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Abstract
GWAS involves testing genetic variants across the genomes of many individuals of a population to identify genotype–
phenotype association. It was initially developed and has proven highly successful in human disease genetics. In plants 
genome-wide association studies (GWAS) initially focused on single feature polymorphism and recombination and link-
age disequilibrium but has now been embraced by a plethora of different disciplines with several thousand studies being 
published in model and crop species within the last decade or so. Here we will provide a comprehensive review of these 
studies providing cases studies on biotic resistance, abiotic tolerance, yield associated traits, and metabolic composition. 
We also detail current strategies of candidate gene validation as well as the functional study of haplotypes. Furthermore, we 
provide a critical evaluation of the GWAS strategy and its alternatives as well as future perspectives that are emerging with 
the emergence of pan-genomic datasets.
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Genome‑wide association studies (GWAS)

It was reported on 11 January 2019 that for humans 3730 
GWAS studies had been published with a total of 37 730 sin-
gle nucleotide variations and 52 415 unique SNV-trait asso-
ciations above a genome-wide significance threshold [1, 2]. 
Analysis of the staggering increase in the number of associa-
tions in the time-lapse figure on the GWAS catalog website 
(https://​www.​ebi.​ac.​uk/​gwas/) suggests that these numbers 
have likely increased at least threefold demonstrating the 
tremendous uptake of this method in recent years. Indeed, as 
evidenced by the numbers given above since the first GWAS 
for age-related macular degeneration was published in 2005 
[3], well over 50 000 associations of genome-wide signifi-
cance (P < 5 × 10–8) have been reported between genetic 
variants and common diseases and traits [1]. Among these 

studies risk loci for a vast number of diseases and traits, 
including anorexia nervosa [4], body mass index [5], cancers 
and their sub-types [6, 7], coronary diseases [7], inflamma-
tory bowel disease [8], insomnia [9], type 2 diabetes mellitus 
[10], and schizophrenia [11], have been reported. Indeed, 
the number of replicable associations is now dramatically 
higher than those available in the pre-GWAS era [12]. The 
rapid uptake of GWAS in plants is similar. Indeed, since 
early studies on flowering time and pathogen resistance [13], 
single feature polymorphism [14], and recombinant and link-
age disequilibrium [15], well over 1000 GWAS studies have 
now been published in plants [16, 17]. The data from many 
of these have subsequently been uploaded to the AraGWAS 
catalog database [18]. In this article we will provide a review 
of these studies in plants splitting them into four major cat-
egories: (1) biotic resistance, (2) abiotic tolerance, (3) yield 
associated traits, and (4) metabolic composition. We will 
document strategies of validation and cross-validation and 
outline how results from these studies are being exploited 
both as a route by which to gain mechanistic understanding 
of various biological processes and one to improve agricul-
ture. Finally, we outline alternatives to the GWAS approach 
as well as providing a prospective for its future application. 
However, before doing so we feel it highly important to pro-
vide a brief overview of the technique itself.
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The GWAS approach

The aim of GWAS is exceedingly simple—namely to 
detect association between allele or genotype frequency 
and trait status. The first step of such analysis is to iden-
tify the traits to be scored and select an appropriate study 
population considering both the size of the population and 
the amounts of genetic and trait variance that it possesses 
(Fig. 1). Depending on whether using a novel population 
or one that is already well studied genotyping may or may 
not be necessary. It can be carried out using single nucleo-
tide polymorphism (SNP) arrays combined with imputa-
tion [19] or via whole-genome sequencing [2]. Associa-
tion tests are then used to identify genomic regions that 
associate with the variance of the phenotype of interest at 

genome-wide significance with meta-analysis often used 
to increase the statistical power to detect associations. The 
first GWAS was performed by Klein et al. [3], who identi-
fied a variant of the Complement Factor H gene as being 
strongly associated with age-related macular degeneration. 
Within the last 15 years it has been powerful in dissect-
ing the genetic basis for variation in a range of complex 
phenotypes including disease in humans and animals and 
physiological and agronomic traits in plants [20–26]. That 
said population structure and unequal relatedness between 
individuals can result in spurious associations and thereby 
false discoveries. To combat this problem considerable 
effort has been made to statistically account for population 
structure [27, 28]. For example, in mixed linear models 
(MLM), population stratification is fitted as a fixed effect, 
while kinship among individuals is incorporated via the 
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variance–covariance structure of the random effect for 
the individual [29, 30]. Indeed the MLM method is now 
firmly established in GWAS since it has proven effective 
in correcting for the inflation of small genetic effects and 
controlling bias caused by population structure. Gener-
ally such models are carried out with single-locus test, 
however, multi-locus mixed models have been developed 
which perform well [31, 32]. While also commonly used 
single nucleotide polymorphism (SNP)-based GWAS suf-
fers from oft-overlooked interactions between SNPs within 
a gene and also weak signals aggregating within related 
SNP sets [33]. To limit such problems, haplotype-based 
GWAS and gene-based GWAS have been developed which 
has high statistical power to identify causal haplotypes 
and demonstrated to be able to identify new candidates 
for complex traits albeit being less capable of detecting 
QTL than SNP-based GWAS especially so for rare alleles 
[34–36]. All these methods are based on the assumption 
that phenotype and marked effects follow a normal dis-
tribution. Two further developments are worthy of note. 
The Anderson Darling test is a complementary method, 
which is particularly useful for moderate effect loci or rare 
variants and with abnormal phenotype distribution [37] 
while statistics-based fine-mapping strategies have also 
been developed [38].

Initial excitement surrounding GWA cooled considerably 
on the appreciation of the above-mentioned facts that GWAS 
loci often have small effect sizes and explain only a modest 
proportion of heritability [39]. However, this missing herit-
ability is, at least as long as large and varied populations as 
used, in fact rather small. What is clear is that the larger the 
population and the larger the number of SNPs the greater 
the chance of a successful result with empirical evidence 
demonstrating that for each complex trait there is a threshold 
sample size above which the rate of locus discovery accel-
erates in GWAS [40, 41]. It is important to note, however, 
that the value of biological insight gained from GWAS is 
in no way proportional to the strength of association, a fact 
that provides a strong argument for the value of finding sub-
tle associations in ever larger sample sizes [42]. As stated 
above genetic variants can be genotyped in many different 
ways but by far the most predominant are SNP arrays and 
whole-genome sequencing (see Fig. 1). Given the lower-
ing sequencing costs the latter is beginning to become more 
frequent. The advantages of SNP arrays, other than their 
lower costs are the fact that it is highly accurate with a well-
established pipeline for analysis. By contrast, although less 
accurate and more expensive whole-genome sequencing 
provides coverage also of rare variants and even if the sam-
ple size is large enough ultra-rare variants. In addition fine 
mapping is easier with whole-genome sequencing, however, 
these advantages come at the cost of higher computational 
costs including a higher multiple testing burden [2]. To 

offset some of the limitations of SNP-based GWAS sophis-
ticated tools for genotype imputation have been developed 
which allow genotypes or untyped variants to be predicted. 
If the size of the reference panel is large enough and a subset 
is well sequenced this imputation has been demonstrated to 
be highly reliable [43, 44]. Given this fact it is not surpris-
ing that both approaches currently retain utility. However, 
whole-genome sequencing is the gold standard in GWAS 
[45–47] and has the potential to resolve many of the limita-
tions of the method (for example the identification of missed 
signals, accounting for population stratification, identifica-
tion of ultra-rare mutations as well as gene–gene and gene-
environment interactions and to explain even more of the 
missing heritability). We will discuss this in detail when 
we compare GWAS with other strategies to link genotype 
with phenotype in Limitations of GWAS an alternative 
approaches to GWAS below. Having provided a general 
introduction to the approach above we will, use early case 
studies in Arabidopsis that span a wide range of phenotypic 
traits to illustrate it in detail below before providing a more 
comprehensive overview of its use in other species.

Early studies of GWAS in Arabidopsis

As for many studies in the last 40 years the initial appli-
cations of GWAS in plants were in Arabidopsis. The very 
earliest studies focused on single feature polymorphism [14] 
and recombination and linkage disequilibrium [15], but a 
far more diverse range of phenotypes have been studied in 
the interim. The study of Borevitz et al. used hybrization to 
a microrarray as a means to assess genomic DAN diversity 
of 23 ecotypes in comparison to the reference ecotype Col0 
allowing assessment of over 77 000 single feature polymor-
phisms [14]. Similarly, that of Kim et al. analyzed linkage 
disequilibrium in a sample of 19 Arabidopsis accessions 
using approximately 350 000 non-singleton SNPs dem-
onstrating the presence of clear recombination hotspots in 
intergenic regions [15]. Currently, in Arabidopsis results 
of > 400 GWAS covering an exhausting range of phenotypes 
are curated in the AraGWAS catalog [18]. To highlight a few 
recent studies we will focus on growth, metabolism, defense, 
and evolution of tolerance to abiotic stress [48–52]. Growth 
and metabolism have been evaluated in association with 
enzyme activities of primary metabolism [48], while pri-
mary [51] and secondary metabolite contents [49, 50] have 
also been studied via the use of metabolomics approaches. 
All of these studies have provided greater insight into the 
interplay between metabolism and growth on one hand and 
defense on the other [53], with both difference in the lev-
els of defense metabolites and altered alleles of ACCEL-
ERATED CELL DEATH6 suggesting a trade-off between 
metabolism and defense. Abiotic stress has also been much 
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studied in Arabidopsis populations with the recent tour-
de-force work of Exposito-Alonso representing a beautiful 
example of the power of this approach [52]. These authors 
evaluated 517 Arabidopsis ecotypes grown in Spain and 
Germany simulating high and low precipitation at each site 
quantifying survival and fecundity and thereafter perform-
ing a GWAS in the quantified selection coefficients. They 
observed that a significant proportion of the climate-driven 
natural selection was predictable form signatures of local 
adaptation since genetic variants were found in geographical 
areas with climates more similar to the experimental sites 
were positively selected. These data thus allowed them to 
forecast that with the increased frequency of drought and 
temperature in Europe such positive selection will sweep 
Northwards across Europe.

While the above studies represent impressive proof-of-
concept studies and additionally greatly refined our under-
standing of the genotype-to-phenotype interface [16], as we 
will detail in the following sections it has been adopted in 
cereal crops (rice [22, 54] maize [55, 56], wheat [57] and 
barley [58]) as well as soybean [59–61], cotton [62, 63], 
tomato [25, 26], cucumber [64, 65], sesame [66], peanut 
[67], peach [68], melon [69], tea [70], and lettuce [71, 72]. 
As we will elaborate in the next four sections, these stud-
ies, alongside the purpose-developed populations, catalogs 
of allelic variants, and corresponding genotype–phenotype 
associations, provide unprecedented resources for under-
standing crop functional genomics [33].

Adoption of GWAS in crop species (i) biotic 
resistance

 In the above section we have detailed some studies evaluat-
ing biotic stress in Arabidopsis. In crops this is of massive 
importance with 20–40% yield losses predicted to be caused 
by biotic interactions annually. While considerable success 
has been made by breeding efforts—notably the introgres-
sion of wild species alleles conferring resistance [73, 74]. 
Critically the collection of broad populations for, among 
others, the species listed above renders GWAS, an attractive 
approach for the identification of further genes of interest for 
this purpose. As can be seen in Supplementary Table 1, there 
are already a vast number of such studies covering many 
species. Here, we will highlight only the few summarized 
in Table 1.

Starting with studies in our major cereals we will describe 
two studies each for maize and wheat and one for rice 
before highlighting the possible value of this approach in 
two less studied crops. The first study in maize used the 
nested association mapping population to identify 32 QTL 
with small additive effects on southern leaf blight with 
many being within or near genes previously shown to be 

involved in plant disease resistance [56]. More recently, 
GWAS revealed that the F-Box protein ZmFBL41 which 
interacts with ZmCAD encoding the terminal enzyme of the 
monolignol pathway which if active restricts lesion expan-
sion [75]. Similarly, in a GWAS-based study in rice Li et al. 
found a natural allele of a C2-H2 type transcription factor 
that confers broad spectrum resistance. Haplotype analysis 
(which we will return to it below), revealed that this allele 
exists in 10% of accessions of rice. This allelic variance was 
associated to an inhibition of H2O2 degradation which the 
authors postulate is responsible for the observed resistance. 
In Emmer wheat stripe resistance loci that were associated 
with field resistance in multiple environments with more 
than half of these representing novel candidate genes that 
were not found in linkage mapping studies [76]. Meanwhile, 
a recent large-scale study in 2 300 bread wheat accessions 
was used to investigate leaf-, stem-, and stripe-rust diseases 
with both single- and multi-trait GWAS being applied [77]. 
Importantly, both studies revealed the utility of small effect 
QTL in achievement of durable resistance.

Of the less studied species, we would highlight two cas-
sava which is actually the fourth largest crop in terms of 
production globally [78] and pigeonpea an important small-
holder crop in India and Africa [79]. For cassava GWAS 
for cassava mosaic disease and cassava green mite severity 
were carried out identifying several novel and previously 
reported associations. For pigeonpea a pangenome was 
recently published based on 89 accessions and this will 
surely be a fantastic resource for future studies. Indeed, since 
so many natural populations are now established it would 
seem likely that their use as well as those of biparental and 
multi-parental populations will likely unlock resistance in a 
wide range of plant-pest combinations and as such will result 
in the achievement of durable resistance.

Adoption of GWAS in crop species (ii) abiotic 
tolerance

Similarly to the above studies aiming to generate more 
resistant plants considerable research and breeding efforts 
have been expended on identifying and utilizing allelic 
variance that confers tolerance to abiotic stresses. As can 
be seen in Supplementary Table 1, there are already a vast 
number of such studies covering many species. Here, we 
will highlight only the few summarized in Table 1 focus-
ing on water and salt stress as well as macronutrient and 
temperature stress. Arguably, the most important of these is 
drought stress with yield losses of > 50% being estimated to 
be due to this stress annually [80]. While water deficiency 
can devastate crop yields the opposite, i.e., flooding can 
have the same consequences. The development of varieties 
of rice that are tolerant of flooding is thus highly desirable. 
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The identification of haplotypes of the SEMIDWARF1 gene 
that facilitate this [81] presents an excellent example of the 
power of haplotype analysis following GWAS studies (an 
analysis type we will return to it below). Similarly in rice, 
salt stress has been much researched. Al-Tamanini et al. 
combined high throughput phenotyping of plant growth and 
transpiration with high-density genotyping if indica and aus 
diversity panels containing a total of 553 accessions [82]. 
This study identified a previously undetected loci for salt 

stress localizing to chromosome 11, thus, providing new 
insight into early responses to rice salinity and providing 
hints as to how breeding could alleviate this problem.

Given that nitrogen fertilizer is often over applied to fields 
often with catastrophic ecological consequences. There is, 
thus, a pressing need to develop crops exhibiting high nitro-
gen use efficiency to reduce fertilizer to move towards a 
more sustainable agriculture. Tang et al. recently identified 
the nitrate transporter OsNPF6.1 (HapB) as conferring high 

Table 1   List of selected genome-wide association studies in Arabidopsis and major crop plants

Expanded list is provided in Supplementary Table 1
* Number of QTLs, ** several associations,  +  experimental validation of the genes/s, − no experimental validation of the candidate genes or 
loci

Species (common name) Panel size [markers] Trait [associations] References Validation

Arabidopsis A. thaliana (Arabidopsis) 96 [200,000] Metabolites [**] [148] −
A. thaliana (Arabidopsis) 314 [199,455] Primary metabolites [117] [51]  + 
A. thaliana (Arabidopsis) 91 [4,000,000] Drought [**] [149] −
A. thaliana (Arabidopsis) 349 [214,051] Central metabolism and plant growth 

[131]
[48]  + 

A. thaliana (Arabidopsis) 309 [199,455] Darkness [123*] [49]  + 
A. thaliana (Arabidopsis) 517 [1,353,386] Environmental adaptation [6,660] [52]  + 

Metabolite QTL Z. mays (Maize) 513 [56,110] Specialized metabolites [16] [150]  + 
Z. mays (Maize) 368 [1,030,000] Metabolites [74*] [55]  + 
Z. mays (Maize) 368 [560,000] Metabolites [882*] [151] -
Z. mays (Maize) 282 [29,000,000] Specialized metabolites [**] [103] -
Z. mays (Maize) 368 [560,000] Lipid biosynthesis [139] [106] -
O. sativa (Rice) 529 [6,400,000] Metabolites [634] [152]  + 
O. sativa (Rice) 502 [3,900,000] Metabolites [105] [20]  + 
Solanum spp (Tomato) 398 [2,014,488] Flavor [251] [25]  + 
H. vulgare L. var. nudum (Tibetian 

Hulles Barley)
196 [19,248,055] Metabolites [90*] [58]  + 

L. sativa (Lettuce) 189 [16,611] Primary metabolites [154*] [153]  + 
Yield associated G. hirsutum (Cotton) 258 [1,871,401] Yield-related traits [119*] [62] −

G. max (Soybean) 809 [10,415,168] Agronomic traits [245*] [89] −
L. batatas (Sweet potato) 358 [33,068] Root-related traits [34] [91] −
O. sativa (Rice) 242 [700,000] Agronomic traits [10*] [88] −
P. vulgaris (Common bean) 683 [4,811,097] Yield associated traits [505*] [154] −

Biotic stress Z. mays (Maize]) 5,000 [1,600,000] Resistance to Southern Leaf Blight 
[245*]

[56] −

Z. mays (Maize) 318 [542,438] Rhizoctonia solani resistance [28] [75]  + 
G. max (Soybean) 330 [25,179] Sclerotinia sclerotiorum resistance 

[38]
[155] −

O. sativa (Rice) 67 [2,576] Blast resistance [36] [156]  + 
T. aestivum (Wheat) 2,300 [49,905] Rust resistance [161/33] [77] −
T. turgidum ssp, Dicoccum (Emmer 

Wheat)
176 [5106] Puccinia striiformis resistance [51*] [76] −

Abiotic stress O. sativa (Rice) 553 [304,877] Salinity tolerance [**] [82] −
O. sativa (Rice) 68 [27,192] Flooding tolerance [6*] [157]  + 
O. sativa (Rice) 1,033 [289,231] Cold tolerance [5*] [85]  + 
O. sativa (Rice) 117 [1,531,224] NUE-related agronomic traits [7] [83]  + 
Z. mays (Maize) 338 [56,110] Metabolites under low Pi [178] [84]  + 
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nitrogen use efficiency in a GWAS experiment conducted on 
a rice diversity panel [83] with haplotype analysis identify-
ing that this allele had been lost in over 90% of rice varieties. 
In a similar vein GWAS was used to investigate phosphate 
use efficiency in maize [84] with metabolomics being uti-
lized in this study to understand how metabolism is repro-
grammed under phosphate limitation. The combined work 
identified phosphoglucose isomerase activity to be a key 
determinant of phosphate use efficiency suggesting it to be a 
strong lead gene for lessening the need of P fertilization [84].

Extreme temperatures also often provoke deleterious 
effects on crop yield. For this reason, GWAS was recently 
applied to identify genes underlying cold tolerance in a large 
1033 accession rice diversity panel [85]. This study resulted 
in the identification of five cold tolerance related genetic loci 
with one loci LOC_Os10g34840 being deemed responsible 
for cold tolerance at the seedling stage with the cold tolerant 
allele being present in 80% of temperate japonica acces-
sions but only 3.8% of the indica accessions. By contrast, for 
high temperature tolerance, GWAS discovered genetic fac-
tors associated with four production traits in both heat and 
drought stress environments in common bean (Phaseolus 
vulgaris L.) [86].

Adoption of GWAS in crop species (iii) yield 
associated traits

Having addressed the use of association mapping in resist-
ance and tolerance of plants to biotic and abiotic factors, 
respectively, above it is important to note that considerable 
research effort has additionally been placed on elucidating 
the genetic basis of yield associated traits. As for the above 
traits we have listed several GWAS studies reporting yield 
associated traits in Table 1 and provide a more extensive list 
in Supplementary Table 1. An early study tested almost 5000 
lines from the maize NAM population described above to 
identify numerous small effect QTL with a simple additive 
model being able to predict flowering time [87]. In addition 
to flowering time, in rice panicle architecture is a key target 
of selection. A total of 49 panicle phenotypes were recently 
assessed in 242 tropical rice accessions allowing the iden-
tification of ten GWAS peaks but also demonstrating subtle 
links between panicle size and yield performance [88]. The 
complexity of agronomic yield was similarly underlined by a 
study of 84 agronomic traits in a panel of 809 soybean acces-
sions with many of the loci exhibiting complex pleiotropic 
effects [89]. In upland cotton a GWAS identified two ethyl-
ene pathway related genes as associated with increased lint 
yield with an analysis of population frequencies revealing 
that the majority of the elite alleles detected were transferred 
from a mere three founder landraces [62]. Such analyses are 
not restricted to cereals with analysis even being carried out 

in long lived species such as Populus trees [90], as well as 
sweet potato [91] and GWAS confirming the Lin5 associa-
tion with agronomic yield in tomato [25] that had previously 
been identified by linkage mapping [92]. It is perhaps not 
unexpected that the QTL for yield associated traits seem 
generally not to be conserved across species.

Adoption of GWAS in crop species (iv) 
metabolic composition

Combining the developments in sequencing with those in 
mass-spectrometry-based analytical systems, has rendered 
understanding of the genetic architecture of metabolism 
far easier than it was previously [33, 93–95]. Indeed the 
immense metabolic diversity of plants has made the ideal 
models for dissecting the genetic bases underlying the reg-
ulation of the metabolome with studies progressing from 
analysis of mutant libraries [96, 97], and the analysis of gene 
families [98, 99] via the comparison of sister species [100] 
and species series within taxa [101] to linkage mapping, and 
association mapping based on next-generation sequencing 
have been applied to metabolomics studies [33]. By contrast 
to the QTL for agricultural performance described above, 
genetic variants controlling natural variation in metabolite 
accumulation are easier to identify due to both the tremen-
dous diversity apparent across experimental populations [20, 
102–105] and the high accuracy of evaluation of metabolite 
content [95]. As mentioned above a wide range of exam-
ples are now published both in cereal and non-cereal crops 
(Table 1 and Supplementary Table 1). Due to space limi-
tations we limit our discussion to ten of these examples. 
In maize, GWAS was used to quantify metabolite contents 
of nearly 1000 mass features in over 700 lines and further 
allowed the association of metabolite features with kernal 
size [55] while a more recent study identified four times 
as many features paying particular attention to the benzo-
xazinoids and hydroxycitric acids [103]. Earlier a ground-
breaking highly comprehensive study on maize kernel oil 
identified 74 associated loci of which 26 were found that 
could explain up to 83% of the phenotypic variation using a 
simple additive mode.

Maize kernel oil is a valuable source of nutrition. In a 
seminal study, Li et al. examined the genetic architecture of 
oil accumulation in maize by GWAS using 368 maize inbred 
lines characterized to contain in excess of 1 million SNPs. In 
the process, they identified 74 loci associated with kernel oil 
levels and fatty acid composition. They validated more than 
half of these in a linkage mapping population and 26 of the 
conserved loci were annotated as enzymes of oil biosynthe-
sis and could explain up to 83% of the phenotypic variation 
in this trait [106]. Similarly in rice, secondary metabolism 
data of 175 accessions identified 323 associations among 
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143 SNPs and 89 metabolites. While a comparative analysis 
between maize and rice demonstrated a considerable amount 
of shared loci associated with metabolites common to both 
species [20], but of course could not provide information 
with regard to species-specific metabolites or for that matter 
genes [33]. The use of this approach in wheat and barley has 
allowed the definition of the flavonoid biosynthesis pathway 
in the former and a novel metabolite, thereof, that confers 
UV-tolerance in hulless barley, respectively. In tomato, 
GWAS was used in concert with metabolite profiling and 
taste panels to characterize the genetic architecture of tomato 
fruit taste [25] and with metabolic and transcript profiling 
to characterize the changes in the metabolome that occurred 
during the domestication and improvement processes [26] 
while a combination of GWAS, a multi-parental breeding 
population and transgenic lines was used to characterize the 
control of vitamin E levels in this fruit [107]. To summarize, 
metabolic GWAS has proven highly informative not only 
as a means of identify lead genes for engineering of spe-
cific metabolite contents but also in beginning to define the 
biological function of specific metabolites [95]. However, 
in certain species such as citrus the use of GWAS is not 
yet tractable most likely due to population structure issues 
(unpublished), and this fact is important to keep in mind 
before carrying out labor-intensive studies, on a new spe-
cies—irrespective of the phenotype studied.

Validation of candidate gene function

Despite the strong theoretical foundation we discuss above 
and considerable efforts being taken to address population 
structure and employ strict probability cut-offs, false-posi-
tive associations will still occur due to the enormous num-
ber of statistical inferences and other factors which are not 
taken into account by the simplicity of the approach [17, 
108, 109]. As a consequence independent biological vali-
dation is required, however, often not provided [17]. That 
said two forms of validation have been employed in several 
instances (i) the validation of associations in independent 
populations or (ii) validation by targeted viral-induced gene 
silencing, transgenesis and gene editing experimentation. 
Cross-population validation is currently largely achieved by 
integrating association mapping in diverse panels or linkage 
mapping in RIL population(s) or F2 populations. For exam-
ple, in the recent cloning of ZmCCT9, a QTL which affects 
maize flowering time [110], the locus was simultaneously 
identified by NAM [87] and maize-teosinte RIL popula-
tions under association and linkage mapping. Moreover, the 
causal allele—an InDel of a harbinger-like transposon—has 
also been identified in a 513 line association panel [111] a 
fact that was cross-validated in the two populations used to 
map the locus. In a similar example, rice chlorophyll content 

was mapped in a panel of 529 individuals followed by three 
customized F2 populations [112]. Other such examples are 
the metabolomes of maize [113] and in independent studies 
the QTL underlying total soluble solid content [92, 113] 
and alterations in the metabolome [26, 93] in tomato and 
the exquisitely controlled study mentioned above which 
used GWAS, multi-parental breeding populations and 
transgenics to confirm QTL for tocopherol contents [107]. 
The increasing availability of populations which have been 
characterized should massively increase or capacities to do 
such experiments which will undoubtedly massively boost 
our confidence in the results of association mapping stud-
ies. In this vein, it is important also to note also the value 
of cross-species analysis which has already been imple-
mented in cereals [20, 114, 115] and would probably prove 
tractable in other agronomically important families such 
as the Brasicacae, Solanaceae, and legumes. Rather than 
employing the cross-validation approach which can prove 
incredibly time and labor intensive several other more direct 
approaches have been taken. For example, the confirmation 
of many metabolic QTL has been provided by the reduction 
of the expression of candidate genes via virus-induced gene 
silencing [93, 95, 116] or alternatively via their transient 
or inducible expression [20]. Given that the repertoire of 
species amenable to both methods are currently being con-
siderably expanded. While these are great for select candi-
dates the promise of clustered regularly interspaced short 
palindromic repeats (CRISPR)/CRISPR associated protein 
9 (Cas9) mutant libraries such as those set up for rice [117, 
118] and more recently maize [119] should greatly acceler-
ate the functional confirmation of causality. Like the VIGS 
and transient expression methods, the range of plant species 
for which multiple publications on the use of CRISPR has 
seen a steep increase in recent years [119, 120].

Limitations of GWAS an alternative 
approaches to GWAS

Despite the great success of the method as evidenced by 
the wealth of information described above (and in the Sup-
plementary Table 1), GWAS currently has clear limitations 
the major of which being issues concerning population 
structure and low-frequency causal alleles leading to false 
negative results [121]. For example, given that flowering 
time is a typical adaptive trait and is always confounded 
(i.e., highly correlated) with population structure, only one 
gene (ZmCCT) was revealed for flowering time using a 
diverse association mapping panel consisting of 500 inbred 
lines [122]. It is widely accepted that many false negatives 
occur for such confounded traits when correcting for popula-
tion structure in GWAS [17, 123]. Another example is the 
demonstration that only five inbred lines in a population of 
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527 (< 1%) possess functionally alternative alleles at the 
Brachytic2 locus for plant height [124] rendering it impos-
sible to identify this locus using routine association mapping 
analysis. Similarly in rice, causal alleles within most of the 
cloned yield related quantitative trait loci (QTLs) are at low 
frequency in diverse germplasms (1% for GS3, [125]; 2% 
for Ghd7, [126–128]; 2% for qGL3, [129]; 6% for TGW6, 
[130]). Two routes to tackle these issues have been suggested 
either the development of novel statistical methods for the 
exploration of rare functional alleles [131–133] or alterna-
tively employing artificially designed populations to balance 
allelic frequencies and thereby control population structure 
[87, 134–136]. Given that these have been reviewed in depth 
recently [17, 137–139]we will not discuss them in detail 
here.

In addition to the above issues, sometimes non-causative 
loci show more significant associations in GWAS than the 
causative ones meaning the causative genes may be dis-
tant from the GWAS peaks. Such an occurrence has been 
reported in a number of plant studies including studies in 
Arabidopsis [140, 141], sorghum [142], and tomato [143]. 
Such misleading associations are sometimes known as syn-
thetic associations and are presumed to be caused by link-
age drag caused by linkage disequilibrium between com-
mon tagged markers and rare causative variants [17, 144]. 
This may in turn explain the so-called missing heritability 
issue of GWAS. That said some causes do not follow the 
rare-allele assumption but trait variation rather appears to be 
caused by multiple alleles within one gene [34, 142]. Given 
that mutation constantly generates new variants, multiple 
independent alleles within one gene leading to the same phe-
notype could be common. As we state above haplotype- or 
gene-based methodologies, therefore, have high potential 
for identifying such situations. That said current haplotype-
based association mapping remains imperfect [145] and, 
moreover, is particularly challenging in plants [17]. Thus 
improving haplotype analyses will likely prove highly ben-
eficial both at the understanding of the underlying genetics 
as well as its functional physiological consequence.

Current and future perspectives for GWAS

The power of genome-wide association studies have suc-
cessfully identified enormous number of loci associated with 
phenotypic, expression, and metabolic traits in multiple spe-
cies. Although, the genetic factors underling some of these 
associations have been characterized. The vast majority are 
remain unexplained. The development of next-generation 
sequencing and bioinformatics tools greatly improved and 
currently implemented to decipher the genetic diversity 
of targeted traits. This recently supported by multi‐omics 
data analysis to enhancing our understanding of phenotypic 

diversity and its corresponding genetic basis. Combined 
analyses of phenotypic and transcriptomic data have been 
utilized to dissect the genetic basses of various metabolic 
and phenotypic traits see [146]. Moreover, the develop-
ments of molecular biology techniques (e.g., CRISPR/Cas9, 
over‐expression, or genetic complementation) have greatly 
accelerated the biological functions of the causative genes 
behind the GWAS hits. Currently, the cross-validation by 
combing association and linkage (F2, RILs) mapping has 
already been implemented in crop [25, 147]. Finally, despite 
molecular and genetic validations are the reliable ways to 
validate the GWAS results, there are still accompanying 
challenges need to take into consideration, such as; epista-
sis, heterosis and environmental factors. Once such factors 
are assembled, it will improve our chance of understanding 
the genetic regulation of complex traits, and provide viable 
targets for crop improvement and breeding.
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