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Abstract
Single-cell RNA-sequencing (scRNA-seq) provides high-resolution insights into complex tissues. Cardiac tissue, however, 
poses a major challenge due to the delicate isolation process and the large size of mature cardiomyocytes. Regardless of the 
experimental technique, captured cells are often impaired and some capture sites may contain multiple or no cells at all. All 
this refers to “low quality” potentially leading to data misinterpretation. Common standard quality control parameters involve 
the number of detected genes, transcripts per cell, and the fraction of transcripts from mitochondrial genes. While cutoffs 
for transcripts and genes per cell are usually user-defined for each experiment or individually calculated, a fixed threshold of 
5% mitochondrial transcripts is standard and often set as default in scRNA-seq software. However, this parameter is highly 
dependent on the tissue type. In the heart, mitochondrial transcripts comprise almost 30% of total mRNA due to high energy 
demands. Here, we demonstrate that a 5%-threshold not only causes an unacceptable exclusion of cardiomyocytes but also 
introduces a bias that particularly discriminates pacemaker cells. This effect is apparent for our in vitro generated induced-
sinoatrial-bodies (iSABs; highly enriched physiologically functional pacemaker cells), and also evident in a public data set of 
cells isolated from embryonal murine sinoatrial node tissue (Goodyer William et al. in Circ Res 125:379–397, 2019). Taken 
together, we recommend omitting this filtering parameter for scRNA-seq in cardiovascular applications whenever possible.

Keywords  Conduction system · Sinoatrial node · Cardiomyocytes · Mitochondrial transcripts · Single-cell RNA-
sequencing · Cluster analysis · iSABs

Introduction

The advent of single-cell RNA-sequencing (scRNA-Seq) 
has permitted a deeper understanding of the complexity 
and heterogeneity of tissues. Employing microfluidic high-
throughput scRNA-Seq platforms allowed for the discovery 
of previously unrecognized subpopulations with distinct 
gene expression profiles [2, 3]. Characterizing cardiac tissue, 
however, is problematic due to the delicate isolation process 
and the large size of mature cardiomyocytes that exceeds the 
diameter of the applied microfluidic systems. Facing these 
technical limitations, single-nucleus sequencing (snRNA-
Seq) was established as commonly accepted alternative to 
study postnatal hearts despite omitting cytoplasmic and 
mitochondrial mRNA species [4–6].

Yet, in the meantime, another promising platform was 
introduced in the field, namely, the ICELL8 system (Takara 
Bio, USA), which uses a large-bore nozzle dispenser to dis-
tribute single cells of up to 150 μM in diameter, thereby 
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suitable for entire adult cardiomyocytes [7]. By this, the 
well-based system (> 5,000 nanowells) enables size unbi-
ased high-throughput single-cell analyses on adult murine 
and human hearts [8, 9]. Moreover, recent transcriptomic 
studies on fetal hearts have also employed scRNA-Seq as 
opposed to snRNA-Seq techniques. Thus, it can be safely 
assumed that scRNA-Seq will become and remain a widely 
applied method in cardiovascular research.

However, appropriate analyses of the respective data 
require a profound understanding of the underlying biologi-
cal background and in this regard a proper adaption of the 
computational workflows. Regardless of the capture tech-
nique, captured cells are often stressed, damaged, or bro-
ken and some capture sites may contain multiple (doublets) 
or no cells at all. All these events refer to “low quality” 
cells, which may lead to misinterpretation of the data and 
thus need to be corrected. Common standard quality con-
trol parameters involve the number of genes, transcripts per 
cell, and the fraction of transcripts from mitochondrial genes 
(%mtRNA) [10]. In general, it is argued that an increased 
fraction of mtDNA-encoded genes hints at losses in cyto-
plasmic content, since in case of a broken cell membrane, 
cytoplasmic RNA will be lost, while RNA enclosed in the 
mitochondria will be retained. While cutoffs for transcripts 
and genes per cell are usually user-defined for each experi-
ment or can be calculated individually by algorithms con-
sidering the standard deviation of transcript counts, a fixed 
threshold of 5% mitochondrial transcripts is commonly used 
as a standard in many scRNA-Seq studies.

Although this standard threshold is well known in the 
community, the origins of this arbitrary cut off are not eas-
ily traceable. In a supplementary note of a study on unique 
molecular identifiers for single-cell sequencing, Islam et al. 
plotted the total number of detected genes versus the frac-
tion of cytoplasmic genes, which they defined as all non-
mitochondrial and non-ribosomal RNA. Before, cells were 
stained with Red Fixable Dead Cell Stain for later validation 
of their bioinformatics quality controls. Based on the distri-
bution of dead cells in this plot, they decided to set a thresh-
old of max. 15% mitochondrial and ribosomal transcripts 
for their analysis. Although it was not distinguished between 
mitochondrial and ribosomal fractions, this publication is 
often cited in context to the usage of the mitochondrial 
fraction as a quality control parameter. Another study often 
mentioned in this context is the study of Ilicic et al. pub-
lished three years later. They presented a generic approach 
for scRNA-Seq data processing and the detection of low 
quality cells, in which they identified functional categories 
that showed differences in expression levels between differ-
ent types of low quality cells (multiple, damaged, empty) 
and high quality cells. In damaged cells, most Gene Ontol-
ogy (GO) terms were downregulated, GO terms associated 
with mtDNA-encoded genes, however, were upregulated, 

supporting the view point of mitochondrial fraction as 
a marker for damaged cells. Although no exact threshold 
was recommended by the authors, this study is often refer-
enced to justify the 5% mitochondrial transcripts threshold. 
Later, it was proposed in the “Guided Clustering Tutorial” of 
Seurat [11], one of the most common software packages for 
single-cell sequencing data analysis, and referred to by other 
bioinformatics software providers, such as Partek, thereby 
consolidating the application of this threshold.

However, this parameter is highly dependent on the tis-
sue type. In the heart, mitochondrial transcripts account for 
almost 30% of total mRNA due to the high energy demand 
of cardiomyocytes [12]. Here, we demonstrate that applying 
the standard 5%-threshold results in an unacceptable exclu-
sion of cardiomyocytes introducing a bias that particularly 
discriminates pacemaker cells. This effect is apparent for 
our in vitro generated induced-sinoatrial-bodies (iSABs), 
which are enriched for physiologically functional pace-
maker cells, as well as in a public data set of ex vivo heart 
cells isolated from embryonal murine sinoatrial node tissue 
(Goodyer et al. [1]).

Materials and methods

Cell cultivation

The principle of differentiating pluripotent stem cells into 
“induced-sinoatrial-bodies” (iSABs) had been described by 
our group before [13]. After an initial cultivation in Dul-
becco’s Modified Eagle’s medium–high glucose with 4 mM 
stabile l-glutamin (GIBCO), 10% FCS superior (Biochrom 
AG), 1% penicillin–streptomycin (GIBCO), 100 µM MEM 
non-essential amino acids (GIBCO), 1000 U/ml leukemia 
inhibitor factor (Phoenix Europe) diluted in aqua dest. 
with 0.1% BSA, and 100 µM β-mercapthoethanol (Sigma) 
for a minimum of 7 days, double transfected stem cells 
(TBX3 + MHCneoPGKhygro) were selected via addition of 
10 µg/ml blasticidin (InvivoGen) and 250 µg/ml hygromy-
cin (InvivoGen). Differentiation of selected cells started by 
generating embryoid bodies (EBs) in differentiation medium 
(IMDM medium (PAN-Biotech GmbH/Biochrom AG), 10% 
FCS superior (Biochrom AG), 1% penicillin–streptomy-
cin, 100 µM MEM non-essential amino acids and 450 µM 
1-thioglycerol and ascorbic acid) using a Spherical plate 5D 
(Kugelmeiers LTD). At day 3 of differentiation EBs were 
transferred onto 0.1% gelatine coated petri-dishes and adher-
ently cultured at 37 °C and 5% CO2. Antibiotic selection of 
pacemaker cells with 400 µg/ml G418 (Biochrom) started 
on day 12 of differentiation. On day 20/21 of differentiation 
a transition to a floating cell culture was conducted by treat-
ing the cell layer with 6,000 U/ml collagenase IV (GIBCO) 
for 8 min at 37 °C, before centrifugation at 300×g for 5 min 
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and resuspension in differentiation medium without ascorbic 
acid. Apoptotic cells were filtered out using a 40 µM cell 
strainer (Greiner Bio-One) and intact iSABs were floatingly 
cultured in ascorbic acid free differentiation medium until 
day 29.

Single‑cell RNA‑sequencing

For single-cell analysis, iSABs were separated using the 
Primary Cardiomyocyte Isolation Kit (Thermo Fisher Sci-
entific). Subsequently, cells were resuspended in PBS with 
0.04% BSA and diluted to a concentration of 1,000 cells/
μl. Cell viability amounted > 91% as assessed using the 
Cellometer Auto 2000 Cell Viability Counter. Single cells 
were then captured in droplet emulsions using the GemCode 
Single-Cell Instrument (10× Genomics) with a target output 
of 2,000 cells. Libraries for scRNA-Seq were constructed 
according to the 10× Genomics protocol using the Gem-
Code Single-Cell 3′ Gel Bead and Library V3 Kit. Amplified 
cDNA and final libraries were evaluated on the 2100 Bio-
analyzer instrument (Agilent) using a High Sensitivity NGS 
Analysis Kit (Advanced Analytical). Amplification yielded 
in 3.3 pg/µl cDNA and final libraries contained cDNA frag-
ments with an average size around 450 bp. The subsequent 
sequencing was conducted on the HighSeq4000 Sequenc-
ing System using the HiSeq SBS and HiSeq PE Cluster Kit 
V4 (all Illumina, San Die-go, CA. USA). The isolation pro-
tocol for the embryonal sinoatrial node region from wild-
type CD1 mouse hearts and the protocol for the subsequent 
scRNA-Seq can be viewed in the study of Goodyer et al. [1].

Computational data analysis

Preprocessing of raw sequencing data from iSABs was con-
ducted using tools of the Cell Ranger Software (v.6.1.0) as 
was the procedure in Goodyer et al. The Illumina sequenc-
er’s base call files were demultiplexed into FASTQ files 
applying the implemented mkfastq pipeline. The scRNA-
Seq fastq data files were then aligned with STAR (v.2.7) to 
the mm10 genome index (Ensembl release 98), annotated 
via GTF file, and grouped by barcodes and UMIs resulting 
in a feature-barcode matrix. Quality control involved the 
barcode ranking method and usage of the tool DropletUtils 
to exclude empty droplets and undetected genes. The subse-
quent data processing entailed standard normalization, iden-
tification of variable features, scaling, and dimensionality 
reduction by principal-component analysis (PCA) using the 
functions implemented in Seurat (v.3.2.2) similar for both 
data sets. Clusters were assigned to cardiac cell types based 
on classical marker genes. In contrast to the SAN data set, 
the complete omission of the threshold for mtDNA-encoded 
genes for the iSABs dataset led to clusters that could not 
be interpreted due to an excessively high proportion of 

mitochondrial transcripts (> 70%). Accordingly, the data-
set was then subsetted by applying a low stringency thresh-
old matching the mitochondrial fraction of the heart (30%) 
before assigning the generated clusters. Plots were generated 
using the DimPlot(), VlnPlot(), or FeatureScatter() function 
of Seurat, the latter implementing the calculation of Pearson 
correlation for the given features (here gene expression and 
%mtRNA). The entire code used for the computational data 
analysis is provided in our online available R script.

Results

The iSABs dataset contained six clusters, all of which 
showed classical cardiomyocyte marker and four of which 
demonstrated a typical pacemaker signature (high expression 
of Hcn4, Hcn1, Tbx5, Shox2 etc.). Proportions of the clus-
ters can be explored in the online supplementary material 
(Online Resource 1) and on our publicly available iRhyth-
mics FairdomHub instance next to the experimental protocol 
and computational script.

Clusters of the SAN dataset were assigned to cardiac cell 
types based on classical marker genes and adopting Goody-
ers’ annotation. Although we implemented the more widely 
preferred uniform manifold approximation and projection 
(UMAP) method for dimensionality reduction and visualiza-
tion instead of a t-distributed stochastic neighbor embedding 
(t-SNE) based visualization as used by Goodyer et al., we 
obtained a comparable plot for the dataset (Online Resource 
2). Minor differences in the clustering results compared to 
the original study may be attributed to slightly different pre-
processing approaches. Whereas Goodyer et al. also omitted 
the threshold for mtDNA-encoded genes in their study, they 
additionally scaled their data on the percentage of ribosome 
genes, and Rn45s expression. Subsequent differences involve 
the total number of cells (6,322 compared to 5,919 in the 
original study) and the proportion of cells in the individual 
clusters (e.g., 181 cells in the SAN cluster compared to 200 
cells in the original study) but are not critical for down-
stream analyses.

Plotting the fraction of mitochondrial gene transcripts, 
we found that all pacemaker subpopulations in the iSABs 
dataset were characterized by %mtRNA values above the 
5%-threshold (Fig.  1A). Applying this quality control 
parameter for filtering would result in a loss of these cells 
for downstream analysis, thereby generating a biased image 
of the biological sample. Likewise, the SAN cluster of the 
Goodyer dataset was characterized by similar %mtRNA val-
ues to our in vitro pacemaker cells likely exposing the same 
bias (Fig. 1B).

While fibroblasts, epicardial cells, and neuronal cells 
are not much affected by the mitochondrial fraction qual-
ity control parameter, a fair amount of endothelial and 
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Fig. 1   Violin plot for mitochondrial gene transcripts (%mtRNA), 
cardiac marker (Tnnt2), and pacemaker marker (Hcn4) for identified 
cell clusters. A In iSABs, most pacemaker cells exceed 5% mtRNA; 

B almost all cells of the SAN cluster of murine sinoatrial node tis-
sue exceed 5% mtRNA. Results obtained from a data reanalysis of 
Goodyer et al. [1]
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endocardial cells would not pass the standard threshold and 
most cardiomyocyte clusters contain a majority of cells with 
mtRNA > 5%. This discrimination is most severe for pace-
maker cells of the SAN cluster, where only 3 out of 181 cells 
would pass the 5%-threshold.

To precisely examine this bias, we characterized the cor-
relation of %mtRNA along with our marker genes Tnnt2 

and Hcn4. In this regard, we subsetted the SAN dataset to 
exclude all cells without gene expression information for 
Tnnt2 or Hcn4, respectively, before calculating the Pearson 
correlation. As expected, we found a positive correlation 
between %mtRNA and the cardiomyocyte marker Tnnt2 
(R = 0.6, Fig. 2A), which is plausible, because cardiomy-
ocytes have a high energy demand and, therefore, bear a 

Fig. 2   Scatter plots illustrating the correlation of %mtRNA and other 
parameters. A In Tnnt2 positive cells, there is a positive correlation 
between %mtRNA and the cardiac marker Tnnt2. B In Hcn4 positive 
cells, there is a positive correlation between %mtRNA and the pace-
maker cell marker Hcn4. C In Tnnt2 positive cells, there is a weak 

negative correlation between the fraction of mitochondrial gene tran-
scripts and the total number of gene transcripts per cell. D In Hcn4 
positive cells, there is a negative correlation between the fraction of 
mitochondrial gene transcripts and the total number of gene tran-
scripts per cell
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large number of mitochondria. Notably, a positive correla-
tion could also be shown for Hcn4 and %mtRNA, indicating 
that Hcn4 expression is associated with higher mitochondrial 
fractions (R = 0.32, Fig. 2B).

To exclude that this correlation is simply the result of gen-
eral higher transcript numbers in cells with high %mtRNA, 
we checked the relation of these parameters. There was a 
very low correlation for the Tnnt2 positive cells (R = − 0.12, 
Fig. 2C) and the data for Hcn4 positive cells implied that 
rather the opposite applies and a high fraction of mitochon-
drial transcripts was associated with lower total transcript 
counts (R = − 0.33, Fig. 2D). The fact that despite this trend 
to lower total transcript counts, cells with high mitochon-
drial fraction show higher counts for Hcn4 transcripts sug-
gests that the %mtRNA can serve as a further surrogate 
marker for pacemaker cells.

Discussion

A crucial step in any scRNA-Seq analysis is the cell quality 
control. This step is supposed to exclude low quality cells 
and doublets that might impair the downstream analyses 
and is typically based on three covariates: the total num-
ber of transcripts per cell (count depth), the total number 
of detected genes per cell, and the fraction of transcripts 
from mitochondrial genes. In addition, using a PCA is a 
basic and broadly applicable approach to identify outlier 
cells but requires general bioinformatics knowledge to be 
applied properly. Moreover, many groups rely on the imple-
mentation of ERCC RNA spike-ins and compare the ratio 
of reads mapped to spike-ins against the number of total 
mapped reads to detect endogenous transcript loss. How-
ever, 10× Genomics for instance does not recommend this 
approach for their assays [14], leaving the experimentalist 
with the initially mentioned standard parameters.

Applying respective filters demands special caution, since 
there can be biological interpretations for aberrant values. 
For example, low transcript or gene numbers may be char-
acteristic of quiescent cell populations and high counts may 
arise from large cells. Accordingly, thresholds are usually 
user-defined for each experiment individually based on spe-
cific guidelines [10, 15]. For low-count filtering, the tran-
scripts per cell are visualized and a threshold is applied, 
where count depths start to decrease rapidly. For high‐count 
filtering, it is recommended that the proportion of filtered 
cells should not exceed the expected doublet rate. To filter 
out genes that are expressed in only a few cells and, there-
fore, rendered irrelevant, the threshold is adjusted to the 
minimum cell cluster size of interest plus some leeway for 
dropout effects. Notably, there are no such recommendations 
for the adjustment of the threshold for mtDNA-encoded 
genes, despite an awareness of biological interpretations for 

a high fraction of mitochondrial transcripts, such as involve-
ment in respiratory processes.

A fixed threshold of 5% mitochondrial transcripts has 
established as standard and is set as default in several soft-
ware packages for scRNA-Seq analysis [11]. Moreover, 
aware that the whole heart in general and cardiomyocytes 
in particular show an average fraction of mitochondrial tran-
scripts significantly higher than 5%, Osorio et al. still con-
cluded in their systematic meta-analysis that 5% mtRNA is 
an appropriate threshold for murine tissues and that omitting 
this filter may lead to erroneous biological interpretations of 
scRNA-Seq data [16].

Contrarily, we found that for murine cardiac tissue stick-
ing to the 5% threshold causes biased results as distinct cell 
types are affected by this filter to varying degrees. For exam-
ple, a large proportion of cardiomyocytes of the SAN region 
was shown to have fractions of mitochondrial transcripts 
above the threshold, while only very few fibroblasts exceed 
this limit. Moreover, we demonstrated here that a high frac-
tion of transcripts from mitochondrial genes also represents 
a marker for pacemaker cells and that an employment of the 
5% mtRNA filter results in the elimination of this population 
from the dataset.

Among other cardiac cell populations, a small number of 
white blood cells demonstrated a relatively high fraction of 
mitochondrial transcripts. Notably, mitochondrial biogenesis 
was shown to be functionally connected with the immune 
response. In particular, rapid changes including an increase 
in number and mtDNA content of mitochondria have been 
observed upon T cell activation [17]. Such effects might be 
the underlying reason for some white blood cells to exceed 
the 5% limit and support the idea that increased metabolic 
activity results in higher fractions of mitochondrial tran-
scripts. Inflammatory events for example in context with 
myocardial infarcts are of high interest in the cardiovascular 
field. In summary, the results of this study point at limita-
tions of the standard threshold for mtDNA-encoded genes 
for investigations on the heart.

More specifically, we herewith have demonstrated for 
the first time that scRNA-Seq data from pacemaker cells, 
that are naturally rare, are particularly affected by a lack of 
proper adaption of quality control measures. This implicates 
that at least for cardiovascular research it will be essential to 
empirically determine the best-suited value for the mtRNA-
threshold for each analysis individually to avoid the intro-
duction of biases. Going even further, we do recommend to 
completely omit the fraction of mitochondrial transcripts as 
a default quality control parameter whenever possible. How-
ever, the feasibility of omitting this filter completely depends 
highly on the overall quality of the biological samples and 
needs to be evaluated for each individual experiment.

The raw data set of Goodyer et al., which we have re-ana-
lyzed, proves that it is possible to omit the mtRNA-threshold 
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completely without negative impacts on the analysis out-
come. Yet, a high fraction of mitochondrial reads can com-
plicate the cluster annotation and hamper some downstream 
analyses. To avoid these negative effects it is possible to 
preclude mitochondrial genes from the count matrix for later 
steps. In a recent study on adult human heart, Wang et al. 
retained all cells with mitochondrial transcripts < 72% but 
subsequently removed the respective mitochondrial genes 
from the count matrix [9]. Unfortunately, the authors provide 
only this manipulated count matrix instead of the raw data. 
Thus, it was not possible to verify our findings on the mito-
chondrial fractions in pacemaker cells with this human data 
set. In this context, we advocate that it becomes common 
practice to provide actual raw data formats thereby enabling 
to customize the quality control for each analysis.

In general, a distinction between signal and noise of cells 
within dedicated clusters can be facilitated through current 
normalization techniques (e.g., SCT) [18, 19]. Alternatively, 
specialized tools, such as EMBEDR, recover the ability to 
separate signal and noise in dimensionality reduction out-
puts, such as tSNE and UMAP representations, which is 
essential for the subsequent utilization in quantitative analy-
ses [20]. The obtained embedding quality is made available 
as a cellwise, interpretable p value that has meaning across 
datasets. Besides these classical bioinformatics approaches, 
an alternative means to assess the quality of cardiomyocytes 
and other cells is to visually inspect their morphological fea-
tures. For example, using the Icell8 platform allows for basic 
microscopic examination of the cells and detection of stain-
ings in three channels (e.g., for dead-life-assays). As most 
low quality cells are visibly damaged, cell imaging helps to 
identify a large proportion of low quality cells. However, it is 
not feasible for all single-cell sequencing methods and rela-
tively inefficient and time-consuming for larger cell counts.

To avoid the use of arbitrary %mtRNA thresholds, Ma 
et al. suggested an unsupervised method for optimization 
of quality control parameters, called EnsembleKQC [21]. 
The threshold is based on a function of the distribution 
of the data and represents a more objective method for 
the quality control of biological samples. However, this 
approach comes with two limitations. On the one hand, 
a corrupted sample with a large proportion of damaged 
cells will produce a data set in which most cells demon-
strate increased mitochondrial fractions. Based on these 
increased values, the optimized threshold might be inap-
propriately high. On the other hand, tissue samples that 
are more heterogeneous might demonstrate an unequal 
distribution of the data. Cell types with unusually high or 
low mitochondrial fractions might be excluded for their 
“abnormal” characteristics.

Very recently, another data-driven approach was proposed 
in a preprint of Hippen et al. [22]. Applying mixture mod-
els in a probabilistic framework their QC metric (miQC) 

combines both the fraction of mitochondrial transcripts and 
the number of detected genes to computationally predict 
low quality cells. Using a tumor sample, they demonstrate 
that miQC preserves more cells within identified clusters 
and minimizes sub-population bias, compared to a uniform 
threshold approach that can result in a disproportionate 
exclusion of certain cell populations as demonstrated in 
this manuscript. By now, miQC might currently be the most 
appropriate tool to control the quality of scRNA-seq of heart 
tissue and other heterogeneous tissues in a more objective 
manner. In general, it is recommended to consider several 
parameters in conjunction to gain a more detailed overview 
on the overall quality of the data.

Conclusion

As one method of quality control the mitochondrial fraction 
is a typical threshold parameter to exclude low quality cells. 
However, for cardiac tissue, the standard 5% filter eliminates 
a large proportion of cardiomyocytes and almost all pace-
maker cell data. Thus, we recommend omitting this param-
eter for scRNA-seq in cardiovascular applications whenever 
possible. As an increasing number of tools for processing of 
scRNA-seq data are developed, we believe it will soon be 
feasible to handle the %mtRNA as a cellular feature instead 
of employing it mainly for quality control purposes.
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