex of the proteasome to the 20S core [28]. We fur-
ther suggested that the Hsp70-Hop-Hsp90 ternary complex 
may contribute to stabilizing and maintaining the 26S/30S 
proteasome through transient regulatory interactions with 
some proteasomal subunits [28]. The molecular basis for 
the functions of the Hsp70-Hop-Hsp90 ternary complex in 
proteasome assembly and stability are not completely under-
stood yet. Since the full atomic structure of the eukaryotic 
proteasome is available [145–147], experimental mapping of 
the Hsp70-Hop-Hsp90 ternary complex on the structures of 
proteasome subcomplexes or of the fully assembled mature 
proteasome by cryo-EM could be highly instructive.

In the context of the functions of the Hsp70-Hop-Hsp90 
ternary chaperone complex in proteasomal assembly and 
function, there are several other open questions: (1) whether 

Fig. 3   Schematic representation 
of the impact of Hop, together 
with Hsp70 and Hsp90, on both 
arms of proteostasis (protein 
folding and degradation)
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and how the ATP binding ability and ATPase activities of 
Hsp70 and Hsp90 are required; (2) whether other co-chap-
erones of the Hsp70 and/or Hsp90 chaperone systems are 
involved; (3) whether there are posttranslational modifica-
tions in any of the proteins of the ternary chaperone complex 
that may influence this process; (4) whether the Hsp70-Hop-
Hsp90 complex collaborates with the canonical proteasome 
assembly chaperones to achieve the highest yield in the for-
mation of the 26S/30S proteasome.

Hop in protein folding Surprisingly, protein folding 
appears to be even more efficient in the absence of Sti1/Hop 
in both yeast and human cancer cell lines [28] (Fig. 2b). 
The prokaryote-like binary complex consisting of Hsp70 
and Hsp90 cannot only form in eukaryotic organisms in the 
absence of Hop, but this alternative chaperone complex is 
fully functional and ensures proteostasis [28]. As with the 
E. coli proteins, Hsp70, Hsp90, a JDP, a NEF, and ATP are 
the minimally required components for the in vitro refold-
ing of the model substrate luciferase by the human Hop-
independent alternative Hsp70–Hsp90 chaperone complex 
[28] (Fig. 2b). Increasing concentrations of Hop gradually 
decrease refolding of luciferase in vitro, and the direct inter-
action between Hsp70 and Hsp90 is essential for the refold-
ing activity since mutating the interaction surface of Hsp90 
reduces it [28]. The situation seems to be somewhat different 
with the components from budding yeast since the protein 
folding yield is positively influenced by Sti1 even though the 
Hsp70 and Hsp90 orthologs can also interact directly [108]. 
Several experimental differences may explain this apparent 
discrepancy: (1) As mentioned above, Sti1 and Hop affect 
the ATPase activity of their respective Hsp70 differently 
[95]; (2) different absolute or relative protein concentrations 
may have been used in these studies, which may be critical 
considering that different concentrations of Hsp70 can dif-
ferentially impact the final yield of folded protein in these 
in vitro assays [4, 83].

While the Hsp70–Hsp90 binary complex, in the absence 
of Hop, is sufficient for folding and maturation of most 
Hsp90 clients in vivo, there are a few notable exceptions, 
including the glucocorticoid receptor (GR), v-Src, and, of 
course, the proteasome [28, 148]. Reduced levels of Hop 
have also been reported to affect the accumulation or sta-
bility of a few other Hsp90 clients, including LSD1 [149], 
GRK2 and Tau [126], TDP-43 [127], and MMP2 [150] in 
various cellular and mouse models. It could be hypothe-
sized that Hop may influence client selectivity of Hsp90 
in eukaryotic organisms [28, 148]. Intriguingly, for some 
Hsp90 clients, in vivo and in vitro systems yield differential 
protein folding and functional activities. For instance, the 
transfer of p53 from Hsp70 to Hsp90 and the folding to its 
native state require Hop in vitro [151, 152]. In contrast, in 
human cells, p53 protein levels are unaffected and its tran-
scriptional activity is either the same or enhanced in the 

absence of Hop [28]. These discrepancies suggest that in 
the more complex intracellular milieu, the Hsp70–Hsp90 
binary complex might be supported by other co-chaperones 
of the Hsp70 and Hsp90 systems, and/or yet other proteins 
(Fig. 2b). A genome-wide screen with the CRISPR-Cas9 
system might reveal additional essential players responsible 
for the maximum chaperoning capacity of the Hsp70–Hsp90 
binary complex. All of this evidence supports the conclusion 
that Hop is a novel regulator of proteostasis, whose levels 
and activity determine the balance between protein folding 
and degradation (Fig. 3).

Hop in cancer and neurodegenerative 
disorders

In cancer cells, Hsp90 is upregulated, and many oncogenic 
proteins (for example c-Abl, c-Raf, b-Raf, c-Src, Cdks, cyc-
lins, mutant p53, Stat3, steroid receptors) rely on the chap-
eroning functions of Hsp90 for their folding, maturation, 
and activation [153–156]. This has led to the conclusion 
that Hsp90 is an oncogenic molecular chaperone [154, 155]. 
Similarly, Hsp70 is upregulated in cancer and favors onco-
genesis [157, 158]. It has been reported that cancer types 
with more integrated and connected Hsp90-centered pro-
teome hubs ("epichaperome"), of which Hop is an integral 
part, are more sensitive to Hsp90 inhibition than those with 
insular Hsp90 complexes [159, 160]. Consistent with the 
upregulation of both Hsp70 and Hsp90, Hop is also found 
to be overexpressed in several cancers at both the mRNA 
and protein levels [36–39, 161, 162]. These findings are 
reminiscent of how Hop was first discovered in human cells 
(see above) [19]. It was initially designated "transformation-
sensitive human protein" IEF SSP 3621, before it was rec-
ognized that it is the human ortholog of the yeast protein 
Sti1 [19]. Although Hop is upregulated during oncogenesis, 
whether its overexpression is the consequence of cancer or 
whether it can initiate cancer, or, in other words, whether the 
Hop gene STIP1 is an oncogene still needs to be clarified.

Reducing Hop levels by RNA interference can revert can-
cer-specific phenotypes, including proliferation, invasion, 
migration, and metastasis [61, 150, 162, 163]; it reduces 
the levels of several Hsp90 clients, which correlates with the 
anticancer effects [162, 163]. While the outright knockout of 
Hop in human cancer cell lines, as mentioned above, mini-
mally affects Hsp90 clients, it does further sensitize cancer 
cells to Hsp90 inhibitors [28]. Further studies are necessary 
to resolve these apparent differences between Hop knockout 
and knockdown models.

Unlike in cancer, all axes of the proteostatic network are 
reduced in some neurodegenerative disorders, including the 
levels of Hsp70 and Hsp90, as judged by their mRNA levels 
[164]. On the contrary, for Alzheimer's disease, the evidence 
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suggests that the proteins Hsp70, Hsp90, and Hop are all 
upregulated [165–167]. Aggregation of certain pathologi-
cal proteins correlates with the pathogenesis and prognosis 
in neurodegeneration. Many pathogenic proteins, which are 
thought to be responsible for neurodegenerative diseases, are 
Hsp90 clients or interactors, including tau (Alzheimer’s dis-
ease), α-synuclein (αSyn, Parkinson’s disease), and hunting-
tin (Htt, Huntington’s disease). A key question is whether 
it is the large insoluble aggregates or the soluble oligomers 
that are the most pathogenic. Although there is evidence in 
support of both hypotheses, most would agree today that it 
is the soluble oligomers, which are toxic to neurons [168, 
169], and that therapeutic strategies should focus on them.

The chaperoning functions of Hsp70 are considered to 
be neuroprotective [164, 170], whereas the situation is con-
fusing for Hsp90 and other components of the Hsp90 com-
plex. Hsp90 has been proposed to inhibit the formation of 
oligomeric αSyn, further aggregation of which disrupts the 
mitochondrial membrane resulting in impaired mitochon-
drial function and the subsequent neuronal death in Parkin-
son’s disease [171]. For tau-toxicity in Alzheimer’s disease, 
Hsp90 has the opposite effect as it stabilizes the toxic solu-
ble oligomers of tau in collaboration with its co-chaperones 
FKBP51/52 and Aha1; in this case, it prevents the forma-
tion of the cytoprotective larger aggregates [172–174]. The 
Hsp90 epichaperome was also proposed to be involved in 
the loss of dopaminergic neurons in the midbrain in Par-
kinson’s disease [175]. Therefore, directly manipulating the 
Hsp90 levels or activity might produce an opposite outcome 
depending on the underlying molecular mechanisms of a 
given neurodegenerative disease.

Relatively little is known about the functions of intracel-
lular Hop in neurodegenerative diseases. Intracellular Hop in 
yeast protects cells from the toxicity of a mutant huntingtin 
with an aggregation-prone stretch of 103 glutamine residues 
(Htt103Q), and of the (PSI+) prion [176, 177]. In Caeno-
rhabditis elegans, the knockdown of Hop aggravates the 
protein aggregation toxicity of amyloid β42 (Aβ42) without 
affecting lifespan [164]. In Drosophila melanogaster, loss of 
function of Hop enhances the toxicity of exogenous human 
tau [112]. Murine Hop, together with Hsp90, significantly 
reduces the aggregation of TDP-43, whose misfolding and 
formation of inclusions are hallmarks of amyotrophic lat-
eral sclerosis [127]. Interestingly, as alluded to above, an 
age-dependent upregulation of Hop is evident in a mouse 
model of Alzheimer’s disease and in Alzheimer’s disease-
affected human patients [167]. In all of these neurodegen-
erative disease models Hop seems to be protective, but sev-
eral examples with opposing effects have emerged, too. A 
recent genetic screen in Drosophila melanogaster discovered 
beneficial effects of reduced levels of Hop. A Hop knock-
down reduces the aggregation of Htt mutants with polyglu-
tamine expansions and prevents their toxic phenotype [178]. 

Reminiscent of this finding, we recently demonstrated that 
the knockout of Hop in human cells reduces the aggrega-
tion of Htt72Q [28] (Fig. 3). The increased anti-aggregation 
activity of these cells requires Hsp90, since the chemical 
inhibition of Hsp90 reversed the phenomenon [28]. Intrigu-
ingly, the overexpression of Hop in a particular mouse model 
of Alzheimer’s disease has been reported to increase the 
accumulation of Aβ [179]. This evidence raises the possibil-
ity that molecular chaperones and their co-chaperones might 
only be neuroprotective within a narrow concentration range. 
Overall, the molecular and pathological functions of Hop in 
neurodegenerative disorders remain confusing and need to 
be explored more thoroughly using several more comparable 
disease-specific models. Manipulating the levels or activities 
of Hop might eventually be a promising avenue to treat both 
cancer and neurodegeneration.

Conclusions and perspectives

Studies on Hop have revealed its importance in fundamen-
tal cellular processes in both normal and pathophysiologi-
cal conditions. Hop is differentially expressed in diseases 
like cancer and in aging, and it critically regulates activities 
of the Hsp70–Hsp90 chaperone system. Hop might, there-
fore, be an attractive target for future personalized medicine 
approaches.

Hsp90 inhibitors have been the subject of many clini-
cal trials [154, 180] as anticancer therapies because cancer 
cells are more sensitive to such inhibitors than normal cells 
(discussed in [181]). The current knowledge, translational 
difficulties, and future perspectives of targeting Hsp90 in 
cancer have recently been reviewed [182–184]. Despite the 
initial setbacks of targeting Hsp90 in cancer, their addiction 
to Hsp90 may justify renewed efforts. These will include 
the more specific targeting of cancer-relevant isoforms of 
the Hsp90 family. Inhibiting Hsp90 co-chaperones rather 
than the whole Hsp90 chaperone machinery might also 
be worth exploring [28, 116, 185, 186]. Since ∆sti1 yeast 
mutants [113–116] and human Hop knockout cancer cells 
[28] are hypersensitive to Hsp90 inhibitors, combining Hop 
and Hsp90 inhibitors may be promising as cancer therapy. 
The inhibition of Hop would be expected to potentiate the 
effects of Hsp90 inhibitors, which could then be used at 
lower and even more cancer-specific doses. Those types 
of cancer that rely both on Hsp70–Hsp90-mediated pro-
tein folding and proteasome-mediated protein degradation 
may be particularly vulnerable since the inhibition of Hop 
reduces the proteasomal activity, which itself is an already 
established anti-cancer target. Some compounds have been 
demonstrated to inhibit the interaction between Hsp90 and 
the TPR2A domain of Hop [51, 187, 188]. The challenge 
will be to develop inhibitors that are as specific as possible 
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for the interaction of Hop with either Hsp70 or Hsp90, with-
out affecting the interactions of the latter with other TPR-
containing co-chaperones.

Although Hsp90 function in neurodegenerative disor-
ders remains paradoxical, as described above, activation of 
the chaperoning functions of the Hsp70–Hsp90 chaperone 
system could be therapeutically beneficial at least in some 
cases [164, 189]. Augmenting the activity of a protein or 
an enzyme is always challenging, but our recent findings 
revealed that the genetic removal of Hop strikingly enhances 
protein folding by the Hsp70–Hsp90 binary complex 
(Figs. 2b, 3) and reduces the aggregation of the pathologi-
cal huntingtin protein [28] (Fig. 3). It remains to be seen 
whether non-toxic Hop inhibitors can be developed to boost 
Hsp70–Hsp90 chaperoning, notably in neuronal cells, and 
whether these inhibitors could be applied to certain neuro-
degenerative disorders.
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