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Abstract
The identification of the membrane periodic skeleton (MPS), composed of a periodic lattice of actin rings interconnected by 
spectrin tetramers, was enabled by the development of super-resolution microscopy, and brought a new exciting perspective 
to our view of neuronal biology. This exquisite cytoskeleton arrangement plays an important role on mechanisms regulating 
neuronal (dys)function. The MPS was initially thought to provide mainly for axonal mechanical stability. Since its discovery, 
the importance of the MPS in multiple aspects of neuronal biology has, however, emerged. These comprise its capacity to 
act as a signaling platform, regulate axon diameter—with important consequences on the efficiency of axonal transport and 
electrophysiological properties— participate in the assembly and function of the axon initial segment, and control axon 
microtubule stability. Recently, MPS disassembly has also surfaced as an early player in the course of axon degeneration. 
Here, we will discuss the current knowledge on the role of the MPS in axonal physiology and disease.
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Introduction

With the development of super-resolution microscopy, new 
details on cell ultrastructure were unraveled. So far, the most 
striking new structure identified by nanoscopy is the axonal 
membrane periodic skeleton (MPS). The MPS consists of 
regularly distributed actin rings spaced by approximately 
190 nm, interconnected by bipolar spectrin tetramers [1]. 
In cultured hippocampal neurons, this structure is observed 
as early as DIV2 in the proximal region of the axon and 
then extends to the distal end of the axon, occupying the 
entire axon shaft [2]. Similarly to the erythrocyte membrane 
cytoskeleton (reviewed in [3]), tetramers of spectrin con-
nect the MPS actin rings [1]. Spectrins are large flexible 
molecules that exist mainly as heterotetramers of α and β 
subunits, formed upon the arrangement head to head of 
antiparallel α/β dimers [4, 5]. In axons, αII/βIV-spectrin is 
found proximally to the cell body in the axon initial segment 

(AIS) [6], whereas αII/βII-spectrin is enriched in the remain-
ing axon shaft [6], and αII/βIII-spectrin is mostly observed 
in dendrites [7]. Although βIV and βII-spectrins present 
a periodic pattern within the AIS and axon shaft, respec-
tively, the regular lattice is detected only in small patches 
in dendrites [2, 8, 9]. In cell bodies, the MPS is present as a 
two-dimensional polygonal scaffold [8]. In the initial MPS 
model, given the periodic distribution of the actin-capping 
protein adducin along the axon after DIV6 [2], actin fila-
ments within rings were thought to be short and capped [1]. 
Binding of adducin was predicted to provide stability to the 
lattice [1, 2], similarly to the actin-spectrin arrangement pre-
sent in the erythrocyte membrane. This model was latter sup-
ported by the fact that in Drosophila axons, MPS abundance 
is reduced by interfering with actin nucleators (Arp2/3 and 
formins), but was less sensitive to decreased activity of actin 
elongators [10]. This argues that actin rings are possibly 
made of short actin filaments. However, recently, platinum 
replica electron microscopy combined with super-resolution 
microscopy, indicated that rat hippocampal axon actin rings 
are probably organized as two long intertwined filaments. 
According to this view, adducin was suggested to enhance 
the lateral binding between actin and βII-spectrin instead of 
capping actin filaments [11]. The braided actin arrangement 
was suggested to provide for more stability of the structure, 
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as it is expected to be stiffer than a ring made of short actin 
filaments [11]. Further experiments are now needed to fully 
understand how actin is nucleated in the MPS.

This unique arrangement of the cytoskeleton is observed 
in axons across species, from invertebrates (C. elegans and 
D. melanogaster [12]) to vertebrates (chicken [12], mouse, 
rat [1, 2, 12–14], and humans [12]), supporting its impor-
tance for neuronal function. The MPS is present in every 
neuron type inspected so far, including different excitatory 
neurons, such as cerebellar granule cells and dopaminergic 
neurons, inhibitory neurons, such as Purkinje cells and in 
bipolar cells of the retina [12, 13]. In addition to central 
nervous system neurons, motor neurons [12], and dorsal root 
ganglion neurons [12, 13, 15] that elongate their axons to the 
peripheral nervous system, also display a MPS. Similarly to 
unmyelinated axons in the CNS, myelinated sciatic nerve 
axons contain the periodic lattice [13]. Within the nervous 
system, the MPS might not be exclusive of neurons as the 
processes of different glial cell types including astrocytes, 
microglia, NG2 glia, Schwann cells, and oligodendrocytes 
show patches of a similar periodic skeleton [2, 13, 16].

Beyond actin, spectrin, and adducin, an ever increasing 
number of proteins has been shown to be associated with 
the MPS, such as ion channels [1], non-muscle myosin II 
(NMII) [17–19] and tropomyosin 3.1 [20]. Recently, the use 
of state-of-the-art biochemical approaches [21–23], allowed 
to confirm the presence and identify additional MPS pro-
teins. Specifically, with co-immunoprecipitation and mass 
spectrometry, hundreds of candidate MPS-interacting pro-
teins were found including motor proteins, cell adhesion 
molecules, ion channels, and signaling molecules [22]. 
Determining the MPS proteome is essential to further com-
prehend its function(s) in neuronal biology.

Although novel insights regarding MPS structure and 
function have been untied in the past years, there are still 
many questions that remain unanswered in the field. Further 
details are needed to comprehend how the lattice is assem-
bled and what are the molecules involved in its maintenance 
and dynamics, as well as their localization. The relevance 
of the MPS to different aspects of the maintenance of neu-
ronal physiology, beyond the initially anticipated mechanical 
support of the thin long structure of axons, is emerging. In 
this review, we will discuss the current knowledge on the 
relevance of the MPS to axonal biology and function, and 
its importance in neurodegeneration.

The MPS regulates multiple aspects 
of neuronal physiology

Since its initial discovery, the contribution of the MPS 
to the integrity and mechanical stability of the axon is 
widely accepted [24–26]. The data implicating the MPS 

on additional aspects of neuronal physiology is currently 
emerging. This include the formation and function of the 
AIS [2, 17, 27–29], the regulation of axon diameter [15, 
18, 19] in the course of action potential conduction [18] 
and axonal transport [19], and the modulation of the sta-
bility of axonal microtubules [10]. Disruption of the MPS 
causes widespread neurodegeneration [30, 31] and a variety 
of neurological impairments are seen when its components 
are mutated and downregulated [15, 32, 33]. We will dedi-
cate this section to explore the importance of the MPS to 
neuronal physiology.

The MPS provides mechanical support 
for the long thin structure of axons

Axons suffer large stretch deformations under a variety 
of standard and abnormal conditions. Mammalian sciatic 
nerves, for example, can experience localized strains during 
regular limb movements [34]. It is also known that the brain, 
one of the softest tissues in our bodies, undergoes substantial 
shear deformations (2–5% strain) even under normal activi-
ties, such as jumping [35]. When increased longitudinal 
tension takes place, axons suffer rapid elongation [36], in a 
process known as “axon stretch growth” (reviewed in [37] 
and [38]), that alters their intrinsic rest tension and induces 
axonal thinning [39]. Axonal diameter is restored when ten-
sion is released, supporting the need of structural adapta-
tions [40]. The main components of the axonal cytoskeleton, 
microtubules, neurofilaments, and actin are tension modula-
tors being able to adapt to changes occurring during axon 
stretch growth. Tension will draw microtubules and neuro-
filaments apart longitudinally and possibly cause them to 
break [41]. It is possible that actin rings within the MPS 
may function as an important element in the process of axon 
elasticity. The first retrospective evidence suggesting that 
the MPS provides mechanical support to axons, enabling 
axon integrity during movement, derives from studies in 
β-spectrin C. elegans mutants [42]. In these mutants, axons 
spontaneously break as a consequence of the acute strain 
imposed by movement [42]. Beyond mechanical stability, 
β-spectrin contributes to touch sensation in C. elegans [43]. 
Antero ventral microtubule (AVM) touch receptor neurons 
from the worm body are able to sense gentle mechanical 
stimulus. These neurons can shorten during ventral bend-
ing and elongate during dorsal bending, without suffering 
physical damage. However, in moving worms, mutations in 
the tetramerization domain of C. elegans β-spectrin lead to 
defects in sensory neuron morphology under compressive 
stress [43].

To clarify how the MPS protects axons from disrupting, 
atomic force microscopy (AFM), rheology measurements 
and computer modelling have been valuable tools [24–26]. 
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When chick DRG neurons are depleted of βII-spectrin, 
not only they lose the MPS but also they show a signifi-
cant reduction in the elastic modulus as measured by AFM 
[24]. Moreover, rheology measurements of neurons treated 
with latrunculin A, a F-actin destabilizer that disrupts the 
MPS [1], induces a reduction in the elastic modulus and 
a decrease in tension relaxation [24], indicating that actin 
confers mechanic protection to axons. Computational mod-
eling has shown that axons in particular, are characterized 
by the presence of two distinct elastic moduli, a higher one 
probably associated with the actin ring structure, and a lower 
one conferred by spectrins that connect the rings [26]. These 
observations support that spectrins maintain axonal elastic-
ity [26], which may be ensured by the intrinsic flexibility of 
spectrin repeats [44]. Together, these data indicate that the 
MPS can act as a tension buffer allowing axons to undergo 
significant deformations without being morphologically or 
functionally compromised [24].

The MPS and the axon initial segment 
(AIS): from the establishment of a diffusion 
barrier, to fine‑tuning neuronal excitability

The AIS is a specialized axonal structure found in inter- and 
motorneurons from vertebrates (as detailed in [45]) located 
proximally to the cell body that is essential for the mainte-
nance of neuronal polarity and for the generation of action 
potentials (reviewed in [46]). In cultured hippocampal neu-
rons, the AIS is formed as neurons mature and as its master 
regulator ankyrin-G [47] clearly accumulates from DIV8 on 
[2]. AnkyrinG recruits the main AIS components including 
βIV-spectrin [48] (which will replace βII-spectrin within the 
MPS [2]), voltage-gated sodium and potassium channels 
[49], and neurofascin [50]. It has been hypothesized that by 
setting a periodic arrangement of voltage gated channels in 
the AIS [1, 51], the MPS might interfere in action potential 
generation and propagation [52]. Of note, in the AIS, the 
MPS is more resistant to drug-induced perturbations of actin 
and microtubules, possibly as the incorporation of ankyrin-
G and sodium channels further stabilizes the axonal actin-
spectrin cytoskeleton [51].

Several studies support that the AIS behaves as a physical 
barrier, preventing the free exchange of molecules, such as 
pre- and postsynaptic proteins and lipids [53], between the 
cell body and the axon, a concept known as the picket fence 
model [46]. This diffusion barrier is lost upon ankyrin G 
depletion or actin disruption [53, 54]. The current evidence 
indicates that the MPS may be involved in the formation 
of the diffusion barrier at the AIS. Supporting this hypoth-
esis, glycosylphosphatidylinositol-anchored GFP presents 
reduced lateral movements in the membrane, confined to 
a repetitive array of small areas spaced by approximately 

190 nm [27]. In addition, in a computational model of the 
axonal plasma membrane, actin rings were found to limit 
the longitudinal diffusion of the proteins of the inner leaflet 
of the phospholipid bilayer but not of the proteins of the 
outer leaflet [26]. This supports that actin and probably other 
associated proteins, forms a fence capable of restricting the 
longitudinal diffusion of molecules. The authors suggest that 
beyond actin, spectrins may also alter the radial diffusion of 
proteins depending on the strength of their interaction with 
lipids [26]. More recently, the mobility of small cytoplas-
mic proteins was also show to be reduced within the AIS 
and seemed correlated with the MPS periodicity [55]. The 
future development of technologies allowing to simultane-
ously track the live movement of molecules and image the 
MPS, will certainly bring new light to our understanding of 
the importance of the MPS in the establishment of a barrier 
at the AIS.

Further than maintaining neuronal polarity and generat-
ing action potentials, the AIS is crucial for fine-tuning neu-
ronal excitability as it can relocate proximally or distally 
from the cell body and suffer changes in length [56]. The 
mechanisms underlying structural alterations of the AIS are 
just starting to be unveiled. AIS long-term relocation and 
rapid shortening are blocked by blebbistatin [57], an NMII 
inhibitor, supporting that NMII might regulate activity-
dependent morphological alterations of the AIS. NMII is a 
key player in many biological processes given its crucial role 
in contraction. When NMII bipolar filaments bind antiparal-
lel actin filaments, actomyosin contractility occurs through 
the hydrolysis of ATP (reviewed in [58]). A later study has 
shown that phosphorylated myosin light chain (pMLC), the 
active NMII contraction unit, participates in AIS assembly 
where it accumulates simultaneously with ankyrin-G, being 
associated with MPS actin rings [17]. This suggests that the 
MPS might be a player in fine-tuning neuronal excitability. 
The role of NMII within the MPS will be further explored 
in the following section.

The MPS regulates axon diameter: 
implications to action potential conduction 
and axonal transport

The axon is not a static structure. Instead, it is a very 
dynamic compartment, and its diameter can suffer altera-
tions depending on several variables, such as distribution 
of organelles (particularly relevant in unmyelinated axons 
[59]), activity-dependent mechanisms [60], thinning upon 
stretch [36, 39], and deformations triggered by movement or 
induced by axon degeneration. It is well known that axons 
are contractile along their longitudinal axis [61, 62] and that 
they also exert contractility/tension along their circumferen-
tial axis, in an actin and NMII-dependent manner [63]. Thus, 
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the role of axonal actin, specifically of MPS actin rings, has 
been investigated as a possible regulator of axon diameter.

The actin-binding protein adducin was one of the ini-
tial components found to be part of actin rings within the 
MPS. When adducin is depleted, MPS actin rings have an 
increased diameter, progressive axon enlargement occurs, 
followed by axon degeneration and loss [15]. In vitro, hip-
pocampal neuron from WT and α-adducin KO mice reduce 
their axonal actin ring diameter with time, supporting that 
actin filaments within the MPS are more dynamic than ini-
tially anticipated, and that additional actin-binding proteins 
beyond adducin probably regulate this process. Since the 
temporal analysis of F-actin content in actin rings high-
lighted that axon constriction is related to increased actin 
intensity per ring, suggesting bundling of actin filaments 
[15], we and others investigated if additional actin-bind-
ing proteins, namely NMII, might participate in actin ring 
constriction.

NMII is a hexameric protein composed by two regulatory 
light chains and two essential light chains tightly bound to 
two heavy chains (reviewed in [58, 64]). Although being 
enriched in the AIS [17], NMII (including the active phos-
phorylated light chain) is also found in the axon shaft [18, 
19]. Although pMLC is organized in a circular, periodic con-
formation colocalizing with actin rings, NMII heavy chain is 
distributed as multiple filaments with approximately 300 nm 
of length along the longitudinal axonal axis [18]. NMII fila-
ments can crosslink adjacent rings, as previously suggested 
by platinum-replica electron microscopy [11], but may also 
be located within individual actin rings [18, 19], with dis-
tinct biomechanical roles [18]. Although NMII crosslink-
ers are expected to provide scaffold properties, intra-ring 
filaments represent the conformation capable of generating 
contraction leading to actin filament sliding [18].

When NMII activity is decreased either by using chemi-
cal inhibitors or shRNA, axonal diameter is increased [18, 
19, 63]. These results indicate that the actomyosin cytoskel-
eton regulates radial tension throughout the entire length 
of the axon shaft. This finding has important implications 
in axonal biology. By controlling radial contractility, NMII 
within the MPS regulates action potential conduction [18]. 
Specifically, inhibition of NMII results in a higher propa-
gation velocity [18] as expected considering that in unmy-
elinated axons, velocity conduction is proportional to the 
square root of the axonal diameter [65]. In addition to the 
neuronal electrophysiological properties, the efficiency of 
transport of large cargoes mainly along thin axons is also 
dependent on axonal diameter [19]. In hippocampal neu-
rons, when NMII is acutely inhibited by blebbistatin (leading 
to increased axon diameter), large cargoes move faster, as 
their movement triggers a transient radial expansion, which 
is immediately restored [19]. Importantly, the role of the 
MPS in controlling axon diameter may also be crucial for 

the onset of degeneration as the inhibition of NMII for pro-
longed time periods induces disruption of the MPS, entailing 
the formation of focal axonal swellings [19].

There are; however, several questions that remain unan-
swered to fully understand the biomechanical properties of 
NMII in MPS actin rings. The fact that modulation of NMII 
activity controls axon diameter [18, 19], supports the pres-
ence of antiparallel actin filaments within the MPS. Still, 
how NMII provides for sliding of short or intertwined actin 
filaments is yet to determine. These uncertainties are com-
mon to actin rings that exist in other biological contexts, 
as is the case of the actomyosin ring that assembles during 
cytokinesis [66, 67]. It is also unclear how MPS actin rings 
(either long intertwined or short filaments) may widen, as 
this will probably imply a rapid rearrangement and quick 
de-/polymerization. One should also bear in mind that actin 
is thought to form relatively brittle filaments that rupture 
under elongational strains less than 10% of their resting 
length [68]. The adaptation of MPS actin rings to dynamic 
fluctuations in axon diameter is an exciting field of research 
in neuronal cell biology. Variations in axonal caliber also 
raise important questions on how the meshwork of spectrin 
tetramers adapts.

The crosstalk between the MPS and axonal 
microtubules

Microtubules (MTs) are essential for neuronal physiology, 
not only during the establishment of neuronal polarity [69], 
but also to sustain intracellular transport by providing the 
tracks to molecular motors. The possible crosstalk between 
MTs and the subcortical MPS has emerged shortly after the 
discovery of this axonal cytoskeleton arrangement. When 
hippocampal neurons are treated with the microtubule-
depolymerizing drug nocodazole, the periodic pattern of 
βII-spectrin is largely disrupted [2]. In contrast, when treat-
ment is done with the microtubule stabilizer taxol, neurons 
present multiple axon-like long processes that present a MPS 
[2]. These observations suggest that MTs may regulate the 
assembly of the MPS. On the other hand, the assembly of 
the MPS may modulate MT stability. In D. melanogaster 
neurons, when axons are treated with the actin-destabilizing 
drug cytochalasin D, a significant reduction in the percent-
age of MPS abundance occurs [10], as expected. Concur-
rently, there is MT fragmentation and loss, and diminished 
MT polymerization [10] supporting that the MPS may con-
fer stability to the MT cytoskeleton. One can speculate that 
the interdependence of the MPS and MTs can be related to 
the fact that the MPS acts as a signaling platform [22, 23] 
(as will be detailed in the next section). Given that multiple 
signaling molecules are recruited to the MPS in response to 
extracellular stimuli [23], it is possible that specific pathways 
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regulating MT organization and dynamics may be engaged. 
Alternatively or in parallel, mechanobiology can also play an 
important role as MTs respond to, and generate, mechanical 
forces (as detailed in [70]). Further studies should address 
the interplay between these two cytoskeleton components 
and the identity of the players involved in their interaction.

The MPS as a signaling platform

In the initial description of the MPS, sodium channels were 
shown to be distributed in axons in a periodic pattern, coor-
dinated with the underlying actin-spectrin-based cytoskel-
eton [1]. This was the first indication that in neurons, the 
MPS might function as a platform organizing the interaction 
of important signaling proteins, enabling signal transduc-
tion [1]. Subsequent studies further supported that the MPS 
can organize transmembrane proteins, such as ion channels 
and adhesion molecules, into regular distributions along 
axons [8, 16, 23, 27, 28]. Specifically, STORM analyses of 
hippocampal neurons have shown that G protein-coupled 
receptors (GPCRs), cell adhesion molecules (CAMs) and 
receptor tyrosine kinases (RTKs) are recruited to the MPS as 
a response to extracellular stimuli, resulting in RTK transac-
tivation by GPCRs and CAMs, and the downstream signal-
regulated kinase (ERK) signaling [23]. ERK signaling in 
turn caused calpain-dependent MPS degradation, providing 
a negative feedback that modulates signaling strength [23]. 
Recently, using co-immunoprecipitation and mass spectrom-
etry, several signaling molecules were identified as compo-
nents of the MPS [22], further supporting its role as a sign-
aling platform. In addition, the signaling platform provided 
by the MPS is suggested to recruit signaling and adhesion 
molecules enabling axon–axon and axon–dendrite interac-
tions [22]. This is consistent with previous observations 
of alignment of the MPS in contacting axons [23]. Future 
research should be considered to clarify the pathways that 
might be regulated by MPS assembly, and also the mecha-
nism of recruitment of signaling molecules to the MPS.

The MPS in the course of axon degeneration

Multiple evidence show that the impairment of MPS com-
ponents is associated with neurologic conditions and neu-
rodegeneration [71]. In the case of adducin, mutations in 

this actin-binding protein lead to amyotrophic lateral scle-
rosis [32] and cerebral palsy [33], and α-adducin knockout 
mice have axon degeneration and loss [15]. In relation to 
βII-spectrin, its deficiency in mice causes reduced axon 
growth, impaired axonal transport, MPS loss, and axon 
degeneration [72]; in humans βII-spectrin mutations give 
rise to spinocerebellar ataxia (SPTBN2; Online Mende-
lian Inheritance in Man [OMIM] ID: 600,224, 615,386). 
Ankyrin and actin mutations are associated respectively 
with mental retardation (ANK3; OMIM ID: 615,493), 
and with Baraitser–Winter syndrome and dystonia with 
neurodegenerative traits (ACTB7; OMIM ID: 243,310, 
607,371).

The participation of the MPS in sensory axon degenera-
tion triggered by trophic deprivation was investigated by 
two independent groups [30, 31]. After trophic factor with-
drawal, the loss of MPS occurred independently of caspase 
apoptotic pathways and preceded axonal fragmentation [30, 
31], the ultimate sign of neurodegeneration. On the other 
hand, when F-actin was chemically stabilized with cucur-
bitacin E, the MPS abundance was increased in deprived 
axons and axonal fragmentation was ameliorated. These 
data support that the MPS is disrupted before axonal frag-
mentation and that its loss is required for axon degenera-
tion to take place. This evidence places the MPS as a new 
target to prevent neurodegeneration. The increased under-
standing of the ultrastructural organization of the MPS will 
certainly guide us to better comprehend and interfere with 
axon loss.

Conclusion

The periodic axonal subcortical cytoskeleton was initially 
considered to play an important role in the support of the 
long thin structure of axons. During the last years, this con-
cept has evolved and the MPS has been implicated in multi-
ple aspects of neuronal biology (Fig. 1). We are nevertheless 
just starting to unravel how this exquisite structure is gener-
ated, organized and maintained throughout the lifetime of 
a neuron. The complete identification of the components 
involved in MPS biogenesis will ensure a deeper understand-
ing of its biological relevance. This will certainly be pow-
ered as new advances on nanoscopy arise, especially in the 
context of living cells.
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