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Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The 
development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame–rate 
ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, 
and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction 
of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change 
droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound 
induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. 
In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review 
the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use 
of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications 
and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising 
theranostic tool.

Keywords Diagnostic ultrasound imaging · Ultrasound contrast agent · Blood–brain barrier opening · Local drug release · 
Tumor therapy · Neuromodulation

Introduction

Ultrasound, defined as a frequency of sound wave greater 
than 20 kHz, has various applications including water depu-
ration, navigation, and medicine [1]. In the clinic, ultrasound 
is a frontline tool for monitoring patient health or detec-
tion of disease. The many benefits of ultrasound, including 

its portability and the ability to provide non-invasive, real-
time imaging with deep penetration and using non-ionizing 
radiation, have valuable potential for functional and molecu-
lar imaging [2]. Microbubbles (MBs) show good contrast 
enhancement on ultrasound imaging and are recognized as 
ultrasound contrast agents [3]. These micro-sized bubbles 
can flow through the entire blood circulation via intravenous 
(IV) injection to provide information on blood perfusion in 
organs. Recent technological advances and improvements in 
computer hardware have increased the calculation capacity 
for complex imaging processes. The breakthrough in frame 
rate in ultrasound imaging promoted the emergence of ultra-
fast ultrasound imaging, in turn leading to the development 
of a variety of novel imaging processes for functional ultra-
sound imaging [4]. The development and utilization of ultra-
sound contrast media has further increased the diagnostic 
capability of medical ultrasound.

Recently, it has become apparent that many of these 
contrast media also exhibit biophysical effects in combina-
tion with ultrasound that can be exploited for therapeutic 
purposes. The structure of MBs not only enhances image 
contrast for diagnosis but also provides a suitable vehicle for 
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loading cargo such as drugs for therapy. When cargo-loaded 
MBs are stimulated by ultrasound, the cavitation behavior 
of MBs locally releases the cargo and enhances cell/vessel 
permeability, thus promoting cargo delivery [5, 6]. MB cavi-
tation can also open the blood–brain barrier (BBB) to over-
come the limitation of drug delivery in the brain [7]. The 
safety of BBB opening induced by MB cavitation has been 
demonstrated and this technique is now being transferred 
into the clinic [8]. Moreover, phase-change droplets are con-
verted into bubbles after ultrasound-triggered vaporization, 
providing another source of ultrasound contrast agent [9]. 
Droplets composed of a lipid shell and liquid core can easily 
be made nano-sized and provide a longer in vivo lifetime for 
therapeutic applications [10]. The mechanism of local drug 
release and the bioeffects induced by droplet vaporization 
are similar to those of MB cavitation [11, 12]. Notably, the 
therapeutic effects of ultrasound-stimulated MBs or droplets 
can be combined with real-time ultrasound contrast imaging 
to provide various theranostic applications.

This review provides an overview of recent developments 
of ultrasonic technologies in imaging and drug delivery. The 
first section describes the evolution of ultrasound imaging 
and novel functional imaging processes such as ultrafast 
ultrasound imaging, shear wave elastography, high fre-
quency ultrasound imaging, ultrasound contrast imaging, 
and super-resolution blood flow imaging. The second sec-
tion introduces therapeutic applications of MBs, including 
cargo loading, cellular bioeffects, and local drug delivery. 
The pharmacokinetics of cargo-loaded MBs are compared 
with those of mixing cargo with MBs with regard to the 
efficiency of local drug delivery. The third section focuses 

on applications of MBs in the central nervous system (CNS) 
and describes safety, therapy for tumors and neurodegen-
erative diseases, neuromodulation, and immune responses 
in the brain. The development of clinical trials using MBs 
for BBB opening is also presented. The final section covers 
development of phase-change droplets. The acoustic fea-
tures of droplets are introduced to illustrate the diagnostic 
and therapeutic applications and the regulation of droplet 
vaporization and condensation is discussed to show the 
reproducibility of drug release and contrast enhancement 
in ultrasound imaging. Finally, some limitations and future 
developments of ultrasonic technologies in imaging and 
drug delivery are considered.

Ultrasound imaging

Diagnostic ultrasound imaging

Medical ultrasound imaging has been used widely in many 
clinical applications, including obstetrics and gynecology, 
cardiology, hepatobiliary disease, and gastroenterology, 
due to its portability and the ability to perform non-inva-
sive, real-time imaging without exposure to ionizing radia-
tion [13]. Figure 1a shows a basic schematic diagram of 
the modern medical ultrasound imaging system, including 
the ultrasound transducer, pulser-receiver front end, beam-
former, analog-to-digital converter (ADC), and personal 
computer–based software for imaging processing [14]. The 
ultrasound transducer is made of piezoelectric material, 
which usually has a center frequency around 3.5–15 MHz 

Fig. 1  a Basic schematic diagram of the modern medical ultrasound imaging system, b a typical ultrasound Doppler mode image, c the principle 
of ultrasound plane wave imaging, d typical ultrasound shear wave elastography, and e super-resolution blood flow imaging of mouse brain [65]
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in most clinical applications. Unlike X-ray imaging or radi-
onuclide emission tomography, which use a transmission 
method for imaging, medical ultrasound imaging is based on 
a “pulse-echo” approach. The ultrasound wave generated by 
the transducer propagates in soft tissues and the echo signals 
are obtained as a result of mismatch of acoustic impedance 
at the tissue interface. After the echoes are received by the 
same transducer elements, the signals are first amplified by 
the front-end hardware and subsequently fed to the soft-
ware for imaging processing via the ADC. The beamformer 
plays an important role in focusing the ultrasound beam to 
provide better image quality. Since the array transducer is 
used in most modern ultrasound machines, the electronic 
line-by-line scan is performed by the beamformer for two-
dimensional (2D) imaging. Finally, several image modes 
are displayed for diagnosis, such as B-mode (brightness), 
M-mode (motion), and Doppler mode for blood flow meas-
urements [15], as shown in Fig. 1b.

The received echo, the so-called A-line signal, rep-
resents the backscattering signal as a function of time of 
flight along the ultrasound beam. The amplitudes of A-line 
signals are then transferred to the brightness or gray scale 
across all scanning lines to form the 2D B-mode image, 
which is the fundamental principle of the ultrasound gray 
level image. Currently, a modern ultrasound machine can 
provide B-mode images at more than 30 frames per second 
(fps) to allow imaging of organ motion. In M-mode imaging, 
which is frequently used to monitor mitral valve prolapse 
in echocardiography, only one A-line signal along the time 
axis is selected for gray scale imaging [16–18]. In addition to 
anatomical information on organs, ultrasound also provides 
blood flow measurements based on the Doppler effect. Three 
Doppler modes are commonly used in ultrasound: Doppler 
sonography (continuous wave and pulsed wave), color Dop-
pler imaging, and power Doppler imaging. Doppler sonog-
raphy provides the variation of flow velocity in a specific 
vessel along the time axis. Color Doppler imaging also dis-
plays blood flow information (velocity and direction) on the 
B-mode image, the so-called duplex scanner, in real time. 
The color encoded on the B-mode not only represents the 
value of flow velocity but also the flow direction; the red and 
blue colors indicate flow toward and away from the trans-
ducer, respectively. Power Doppler is also useful for clini-
cal diagnosis, particularly for perfusion imaging. Since the 
“power” only considers the energy of backscattering signals 
from blood cells, power Doppler exhibits a high sensitivity 
in detecting the smaller vessels [2, 19].

Ultrafast ultrasound imaging

As mentioned above, the frame rate of current ultra-
sound imaging machines is approximately 30–100 fps, 
which is sufficient for most clinical applications including 

echocardiography. However, high frame rate ultrasound 
imaging, so-called ultrafast ultrasound imaging, has recently 
been achieved with improvements of ultrasound hardware. 
One major advantage of ultrafast ultrasound imaging is that 
it converts the ultrasound image into a “high speed cam-
era”, in which any movement of an object in the view of the 
ultrasound exhibits “slow motion”. Another breakthrough in 
ultrasound hardware is the graphical processing unit (GUP) 
that provides parallel computing ability, allowing the hard-
ware to process a huge amount of ultrasound data simultane-
ously [20]. Since the conventional ultrasound machine uses 
the beamformer to generate a focusing beam for line-by-line 
scanning of the object, time is required for transmission and 
receiving the backscatter signals during scanning. For exam-
ple, assuming that the sound velocity is about 1540 m/s, the 
imaging depth is 5 cm, and 256 scanning lines are used for 
imaging, a frame rate of 60 fps can be achieved with a con-
ventional ultrasound machine [4].

Several approaches have been proposed in order to 
achieve high frame rate ultrasound imaging, such as the 
time-reversal approach [21] and nondiffracting beams 
approach [22]. Currently, use of plane wave imaging is the 
standard for ultrafast ultrasound imaging [20, 23]. Unlike the 
conventional ultrasound machine, which uses a line-by-line 
scanning approach, the plane wave is generated by firing 
all the elements of an array transducer simultaneously in 
one shot as shown in Fig. 1c. As a result, the frame rate of 
plane wave imaging can be > 10 k fps. However, although 
use of the single plane wave for ultrasound imaging defi-
nitely increases the frame rate, the image quality is reduced 
due to the inability to focus. To overcome this problem, 
coherent plane wave compounding imaging has been pro-
posed to improve the image quality of plane wave imaging 
[23, 24]. Several plane waves with different tilted angles are 
transmitted to the object and the received images with dif-
ferent angles are summed coherently to form a high-quality 
image. As more tilted plane waves are applied the image 
quality is improved; however, increasing the number of tilted 
plane waves also reduces the frame rate of imaging, result-
ing in a trade-off between image quality and frame rate in 
coherent plane wave compounding imaging [20]. Nonethe-
less, a frame rate of several thousand fps can currently be 
achieved with acceptable image quality. With the emergence 
of ultrafast ultrasound imaging, several new applications of 
ultrasound imaging have been proposed such as shear wave 
elastography, super resolution blood flow imaging, and ultra-
sound contrast imaging, which will be discussed in the fol-
lowing sections.

Ultrasound elastography

As the mechanical properties of soft tissue are often altered 
in the disease state, measurement of tissue viscoelasticity, or 
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elastography, is also used in diagnostic ultrasound imaging. 
Measurement of tissue stiffness is an important index for 
clinical diagnosis; for example, a tumor is typically stiffer 
than the surrounding normal tissues. Ultrasound imaging 
currently plays an important role in assessing tissue stiffness 
in clinical diagnosis. Compressional ultrasound elastography 
was first proposed by Dr. Ophir in 1991 for breast cancer 
diagnosis [25]. In this approach, the transducer is used to 
compress the human body directly; since the stiffer tissue 
has a smaller displacement compared to its surrounding 
normal tissues the displacement is measured by ultrasound 
image via cross-correlation algorithm and the strains of dif-
ferent tissues are displayed to present the stiffness distri-
bution. However, compressional ultrasound elastography 
only provides the relative stiffness and its quality is highly 
dependent on the skill of the operator. In addition, ultra-
sound wave transfers momentum to the medium producing 
an acoustic radiation force, which induces medium move-
ment in the wave propagation direction [26]. Acoustic radia-
tion force impulse (ARFI) imaging was subsequently pro-
posed for “remote palpation” of tissue for elastography [27, 
28]. In ARFI imaging, a high-intensity long pulse ultrasound 
wave generated by an array transducer is applied to push the 
tissue and the subsequent tissue displacement is detected by 
ultrasound imaging pulses via the same transducer. Since 
these displacements are directly correlated with localized 
variations of tissue stiffness properties, the relative stiffness 
is displayed for elastography. ARFI imaging has been used 
in basic research and for several clinical applications, such 
as determining malignant lesions of breast [29], manipulat-
ing the vitreous humor of the eye [30], and for vibro-acous-
tography [31]. In addition, ARFI imaging has been applied 
for blood clot assessment [32], monitoring chemical and 
thermal ablations [33], and corneal sclerosis [34]. Again, 
as ARFI imaging only provides the relative stiffness of soft 
tissue a quantitative imaging method is needed to obtain the 
elastic modulus of tissue.

Recently, shear wave imaging has become the standard 
of ultrasound elastography [35–37]. Since the shear wave 
propagation velocity (c) in tissue is directly related to the 
elastic modulus (E) of medium based on E = 3 �c2 ( �=tissue 
density), the quantitative stiffness distribution is obtained 
for 2D elastography [38]. Because the shear wave velocity 
is quite fast, ultrafast ultrasound imaging is needed to track 
the shear wave. In shear wave imaging an ARFI is generated 
by an array transducer to vibrate the tissue and create the 
shear wave propagation, and then the ultrafast plane wave 
imaging is fired to track the wave velocity. A region with a 
faster shear wave velocity indicates stiffer tissue, as shown 
in Fig. 1d. Shear wave imaging is independent of the skills 
of the operator and provides a quantitative elastic modulus 
of tissue. Elastography with most modern clinical ultrasound 
machines is based on shear wave imaging, including shear 

wave elastography of breast [39, 40], liver [41, 42], thyroid 
[43], skeletal muscle [44], eye [45–47], blood clot [48], and 
intravascular ultrasound [49].

High‑frequency ultrasound imaging

The operational frequency of the conventional ultrasound 
imaging machine is around 2–18 MHz, which provides suf-
ficient image resolution with an appropriate imaging depth 
for clinical applications. However, the spatial resolution of 
ultrasound imaging can be improved by increasing the oper-
ational frequency, for example, 50 MHz ultrasound imag-
ing provides lateral and axial resolution of 100 and 20 μm, 
respectively [2]. Due to the nature of high attenuation for 
high frequency ultrasound imaging (HFUS, > 30 MHz), the 
penetration depth would be limited to within 10 mm. HFUS 
has been used widely in many preclinical and clinical appli-
cations. The single element transducer imaging system was 
first proposed using a mechanical scanning approach, so-
called ultrasonic biomicroscopy (UBM) [50, 51]. UBM pro-
vides the B-mode, M-mode, and Doppler mode in real-time 
but the frame rate is not as high due to the mechanical scan-
ning [52–54]. The basic principle of UBM is similar to that 
of the diagnostic ultrasound imaging system. Since a single-
element transducer is used the operational frequency could 
be in the GHz range but is around 30–50 MHz for most 
biomedical applications [55, 56]. Currently, the HFUS array 
transducer is commercially available at a center frequency 
up to 50 MHz (Vevo 3100), providing a greatly increased 
imaging frame rate with convenient operation for the user. 
Nevertheless, HFUS imaging has been used widely in small 
animal imaging for gene research [57], cancer studies [58], 
and various preclinical studies [59, 60], and the HFUS imag-
ing machine has been approved by the U.S. Food and Drug 
Administration for diagnosis in humans. More recently, 
ultra-fast HFUS imaging combining a high frequency array 
transducer with programmable ultrasound imaging has been 
proposed [24]. Therefore, high-resolution ultrasound elas-
tography and super-resolution blood flow imaging are cur-
rently available for biomedical applications [61–66].

Contrast imaging: perfusion and super‑resolution 
imaging

Since the ultrasound backscatter signals from the blood are 
weaker than those from other tissues, the lumen on the B-mode 
image exhibits a lower echogenic region (dark region). Usu-
ally, the small vessels cannot obviously be identified on the 
gray scale ultrasound image; however, the echoes from blood 
can be enhanced by injection of an ultrasound contrast agent 
such as MBs into the vessel. This contrast-enhanced ultra-
sound imaging (CEUS) is useful for monitoring the blood 
flow conditions and evaluating perfusion, particularly for heart 
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and liver applications. Currently, several ultrasound contrast 
agents are available for clinical use, such as Levovist (Scher-
ing AG), Albunex (Mallinckrodt Pharmaceuticals), Sonazoid 
(Amersham Health Inc.), SonoVue (Bracco Imaging SpA.), 
Definity (Bristol-Myers Squibb), and Optison (Amersham 
Health Inc.) [3, 67]. MBs respond to ultrasound by oscillating 
radially, exhibiting linear or nonlinear behavior depending on 
the ultrasound frequency and acoustic pressure, as illustrated 
by the mechanical index (MI). Harmonic imaging is the main-
stay of CEUS in modern ultrasound machines [2]. Perfusion 
is measured by calculating the “time–intensity” curve from 
the flowing MBs at a specific region on the image [68]. The 
“wash-in” and “wash-out” times and other parameters from 
the time-intensity curve are then obtained to evaluate the 
perfusion of blood supply. Currently, CEUS has been used 
widely for applications in the liver (nodular hyperplasia, gall-
bladder carcinoma, malignant portal vein thrombosis) and the 
heart (intracardiac thrombus, myocardial perfusion, vessel 
wall irregularities, and intraplaque neovascularization within 
carotid stenosis) [69, 70].

More recently, interest in contrast imaging for blood flow 
imaging has focused on so-called super-resolution blood imag-
ing as a result of the development of ultrafast ultrasound imag-
ing [71]. Ultrafast ultrasound imaging captures more sampling 
points of the backscatter signals from blood compared to con-
ventional Doppler imaging and therefore provides sufficient 
signal length for calculating the Doppler shift, which increases 
the sensitivity of blood detection. The microcirculation is then 
observed using ultrafast ultrasound imaging. This approach 
of functional ultrasound imaging has recently been used in 
many small animal and human brain research studies [72]. 
The resolution of blood flow in ultrafast ultrasound imaging 
can be increased by injecting the MBs into vessels, so-called 
super-resolution ultrasound localization microscopy (ULM) 
[73]. ULM was inspired by super-resolution imaging in opti-
cal microscopy. In ULM, the flowing MBs are detected by 
ultrafast ultrasound imaging and the point-spread function of 
the ultrasound system is subsequently applied on the bubble 
echo signal to provide the precise localization of the isolated 
bubbles from the super-resolution image. The bubble locations 
are tracked by high frame imaging and the vascular structure 
is mapped by accumulating the trajectory of bubble locations 
[74]. Currently, ULM is not available in clinical ultrasound 
machines but many studies have applied it in preclinical and 
clinical research settings for cancer, brain, kidney (Fig. 1e), 
skin, and cardiovascular studies [65, 71].

Microbubbles

Drug‑loaded MBs

Microbubbles are not only useful as contrast agents in 
ultrasound imaging but also have the ability to carry thera-
peutics. The strategies for loading MBs with therapeutics 
will be summarized in this section. The physical structure 
of MBs makes them suitable to serve as vehicles for thera-
peutic cargos (drugs, genes, nanoparticles, or therapeutic 
gas) through incorporation into the MB shell, by dissolv-
ing them in an oil layer between the MB shell and core, 
or by attaching larger molecules or nanoparticles onto the 
MB shell [38, 75–77]. The earliest design of cargo-loaded 
MBs was reported by Unger et al. in 1998 [78]. These 
cargo-loaded MBs were produced via mechanical agitation 
of a perfluorobutane gas paclitaxel-containing emulsion 
and liposomes. The results showed that the lipid shell of 
MBs decreased the direct exposure of paclitaxel to plasma, 
thus reducing its systemic toxicity in vivo. In addition, the 
shell of the MBs can be modified with disease-associated 
biomarkers to further improve treatment localization for 
specific molecular theranostic purposes or targeted therapy 
[79, 80].

The strategy adopted for MBs carrying cargo mainly 
depends on the nature of the cargo. For instance, hydro-
phobic cargos could be embedded between the lipid shell 
and the gas core, whereas hydrophilic cargos may be 
attached to the outer surface either directly [81] or pack-
aged within liposomes [76]. In previous studies, cargo-
loaded MBs could be produced by direct mixing with the 
cargo during MB preparation but the payload is limited 
and varies depending on the property of the drug (hydro-
philic or hydrophobic). To address this issue, preparation 
of an additional oil layer between the lipid shell and gas 
core might help to trap cargo [78], although higher ultra-
sound energy would be necessary to activate the release 
of loaded cargo from this framework [82]. Cargo could be 
attached to the outer shell surface of MBs through covalent 
binding (e.g., streptavidin–biotin interaction) or non-cova-
lent binding. Through electrostatic interaction, the lipid 
shell of MBs with a positively charged lipid component 
could function as a carrier of negatively charged nucleic 
acids (e.g., pDNA, siRNA, mRNA) [83]. A multilayered 
positively charged poly-L-lysine and nucleic acids struc-
ture has been proposed to further improve the payload of 
nucleic acid while maintaining high MB stability [83].

It is possible to directly use a low molecular weight 
enzyme such as lysozyme as the shell of MBs [84, 85]. 
Through dispersion of a gas phase in the protein solution, 
the gas core would be stabilized within the protein-linked 
skeleton. Such enzyme-shelled MBs could be further 
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coated and functionalized with a number of biomacromol-
ecules (proteins, polysaccharides, or nucleic acids) [84]. 
The cargos can be pre-encapsulated into carriers (i.e., 
micelles, microspheres, or liposomes) and then conjugated 
on the surface of MBs, for example through thiol-sulfhy-
dryl group linkage or avidin–biotin interaction [86, 87]. 
Such MB complexes have a higher drug payload than other 
strategies and can encapsulate drugs of different polarity. 
MBs are also being investigated as a gas carrier for deliv-
ery of therapeutic gases, including oxygen for hypoxia, 
drug penetration, and vasculature normalization in tumors 
or nitric oxide for cardiovascular disease [88–91].

Cellular drug uptake/gene transfection under MB 
cavitation

The viscoelastic lipid shell and compressible gas core allows 
the MBs to volumetrically oscillate, a process termed cavi-
tation, in response to the rarefaction and compression por-
tions of the ultrasound wave, potentially providing a unique 
opportunity for drug delivery. The interactions between 
cargo-loaded MBs and cells for drug delivery will be dis-
cussed in this section. Upon ultrasound sonication the 
cargo-loaded MBs locally release their cargo while the 
concurrent MB cavitation improves uptake of the released 
cargo. Several mechanisms of cargo release from MBs have 
been identified. For example, MBs can be converted into 
200–500 nm drug-containing fragments by ultrasound [92, 
93]. Alternatively, the oscillation of MBs can release shell 
fragments (called lipid shedding), and these fragments can 
be further transported via acoustic microstreaming [94]; the 
occurrence and distance of shedding can be increased by 
applying higher acoustic pressures. The cargo-loaded MBs 
may also result in direct deposition of the cargo onto the cell 
membrane, potentially allowing delivery of a large amount 
of drug or gene to the targeted cells [95–97].

The micrometer scale of MBs enables generation of sev-
eral microscale mechanical responses in an ultrasound field 
and therefore the bioeffects of MB cavitation can be greatly 
focused at the cellular level. The oscillating MBs also 
elicit microscale shear forces that can induce physiologi-
cal changes or tear the lipid membrane of cells, temporarily 
permeabilizing the cellular membrane and enhancing cel-
lular endocytosis uptake [98–100]. To date, four biological 
phenomena have been observed: sonoporation, stimulated 
endocytosis, opening of cell–cell contacts, and sonoprinting 
[5, 101–103].

Sonoporation involves the generation of reversible pores 
on the cellular membrane as a result of mechanical agitation 
from persistent, low-amplitude MB oscillations (commonly 
termed stable cavitation) or violent MB collapse (com-
monly termed inertial cavitation) close to the cell mem-
brane [104]. Generally, the size (a few nm to hundreds of 

nm) and resealing time (within seconds) of pores produced 
by stable cavitation are lower than those of pores caused 
by inertial cavitation (hundreds of nm to μm; up to 1 min) 
[105–107]. The pores can pass through not only the api-
cal cell membrane layer but also the basal cell membrane 
layer [99]. In addition to poration of a single cell, sonopora-
tion can also disrupt cell–cell contacts and produce inter-
cellular gaps between adjacent confluent human umbilical 
vein endothelial cell monolayers with a resealing time of 
30–60 min [104].

Previous studies observed that ultrasound with MBs 
would temporarily activate a cellular endocytosis effect for 
internalization of substances ranging from hundreds of nm 
to μm, including clathrin-mediated endocytosis (~ 200 nm), 
caveolae-mediated endocytosis (~ 500 nm), and micropino-
cytosis (> 1000 nm) [108]. Observation by electron micros-
copy showed the appearance of caveolar endocytic vesicles 
after ultrasound with MB treatment [109]. To date, studies 
have reported two mechanisms by which ultrasound and 
MBs might stimulate cellular endocytosis [110]: the tension 
of the cell membrane might be modulated by MB-induced 
mechanical force, or endocytic uptake of fluid-phase sub-
jects might be promoted by the microstreaming and shear 
stress [100, 111].

Sonoprinting is a newly characterized mechanism that 
only occurs in cargo-loaded MBs. Studies showed that the 
cargos were directly transported from the MBs to patches 
on the cellular membrane and then internalized within 1 h 
[95–97]. Via this route, the lipid components of the cargo 
are fused or exchanged with the cell membrane, achieving 
cytosolic delivery without endosomal degradation. Initiation 
of sonoprinting requires high acoustic pressure (> 300 kPa) 
and long pulses (> 100 cycles) under an acoustic frequency 
of 1 MHz [96]. It was recently reported that sonoprinting 
could occur not only in 2D cell monolayers but also in free-
floating 3D tumor spheroids, indicating wide applications 
of this approach [97]. Ho et al. reported that in the scenario 
of cargo-loaded MBs attached on the cell membrane, stable 
cavitation of MBs could transfer tenfold more cargo to cells 
compared with inertial cavitation, without lethal cellular 
damage [112].

Enhanced vascular permeability for local drug 
delivery

Permeabilization of endothelial vasculature can also be 
accomplished via MB cavitation effects, and the in vivo bio-
effects of MBs cavitation on vessels and their applications 
for disease treatments are discussed in this section. Recent 
studies have observed four temporary physiological changes 
of vessels stimulated by ultrasound and MBs. First, the gap-
junction distance between endothelial cells can be expanded 
during MB oscillation, thereby allowing the circulating 
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agents to extravasate [104]. Second, the quick vibration of 
MBs also produces local microstreaming to stimulate nearby 
vascular endothelium. This MB-generated streaming is at 
least 25-fold faster than the blood flow, and, therefore, dis-
turbs the integrity of the endothelial lining [104, 113, 114]. 
Third, the cell membrane potentials are changed during 
MB vibration, probably eliciting endocytotic activity and 
intracellular pathways. Fourth, the MBs may be squeezed 
through the endothelium and tunnel through soft tissue dur-
ing ultrasound sonication [115, 116], potentially resulting in 
deposition of drugs beyond the vasculature.

MB and free drug physical mixtures

The most common application of MB-induced vascular per-
meabilization for enhanced drug delivery involves simple 
physical mixtures of MBs and free drugs (Table 1). Upon the 
trigger of ultrasound, the free drug can selectively extrav-
asate in the ultrasound-sonicated area via the abovemen-
tioned routes. There have been a number of efforts to deliver 
immune substances for elimination of solid tumors using this 
procedure: Heath et al. reported that intracellular uptake of a 
monoclonal antibody (cetuximab) could be improved by 30% 
in a head and neck squamous cell carcinoma model [117]; 
pDNA encoding a cytokine (interleukin-27, interleukin-12) 
could be successfully delivered in mice models of prostate 
tumor (RM1, TRAMP-C1 and TRAMP-C2), hepatocellular 
carcinoma, or OV-HM tumor [118–120]; and tumor-associ-
ated antigen (ovalbumin) could be transferred into dendritic 
cells by combination treatment of bubble liposomes, ultra-
sound, and antigen [121, 122]. The feasibility of delivering 
chemotherapeutic drugs for MB-assisted chemotherapy has 
also been confirmed in cell culture systems, animal stud-
ies, and even in clinical trials (for example, breast cancer, 

pancreatic cancer, colorectal cancer, radioembolization of 
liver cancer, and liver cancer) [123–126]. In one phase I 
clinical trial, tumor size reduction was observed in five 
patients, and median survival increased from 8.9 months to 
17.6 months without additional side effects [125].

For application in thrombolysis, the penetration of 
thrombolytic drugs into the blood clot can be enhanced by 
ultrasound with MBs, reducing clot size by 39–69% and 
thrombolysis time in stroke patients [127]. Antibiotic resist-
ance induced by bacterial infection can also be addressed 
using MB − drug physical mixtures. The protective barrier 
of biofilms can be disrupted by MB cavitation to enhance 
the delivery of antibiotic, a process termed sonobactericide 
[128, 129]. A combination of MBs, oxacillin (antibiotic), 
and recombinant tissue plasminogen activator (thrombolytic) 
as a treatment for infective endocarditis reduced clot size 
by 99.3 ± 1.7% [130]. In a rabbit model with an implanted 
biofilm-containing catheter, the synergistic effect of ultra-
sound-mediated MBs combined with vancomycin decreased 
biofilm viability twofold compared with the untreated group 
[131].

Cargo‑loaded MBs

The limitations of a mixture of free drug and MBs include 
poor pharmacokinetics of free drugs, lack of targeting, and 
easy degradation of drugs within the in vivo circulation. To 
overcome these issues and expand the medical applications, 
several efforts have been made to develop cargo-loaded 
MBs (Table 1). Using microscopic imaging and fluorescent 
dyes, ultrasound-sonicated MBs were shown to significantly 
transfer their cargo onto excised rat cecum and living mouse 
dorsal vessels, suggesting the possibility of vascular local 
delivery in vivo [82, 112]. In one study using paclitaxel 

Table 1  Comparison of MB-assisted drug delivery systems

Parameter MB and free drug (Physical mixtures) Cargo-loaded MBs

Application Tumor therapy [123–126] Tumor therapy [134, 135]
Immune therapy [117–122] Immune therapy [136]
Thrombolysis [127] Neointimal hyperplasia inhibition [132, 133]
Antibacterial infection [128–131] Hair growth recovery [87]

Antibacterial infection [85, 137]
Vaccine therapy [138–140]

Preparation Easy [123–126] Dependent on cargo property [76, 78, 81, 83–91]
Activation step Injected as ready to use [128, 129] Injected as ready to use [87, 134, 135]

Drug administration following MBs injection [113–116]
Activation time Few seconds to few minutes [104–107] Immediately [95–97]
Advantages Easy preparation [123–126] Reduced systemic cytotoxicity of drug [78]

Prolonged drug lifetime within circulation [141–143]
Disadvantages Direct drug exposure in blood circulation [245] Poor stability, payload highly dependent on cargo 

property, risk of drug leakage [246]
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loaded into MBs, neointimal hyperplasia in the rabbit iliac 
balloon injury model was inhibited by drug released from 
the MBs [132]. In a similar study, Kilroy et al. showed a 
60% decrease in neointima formation by rapamycin-loaded 
MBs in a swine model [133]. As an antitumor approach, a 
Rose Bengal sonosensitizer has been covalently attached to 
the shell of MBs and used to produce a high level of reac-
tive oxygen species, resulting in cytotoxicity to cancer cells 
[134, 135]. In addition, conjugation of interleukin 8 mono-
clonal antibody allowed the MBs to selectively adhere and 
neutralize atherosclerosis plaques, alleviating the interleukin 
8–related inflammation response [136].

The applications of MBs decorated with cargo-containing 
liposomes have been explored by several groups. In 2020, 
Ryu et al. proposed a MB-nanoliposomal complex as a Cas9/
sgRNA riboprotein complex carrier. They concluded that 
the production of SRD5A2 protein could be suppressed by 
MB-assisted CRISPR-based genomic editing, resulting in 
recovery of hair growth in mouse skin [87]. Horsley et al. 
demonstrated that MBs loaded with gentamicin-liposomes 
could efficiently transfer drugs to urothelial cells for treat-
ment of urinary tract infection [137]. Liao et al. applied 
lysozyme-shelled MBs and ultrasound to inhibit P. acnes-
induced inflammatory skin diseases [85]. In the application 
of DNA vaccine therapy, Un et al. reported increased cyto-
toxic T lymphocyte activities and secretion of Th1 cytokines 
(i.e., interferon-γ, tumor necrosis factor-α) after treatment 
with MB lipoplexes loaded with pDNA encoding melanoma 
antigen (i.e., gp 100, tyrosinase-related protein 2) combined 
with ultrasound [138]. In E.G7-OVA cell and EL4 cell tumor 
models, the tumor volume shrank 4.5-fold and the antitu-
mor effects were maintained for at least 80 days after treat-
ment with pDNA-lipoplex–loaded MBs with ultrasound 
[139]. Dewitte et al. reported that MBs loaded with TriMix 
mRNA and antigen can stimulate strong immune responses 
in vivo, producing a decrease of tumor outgrowth, an obvi-
ous increase in survival, and antigen-specific immunological 
memory [140].

Another advantage of cargo-loaded MBs is that the shell 
of the MBs can prevent direct exposure of chemotherapeu-
tic drugs to blood circulation, thus reducing their systemic 
toxicity. One study reported an obvious reduction in sys-
temic toxicity for animals treated with paclitaxel-loaded 
MBs [78]. In addition, the MBs can prolong the half-life of 
the therapeutic substances (especially nucleic acids) dur-
ing circulation by preventing their degradation and clear-
ance [141–143]. The efficacy of cargo-loaded MBs could be 
further enhanced by functionalization with disease-associ-
ated ligands, such as LHRHa, Lyp-1, and CD105 antibody 
[144–146]. The local drug concentration and MB-generated 
mechanical bioeffects would be increased by concentrating 
MBs at a specific area, thus reducing the dosage required 
to yield a significant response. In addition, the occurrence 

of off-target effects would potentially be avoided, increas-
ing the safety of this treatment. Recently, drug-loaded MBs 
tethered with magnetic nanoparticles have been proposed as 
a means to magnetically aggregate and manipulate the MBs 
at the desired site with spatial resolution of several millim-
eters [147–149]. This strategy can potentially circumvent 
the immune issues currently associated with antibody-linked 
MBs.

Application of ultrasound with MBs 
in the CNS

Development of CNS-purposed therapeutic ultrasound 
has continued since the Fry brothers first investigated the 
focused ultrasound (FUS) apparatus for CNS application in 
the 1950s. In the early 2000s there was an initial attempt to 
combine the use of MBs with therapeutic ultrasound. Since 
the MBs locally amplify acoustic emission to the capil-
lary lumen, the induced bioeffect is readily observed with 
acoustic exposure level up to two orders of magnitude lower 
than in the absence of MBs. With a burst-type ultrasound 
exposure and under concurrent intravenous administration 
of MB, one of the most noticeable effects in capillaries is 
the induction of tight junctional disruption. Since FUS has 
many unique advantages including transcranial noninvasive-
ness, efficient targeting to deep-seated brain regions, and 
tight junctional disruption transients, its use in the pres-
ence of MBs has become a novel and useful tool to target 
“opening” of the BBB and has been used in many innova-
tive applications (Fig. 2). In the following section we review 
BBB opening technology, including the induced biological 
impact, potential therapeutic applications, the accompanying 
neuromodulation, and the immunomodulation effect.

MB‑enhanced ultrasound: Histological impact

Hynynen et al. first demonstrated that ultrasound expo-
sure in the presence of MBs can transiently permeate the 
CNS capillary (so-called BBB opening) and the pressure 
level required to disrupt the BBB has been confirmed to 
be significantly reduced compared with ultrasound expo-
sure without MBs (two orders of magnitude reduction in 
acoustic intensity) [150]. An early study in the develop-
ment of MB-ultrasound–induced BBB opening tested the 
histological effect of a wide range of ultrasound exposure 
levels. For pressure levels ≥ 6.3 MPa (1.5-MHz, 10-μs pulse 
length, duty cycle 1%), apparent vascular wall damage, tis-
sue necrosis, ischemia, and apoptosis were observed [151]. 
McDannold et  al. further examined a relatively narrow 
acoustic exposure range (1.63 MHz, 100 ms pulse length, 
duty cycle 10%, 0.7–1.0 MPa) with additional testing of 
whether a delayed effect exists for MB-ultrasound BBB 
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opening. With a significant reduction in exposure level 
(0.7 MPa), the major observation was small-scale red blood 
cell extravasations while the apoptosis and ischemia became 
minimal [152]. In addition to histological examination, T2*-
weighted magnetic resonance imaging (MRI, or MR suscep-
tibility weighted imaging) has been used to detect potential 
hemorrhage accompanying the MB-ultrasound BBB open-
ing process [153, 154].

Brain tumor treatment

MB-ultrasound BBB opening has been reported to enhance 
the delivery of small molecular anticancer drugs including 
carmustine, temozolomide, irinotecan, doxorubicin (Dox), 
and paclitaxel for brain tumor treatment [155–160]. For ther-
apeutic drugs that cannot efficiently penetrate into the brain 
such as irinotecan (the concentration of irinotecan within 
the intact brain was reported to be as low as a 2% tissue/
plasma ratio), the concentration can be increased by 178% 
after MB-ultrasound BBB opening [159]. Paclitaxel also 
shows limited therapeutic benefit in brain tumors due to the 
BBB effect. FUS-BBB opening facilitates the penetration of 
paclitaxel into the brain by approximately three- to fivefold 
using various drug formulations [160]. Larger anticancer 
agents such as liposomal Dox [161–163], carboplatin [164], 
and interleukin-12 [165] can also be successfully delivered 
into the brain.

In addition to delivery of anticancer chemotherapeu-
tic agents, MB-ultrasound BBB opening has been shown 
to successfully deliver therapeutic proteins or monoclonal 

antibodies for brain tumor treatment. BBB opening can be 
used to deliver large molecular therapeutic monoclonal anti-
bodies including herceptin [166], dopamine D-4 receptor-
targeting antibody [167], bevacizumab [168], and trastu-
zumab [169]. Kinoshita et al. demonstrated the possibility 
of delivering various large molecular monoclonal antibodies 
with penetration through the BBB and into the brain region, 
including dopamine D-4 receptor-targeting antibody [166] 
and humanized anti-human epidermal growth factor receptor 
2 (HER2/c-erbB2) monoclonal antibody [167]. In addition, 
it has been reported that enhanced bevacizumab delivery 
with BBB opening led to a significant increase in animal sur-
vival compared to the bevacizumab treatment group alone 
[168]. Tratuzumab has been IV administered in conjunction 
with BBB opening in a brain metastasis animal model mim-
icking HER-2 positive breast cancer. The survival of animals 
in the ultrasound/tratuzumab group was significantly pro-
longed compared with the tratuzumab alone group.

Combining MBs with FUS to open the BBB has been suc-
cessfully translated into clinical evaluations in CNS disease. 
For the treatment of brain tumor, Carpentier et al. conducted 
the first clinical trial into BBB opening for enhanced carbo-
platin delivery in glioblastoma patients using an implant pla-
nar ultrasound device (Sonocloud, Catherra) combined with 
administration of SonoVue (Bracco Imaging SpA). Interim 
results of a dose-escalating clinical study in a total of 15 
patients (NCT02253212) demonstrated successful opening 
of the BBB at the energy targeted area, sometimes showing 
hypointense T2*-weighted MRI changes representing occur-
rence of red blood cell extravasations, and indicated that the 

Fig. 2  Conceptual diagram 
showing the use of FUS expo-
sure in the presence of MBs to 
open the BBB in CNS
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test subjects could tolerate the procedure without adverse 
events [170]. Idbaih et al. reported a subsequent clinical trial 
using the same device to enhance carboplatin delivery. A 
total of 19 patients were recruited and received the BBB 
opening procedure with a month-based treatment period. 
Treatment-related adverse events (primarily edema) were 
reported but were manageable. Patients with successful BBB 
opening showed progression-free survival of 4.11 months 
and overall survival of 12.94 months, compared with 2.73 
and 8.64 months, respectively, for those without successful 
BBB opening [171].

Alzheimer’s disease treatment

In investigations of MB-ultrasound BBB opening for the 
treatment of Alzheimer’s disease, Raymond et al. first dem-
onstrated BBB opening with the aim of delivering large 
molecular molecules into an Alzheimer’s disease model 
[172], and Jodao et  al. demonstrated BBB opening to 
enhance delivery of BAM-10 antibodies into the Alzhei-
mer’s disease model brain [173]. BBB opening in the hip-
pocampus of animal models of Alzheimer’s disease resulted 
in behavioral improvement that correlated with a reduction 
of amyloid, combined positive findings of hippocampal neu-
rogenesis [174]. Combining BBB opening with delivery of 
RN2N tau-specific antibodies as a therapeutic agent resulted 
in an increase in local concentration of antibody together 
with a reduction in anxiety-like behavior and phosphoryla-
tion [175]. Dubey et al. reported that use of BBB opening 
to enhance IV Ig delivery resulted in downregulation of the 
proinflammatory cytokine TNF-α in the hippocampus to 
modulate the inflammatory effect and boost the neurogenesis 
effect, in addition to the existing amyloid plaque reduction 
effect [176]. In a study of opening the BBB alone, Leinenga 
et al. employed MB-ultrasound to open a wide area of the 
BBB and observed an apparent plaque burden reduction of 
up to 75%, with identification of the pathway that activates 
microglia to speed up clearance of amyloid plaque, and a 
consequent improvement in memory and behavioral perfor-
mance [177].

Lipsman et al. and Meng et al. first reported the clinical 
use of a MR-guided FUS system (Exablate Neuro, Insightec) 
to open the BBB in the treatment of patients with Alzhei-
mer’s disease (NCT02986932 and NCT03671889). Patients 
with early-to-mild Alzheimer’s disease were recruited. Two 
ultrasound treatments were performed with 1-month inter-
mission and the right dorsolateral prefrontal cortex served 
as the targeted treatment location. Final follow up was con-
ducted after 3 months. There was no significant difference 
in beta amyloid burden evaluated by  [18F]-florbetaben PET 
imaging and no clinically significant worsening in cognitive 
scores at 3 months compared with baseline [178]. Within 
the same patient group, there was a transient decrease in 

functional connectivity at the ipsilateral side of the frontopa-
rietal network, but no long-term changes in frontoparietal or 
default mode network when comparing functional connec-
tivity between the baseline and 3 months [179].

Parkinson’s disease treatment

Gene therapy is one potential therapeutic approach for Par-
kinson’s disease. Traditional CNS gene therapy employs the 
local injection of viral vectors into the CNS target and thus 
represents an invasive procedure. MB-ultrasound BBB open-
ing shows the capability to deliver large-molecular agents 
such as mAbs (molecular weight up to 150 kDa) and is a 
reasonable approach for delivery of therapeutic genomic 
materials including gene-encoding vectors or RNA inter-
ference vectors for genomic-level treatment of diseases such 
as Parkinson’s disease and Huntington’s disease.

For RNA interference, Burgess et al. investigated MB-
ultrasound BBB opening to enhance the delivery of RNAi 
and decrease expression of the mutant Huntingtin protein 
(Htt) [180]. It has been reported that MB-ultrasound BBB 
opening can successfully be used to deliver reporter genes 
via viral vectors [181]. Nooroozian et al. demonstrated that 
MB-ultrasound BBB opening could achieve equivalent gene 
expression in the brain with a 100-fold reduction in titer 
compared with intravenous administration of rAAV [182].

Although viral vectors can be successfully used to per-
form CNS transfection, non-viral vectors such as DNA plas-
mids conjugated on liposomes provide another option for 
gene delivery. Lin et al. demonstrated successful expres-
sion of reporter gene with the use of gene-loaded liposomes 
(reporter gene plasmid conjugated with the lipid material to 
form liposomes) and showed that the expression efficiency 
could be significantly higher (fivefold) than that achieved via 
direct injection [183].

Another gene delivery strategy involves the synthesis of 
lipid-based MBs by conjugating a plasmid together with 
MBs to form gene-vector MBs or by formation of a liposome 
MB complex [184, 185]. Of note, a cationic plasmid-MB 
complex showed improved gene payload and expression of 
glial cell line-derived neurotrophic factor in the brain via 
BBB opening, and enhanced therapeutic efficiency when 
compared with the results using typical microbubbles in a 
Parkinson’s disease animal model. Long et al. employed a 
different strategy of directly conjugating gene plasmid with 
the MBs and demonstrated that a therapeutic gene (nuclear 
factor E2-related factor 2, Nrf2) could be overexpressed 
in the targeted brain to provide a possible neuroprotective 
effect in Parkinson’s disease model animals [186].

To test the application of MB-ultrasound BBB opening to 
treat Parkinson’s disease dementia, Gasca-Salas et al. con-
ducted a single-arm non-randomized BBB opening clini-
cal trial (NCT03608553) using a MR-guided FUS system 
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(Exablate Neuro, Insightec; Microbubble: Definity (Bris-
tol-Myers Squibb)). Five patients with Parkinson’s disease 
dementia were recruited with a target region of the right 
parieto-occipito-temporal cortex, with the designed primary 
outcome being to assess the safety and success of BBB open-
ing. BBB opening was confirmed with contrast-enhanced 
MRI, and no adverse effect was reported. Upon examination, 
mild cognitive improvement was reported although no major 
changes of the amyloid plaques were detected via  [18F]-FDG 
PET [187, 188].

Neuromodulation and immune modulation

Ultrasound with MBs not only induces BBB opening and 
permeability changes in endothelial vascular structures and 
triggers microglia/astrocyte activation, but the mechanical 
stress from MB cavitation may also enhance neurotransmit-
ter delivery or have a direct post biophysical effect on neu-
rons to induce neural modulation.

McDannold et  al. reported that MB-ultrasound BBB 
opening can enhance the delivery of GABA to temporarily 
suppress neural activity, and confirmed the neural suppres-
sion effect by somatosensory evoked potential [189]. Chu 
et al. reported that solely inducing MB-ultrasound BBB 
opening induced a transient neural suppression effect, and 
confirmed the effect by somatosensory evoked potential and 
resting-state functional MRI measurement [190]. Similarly, 
Todd et  al. employed resting state blood-oxygen-level-
dependent functional MRI to measure functional changes 
after conducting MB-ultrasound BBB opening and con-
firmed that regions targeted for BBB opening exhibited local 
brain functional changes [191]. However, a different obser-
vation was reported by Cui et al., who showed that MB-
ultrasound interaction resulted in c-fos expression that could 
excite neuron activity as the c-fos secretion level increased 
[192]. This observation indicated that neural stimulation 
originates from the interaction of MB-ultrasound induced 
amplified radiation force and microstreaming. In a recent 
clinical trial using MRI-guided FUS to induce BBB opening 
in patients with Alzheimer’s disease, a bilateral change of 
the frontoparietal networks analyzed by resting state blood-
oxygen-level-dependent functional MRI showed a transient 
decrease in functional connectivity, confirming the neuro-
modulatory effect of combined use of ultrasound and MBs 
[179, 193].

To further increase the sensitivity of the neuronal 
response to ultrasound emission, Ibsen transfected the 
mechanical sensitive ion channel gene, TRP-4, into C. ele-
gans in a strategy termed “sonogenetics”. They observed 
that transfection with TRP-4 increased the responsiveness 
to MB-ultrasound stimulation, and employed ultrasound 
stimulation to manipulate the motion trajectory of C. elegans 
[194]. Implementing the sonogenetic concept in mammals, 

Huang et al. expressed a mechanosensitive gene in a small 
animal brain [195]. The engineered auditory-sensing pro-
tein gene, Prestin, was noninvasively transfected into the 
brain via MB-ultrasound BBB opening. Once Prestin was 
expressed in the animal brain an ultrasound mechanical wave 
could successfully trigger neuron activity, thus demonstrat-
ing the feasibility of sonogenetics in vivo.

The mechanical stress induced during MB-ultrasound 
BBB opening might not only induce an imbalance of vascu-
lar circulation-brain extravascular space hemostasis, but also 
has the potential for triggering an inflammation response. 
Kovas et al. first demonstrated through transcriptome analy-
sis that this mechanical process triggers expression of the 
damage-associated molecular pattern response indicating 
occurrence of a sterile inflammatory response, and further 
showed that this response stemmed from regulation of the 
NFκB pathway [196]. McMahon et al. later showed that 
the effect on transcription was transient and expression had 
returned to baseline when measured 24 h post-sonication 
[197]. Of note, it has been reported that the NFκB pathway 
was only activated in the high MB dose group (100 μL of 
Definity/kg), indicating that BBB opening with a clinically 
accepted MB dose (10 μL of Definity/kg) may not induce 
this inflammatory response [198].

The immunomodulatory effect triggered by MB-ultra-
sound interaction has been reported to involve the proin-
flammation pathway. Activation of innate immune cells such 
as microglia was also reported during the BBB opening pro-
cess, providing an important mechanism for beta amyloid 
clearance to benefit Alzheimer’s disease treatment. It has 
also been reported that the anticancer immune response can 
be modulated to benefit cancer treatment. Focused ultra-
sound sonication in the presence of MBs has been reported 
to trigger the recruitment of tumor infiltrating lymphocytes 
(TILs), including CD4 + CD8 + and CD4 + CD25 + cells, 
which can be locally detected in higher numbers at the tar-
geted tumors [199]. In addition, Chen also reported that 
the CD4 + CD8 + cell population as well as the population 
ratio of CD8/CD25 cells could be significantly increased in 
glioma tumor models [200, 201].

Phase‑change droplets

The use of phase-change droplets with ultrasound also shows 
potential for theranostic purposes. Phase-change droplets 
are commonly composed of a lipid shell and a perfluoro-
carbon liquid core, which has a low boiling point to eas-
ily achieve a superheated state for subsequent vaporization 
[9]. When droplets are subjected to ultrasound stimulation, 
the pressure variations from the ultrasound wave cause 
liquid core vaporization and convert droplets into gas bub-
bles, a process called acoustic droplet vaporization (ADV). 
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The ADV-generated bubbles (ADV-Bs) present contrast 
enhancement under ultrasound imaging, suggesting that 
droplets could be used as an ultrasound contrast agent [202].

Compared with MBs, droplets present a more stable 
structure and it is easier to make nano-sized particles due to 
the liquid core [203]. The typical in vivo lifetime of MBs is 
about 10–20 min, compared with over 90 min for droplets 
[11]. ADV-Bs are generated through selective ultrasound 
activation to improve the spatiality and temporality of ultra-
sound contrast imaging [204]. Since MB-based super-reso-
lution imaging is flow dependent and requires isolated MB 
distribution (i.e., a low concentration), the acquisition time 
to sample enough signal in the narrow space of a capillary 
with low blood flow would be extended [71]. In order to 
maintain the frame rate of super-resolution imaging, droplets 
have been utilized as a signal source possessing the required 
spatial and temporal features upon selective ultrasound 
activation [205]. The signals of ADV-Bs could accumulate 
quickly due to the high concentration of droplets and with 
repeated ultrasound activation, even within vessels without 
flow [206]. Moreover, the penetration of nano-sized drop-
lets into specific tissue through the leaky vessels might pro-
vide localized imaging and treatment of organs or tumors. 
However, various safety issues including the relatively high 
energy of ultrasound for ADV [207, 208], the cellular bio-
effects of ADV [209, 210], and gas embolisms induced by 
ADV-Bs [211, 212] might influence the development of 
droplets for clinical use.

Acoustic droplet vaporization

During the ADV process, nucleation inside the droplet was 
observed to induce droplet oscillation by high-speed imag-
ing (100–200 ns per frame) [213]. Subsequently, the liquid 
core of droplets started to vaporize, expand, and finally form 
bubbles. The expansion ratio of ADV-Bs was approximately 
5.0–5.5, and was independent of initial droplet size and 
ultrasound parameters (acoustic pressures and pulse length) 
[214]. Similar to the multifunctionality of MBs, the shell 
of droplets can be modified for specific targeting through 
changes in surface charge, linkage of antibodies, or conjuga-
tion of aptamers. Droplets can encapsulate drugs and locally 
deliver drugs by triggering ADV [215, 216]. The concur-
rence of local drug release and ADV-B-enhanced contrast 
imaging at the target site provides precise theranostic appli-
cation with real time monitoring during treatment [217].

Correlations between the materials of droplets, droplet 
size, and acoustic parameters have been investigated to 
improve the ADV efficiency under low energy ultrasound 
activation for clinical development. Common materials of 
the liquid core in droplets include perfluoropropane  (C3F8), 
perfluorobutane  (C4F10), perfluoropentane  (C5F12), per-
fluorohexane  (C6F14), and perfluorooctane  (C8F18) with 

boiling points of  – 36.7,  – 1.7, 29, 56, and 100 °C, respec-
tively [213, 218–221]. Fabiilli et al. fabricated albumin- and 
lipid-shelled droplets with  C5F12,  C6F14, and  C8F16 cores 
to compare the threshold of ADV [218]. The ADV thresh-
old was directly proportional to the boiling point of the 
liquid core, inversely proportional to the droplet size, and 
not affected by the shell materials. To reduce the intensity 
of ultrasound for ADV,  C4F10 and  C3F8 with lower boiling 
points have been used to fabricate nanodroplets [222, 223]. 
Since the boiling points of  C4F10 and  C3F8 are much lower 
than room temperature,  C4F10 and  C3F8 gas are initially used 
to make MBs, which are subsequently converted back to 
nanodroplets by pressurization and condensation. For the 
same diameter of 300 nm, the ADV threshold was a MI of 
2.69 for  C5F12 nanodroplets and 1.78 for  C4F10 nanodrop-
lets [223]. Moreover, the micro-sized droplets with  C4F10 
and  C3F8 core showed ADV with a MI of 0.71 and 0.18, 
respectively [224]. According to the U.S. Food and Drug 
Administration guidelines, the maximum intensity for clini-
cal ultrasound diagnosis is a MI of 1.9. The reduced ADV 
threshold of condensed nanodroplets reveals an opportunity 
to use a diagnostic ultrasound machine to accomplish ADV 
in a clinical application.

Cellular bioeffects induced by ADV

The violent mechanical forces produced by the ADV pro-
cess or ADV-B cavitation can disrupt the cell membrane 
and cause various bioeffects that assist cellular drug uptake 
or direct cell death. Wang et al. fabricated aptamer-conju-
gated and Dox-loaded droplets to target CCRF-CEM human 
acute lymphoblastic leukemia cells [209]. The droplets were 
targeted to the cells, where they attached to the cell mem-
brane and induced disruption of cells and release of Dox 
by ADV to decrease cell viability 4.5-fold. Previous studies 
investigated the correlation between cell permeability, cell 
viability, and drug attachment to evaluate the spatial cellular 
bioeffects induced by ADV. Fan et al. showed a high cor-
relation between the downward pressing region of ADV-Bs 
and the distribution of dead cells, and between the expan-
sion range of ADV-Bs and the distribution of permeable 
cells [225]. This demonstrated that the ADV process directly 
causes cell death by the physical force of ADV-B attachment 
and enhances membrane permeability of adjacent cells to 
promote drug uptake. Seda et al. published results consistent 
with the above study, showing that the size of the ADV-B 
cloud was directly proportional to the range of cellular dam-
age [210]. These in vitro cellular experiments demonstrate 
that drug-loaded targeted droplets can combine physical and 
chemical therapy in a single platform.

Based on these characteristics, a cell-mediated drug 
delivery system was proposed in which cells uptake droplets 
and deliver drugs by cell migration. When droplet-loaded 
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cells migrate into the target regions (i.e., a hypoxic, acidic, 
or inflammatory tumor microenvironment), intracellular 
ADV would be triggered by ultrasound to disrupt the car-
rier cells and distribute the drug locally. The feasibility of 
droplet uptake into the cytoplasm and intracellular ADV 
has been proved in macrophages, RAW264.7 cells, and 
adipose-derived stem cells [226–228]. The ability of cell 
migration was maintained (32.3–93.3% of controls) after 
droplet uptake [226, 227, 229]. Disruption of the cell mem-
brane induced by ADV would release the contents of the 
cytoplasm, including drugs, to promote drug distribution. 
The in vivo migration ability of droplet-loaded cells was 
demonstrated in the B16F0 melanoma-bearing mice model 
[229]. Ultrasound imaging after subcutaneous injection of 
droplet-loaded cells for 24 h revealed intratumoral contrast 
enhancement after ADV, providing evidence of cell migra-
tion and intracellular ADV in tumors.

Intravascular ADV for gas embolization 
and antivascular effect

Having considered the in vitro cellular bioeffects induced 
by ADV, the in vivo bioeffects focusing on vessels are dis-
cussed in this section. During the ADV, the mechanical 
force and expansive ADV-Bs might disrupt the vessel wall 
or cause gas embolization to induce various physiological 
effects [230, 231]. Kripfgans et al. detected blood perfusion 
of rabbit kidney after ADV to evaluate the occurrence of gas 
embolism [232]. Blood flow in the treated kidney cortex was 
reduced by 80% at 0 min and recovered to 46% at 90 min. 
Feng et al. used an ex vivo rat mesentery model to observe 
intravascular ADV under a confocal acousto-optical high-
speed microscope system [212]. Gas embolism and rup-
ture in the vascular lumen were caused by the intravascular 
ADV-B growth and cavitation, respectively. Rupture and 
occlusion of vessels blocks oxygen and nutrient delivery, 
which might induce tissue necrosis and non-reversible side 
effects after in vivo ADV.

From a different perspective, the vascular bioeffects 
also provide a potential physical strategy to inhibit tumor 
growth [11]. Ho et al. used ADV-induced vascular disrup-
tion to promote drug penetration into tumors and reported 
that the intratumoral accumulation of liposomes increased 
1.7-fold relative to the control tumors [233]. After disruption 
of the tumor vasculature, the extravasated droplets could 
induce intertissue ADV to assist liposome delivery into deep 
tumor tissue. These results indicate the potential of combin-
ing ADV-induced anti-vascular therapy and chemotherapy 
to produce tumor vessel disruption, immediate drug penetra-
tion, and shutdown of blood flow to impede tumor growth. 
Harmon et al. applied ADV-induced occlusion to inhibit 
tumor growth in a murine model of hepatocellular carci-
noma [211]. After 2 weeks of treatment, histological images 

of tumor revealed 49.2 ± 7.63, 8.53 ± 4.02, 4.30 ± 3.29, and 
0.37 ± 0.37% necrosis in the ADV, ultrasound only, droplet 
only, and control groups, respectively. The tumor growth 
rate after ADV was reduced to 37.6% relative to the con-
trol tumors, demonstrating the treatment outcome of ADV-
induced gas embolotherapy in a tumor model.

Development of nanodroplets for tumor therapy

Since droplets can provide local drug delivery, direct cell 
disruption, and contrast imaging tracing, tumor therapy is 
a major application of droplets currently under develop-
ment. Leaky vessels in the abnormal tumor microenviron-
ment allow nano-sized particles to pass through the gap 
junction between the endothelial cells and accumulate in 
tumor tissue, a phenomenon known as the enhanced per-
meability and retention (EPR) effect [234]. To improve the 
efficiency of tumor therapy, drug-loaded nanodroplets have 
been fabricated to increase intratumoral drug accumulation 
via the EPR effect. In addition, intratumoral ADV might 
decrease the damage to normal cells around tumors and 
reduce side effects. Rapoport et al. utilized drug-loaded 
nanodroplets (300–700 nm) to improve tumor accumula-
tion via the EPR effect, and locally release drug to inhibit 
tumor growth by the intratumoral ADV [204, 235, 236]. Wil-
liams et al. performed IV injection of 220-nm nanodroplets 
for 1 h accumulation and then observed ADV-B formation 
within KHT-C sarcoma tumors after ultrasound stimula-
tion (10 MHz, 6 MPa, 1-ms bursts, whole tumor scanning 
20 min) [202]. Helfield et al. used  C4F10 nanodroplets (diam-
eter 114 ± 1 nm) with MI of 1.7 to observe extravascular 
ADV within fibrosarcoma via the EPR effect [237]. Since 
the extravascular nanodroplets could not refill rapidly, the 
contrast enhancement of intratumoral ADV was activated 
only once in the short time (30  s). Hence, the absence 
regions of contrast enhancement on ultrasound imaging 
after the second ADV presented evidence of nanodroplet 
extravasation. The intratumoral contrast enhancement on 
ultrasound imaging induced by the first and second time of 
ADV was subtracted to quantify the extravascular ADV. The 
extravasated signal in the fibrosarcoma was 37 ± 5%, which 
was significantly higher than that in the kidney ( – 2 ± 8%). 
Lea-Banks et  al. condensed the commercial ultrasound 
contrast agent Definity (Bristol-Myers Squibb) to fabricate 
pentobarbital-loaded nanodroplets [238]. The local release 
of pentobarbital by ADV induced neurosuppression without 
disrupting the BBB in rats, providing a safety and reproduc-
ible method of neuromodulation.

In accordance with the feature of phase-changed drop-
lets, perfluorocarbon with a low boiling point would be 
vaporized not only by acoustic pressure but also by thermal 
stimulation. Droplets can also be used as a photothermal 
agent that can be vaporized through light heating to form 
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bubbles, produce a mechanical effect, and release drugs, a 
process called optical droplet vaporization (ODV). Thus, 
multifunctional PFP nanodroplets have been developed 
to synergistically combine imaging-guided sono-chemo-
photothermal therapy. Hu et al. designed such a strategy 
using Dox-loaded, polyvinyl alcohol-shelled, and melanin-
cored PFP nanodroplets [239]. Melanin is a natural pigment 
with a known ability to undergo photothermal conversion. 
When melanin absorbs laser energy, the photothermal effect 
increases the temperature to assist nanodroplet vaporization 
under ultrasound stimulation (1.1 MHz, 0.82 MPa). Photoa-
coustic images of A375 melanoma-bearing mice revealed 
2.64-fold higher intratumoral photoacoustic value under 
opto-acoustic synergistic irradiation relative to the control 
group, demonstrating bubble formation by ODV/ADV. His-
tological imaging showed obvious tissue and cell damage 
in tumors, indicating that the mechanical force induced by 
ODV/ADV could disrupt tumors. Both photothermal and 
mechanical effects promoted the release and penetration of 
Dox to enhance the cytotoxic effect for chemotherapy. The 
intratumoral accumulation of melanin and Dox in the ODV 
group was approximately 2.6-fold and 2.0-fold, respectively, 
relative to the control group.

The feasibility of intratumoral accumulation of nanodro-
plets and subsequent intratumoral ADV has been demon-
strated. To keep the acoustic power as low as possible for 
development in the clinic, the potential application of MB-
condensed nanodroplets has been raised. The in vitro and 
in vivo results proved the ability of condensed nanodroplet 
vaporization to provide contrast enhancement on ultrasound 
imaging. Nevertheless, the stability of condensed nanodro-
plets should be considered, especially in the application of 
drug delivery.

Reproducibility of vaporization and recondensation

Although ADV can locally release drugs and enhance cell 
permeability for drug uptake, the cell damage induced by 
mechanical force and ADV-B cavitation would be a con-
cerning issue when droplets are applied in the normal tis-
sue or organs. To prevent the induction of non-reversible 
bioeffects by ADV for in vivo application, MB-condensed 
nanodroplets were fabricated to control the size of ADV-
Bs through regulation of the initial MB generation [240]. 
Reproducibility of vaporization and recondensation, defined 
as consecutive vaporization events from a single droplet, 
was also proposed as a means to repeat the phase change 
between nanodroplets and MBs and thus avoid the cellular 
damage induced by the formation of persistent ADV-Bs. The 
reproducibility of vaporization and recondensation would be 
influenced by the nanodroplet materials, ultrasound param-
eters, and temperature [240]. Recondensed nanodroplets 
with a lower boiling point core  (C4F10 and  C3F8) are easily 

vaporized to completely form ADV-Bs therefore the inves-
tigation of repeated ADV mainly used nanodroplets with a 
higher boiling point core  (C5F12,  C6F14, and  C8F16). Since 
the repeated ADV has to precisely control the degree of 
nucleation inside nanodroplets, the large focus of ultrasound 
relative to the focus of the laser might be harder to regulate.

Hannah et al. used near-infrared laser to partially heat 
 C6F14 nanodroplets and produce repeated ADV [241]. Opti-
cal and ultrasonic imaging showed repeated nanodroplet 
vaporization and recondensation, which were highly cor-
related with the irradiation rate of laser pulses. Hallam et al. 
also used a laser to activate near infrared dye-loaded  C6F14 
nanodroplets and regulated repeated ADV for BBB opening 
[242]. The extravasation of Evans blue, photoacoustic imag-
ing, and histological tissue staining in brain indicated the 
potential of laser-activated repeated ADV as a non-invasive 
delivery method for brain diagnosis and therapy.

Harmon et al. discussed the retention of phospholipids, 
PEGlated lipids, and targeting ligands (RGD peptide) on 
the  C6F14 nanodroplet shell during repeated ADV by ultra-
sound [243]. The size of the nanodroplets was reduced due 
to shedding of phospholipids but the composition of the 
targeting ligands and PEGylated lipids was retained after 
repeated ADV. The retention of targeting ligands and size 
shrinkage of nanodroplets after repeated ADV might provide 
enhanced performance in molecular imaging and targeted 
therapy. Aliabouzar et al. used acoustically responsive scaf-
folds containing fibrin hydrogels embedded with phase-shift 
double emulsion microdroplets to investigate the feasibil-
ity of payload release by repeated ADV under ultrasound 
stimulation [244]. Fluorescent dye-loaded  C5F12,  C6F14, and 
 C8F16 nanodroplets were fabricated and the optimal ultra-
sound parameters for repeated ADV were simulated. The 
fluorescence intensity of acoustically responsive scaffolds 
continuously decreased with multiple ultrasound pulses, and 
the absence of ADV-B formation during ultrasound stimula-
tion indicated the occurrence of repeated ADV. These results 
demonstrated that  C6F14 and  C8F16 nanodroplets could con-
tinuously release payload during repeated ADV.

Conclusion and future development

Medical ultrasound imaging is a mature diagnostic imag-
ing modality in current clinical use. New clinical appli-
cations of ultrasound imaging such as high-resolution 
elastography, functional blood flow imaging, and molec-
ular imaging are constantly being developed to provide 
physiological information. Among drug carriers, MBs 
and droplets with several special properties can easily be 
integrated with medical ultrasound to achieve noninva-
sive imaging and therapy at the same time. In particular, 
therapeutic ultrasound combined with MBs provides a new 
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opportunity to realize noninvasive opening of the CNS 
barrier for therapeutic agent delivery. This concept has 
been under development for almost two decades and is now 
under clinical evaluation. In addition, preclinical evidence 
supports other possible applications, including antican-
cer immune modulation and neuromodulation. The future 
clinical applications of MBs can be further expanded by: 
(1) designing a transducer with trapping, therapeutic, and 
imaging abilities; and (2) improving the physical stability 
and payload capacity of MBs. Moreover, the applications 
of phase-change droplets in tumor and CNS therapy have 
evolved and matured. The balance between local drug 
delivery and biosafety has been improved by modifying 
the initial micro-sized droplets to nano-sized, condensed, 
and repeated-ADV droplets. Although the use of MBs with 
ultrasound for theranostic purposes seems to have devel-
oped faster and has already entered clinical evaluation, it 
is recognized that the use of droplets in conjunction with 
ultrasound presents numerous strengths such as sustained 
drug release, enhanced cell permeability, and improved 
ultrasound imaging without sacrificing safety. It is highly 
anticipated that the combined use of ADV and ultrasound 
will have clinical value in the near future.
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