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Abstract
Cancer cachexia afflicts many advanced cancer patients with many progressing to death. While there have been many 
advancements in understanding the molecular mechanisms that contribute to the development of cancer cachexia, substantial 
gaps still exist. Chemotherapy drugs often target ribosome biogenesis to slow or blunt tumor cell growth and proliferation. 
Some of the most frequent side-effects of chemotherapy are loss of skeletal muscle mass, muscular strength and an increase 
in fatigue. Given that ribosome biogenesis has emerged as a main mechanism regulating muscle hypertrophy, and more 
recently, also implicated in muscle atrophy, we propose that some chemotherapy drugs can cause further muscle wasting 
via its effect on skeletal muscle cells. Many chemotherapy drugs, including the most prescribed drugs such as doxorubicin 
and cisplatin, affect ribosomal DNA transcription, or other pathways related to ribosome biogenesis. Furthermore, middle-
aged and older individuals are the most affected population with cancer, and advanced cancer patients often show reduced 
levels of physical inactivity. Thus, aging and inactivity can themselves affect muscle ribosome biogenesis, which can further 
worsen the effect of chemotherapy on skeletal muscle ribosome biogenesis and, ultimately, muscle mass and function. We 
propose that chemotherapy can accelerate the onset or worsen cancer cachexia via its inhibitory effects on skeletal muscle 
ribosome biogenesis. We end our review by providing recommendations that could be used to ameliorate the negative effects 
of chemotherapy on skeletal muscle ribosome biogenesis.
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Introduction

Cancer is the second most fatal disease in the United States 
[1] and a leading cause of death worldwide [2]. Although 
cancer can affect almost all tissues, a primary tumor or 
metastasis in skeletal muscle is a very rare condition [3]. 
Despite the fact that skeletal muscle is rarely a tumori-
genic site, cancer in other tissues can often affect muscle 
profoundly. Patients with advanced stage cancer may suf-
fer from cachexia, a wasting syndrome in which there is a 
marked loss of skeletal muscle mass with or without loss of 

body fat as well as increased fatigue, weakness and poten-
tially developing anemia [4].

Early diagnosis of cancer cachexia is an important factor 
towards positive outcomes, as late-stage cachexia is gener-
ally considered untreatable [5]. Hence, the concepts of pre-
cachexia (initial stage) and refractory cachexia (later stage) 
have been developed in the medical literature in an attempt 
to modify the course of the syndrome while still reversible 
[5, 6]. However, the criteria used to determine the stage of 
cachexia remains arbitrary and may lack validation under 
different clinical conditions [7, 8]. Nonetheless, there is a 
general consensus that a diagnosis of cancer cachexia at an 
early stage enhances the ability to effectively treat the condi-
tion [6]. Hence, understanding the molecular mechanism of 
skeletal muscle wasting associated with cachexia is of the 
upmost importance towards developing strategies to mitigate 
or prevent cancer cachexia. Also, a greater understanding of 
the other factors that synergistically operate to worsen can-
cer cachexia will lead to the development of more effective 
therapeutic approaches to treat cachexia.
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Chemotherapy is often used to treat cancer. However, 
many chemotherapy drugs can also affect skeletal muscle, 
contributing to the development of cancer cachexia [9–12]. 
Chemotherapy drugs are able to target cancer cells because 
their high rate of proliferation which is heavily dependent on 
ribosome biogenesis to provide the necessary translational 
capacity to support growth [13, 14]. As such, many chemo-
therapy drugs aim to damage DNA to induce apoptosis [15, 
16], while many others directly target ribosome biogenesis 
to slow or blunt cell growth and proliferation. A growing 
body of evidence has revealed that ribosome biogenesis 
has a central role in the regulation of skeletal muscle mass 
[17] in addition to other cellular and molecular mechanisms 
[18]. By targeting ribosome biogenesis via chemotherapy, 
we propose that not only tumor cells are gravely affected 
but also skeletal muscle tissue, which further exacerbates 
cancer cachexia progression. The purpose of this review is 
to bring attention to the notion that targeting ribosome bio-
genesis to inhibit cancer growth is inadvertently contributing 
to cachexia by enhancing the loss of skeletal muscle while 
likely blunting therapeutic efforts to restore or prevent fur-
ther decreases in skeletal muscle mass and function.

Cancer cachexia

Cancer cachexia is a highly prevalent condition among 
advanced cancer patients [19]. Cancer cachexia is viewed 
as a wasting syndrome in which patients lose a dispropor-
tionate amount of muscle tissue which is tightly linked to a 
poor prognosis [4]. Accordingly, a high proportion of can-
cer patients die as the result of cachexia or with cachexia 
[19]. The significant loss of skeletal muscle mass observed 
in advanced cancer patients leads to a corresponding loss 
of muscle strength, an increase in disabilities, decrease in 
the quality of life and is a predictor of poor prognosis and 
mortality [4, 20–24]. The degree of muscle loss in cancer 
patients affects the survival curve compared to patients with 
stable or minor muscle loss [12, 25]. Therefore, the progres-
sive loss of skeletal muscle mass has been considered the 
most clinically relevant aspect of cachexia [5].

It is well established that muscle strength is a predictor of 
all-cause mortality in the general population [26–28]. Similar 
relationship has also been observed among cancer patients. 
Muscular strength has been negatively associated with cancer 
mortality [22], regardless of the level of cardiorespiratory fit-
ness or adiposity [20, 21]. Additionally, a significant decrease 
in skeletal muscle mass has been found to be an independent 
predictor of poor prognosis in cachectic patients [24] and asso-
ciated with increased risk of mortality in cancer survivors [23]. 
Similarly, patients with lower muscle mass are more likely 
to experience toxicity from chemotherapy [29, 30], possibly 
by lowering drug uptake in skeletal muscle, making it more 

available for other tissues. Thus, muscle loss in cachectic 
patients predicts increased toxicity to chemotherapy and mor-
tality [4].

Although a clear association between the reduction in skel-
etal muscle mass and increased mortality in cancer patients has 
been observed, it has been viewed as a merely indirect feature 
of poor health or an end-of-life condition [4], i.e., diseases 
lead to wasting in many tissues including skeletal muscle. 
This concept was elegantly tested by Zhou et al. [31]. These 
researchers treated tumor-bearing mice with soluble ActRIIB 
(Activin receptor IIB) to promote muscle growth by blocking 
the pro-muscle wasting myostatin and activin A signaling. As 
expected, the vehicle-control group developed cancer cachexia 
as the result of progressive muscle wasting and was associ-
ated with higher mortality rates. In contrast, administration 
of soluble ActRIIB prevented the loss of muscle mass and 
significantly increased life span, despite there being no effect 
on tumor size. These findings provide strong pre-clinical evi-
dence that muscle mass has a direct and independent effect on 
life span in cachexia, as shown in population-based studies 
[23, 24, 32].

There are several candidates that have been thought to play 
a role in the development of cancer cachexia, such as inflam-
matory cytokines (e.g., Tumor Necrosis Factor (TNF)-α and 
Interleukin-6), and myokines (e.g. myostatin), which appears 
to be more or less relevant depending on the type of cancer 
[33]. Regardless of the primary molecule (or molecules) trig-
gering muscle loss, muscle wasting associated with cachexia 
has been primarily explained by increased protein degradation 
rates [34–37] and/or decreased rates of muscle protein synthe-
sis [35–39] that results in a negative muscle protein balance. 
A lower level of ribosome biogenesis and subsequent reduced 
translational capacity (total quantities of ribosomes) could be 
a key factor underlying the decrease in skeletal muscle protein 
synthesis. In a mouse model of cancer cachexia using colon-
26 tumor cell line, a loss of ribosomal RNA was observed in 
skeletal muscle [40]. Similarly, in a mouse model of ovarian 
cancer, which causes rapid muscle wasting, ribosomal content 
is markedly reduced, which was explained by lower muscle 
ribosome biogenesis [41]. These recent findings provide clear 
evidence that ribosome biogenesis and translational capac-
ity are negatively affected during cancer cachexia. It is likely 
that the lower protein synthesis rates in skeletal muscle with 
cachexia is, at least partially, explained by lower ribosome 
biogenesis.

Cancer is often associated 
with dysregulation of ribosome biogenesis

A common denominator among different types of cancer is 
the dysregulation of cell proliferation as the result of defec-
tive cell-cycle check points [42–45]. This includes proteins 
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involved in cell-cycle progression, such as pRB, c-Myc, 
cyclin-dependent kinases (Cdks) and their cyclin partners, 
which are frequently dysregulated [43, 44, 46]. Addition-
ally, proteins involved in biosynthetic pathways to support 
cell proliferation, such as PI3K, Akt, mTOR and TSC are 
also commonly dysregulated in cancer cells [47–50]. Each 
of these proteins and pathways converges upon a central 
point involved in the regulation of cancer cell proliferation: 
ribosome biogenesis. Ribosome biogenesis is the de novo 
synthesis of ribosomes, in which the ribosomal DNA is tran-
scribed by RNA Polymerase I (Pol I) to produce the precur-
sor 47S pre-rRNA. The pre-rRNA is, in turn, processed into 
the mature ribosomal (r)RNAs (18S, 28S and 5.8S) which 
along the 5S rRNA (transcribed by the RNA Polymerase 
III) and ~ 80 ribosomal proteins forms the mature ribo-
some (for reviews detailing this process, there are excellent 
reviews available [51–53]). The synthesis of new ribosomes 
is essential for cancer cells and is the basic mechanism sup-
porting cell proliferation and tumorigenesis [46, 54–58]. 
Thus, not surprisingly, drugs that target the nucleolus (the 
primarily nuclear site of ribosomal DNA transcription) and 
ribosome biogenesis have been shown to be a powerful tool 
against a wide range of cancer types [46, 52, 55, 58–64]. 
Simply put, inhibiting ribosome biogenesis will prevent or 
dramatically slow cell proliferation and thus severely limit 
subsequent tumor growth. Many drugs routinely prescribed 

in chemotherapy, such as cisplatin, doxorubicin and metho-
trexate, act at different steps of ribosome biogenesis (either 
transcription of ribosomal DNA and/or processing of ribo-
somal RNAs) [58], in addition to ribosome maturation and 
assembly (Fig. 1).

Furthermore, drugs that affect upstream pathways lead-
ing to rDNA transcription or other steps, such as synthesis 
of ribosomal proteins, can also reduce ribosome biogenesis. 
Akt regulates ribosome biogenesis through mTOR-depend-
ent and -independent mechanisms [65], and mTOR regulates 
the synthesis of the ribosomal proteins and pre-rRNA syn-
thesis [66]. c-Myc is involved in ribosome biogenesis at mul-
tiple steps, such as synthesis and processing of pre-rRNA as 
well as the transcription of ribosomal proteins mRNAs [67, 
68]. Thus, drugs that inhibit Akt (such MK-2206 [69, 70], 
and mTOR (rapamycin and other rapalogs) [71, 72] have 
also been used to treat cancer (Fig. 1).

Another promising cancer target is RNA Polymerase I 
itself. Pol I is the dedicated enzymatic complex that tran-
scribes rDNA, as stated above. Several proteins and tran-
scription factors, such as the Upstream Binding Factor 
(UBF), the TIF-IA/RRN3, Selectivity Factor 1 (SL-1), act 
together to recruit the Pol I forming the Pre-Initiation Com-
plex (PIC) to the rDNA promoter region. In the last few 
years, several molecules have been identified to target Pol I. 
The compounds CX-3543 [73], CX-5461 [74, 75], BMH-21 
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Fig. 1  Chemotherapy drugs affect ribosome biogenesis at multiple 
levels. Ribosome biogenesis supports cancer cell growth and prolif-
eration, hence, it is a common target of many chemotherapy drugs. 
Chemotherapy drugs may affect ribosomal DNA transcription, Pol I 

activy, pre-rRNA processing and maturation into mature ribosomes. 
Some drugs may affect translation of ribosomal and growth-related 
proteins, also affecting ribosome biogenesis
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[76], and PMR-116 have been shown to have anti-cancer 
effects likely due to its interaction and inhibitory effect on 
the PIC formation and inhibition of rDNA transcription [77]. 
These drugs have the potential to directly target ribosome 
biogenesis and slow cancer progression. Indeed, CX-5461 
has already been tested in a human clinical trial [78] with 
others scheduled to follow [77]. However, the effects of 
drugs that inhibit Pol I, on healthy tissues such as skeletal 
muscle, remain largely unknown.

Ribosome biogenesis in skeletal muscle

Given that the pathways involved in regulating cell growth 
are highly conserved, it comes as no surprise that many of 
cancer growth pathways have been shown to be involved 
in the regulation of skeletal muscle mass, hypertrophy in 
particular. For instance, the classical oncogenes c-Myc [79, 
80] and Akt [81–83] have been shown to either be involved 
or sufficient to induce muscle growth. The mTOR complex 
I (mTORC1), as well, has been shown to be master regula-
tor of cancer and myofiber hypertrophy [84]. The mTORC1 
pathway is often dysregulated in cancer, thus the use of 
rapamycin to block mTOR activity has been extensively 
evaluated for treating certain types of cancer [47]. In skeletal 
muscle, rapamycin has been also widely employed to block 
muscle growth induced by resistance exercise or mechanical 
loading, demonstrating a requirement for mTOR signaling 
[82, 85–87].

Furthermore, in the last few years, ribosome biogenesis 
has emerged as a central process in skeletal muscle growth 
[17, 88, 89]. The synthesis of new ribosomes enhances the 
translational capacity of myofibers [17]. Both rodent models 
of hypertrophy and resistance training in humans have been 
shown to increase ribosomal DNA transcription with the 
subsequent accumulation of ribosomes [79, 90–94]. Moreo-
ver, similar pathways involved in the regulation of ribosome 
biogenesis discovered in cancer cells, are also upregulated 
following mechanical overload/resistance exercise which 
include canonical hubs such as mTORC1, MAPK, c-Myc 
and cell-cycle regulators, such as Cyclin D1 [17].

Lower ribosome biogenesis and reduced translational 
capacity have also been reported to occur during muscle 
wasting [95, 96] and growth impairment [97, 98]. Further-
more, the increase in ribosomal mass is also a critical deter-
minant for the recovery from malnutrition during postna-
tal muscle development [99]. A growing body of evidence 
demonstrate that ribosome biogenesis is not only impor-
tant for muscle hypertrophy but may also be an underlying 
mechanism in the maintenance of muscle mass [96, 100]. 
The shared canonical growth pathways between cancer cells 
and muscle tissue, provides a plausible mechanism for how 
chemotherapy negatively impacts skeletal muscle. Attempts 

to mitigate the loss of skeletal muscle mass in cancer 
cachexia when a patient is receiving chemotherapy known 
to target ribosome biogenesis will likely become more diffi-
cult precisely because the pathways and cellular process that 
dictates muscle growth will be targeted by such compounds.

Chemotherapy that targets ribosome 
biogenesis causes muscle atrophy

The cytotoxic use of chemotherapy seeks to specifically 
target cancer cells based on their high rate of cell prolifera-
tion via the cell cycle to prevent cell growth, mitosis and/or 
induce apoptosis. However, often chemotherapy leads to a 
variety of side-effects due to the uptake and accumulation of 
the drug by healthy tissues [101]. Indeed, in some cases, the 
uptake of a chemotherapy drug is higher in normal healthy 
tissue than in tumor tissue. This can be especially true for 
solid tumors with a significant distance from blood vessels 
[102]. Accumulation of chemotherapy drugs and its metabo-
lites can occur in many tissues and organs, such as liver, 
kidney, heart and skeletal muscle [103, 104]. While other 
tissues, in particular, liver and kidney, have been shown to 
display higher concentration of chemotherapy drugs, skel-
etal muscle also shows significant accumulation of these 
compounds [103, 104]. As the most abundant tissue in the 
body with a large surface area and highly vascularized, the 
uptake of chemotherapy drugs by muscle cells cannot be 
disregarded. In addition to the natural progression of cancer 
cachexia, chemotherapy may further exacerbate cachexia [9, 
10]. Indeed, chemotherapy often leads to substantial muscle 
loss [105, 106], and sequeales related to muscle function and 
fatigue persist for months after cessation of chemotherapy 
[107].

Doxorubicin—a potent and highly prescribed anti-tum-
origenic drug—is one of the most studied chemotherapy 
drugs on skeletal muscle physiology. Doxorubicin and its 
metabolites can accumulate for long periods in skeletal and 
cardiac muscle [108–110] leading to loss of muscle strength 
[108] and increase in fatigue. In rats, doxorubicin causes a 
decrease in muscle fiber size and muscle mass [111]. The 
main mechanism of action of doxorubicin is through inhibi-
tion of DNA Topoisomerase II [112], which directly inter-
acts with RNA Polymerase I [113]. Indeed, doxorubicin 
inhibits ribosome biogenesis in cancer cells [58]; therefore, 
it is possible that the detrimental effects of doxorubicin may 
be driven by blunting ribosome biogenesis in muscle tissue, 
thereby further promoting cachexia. There is evidence from 
a cell culture study that doxorubicin treatment decreases 
rates of protein synthesis in skeletal muscle cells [114], 
which could be explained by its inhibitory effects on ribo-
some biogenesis.
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Importantly, the detrimental effects of chemotherapy 
on skeletal muscle mass not only impact muscle function, 
strength, quality of life but also may affect mortality rates. 
Blauwhoff-Buskermolen et al. [25] analyzed the changes in 
muscle mass in addition to the survival rates in advanced 
cancer patients undergoing chemotherapy. After 3 months, 
there was a significant decrease in muscle mass (1.7 kg in 
men and 1.1 kg in women). Moreover, patients with the 
highest muscle loss (≥ 9% muscle loss) had significantly dif-
ferent survival curve compared to patients that showed stable 
or minor muscle loss. It is noteworthy that the vast majority 
of those patients were receiving a pro-drug that is converted 
to 5-fluorouracil and oxaliplatin, which both are known to 
effect cancer cells by inhibiting ribosome biogenesis [58, 
115]. Other combinations of different chemotherapy drugs 
that target ribosome biogenesis, such as cisplatin, fluoroura-
cil, paclitaxel and etoposide also result in substantial muscle 
loss within a few weeks [116]. As a comparison, drugs that 
do not act on ribosome biogenesis, appears to have minor, if 
any, effect on skeletal muscle mass. Gemcitabine, a chemo-
therapy drug does not appear to affect ribosomal DNA tran-
scription alone [117, 118] has little or no effect after eight 
weeks of treatment on lean mass [119]. Gemcitabine’s main 
mechanism of action is through inhibition of DNA synthesis 
[120], having greater effect on inhibiting DNA synthesis 
than RNA synthesis [121]. Interestingly, Selumetinib—an 
MAPK inhibitor—is one of the few chemotherapy drugs 
that may actually have beneficial effects on skeletal muscle 
mass [122, 123]. While its mechanism of action in muscle is 
currently unknown, it is a promising drug to treat sensitive 
tumors while possibly having a beneficial effect on cancer 
cachexia by preserving skeletal muscle mass [122, 123].

It is important to highlight that chemotherapy drugs could 
affect muscle ribosome biogenesis indirectly, in addition to 
the direct mechanism described here. Chemotherapy and 
cancer itself can reduce appetite and protein intake [124]. 
Given that sufficient protein and caloric intake is impor-
tant for muscle mass maintenance [125, 126], the anorexi-
genic effects of chemotherapy can further impact muscle 
anabolism. Protein and amino acids, especially leucine, is a 
known modulator of protein synthesis, via the mTOR path-
way. Leucine and protein intake has been shown to modulate 
the muscle ribosome biogenesis response to exercise [127, 
128], and mTOR can directly regulate muscle ribosome bio-
genesis [129]. Therefore, in addition to directly targeting 
rDNA transcription, it is possible that reduced protein/amino 
acid intake due to loss of appetite also impacts muscle ribo-
some biogenesis and further exacerbates muscle loss during 
chemotherapy.

Recently, a new drug that targets RNA Polymerase I (Pol 
I) transcription activity—CX-5461—has been tested [60, 
130, 131]. CX-5461, and other similar drugs targeting Pol I, 
such as CX-3543 and BMH-21, have been shown to reduce 

tumor growth in vitro and in vivo [73, 75, 130–133]. How-
ever, these drugs will also target RNA Pol I in muscle cells. 
CX-5461 has been recently shown to block rDNA transcrip-
tion leading to impaired muscle growth in tissue culture [93, 
129]. Hence, although the results on cancer growth appear 
promising, we are particularly concerned that chemotherapy 
drugs that targets Pol I activity in cancer cells, will also 
affect ribosome biogenesis in healthy tissue, specifically 
in skeletal muscle. The long-term effects of chemotherapy 
drugs on skeletal muscle are not well understood, and clearly 
warrants further research.

Physical inactivity further inhibit muscle 
ribosome biogenesis

A meta-analysis showed that recreational physical activity 
overall reduces cancer mortality in the general population in 
a dose-dependent way [134], and in cancer survivors [134, 
135]. Whereas increased physical activity is protective, inac-
tivity has also been linked to increased mortality risk among 
cancer patients [136]. We recently proposed that a minimal 
amount of physical activity is required to maintain ribosome 
biogenesis and translational capacity [100], which may help 
explain the relationship between physical activity, muscle 
maintenance and survival among cancer patients. Advanced 
cancer patients often show significantly lower levels of daily 
physical activities for various reasons such as bed rest from 
surgery and hospitalization, or increased fatigue and percep-
tion of effort from simple daily tasks [137, 138]. It is well 
established that repeated muscle disuse events can result 
in rapid muscle loss [139]. We recently demonstrated that 
muscle disuse rapidly reduces skeletal muscle ribosome bio-
genesis, preceding muscle loss [100]. Within several hours 
to a single day, it is already possible to detect lower lev-
els of rDNA transcription in the mouse soleus muscle that 
is associated with decreased protein synthesis [100, 140]. 
In addition to ribosome biogenesis, ribosome degradation 
(possible via ribophagy) can further negatively affect trans-
lational capacity in skeletal muscle. Indeed, bouts of disuse 
robustly increased ribosome degradation rates in skeletal 
muscle [100].

Combined, chemotherapy and muscle disuse may exac-
erbate or accelerate the onset of muscle wasting, which 
we hypothesized is due to an even greater negative effect 
on muscle ribosome biogenesis than the effects of cancer 
cachexia alone. Furthermore, muscle disuse can also affect 
ribosome degradation which further reduce translational 
capacity. The detrimental effect on ribosome biogenesis 
and degradation impairs translational capacity in muscle 
cells, which, we argue may be part of the persistent anabolic 
resistance, in which muscle lost is not easily regained. We 
hypothesize that the refractory state [141], where muscle lost 
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is difficult to regain is partially due to a loss of ribosomal 
content as a result of impaired ribosome biogenesis during 
chemotherapy. Our data also demonstrate that during return 
to ambulation, rats restore ribosome biogenesis and muscle 
ribosomal mass. We further speculate that cancer patients 
may have an impaired ability to respond to an increase in 
activity due to a lower capacity to restore ribosome biogen-
esis precisely due to chemotherapy treatment.

Older population is more likely to suffer 
from cancer and muscle loss

Although cancer can develop at any age, the majority of 
cancer patients are found among middle-aged and elderly 
population (above 55 years old) [142, 143]. The incidence 
of invasive cancer is predominantly among persons of 
55–85 years of age [143]. The elderly are already a cohort 
of the population vulnerable to muscle loss [144]. Sarcope-
nia, the loss of skeletal muscle mass with aging, is highly 
prevalent among men and women over 60 years old [145]. 
This adds another layer of complexity into the relationship 
between cancer, chemotherapy and skeletal muscle. Older 
individuals, with—or in the process of developing—sarco-
penia, presenting lower levels of physical activity with treat-
ment with chemotherapy drugs targeting ribosome biogen-
esis may pose a significant additional burden on the ability 
of skeletal muscle to maintain size.

Initially, different studies have suggested that aging 
decreases rates of basal muscle protein synthesis [146, 
147], while others did not find such effect [148–150]. More 
recently, the underlying mechanism leading to the progres-
sion of sarcopenia has been suggested to be the result of 
‘anabolic resistance’, which is the impaired response of 
muscle (particular muscle protein synthesis) to an anabolic 
stimulus (exercise and nutrition) [151]. Indeed, it appears 
that older individuals may require twice the recommended 
amount to protein just to maintain muscle mass [125, 152]. 
Also, it has also been proposed a “catabolic crisis”, in which 
acute events of muscle disuse in the elderly (hospitalization, 
bed rest, etc.) reduces muscle protein synthesis accelerating 
muscle atrophy [153]. Furthermore, ribosome biogenesis, 
in particular the response to an anabolic stimulus, has also 
been implicated in anabolic resistance observed with aging 
[154–156]. Hence, the initiation and progression of sarcope-
nia are multifactorial and likely have more than one under-
lying molecular mechanism which may involve ribosome 
biogenesis and muscle protein synthesis, whether at rest and/
or in response to exercise or nutrition.

Most of the mechanisms thought to explain the progres-
sion of sarcopenia, combined or individually, will potentially 
be affected by chemotherapy [124]. In particular, chemother-
apy, as stated here, can affect muscle ribosome biogenesis, 

which may further accelerate sarcopenia. Thus, entering the 
middle-age with “reserve” muscle mass may be an important 
ally to counterattack the detrimental effects of chemother-
apy and cancer cachexia on physical disabilities. We believe 
that promoting exercise programs that are focused in muscle 
mass gains during middle-age, have the potential to improve 
life-span and health-span in the elderly.

Promoting muscle ribosome biogenesis 
to countermeasure cachexia

As proposed herein, targeting ribosome biogenesis in cancer 
patients via chemotherapy is counterproductive for efforts 
directed at minimizing additional loses in skeletal muscle 
during cachexia. Naturally, the primary goal of chemother-
apy is to eradicate cancer cells or mitigate tumor growth. 
However, since skeletal muscle is one of the primary tis-
sues involved in the development and progression of cancer 
cachexia, with direct effects on patient toxicity and survival 
rates, we posit that skeletal muscle health must be taken into 
consideration in the treatment of cancer.

The trio—chemotherapy, physical inactivity and aging—
may have combined effects on skeletal muscle ribosome 
biogenesis and ribophagy, leading to muscle loss and per-
sistent difficulty in restoring muscle mass in cancer patients, 
worsening cancer cachexia (Fig. 2). So far, the best-known 
tool to promote of muscle ribosome biogenesis is exercise, 
particularly resistance training. However, increasing physi-
cal activity alone or avoiding sedentary lifestyle is already 
beneficial to muscle and overall health. Physical activity pro-
motes positive changes in quality of life, such as improved 
fatigue resistance among cancer patients [157–160]. Fur-
thermore, physical activity has also been associated with 
improved survival rates among cancer patients [161, 162].

However, whenever possible, cancer patients should be 
directed to resistance training programs aiming to gain mus-
cle mass to counterattack the detrimental effects of the afore-
mentioned trio on muscle translational capacity. Because 
resistance training has been shown to promote muscle ribo-
some biogenesis in healthy humans [92, 93, 156, 163, 164], 
resistance exercise can be an effective strategy to counteract 
the inhibitory effects of chemotherapy on muscle specifically 
regarding muscle ribosome biogenesis. Resistance training 
increases muscle strength in cancer patients [157, 165, 166], 
cancer survivors [167, 168], even in those undergoing chem-
otherapy [169, 170]. Additionally, resistance training also 
helps maintain or increase lean mass/muscle size in cancer 
patients [106, 171–173]. Hence, resistance training can be 
a treatment to restore or prevent the further loss of muscle 
mass in cancer patients while undergoing chemotherapy.

Indeed, both physical activity and resistance training 
has been recommended for cancer patients [21, 158, 174]. 
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High-intensity resistance exercise has been shown to be 
well tolerated in advanced stage cancer patients undergo-
ing chemotherapy [170]; however, this may require further 
assessment regarding disease stage. Even though exercise 
is generally well tolerated and guidelines have been for-
mulated to assist oncologist in the prevention or treatment 
of disabilities in cancer patients [174], its prescription has 
been neglected among oncologists for some types of can-
cer [175]. Although that is not without reasoning, since it 
appears that the risk-to-benefit ratio has not been deline-
ated enough to provide oncologists with a high-level of 
evidence to endorse safe prescription of resistance exer-
cise [175]. That is especially true for unsupervised exer-
cise [175]. However, this could be overcome by proper 
pre-exercise screening, individualized prescription [176], 
supervised training [177], and development of exercise 
facilities where cancer patients have proper supervision 

by trained staff when patients require closer care during 
exercise [174, 175].

In addition to avoiding physical inactivity behavior and 
prescribing resistance training as tools to promote mus-
cle mass in cancer patients undergoing chemotherapy, 
we hope that this review bring the perspective of muscle 
ribosome biogenesis into cancer treatment and, perhaps in 
the future, be part of the drug selection criteria. While a 
chemotherapy drug that affects ribosome biogenesis may 
be well tolerated in non-cachectic patients, cachectic or 
pre-cachetic patients may benefit more from chemotherapy 
that does not affect directly ribosome biogenesis, which 
the benefits on muscle mass may outweigh the potential 
benefits on the tumor. Drugs that have no direct effect on 
ribosome biogenesis, such as Gemcitabine or Selumetinib, 
may be an option. Chemotherapy prescription is complex 
and depends on a variety of factors [178]; however, the 

Fig. 2  Blocking ribosome biogenesis can blunt cell growth in tumor 
and muscle tissue. Chemotherapy drugs, such as RNA Pol I inhibi-
tors, can blunt rDNA transcription in both cancer and muscle cells. 
Other risk factors, such as aging/sarcopenia and physical inactivity 
will further impact negatively on muscle ribosome biogenesis. These 
factors can decrease translation capacity on muscle via decreased 
ribosome biogenesis combined with the effect of physical inactiv-

ity on ribophagy. Resistance training and physical activity can be 
alternative strategy to drive ribosome biogenesis specifically in mus-
cle tissue which can help mitigate the detrimental effects of chemo-
therapy and cancer on skeletal muscle. This figure was created using 
graphic elements from Servier Medical Art (https:// smart. servi er. 
com/)

https://smart.servier.com/
https://smart.servier.com/
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mechanism of action of a particular chemotherapy drug 
may be important to take in consideration depending on 
the patient health conditions, i.e., drugs targeting cancer 
cells via ribosome biogenesis may impact muscle mass and 
patient ability to recover muscle mass. Novel treatments 
are clearly required to treat muscle wasting and we think 
targeting skeletal muscle ribosome biogenesis should be 
a key factor for these endeavors.

Conclusion and future directions

Treating cancer via chemotherapy drugs can lead to robust 
detrimental effects in advanced cancer patients that may 
lead to severe sequelae. Treating cancer cachexia is a 
major challenge that must be addressed to prevent skeletal 
muscle mass loss and physical disabilities, and improve 
of quality of life [4]. In fact, treating muscle mass loss 
may increase survival and life span in cancer patients. 
Future studies should address whether targeting ribosome 
biogenesis via chemotherapy may actually turn out to be 
counterproductive to survival rates in cachectic patients. 
Chemotherapy in those patients should be carefully evalu-
ated to avoid further loss of muscle mass, for instance, a 
chemotherapy that targets Pol I and ribosome biogenesis 
will also affect skeletal muscle. The combination of chem-
otherapy, aging and physical inactivity may further affect 
muscle ribosome biogenesis and the capacity of muscle 
cells to maintain adequate protein synthesis, leading to 
muscle wasting. Whenever possible, patients should be 
counseled to perform exercise to mitigate loss of muscle 
mass and its maintenance, as resistance exercise training 
is the only strategy currently known to promote skeletal 
muscle ribosome biogenesis specifically and solely in 
skeletal muscle. Pre-cachectic patients should be directed 
towards program that aim for muscle hypertrophy. It would 
be beneficial that cancer patients start a resistance exercise 
training program before chemotherapy treatment, main-
tained during chemotherapy, and following chemotherapy 
to recover loss of muscle mass. A future therapeutic chal-
lenge will be to design more efficient modes of delivery 
to minimize the uptake of chemotherapy drugs by skel-
etal muscle and other healthy tissues in combination with 
novel drugs that selectively promote ribosome biogenesis 
in skeletal muscle.
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