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Abstract
Among many nanoparticle-based delivery platforms, liposomes have been particularly successful with many formulations 
passed into clinical applications. They are well-established and effective gene and/or drug delivery systems, widely used in 
cancer therapy including breast cancer. In this review we discuss liposome design with the targeting feature and triggering 
functions. We also summarise the recent progress (since 2014) in liposome-based therapeutics for breast cancer including 
chemotherapy and gene therapy. We finally identify some challenges on the liposome technology development for the future 
clinical translation.
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Introduction

Breast cancer is one of the most commonly diagnosed 
cancers (11.7% of the total cases) and the leading cause 
of cancer death among women worldwide, according to 
GLOBOCAN 2020 [1]. The estimated number of new cases 
of breast carcinomas worldwide is expected to increase to 
2.50 million and it is predicted that the breast cancer-related 
mortality will be 768,646 by 2025. Metastatic progression 
represents the major risk factor affecting the survival rates 
[2]. In contrast to the primary tumours that can be surgically 
operated under standard of care approach, the secondary foci 
of breast cancer are less approachable, and therefore, chemo-
therapy and radiotherapy are currently the main treatment 
methods for metastatic breast cancer [3].

Severe side effects and rapidly developing drug resistance 
of the tumour cells are the main challenges of the conven-
tional chemotherapy. As most of chemotherapeutic drugs 
are not selective to cancer cells, one of the most important 
tasks to improve the effectiveness and tolerability of chemo-
therapy is selective delivery of the therapeutic agent to can-
cer tissues with simultaneous minimization of the damage 
of the healthy organs. Drug resistance of malignant cells is 
another deficiency of chemotherapy, which is attributed to 
genetical factors, and first of all, to the heterogeneity of the 
tumour cellular populations [4], as well as to the effects of 
the tumour microenvironment and the limited tumour tissue 
penetrating capability of the drugs [5, 6]. At the same time, 
molecular studies unveiled that the development and pro-
gression of breast cancer is governed by the mutated genes’ 
expression to a significant extent [7]. In this context, gene 
therapy is emerging to revolutionize the classic breast cancer 
treatment paradigm [8]. However, gene therapy is also facing 
a problem regarding to safe and efficient delivery of thera-
peutic genes or gene-regulating products into the nucleus of 
mammalian cells.

To address this challenge, numerous drug and gene 
delivery systems have been developed including viral 
vectors [9–11] and non-viral vectors, such as liposomes 
[12], polymers [13–15] and inorganic nanomaterials [16]. 
Viral vectors are the most common gene delivery sys-
tems reported in clinical trials, but the safety concerns 
and limited cargo size are the obstacles hindering their 
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applications [9–11]. To overcome these limitations, nano-
particle-based vectors have been explored [17]. Liposomes 
are well-established nanomaterials for drug/gene delivery 
[18, 19]. Among the advantages of liposomes are high 
loading capacity, convenient preparation and excellent 
biocompatibility [13–15]. Liposomes are composed of 
phospholipid molecules which contain hydrophobic tails 
and hydrophilic heads, forming the amphiphilic vesicle 
structures in aqueous solutions. Structurally, liposomes 
are divided into small unilamellar vesicles (~ 100 nm) 
and large unilamellar vesicles (200–800 nm) with a single 
bilayer, and multilamellar vesicles (500–5000 nm) con-
taining multiple bilayers [20]. Due to their amphipathic 
nature in aqueous media, liposomes have the unique capa-
bility of entrapment of both hydrophilic and hydrophobic 
compounds [21]. The hydrophobic drugs can in principle 
be encapsulated between each bilayer of liposomes, while 
water-soluble drugs can be efficient loaded in the middle 
core. The minimization of side effects of anticancer drugs 
for the patients can be achieved by targeted liposomes 
[22]. The surface of liposomes can be modified by appro-
priate ligands to target the specific receptors of breast can-
cer or its microenvironment to achieve selective delivery. 
Triggering is another option that allows to control the local 
dose of the drug and, for example, initiate the drug release 
at certain time point after accumulation of a required dose, 
of when the tumour is sensitive [23]. These superior prop-
erties make liposomes promising in cancer therapy includ-
ing breast cancer, compared with other nanoparticle-based 

delivery systems. Schematic diagram of liposome-based 
delivery systems with versatile functionalities is shown 
in Fig. 1.

Liposomal drug loading can be achieved via passive and 
active strategies [24, 25]. Passive loading employs the proce-
dure in which liposomes are formed concurrently with drug 
loading, such as the thin lipid film method [26]. During the 
bilayer formation in aqueous solution, water-soluble sub-
stances are passively encapsulated inside the formed vesi-
cles. Although this method is simple, it only allows a low 
encapsulation efficiency limited by the aqueous solubility 
of drugs [26]. In contrast, active loading can result in high 
drug-loading efficiency by changing medium pH to increase 
aqueous solubility of drugs [27]. In active loading, the load-
ing drugs typically contains an ionizable amine group and 
liposomes are first prepared with transmembrane pH gradi-
ent (an ammonium sulfate gradient), where the pH value of 
aqueous phases inside and outside the liposomes is different. 
The pH outside the liposome allows migration of drug dis-
solved in the external aqueous phase across the lipid bilayer. 
Once internalised into the liposomes, the drug becomes pro-
tonated and subsequently trapped there due to the differ-
ing pH, reaching concentration of 250 mM in liposomes 
[28–31]. Then, this selection criterion may exclude a large 
number of hydrophobic drugs from the list of candidates for 
liposomal delivery due to the poor aqueous solubility.

Although the liposomes exhibit superior properties com-
pared with other nanocarriers, they still face another major 
issue, such as the structural instability. Some unsaturated 

Fig.1  Schematic diagram of 
liposome-based delivery sys-
tems with various functions
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lipid components from natural sources (egg or soybean 
phosphatidylcholine) form less stable bilayers that undergo 
oxidation and/or hydrolysis [32, 33]. This disadvantage 
may cause leakage of encapsulated payloads and fusion of 
the damaged liposomes. To avoid the oxidation problem, 
one could adjust the molar ratio between saturated and 
unsaturated lipids by increasing the lipid saturation level 
[34]. Another solution is to add small amounts of antioxi-
dants during the liposome manufacturing steps. To keep the 
hydrolysis to a minimum, liposome formulations are often 
lyophilized during the fabrication for longer term storage 
[35, 36].

In this review, we first discuss breast cancer characteris-
tics and the related drug delivery strategies. Next, we sum-
marise recent achievements in liposome-based drug delivery 
and gene therapies of breast cancer. A special emphasis is 
placed on the identification of the key challenges that need 
to be addressed to improve the utility of liposomes in clini-
cal settings. Finally, we provide our perspectives of further 
clinical translation of the liposome technology.

Breast cancer characteristics

Breast cancer shares the principal cancer hallmarks with 
many other cancers [37, 38]. However, this complex disease 
has some features that differentiate it from other malignant 
neoplasms. First of all, it develops from the mammary gland 
cells, which are epithelial cells by embryonic origin and 
morphology forming ducts and lobules in the healthy organ. 
According to this, the breast cancer tumours stemming from 
mammary gland ducts develop ductal carcinoma, and the 
transformed cells of lobuli form lobular carcinomas [39]. 
Ductal carcinomas tend to appear as solid tumour masses, 
sometimes having distorted glandular architecture. The cells 
of lobular breast carcinomas are most commonly distanced 
from each other and form files or sheets [39, 40].

Next, breast carcinomas may grow within the borders of 
the original site within the mammary gland or go beyond 
them. This defines the small, early stage, carcinomas in situ 
and invasive carcinomas, respectively. The secondary colo-
nies of breast cancer develop following spreading of meta-
static cancer cells to distant organs [41]. Different cancers 
have different patterns of metastatic spreading (organ tro-
pism of metastases) [42]. This as well makes one of the spe-
cific features of breast cancer, which most commonly metas-
tasise to the lungs, bones, liver, and brain [43]. The size of 
the original tumour, the extent of its invasion and metastatic 
distribution, including the status if regional lymph nodes 
and distant organs, defines the stage of the breast cancer 
by tumour (T), node (N), and metastasis (M) classification 
[44]. The histological grading system, in parallel, defines the 
degree of malignant transformation of the mammary gland 

tissue (in terms of loss of differentiation, nuclear polymor-
phism and mitosis rate).

Finally, the breast cancer is classified by the intensity of 
expression of certain molecular markers, such as estrogen 
receptor (ER), progesterone receptor (PR) and HER2-recep-
tor [45]. This classification links the phenotype of cancer 
cells with a specific origin (luminal vs. basal cells of the 
mammary ducts). According to this, there are two luminal 
subtypes of breast cancer  (ER+,  PR+,  HER2−), triple nega-
tive (basal-like) breast cancer  (ER−,  PR−,  HER2−), HER2-
enriched type  (ER−,  PR−,  HER2+) and normal-like breast 
cancer  (ER+,  PR+,  HER2−, with low mitotic rates). This 
classification is very important for the selection of the treat-
ment strategy of breast cancer. In particular, it indicates that 
certain subtypes of breast cancer are sensitive to hormones 
and can be treated with hormone-based targeting [45]. The 
HER2-enriched breast cancer is an indication for the targeted 
therapy with the ligands to HER2-receptor [46]. The phar-
maceutical treatment options for the triple negative breast 
cancer are limited due to the absence of the established 
molecular targets. The molecular subtypes of breast cancer 
demonstrate different biological behaviour. For example, 
triple negative breast cancer has the highest invasion poten-
tial and anomalously high frequency of hepatic metastases 
compared to the other subtypes [46]. As a result of combina-
tion of the biological features and availability/efficiency of 
the treatment, the molecular subtypes of breast cancer have 
different prognosis and survival rates.

The idea for the rational design of the nanoparticle-based 
drug delivery systems for breast cancer treatment may stem 
from some features of these tumours. The mammary glands, 
where the breast cancer originally develops naturally under-
goes age-related replacement with adipose and fibrous con-
nective tissue [47–49]. This creates an additional vulnerabil-
ity of the mammary cells but also brings into light the effects 
of the tumour microenvironment on the tumour growth and 
its response on treatment. For example, pro-angiogenic and 
pro-fibrotic signalling pathways, such as TGF-β1, which also 
is a key mechanism of epithelial-to-mesenchymal transition 
(EMT), are commonly upregulated in advanced breast car-
cinomas [50]. This may result in excessive accumulation 
of collagenous connective tissue and scar-like hardening of 
the affected zone. Enhanced angiogenesis, in turn, stimu-
lates overgrowth of blood vessels with abnormal structure, 
which can result in a notable enhanced permeability and 
retention effect (EPR) and increased interstitial pressure in 
the tumour [51]. These factors may affect biodistribution of 
the nanoscale drug delivery systems (i.e., stimulate accumu-
lation of the nanodrug in the outer parts of the tumour and 
prevent penetration of the therapeutic agent to the deep part 
of it). In addition, the interaction between the nanoparticles 
and breast cancer cells largely depends on the nanoparti-
cle design and modification. For example, the cationic lipid 
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components can be refined to improve liposomes’ cellular 
uptake capability, thus, increasing therapeutic efficacy on 
breast cancer [52]. The morphology of the liposome also 
played an important role in cell-mediated endocytosis. Soft 
and disordered liposomes exhibit a lower uptake than those 
with a rigid and ordered lipid membrane [52]. To optimise 
the therapeutic outcomes, these factors should be taken into 
account when designing liposomal nanoparticles.

In contrast to many other cancers, the location of the pri-
mary breast carcinoma is surgically approachable, and also 
can be treated with various local applications of physical 
factors, such as X-rays, ultrasound, light or magnetic fields 
which could be combined with drug delivery systems. On 
the other hand, the main danger of breast cancer is not the 
primary tumours, but the metastatic secondary tumours [53]. 
Therefore, for the successful eradication of the metastatic 
breast cancer, the combination of the molecular subtype 
properties with the challenges of organ-specific microen-
vironments (e.g., blood–brain barrier for the metastases to 
the brain) should be considered in the development of the 
treatment strategy.

Liposome‑based drug delivery

Breast cancer treatment by liposome‑formulated 
drugs

Chemotherapy involves the use of anti-cancer drugs and it 
is a widely used treatment tool. Common chemotherapeutic 
drugs used for breast cancer include anthracyclines [doxo-
rubicin (DOX), epirubicin (EPR), daunorubicin (DNR)) and 
taxanes (paclitaxel (PTX), docetaxel (DTX)] [54, 55]. How-
ever, they have major shortfalls including unnecessary cyto-
toxic exposure, systemic toxicity as well as chemoresistance 
[56]. These limitations became even worse when combining 
two or more different drugs simultaneously for breast cancer 
therapy [57]. For example, the co-administration of DOX 
and PTX exhibited high response rates; however, a major 
limitation in its clinical use was high levels of cardiotoxic-
ity induced by combinational chemotherapy. Due to their 
different pharmacokinetics, free PTX interferes with DOX 
elimination, resulting in high plasma concentrations of the 
cardiotoxic DOX as well as its highly cardiotoxic metabolite, 
doxorubicinol (DOXL) [58].

Liposomes, as versatile delivery platforms for various 
drug encapsulation, offer a promising solution to minimise 
the toxicity issues of chemotherapeutic drugs [59–63]. 
Franco et al. found that compared to free PTX and DOX, a 
1:10 co-encapsulation ratio of PTX and DOX in liposomes 
was able to improve cardiac toxicity profile by eliminat-
ing pharmacokinetic interactions between PTX and both 
DXR and its metabolite, doxorubicinol in mice bearing 

the 4T1 breast tumor [58]. A strategy that could possibly 
stabilise ratiometric drug delivery by encapsulating drug-
loaded liposomes in a thermogel matrix was demonstrated 
elsewhere [64]. It also was observed that the nanohybrid 
carriers exhibited a sustained local release. This phenom-
enon could be explained by the diffusion-controlled process, 
where the encapsulated anthracycline was first released 
from the liposomes and then diffused through the hydrogel 
matrix. In vivo studies confirmed that lower cardiotoxicity 
level from liposome–hydrogel hybrid delivery system was 
achieved compared to that of liposomal anthracycline with-
out gel encapsulation [64].

The gradually accumulating evidence indicate that the use 
of liposomal drug delivery systems can help to overcome 
multidrug resistance (MDR). Liu et al. developed mitochon-
drial targeting liposomes via the surface modification with 
dequalinium (DQ), a positively charged chemical that allows 
to employ negative mitochondrial membrane potential. Two 
types of drugs, EPR and quinine (QN), were co-loaded in the 
liposomes [65]. Facilitated by DQ, the unruptured liposomes 
entered the cells via phagocytosis and were internalized in 
mitochondria, where QN and EPR upregulated the proapop-
totic protein Bax and downregulated the anti-apoptotic pro-
tein Mcl-1. This led to the release of cytochrome complex 
and the activation of caspases 9 and 3, resulting in a cascade 
of apoptotic reactions in cancer cells. This study minimised 
the cellular effect on both extrinsic and intrinsic resistance 
to drugs via the engineered liposome formulations. How-
ever, due to the use of multiple drugs within one liposome 
delivery system, more rigid and comprehensive evaluation 
procedures are required prior to clinical rollover.

P-glycoprotein (P-gp) that form efflux pumps are particu-
larly responsible for MDR [66]. P-gp is one of the most com-
mon ATP binding cassette transporters that overexpressed 
in breast cancer cells [67]. An interesting nuclear-targeting 
strategy allowed to minimise MDR in breast cancer using a 
liposome platform, where aptamer AS1411 (single stranded 
DNA) was co-encapsulated with DOX. After the cellular 
internalisation, the aptamer–DOX complex was released 
from the liposomes and migrated to the nucleus via the 
aptamer–nucleolin interaction. This nuclear targeting inter-
action enabled the evasion of DOX efflux by P-gp pumps. 
As a result, the therapeutic efficacy was enhanced [66]. 
Although the in vitro results were promising in this study, 
in vivo evidence needs to be collected for further assessment 
and validation.

Other strategies to address the P-gp-aided MDR rely 
on the inhibition of P-gp expression and consequent 
enhancement of the drug concentration in the cancer cell 
environment. Liu et al. reported the liposomes co-loaded 
with tetrandrine (TET) and DNR and functionalised with 
wheat germ agglutinin (WGA) [68]. WGA promotes cel-
lular uptake via receptor mediated endocytosis by targeting 
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N-acetyl-d-glucosamine and sialic acid on the surface of 
cells [69]. TET, loaded delivered inside the lipid bilayers, 
allowed to overcome chemoresistance by suppressing the 
expression of P-gp. This suppression enabled a greater con-
centration of DNR in malignant cells. In vitro studies con-
firmed that the functionalised liposomes effectively accumu-
lated in cancer cells (MCF-7 and MCF-7/ADR), significantly 
increased the expression of pro-apoptotic proteins (Bax and 
Bak) and activated caspase 8, 9 and 3 apoptosis pathways. 
In vivo studies further validated the therapeutic efficacy of 
such liposomes by comparing their tumour inhibiting capa-
bilities with other treatment conditions, indicating that the 
liposome-formulated drugs could be a potential strategy in 
overcoming MDR in MCF-7 breast cancer cells.

Liposomal drug delivery also has the potential to pre-
vent metastatic progression of breast cancer. In the last dec-
ade, it has been confirmed that both EMT and vasculogenic 
mimicry channels (VMC) play a role in the metastasis and 
chemoresistance of breast cancer [70, 71]. Therefore, the 
formulation of synergistic liposomes that suppress these 
mechanisms and induce cancer cell apoptosis is an interest-
ing field of research. EMT is the process, whereby epithelial 
cells exhibit decreased adhesion and enhanced migration, 
transforming into mesenchymal cells [72]. To inhibit EMT 
mechanism in breast cancer, the commonly used drugs for 
synergistic liposomes include anthracyclines co-delivered 
with dioscin (DIS) or dihydroartemisin (DHA) [73, 74]. The 
last two substances are able to suppress EMT by affecting 
the regulation of key proteins. DIS is responsible for the 
upregulation of E-cadherin and downregulation of vascular 
endothelial growth factor (VEGF), matrix metalloprotein-
ase-9 (MMP-9) and vimentin [73]. DHA works in a similar 
manner, however, is also responsible for downregulation of 
TGF-β1 and α5β1-integrin [74]. Both liposome-formulated 
drugs have been tested for metastatic breast cancer in vitro 
and in vivo, indicating effective anti-tumour capabilities 
with minimum toxicity [73, 74]. VMC is the formation of 
vascular channels lacking endothelial cells [75]. Under the 
hypoxic condition, aggressive breast cancer cells can also 
form VMC without the involvement of endothelial cells [75]. 
Synergistic liposomes have been developed to supress VMC 
process and induce breast cancer cell apoptosis. Drugs used 
in such liposomes include anthracycline co-encapsulated 
with celecoxib or honokiol [76, 77]. In vitro studies dem-
onstrated that both liposomal formulations significantly 
downregulated the expression of key VMC proteins, result-
ing in a destruction of these channels [76, 77]. In vivo work 
further exhibited higher anticancer efficacy of the synergistic 
liposomes on breast cancer metastasis, compared with other 
treatment conditions [76, 77]. Overall, arming liposomes 
with synergistic mechanisms could provide a promising 
strategy in the treatment and prevention of invasive breast 
cancer.

Breast cancer active targeting by liposomes

Recent research efforts adapted different targeting strategies 
to reduce nonspecific toxic effects of conventional chemo-
therapeutic drugs. The term “active targeting liposomes” 
refers to the liposomes functionalised with targeting reagents 
that possess a high affinity to molecules overexpressed by 
the cells of interest. As a result, such delivery systems can 
selectively deliver therapeutic agents to primary or meta-
static tumours, limiting the probability and the potential 
severity toxic side effects [78]. Furthermore, active targeting 
strategies are also capable to overcome resistance incurred 
by conventional drug delivery systems relying on passive 
cellular uptake of nanocarriers [63]. By utilising targeting 
ligands, the functionalized liposome undergoes receptor-
mediated endocytosis, which results in rapid cellular inter-
nalisation. In contrast to passive targeting, where liposomes 
diffuse through the cell membrane, the targeting feature also 
enables the complete evasion of P-gp efflux pumps [67].

A wide range of targeting ligands have been explored and 
tested in in vitro and in vivo breast cancer therapy, including 
antibodies, aptamers, small molecules, and peptides [74, 77, 
79–86]. Antibodies offer sufficient binding affinities and tar-
geting specificity to the antigens overexpressed by the breast 
cancer cells. However, they encompass high production 
costs and complex conjugation methodologies [87]. Simi-
larly, nucleic acid strands known as aptamers, demonstrate a 
relatively high level of binding affinity and target specificity 
[88]. However, they are susceptible to nucleic degradation 
over time and may induce potential immunogenicity [89]. 
Small molecules are inexpensive in scale-up manufactur-
ing and involve simple conjugation with nanocarriers. They 
also exhibit minimal cytotoxicity and immunogenicity [90]. 
Some receptors overexpressed by cancer cells, such as the 
folate receptor utilise small molecules as their targeting 
ligand [91]. Peptides, with their relatively small molecular 
size and weight, also offer high binding affinity and specific-
ity, economic cost of production and low immunogenicity 
[89]. Table 1 presented a list of receptors and corresponding 
ligands used in targeted liposomes for breast cancer therapy.

Breast cancer treatment by triggerable 
liposome‑based drug delivery

On-demand release of encapsulated drugs from liposomes 
emerged as a recent advancement. Optimisation of this tech-
nology via engineering of triggerable liposomes attracts 
great attention [93–97]. Various triggering modalities were 
explored for stimulating an immediate drug release from 
liposomes and classified into internal and external triggers 
[93, 96, 98]. Internal triggers correspond to the unique phys-
iological characteristics of tumour microenvironment and 
include pH variation [99–102] and enzyme effects [103]. 
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Heat [15, 104–108], light [109–113], ultrasound [107] 
and magnetic fields [108] are among the external trigger-
ing sources. These triggering modalities have been widely 
applied to the liposome technology for breast cancer treat-
ment in preclinical applications. While very important, the 
triggering mechanisms are not the primary focus of this arti-
cle as they were comprehensively reviewed, discussed and 
interpreted recently [109–113].

pH‑sensitive liposomes

The pH of extracellular space of the tumour tissues is lower 
relative to normal cells [114], due to lactate production and 
increased hydrolysis of ATP by cancer cells. Considering 
this condition, the pH-sensitive liposomes that can maintain 
stability in normal physiological conditions, while disas-
semble and release the drugs in an acidic microenvironment 
were engineered [115]. These liposomes responded to the 
variation of pH values between normal and cancerous tissues 
by releasing the therapeutic payload. Jiang et al. reported a 
pH-sensitive liposome called Trojan horse liposome encap-
sulating PTX for breast cancer therapy [99]. The liposome 
introduced a pH-responsive dimethylmaleic amide (DMA) 
bond into 1,2-distearoyl-sn-glycero-3-phosphorylethanola-
mine (DSPE) with a linker of lysine to form DLD/PTX-
Lips. In weak acidic pH microenvironment, the cleavage 
of DMA amide transferred the zeta-potential of liposome 
from negative to positive, which facilitated intercellular 
uptake and endosomal escape. As a result, more PTX were 
released from liposome and drug accumulation in tumour 

sites was subsequently enhanced. In vitro results showed that 
the DLD/PTX-Lips exhibited much higher cytotoxicity to 
4T1 murine breast cancer cells than free PTX with concen-
trations from 0.01 to 5 μg/mL and conventional liposomes. 
In vivo anticancer efficacy was assessed in a mouse model 
bearing with 4T1cells. The tumour inhibition rate of the 
DLD/PTX-Lips was 57.4%, significantly higher than that 
of free PTX (25.1%) and conventional liposome (30.4%).

In addition, certain ligands may promote receptor-medi-
ated endocytosis when bounded with pH-sensitive liposomes 
for targeted delivery [116]. Silva et al. developed a folate-
coated and DOX-loaded pH-sensitive liposomes (SpHL-
DOX-Fol), where folate ligand was conjugated to the lipo-
some surface [116]. The release of DOX was increased 
from 21.5% ± 3.9% to 53.6% ± 5.7% when pH decreased 
from 7.4 to 5.0. The results in 4T1 cell viability showed 
that liposomes with low concentration of 0.15 μM had 
higher cytotoxicity than free drug, but no statistical differ-
ences were observed. The in vivo antitumour activities of 
the thermo-sensitive liposomes were conducted in BALB/c 
mice bearing 4T1 cells, with the better therapeutic outcomes 
(68% tumour growth reduction) being observed compared to 
free DOX and liposome-formulated DOX.

Thermo‑sensitive liposomes (TSL)

Under normal physiological temperature, the lipid mem-
brane structure of TSL was tightly arranged at the gelati-
nous state, which protects the encapsulated drug from the 
diffusion through the membrane. However, when these 

Table 1  Targeted liposomal drug delivery for breast cancer treatments

Target Description Ligand Cell line In vivo work References

Somatostatin receptor 2 Overexpressed in breast cancer 
cells

Somatostatin analogue (SST) MDA-MB-231 Yes [79]

Chemokine Receptor (CXCR4) Overexpressed in solid breast 
tumours

AMD3100 MCF-7
MDA-MB-231

Yes [80, 81]

Mucin1 Associated with metastasis of 
tumours

Anti-Muc1 Aptamer MCF-7 Yes [82]

Integrin avb3 receptor Overexpressed in breast cancer 
cells

Arginine8–glycine–aspartic 
acid (R8GD)

MDA-MB-435S Yes [83]

CD44 receptor Overexpressed in breast cancer 
cells

Hyaluronic acid MCF-7
MDA-MB-435S

Yes [77]

Somatostatin receptors Overexpressed in breast cancer 
cells

Octreotide MDA-MB-435S Yes [74]

Urokinase plasminogen activa-
tor receptor

Present in early breast cancer 
lesions

Urokinase-type plasminogen 
activator

MCF-7
MDA-MB-231

Yes [84]

Folate Receptor Overexpressed in breast can-
cers cells

Folic acid 4T1 Yes [85]

Epidermal Growth Factor 
Receptor (EGFR)

Overexpressed in breast cancer 
cells

Anti-EGFR antibody MCF-7
MDA-MB-468

Yes [86]

Neuropilin 1 Overexpression in TNBC Oleyl-peptide MCF-7
MDA-MB-468

No [92]
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liposomes were heated to transition temperature (Tm), such 
as, for example, the Tm of dipalmitoylphosphatidylcholine 
(DPPC) is 41.5 °C, the lipids underwent a gel-to-liquid 
phase transition, leading to structure destabilisation and 
drug release [109, 117, 118]. Various TSL encapsulating 
anticancer drugs were developed and used for breast can-
cer treatments [119–122]. Zhang et al. developed a novel 
thermo-sensitive liposome incorporating DTX (DTX-TL) to 
improve antitumour effects of the drug [123]. In vitro release 
studies showed that the drug release at 42 °C was signifi-
cantly higher than that at 37 °C, indicating the temperature 
control on drug release (Fig. 2a). For in vivo drug release, 
the tumour of a mouse model bearing with MCF-7 cells was 
heated to 42 °C for 30 min using a homemade hyperther-
mia device connected with a thermostatic circulator. The 
work displayed that mice treated with TSL exhibited the 
maximal tumour size reduction compared with the mouse 
groups treated by other conditions (Fig. 2b, c). TSL can also 
be engineered to deliver dual drugs via the one platform for 
enhanced therapeutic efficacy. The co-delivery of tamoxifen 
and imatinib using TSL was developed by Jose et al. for syn-
ergistic breast cancer treatment [119]. More than 80% drugs 
were released from TSL in 30 min after the temperature 
was above transition temperature of 39.4 °C. At 40 °C, the 
growth inhibition of MCF-7 cells treated with this liposome 
formulation co-encapsulating 5 μM tamoxifen and 3.75 μM 
imatinib was observed to increase to 86.3 ± 1.5%, compared 
with the liposomes loaded with the singlet drug at the same 
concentration (70.6 ± 2.4% for tamoxifen and 43.0 ± 3.3% for 
imatinib). The enhanced in vitro therapeutic efficacy of the 
same liposomes in MDA-MB-231 cells was also reported, 
with the growth inhibition of 66.5 ± 3.9%.

When TSL were used in combination with chemother-
apy and thermotherapy, these liposomes demonstrated the 
dual advantages of temperature-triggered drug release and 

hyperthermia effect. In addition to chemotherapeutic drug 
release upon heating, hyperthermia effect is directly cyto-
toxic to cancer cells at the exposed area, resulting in the 
improved therapeutic efficacy [124]. Ou et al. developed TSL 
by utilising gold nanoantennas to generate mild hyperther-
mia and release DOX from TSL upon illumination by near-
infrared laser at 808 nm wavelength. The unique geometry 
of multibranched gold coated on the surface of the liposomes 
was utilised to enable the energy transfer from the light to 
heat, activating the hyperthermia and drug release from TLS 
simultaneously [120]. In vitro studies revealed the higher 
toxicity of such TSL towards MDA-MB-231 cells compared 
to free DOX even at low drug concentration of 0.5 μg/mL 
(33% vs. 17%). However, this work did not demonstrate the 
in vivo therapeutic efficacy of the combined treatment via 
the TSL. To the best of our knowledge,  ThermoDOX® was 
only one thermo-sensitive liposome formulation under Phase 
I/II clinical trials for cancer therapy [125]. In  ThermoDOX®, 
lysolipids were incorporated into the formulation to lower 
the liposome phase transition at room temperature, facilitat-
ing rapid drug release upon heating. This lysolipid-based 
liposome formulation containing DOX was developed by 
Needham et al. and has been invested by Celsion Corp [126]. 
It was utilised to combine hyperthermia and chemotherapy 
for treatment of breast patients with chest wall recurrence 
[127].

Light‑sensitive liposomes

External light source is a convenient stimulus employed in 
the activation of the on-demand release from the liposomes 
due to its tuneable spectral properties, illumination intensi-
ties and times. What’s more, spatial and temporal control 
of light sources provides an extra flexibility to precisely 
tune the release of cargo. The mechanism of light-sensitive 

Fig.2  a Drug release from thermo-sensitive liposomes incorporating 
DTX (DTX-TL) over time determined at 37  °C and 42  °C, respec-
tively. When temperature was achieved the phase transition tempera-
ture (42 °C) of DTX-TL, release of DTX was increased due to ther-
mosensitivity of DTX-TL. b Tumour growth of mice bearing MCF-7 
breast carcinoma (n = 9) after the treatment with saline, DTX injec-
tion (DTX-I) (5.0 mg/kg) or DTX-TL injection (2.5, 5.0, and 10.0 mg/

kg) for every 4 days (a total of four injections). The tumour was then 
heated at 42 °C for 30 min after the injection. The volume of tumour 
treated with DTX-TL (10.0  mg/kg) was significantly reduced, sug-
gesting the highest treatment efficacy of the DTX-TL. c Photograph 
of tumours collected from the mice treated with the same conditions 
as b,  adapted from ref. [123]
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liposomes can be classified into photophysical effect via 
molecular absorbers, plasmonic nanoparticles and inorganic 
nanomaterials and photochemical activation effect includ-
ing photoisomerization, photocleavage, and photosensitiza-
tion-induced oxidation [113]. Photosensitization-induced 
oxidation strategies involves reactive oxygen species (ROS) 
generation from photosensitisers (PSs) when activated by 
light illumination at specific wavelengths [128–130]. Singlet 
oxygen is one type of ROS generated via photosensitiser, 
which has unpaired electrons and unstable bonds [113]. The 
unsaturated carbon–carbon bond in lipid chains can be oxi-
dised by singlet oxygen to form hydroperoxides that in turn 
undergoes decomposition of the lipid bilayers [131].

Based on the triggering mechanism mentioned above, the 
light-sensitive liposomes could be engineered by incorpo-
rating PS into the liposome formulation. Under light illu-
mination, PS was activated to generate singlet oxygen or 
other ROS, oxidising the lipid components, and causing the 
destabilisation of the liposome structure.

Verteporfin is a well-known PS that has already been 
clinically approved for the photodynamic therapy (PDT) 
of macular degeneration and used for treatment of cancers, 
such as ophthalmic, small cell lung, dermatological, head 
and neck, brain, gastroenterological and gynaecological 
cancers [132]. Sneider et al. designed liposomes loaded 
with verteporfin for the treatment of triple negative breast 
cancer (TNBC) [91]. Liposomes were modified with DSPE-
PEG2000-folic acid to help the liposomes with cancer tar-
geting capability and enhanced cellular uptake. In vitro 
studies demonstrated that MDA-MB-231 cells treated with 
the light-sensitive liposomes at 690 nm light exhibited 33% 
cell viability. Although this work applied PDT effect to the 
cancer cells via light-sensitive liposomes, drug release could 
also be achieved using this triggering mechanism. The light 
source used in this work has some disadvantages limiting 
the utility of visible light (380–740 nm) in in vivo therapies. 
First, limited tissue penetration depth of the visible light 
does not allow it to sufficiently treat deep tissues; second, 
light energy in the range of 200–650 nm can be absorbed by 
many endogenous fluorophores, including epidermis pig-
ments, hemoglobins, and chlorophylls [133]. Compared to 
shorter wavelengths, the near infrared (NIR, 750–1870 nm) 
light has the relatively lower absorption of hemoglobin and 
water, resulting in deeper tissue penetration and making 
it advantageous for in vivo applications [134]. Yang et al. 
designed a liposome delivery system that can be triggered 
by near-infrared light at 808 nm [135]. Lipophilic IR780 
was incorporated into the lipid bilayer and hydrophilic 
chemotherapeutic TPZ was co-loaded into the liposomal 
core (Lip(IR780&TPZ)). Cell apoptosis analysis showed 
that the proportion of apoptotic 4T1 cells was about 36.2% 
after the treatment with Lip(IR780&TPZ) at 808 nm laser 
irradiation. In vivo studies further demonstrated the tumour 

size in BALB/c mice bearing 4T1 cellular xenografts treated 
with Lip(IR780&TPZ) was significantly smaller than that of 
mouse groups treated with other conditions including free 
drug, empty liposomes and Lip(IR780&TPZ) without laser 
irradiation, indicating the enhanced antitumour therapeutic 
efficacy of light-triggered liposomes for breast cancer.

Ultrasound‑ and magnetic‑sensitive liposomes

Ultrasound waves and magnetic fields were widely explored 
as an external triggering modality in combination with TSL 
discussed above [136, 137]. Due to the physical properties 
of acoustic waves and magnetic fields, local heat can be gen-
erated from these two external sources with high intensi-
ties, which are more tumour site-specific and non-invasive 
in practice. In addition, they both exhibited excellent tissue 
penetration capability [109]. In addition to triggering drug 
release from TSL, high-intensity focused ultrasound (HIFU) 
or magnetic fields can kill cancer cells via hyperthermia 
process. Magnetic resonance guided HIFU combining with 
 ThermoDox® was under phase I clinical study on stage IV 
HER2-negative breast cancer patients [138].

Another triggering mechanism of ultrasound-sensitive 
liposomes is based on mechanical cavitation by incorporat-
ing the liposomes with microbubbles [139, 140]. Depending 
on the amplitude and frequency of ultrasound waves as well 
as the size and properties of microbubbles, stable cavita-
tion or internal cavitation will occur upon the ultrasound 
triggering. At lower intensities, the microbubbles undergo 
oscillation (stable cavitation), resulting in local swirling and 
fluid convection. The corresponding shear stresses in the 
surrounding fluid can rupture and deform liposomes, leading 
to the drug release [141]. Low-intensity ultrasound has slight 
influence on chemical properties and anti-tumour activities 
of encapsulated drugs [142]. Unlike stable cavitation, inter-
nal cavitation under high intensities ultrasound will cause 
collapses of microbubbles and generate shockwaves which 
can increase the permeability of membrane [109, 143]. This 
effect not only induces the drug release from liposomes but 
also facilitates the cellular uptake of liposomes.

Magnetic-sensitive liposomes can also be used for mag-
netic resonance imaging (MRI) guided cancer therapy 
[144]. In general, magnetic nanoparticles (MNPs), such as 
iron oxides, are encapsulated in liposomes to achieve MRI 
and drug release simultaneously. The movements of MNPs 
aligned to external magnetic fields can induce mechanical 
forces to rupture the liposomes. Furthermore, liposome 
accumulation at tumour site can also be enhanced by exter-
nal magnetic field guidance [145]. For examples, Song et al. 
designed the liposomes co-loaded with magnetic nanocubes 
and emodin to enhance the chemotherapeutic effect in 
breast cancers [144]. The in vitro results demonstrated that 
MCF-7 cell killing effect was increased by 24.1% with the 
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liposome–emodin treatment alone and MRI-mediate tumour 
target further enhanced the effect of the liposomal chemo-
therapy by 8.67%. In vivo study confirmed that MRI-guided 
liposome accumulation within the tumour site in mice bear-
ing 4T1 breast cancer cells was observed and the tumour 
weight of the treated group was 12 times less than control.

Liposome‑based gene therapy for breast 
cancer

Each breast cancer subtype was associated with gene muta-
tions, causing certain cells in the breast become abnor-
mal. Gene therapy is a promising strategy for treatment of 
breast cancer subtypes bearing distinct genetic alterations, 
especially for triple negative breast cancers which cannot 
be treated by effective targeted therapies due to the loss of 
receptors [146]. Cationic liposomes are potential gene deliv-
ery systems able to naturally complex with the negatively 
charged DNA [147]. The liposome bilayers can protect com-
plexed nucleic acids against degradation by cell and neutrali-
zation by antibodies [148]. In addition, the positive charge 
of cationic liposomes can facilitate their interaction with the 
negatively charged cell membrane by endocytosis, resulting 
in efficient cellular uptake and content release into the cyto-
plasm [13, 149]. The approach for cancer gene therapy is by 
encapsulating plasmids [150] and oligonucleotides [151] in 
cationic liposomes [152]. Notably CRISPR/Cas9 system as 
the most promising gene-editing technology used for cancer 
gene therapy will be discussed independently.

Liposome‑formulated oligonucleotide therapeutics

Oligonucleotides are short synthetic nucleic acids with the 
potential to treat or manage a wide range of diseases [153]. 
These gene agents are capable to modulate expression levels 
of protein-coding genes by binding to specified sequences 
within a genome or RNA [154]. Among the various oli-
gonucleotide-based therapies, antisense oligonucleotides 
(ASOs) and small interfering ribonucleic acids (siRNAs) 
were the most widely explored and used in research and 
clinical applications for breast cancer therapy [155–157]. 
Comprised of a singular RNA strand, ASOs are complemen-
tary to messenger RNAs (mRNA) that are responsible for 
the coding of proteins. As ASOs carry a non-coding RNA 
(ncRNA) segment, they effectively silence genes of interest 
by hybridizing to a specific section within mRNA, inhibiting 
the production of respective proteins. siRNA are artificially 
synthesized double-stranded RNA molecules. They are 
widely used for transient silencing of gene of interest, which 
involves the design and production of a sequence specific to 
the target mRNA [158]. siRNA cleaves the mRNA through 
RNA induced silencing protein-complex (RISC)-mediated 

process [159]. The performance of ASO and siRNA-based 
therapeutics will pave the way for more clinical trials on can-
cer therapy. However, there were some challenges for using 
these agents including their rapid degradation, poor cellular 
uptake and rapid renal clearance following systemic admin-
istration [159, 160]. To overcome these limits and enhance 
the therapeutic outcomes, many efforts have been made to 
develop the nanocarriers delivering ASO and siRNA, such 
as liposomes that have the potential to be an effective vehicle 
with improved efficacy and safety profiles [161–167].

Sharma et al. developed a cationic liposomal delivery sys-
tem loaded with ASO to inhibit miRNA-191, an oncogenic 
miRNA overexpressed on breast cancer tissue attributable 
to malignant transformation progression [164]. After encap-
sulating the corresponding antisense oligonucleotide anti-
miRNA-191, the in vitro inhibiting efficacy of the liposome 
delivery platform was tested in MCF-7 and ZR-75-1 breast 
cancer cell lines. The authors found the liposome-mediated 
anti-miR-191 delivery exhibited better transfection effi-
ciency of anti-miR-191 in breast cancer cells. Another inter-
esting result obtained from this work indicated that the engi-
neered liposomes alone could inhibit growth of breast cancer 
cells. Thus, the synergistic effect of stearylamine–liposome 
in combination with anti-miR-191 displayed elevated levels 
of cell apoptosis and migration suppression, in addition to 
elevating chemosensitivity of breast cancer cells to anti-
cancer drugs [164].

Another recent work reported synergistic anti-tumour 
activity of PTX and Polo-like kinase 1 (PLK-1)-targeting 
siRNA in breast cancer via cationic liposome delivery sys-
tems [166]. These liposomes were engineered to co-load 
PTX and siPLK-1, followed by surface modification with 
targeting aptamer (AS1411) to further enhance tumour 
targeting capability. PLK1 mRNA expression level of 
breast cancer cells (MCF-7) was obviously reduced, with 
approximately 79% knockdown after the treatment with the 
liposomes. In addition, tumour growth was significantly 
inhibited and survival rate of tumour-bearing mice was pro-
longed after the treatment with such liposomes. Collectively, 
co-delivery of chemotherapeutic drugs and siRNA via this 
liposome system may have synergistic anti-breast cancer 
effect.

Although cationic liposomes were the most common and 
well-investigated nanocarriers for ASO and siRNA delivery, 
they may cause some changes to cells, such as cell shrink-
ing, reduced number of mitoses and vacuolization of the 
cytoplasm [168]. Therefore, the potential of non-cationic 
liposomes as gene delivery systems was investigated. 
Alshaer et al. developed a non-cationic liposomal delivery 
system loaded with siRNA–protamine (siRNA/prot) com-
plex. Its surface was further modified with the anti-CD44 
aptamer (Apt1) to actively target CD44 expressing TNBC 
cells (Fig. 3a) [167]. CD44, the cell surface glycoprotein, is 
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an appropriate targeting receptor for targeted therapeutics 
due to its superficial overexpression on tumours. The lucif-
erase (luc2) gene silencing efficacy of this targeted liposo-
mal system was tested in both in vitro (MDA-MB-231-Luc2-
eGFP cells) and in vivo settings (TNBC mouse model). The 
maximal in vitro gene silencing activity was observed in the 
cells treated with the Apt1 functionalised liposomes (gene 
expression level of 25.7 ± 15.1%), compared with non-tar-
geted liposomes (47.2 ± 10.6%) (Fig. 3b). The in vivo work 
further demonstrated the Luc2 mRNA expression level was 
significantly inhibited by Apt1 functionalised liposomes, 
compared with PBS control group (Fig. 3c). Furthermore, 
the observed bioluminescence signal emitted from the 
tumours exemplifies the tumour inhibiting capability of the 
siRNA-loaded liposome systems (Fig. 3d).

Alternative gene therapy for breast cancer is using 
microRNA (miRNA). A miRNA is a short non-coding 
RNA molecule containing about 20 nucleotides. It was 
found in plants, animals and some viral cells with the 

function of regulating gene expression post-transcription-
ally [169]. miRNA act as a guide by base-pairing with 
complementary sequences within mRNA molecules to 
negatively regulate its expression. This feature is used 
for silencing specific oncogene by engineered extrinsic 
miRNA. A number of miRNA formulations have been 
studied for cancer gene therapy [170, 171]. A functional 
miRNA liposome was constructed by Yan et al. to treat 
TNBC by silencing the Slug gene. The 25-nucleotide sense 
strand of miRNA was encapsulated into DSPE-PEG2000-
tLyp-1 peptide-modified functional liposomes. In vitro 
results showed that Slug gene was silenced and the TGF-
β1/Smad pathway was inhibited in TNBC cells, leading 
to inhibition of invasiveness and growth of TNBC cells. 
A stronger anticancer effect than functional vinorelbine 
liposomes was observed in TNBC cancer-bearing mice and 
nearly complete inhibition of tumour growth was achieved 
by combining functional miRNA liposomes and functional 
vinorelbine liposomes [172].

Fig.3  a Schematic illustration of anti-CD44 aptamer (Apt-1) conju-
gated liposomes loaded with siRNA–protamine complex (siRNA/
prot). b In  vitro Luc2 gene silencing in MDA-MB-231-Luc2-GFP 
cells after the treatments with scramble siRNA and anti-luc2 siRNA 
in different forms: free, siRNA–proamine complex (siRNA/prot), 
loaded in liposomes (siRNA/prot ⊂ lip), and loaded in Apt1-func-
tionalized liposomes (siRNA/prot ⊂ lip-Apt1). Only siRNA/prot ⊂ lip 
and siRNA/prot ⊂ lip-Apt1 induced specific Luc2 gene expression 
reduction. Among these two groups, siRNA/prot ⊂ lip-Apt1 exhibited 
higher inhibiting capability, which may be attributed to its higher cel-

lular uptake compared with non-functionalised liposomes. c Q-Pol-
ymerise Chain Reaction (qPCR) results demonstrated the Luc gene 
silencing effect in a mouse model bearing MDA-MB-231-Luc2-GFP 
cells treated with PBS, liposomes loaded with scrambled siRNA/
prot (scr siRNA ⊂ lip), liposomes loaded with luc2 siRNA/prot (luc2-
siRNA/prot ⊂ lip), aptamer-functionalized liposomes loaded with 
scrambled siRNA/prot (scr siRNA ⊂ lip-Apt1), and aptamer-function-
alized liposomes loaded with Luc2 siRNA/prot (Luc2-siRNA ⊂ lip-
Apt1). d Bioluminescence signals from tumours of mice treated with 
different siRNA formulations as c,  adapted from ref. [167]
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Liposome‑formulated CRISPR therapeutics

Over recent years, new genetic editing techniques including 
zinc-finger nucleases (ZFNs), transcription activator-like 
effector nucleases (TALENs) and clustered regularly inter-
spaced short palindromic repeats (CRISPR) have established 
themselves as a prominent therapeutic option for various 
cancers including breast cancer [173–178]. Among these 
genome editing technologies, CRISPR has emerged as a 
potential alternative to ZFNs and TALENs due to its prepar-
atory simplicity, high gene editing efficiency and simultane-
ous multiple loci editing [179, 180]. It became more suitable 
for preclinical and clinical applications compared to other 
gene editing technologies. In this approach, a nuclease pro-
tein (Cas9) introduces a double-stranded break (DSB) in the 
target sequence of a DNA molecule, enabling the incorpora-
tion of a new sequence into the genome as directed by the 
guide RNA (gRNA) repair template [181]. So far, CRISPR 
has been successful in cancer CAR-T immunotherapy to treat 
primary defects of the immune system, hemoglobinopathies, 
hemophilia, metabolic disorders, and muscular dystrophy 
[182–184]. Major advances have recently been made in the 
clinical applications of CRISPR through the development of 
therapeutics that can specifically disrupt the expression of 
disease-relevant genes [185–187]. However, this technology 
remains at relatively early stages of development and has 
not been clinically tested for breast cancer yet. This is due 
to the lack of efficient delivery systems, inadequate transfec-
tion efficiency, quick rate of biodegradability and potential 
off-target effect [188–190]. Viral-based delivery systems 
have largely been used for CRISPR transfection. However, 
the major challenge was associated with CRISPR/Cas9-
specific immunogenicity induced by viral vectors [191]. As 
a promising delivery alternative, various non-viral delivery 
strategies have been explored and developed, including lipo-
some delivery systems [192–195]. Liposome-based CRISPR 
therapeutics, while few articles were currently reported for 
breast cancer, appears to have promise in the field of cancer 
gene therapy [196–198].

Zhang et al. employed a cationic liposomal system to 
overcome the CRISPR’s inadequate transfection efficiency 
[199]. The authors constructed a polyethylene–glycol–phos-
pholipid-modified (PLNP) liposome system encapsulating 
a Cas9/single-guide RNA (sgRNA) plasmid (DNA). To 
demonstrate the transfection efficiency of such engineered 
liposomes, the authors selected to knock down polo-like 
kinase 1 (PLK-1) gene, a master regulator of cancer cell 
division, using these nanocarriers. In vitro transfection 
results exhibited higher transfection efficiency of 37.8% 
in breast cancer cells (MCF-7) treated with PLNP con-
taining CRISPR/sgRNA plasmid, compared to the Lipo-
fectamine2000 (a commercial liposome transfection agent) 
which demonstrated 3.15% only. This work did not show 

the in vivo therapeutic effect of this liposome-formulated 
CRISPR technology in breast cancer. However, the authors 
claimed the in vivo efficacy of these liposomes in a mouse 
model bearing melanoma cells (A375).

Guo et al. applied a noncationic, tumour-targeting lipo-
some–hydrogel hybrid system to knock out Lipocalin 2 
(Lcn2), a breast cancer-promoting gene, through CRISPR-
based genome editing [200]. This system encapsulated three 
CRISPR plasmids encoding a Cas9 nuclease and a guide 
RNA sequence for identification and disruption of the Lcn2 
gene in the genome of targeted human TNBC cells (Fig. 4a). 
The in vitro genome editing efficiency demonstrated that 
Lcn2 mRNA expression levels in TNBC cells were largely 
reduced, with ~ 80% of Lcn2 loss observed in both MDA-
MB-231 and MDA-MB-436 cell lines (Fig. 4b, c). In vivo 
therapeutic efficacy of this liposome system was tested in a 
mouse model bearing MDA-MB-231 cells. The nanocar-
rier treated mouse group displayed significant inhibition 
of tumour growth by 77% in volume, compared with other 
treatment conditions (Fig. 4d). The results obtained from 
these two studies indicated liposomes may be considered 
as a promising delivery formulation for enhanced transfec-
tion of CRISPR and subsequently therapeutic effect in breast 
cancer. It is notable that in these two studies the authors used 
CRISPR plasmid DNA to achieve gene knockdown effect. 
However, the major issue associated with plasmid DNA was 
high levels of unintended gene edits due to the relatively 
long period that plasmids persist inside cells, which would 
hamper the clinical translation of CRISPR technology [201].

Conclusions

The experimental development of liposome delivery sys-
tems is progressing at a fast pace, following the demand 
for the new strategies for breast cancer treatment. However, 
there is no well-developed understanding or road map on the 
design of the new liposome formulation for breast cancer. 
Selection of the targeting and triggering modalities in most 
publications largely depends on the molecular subtypes of 
the tumour and the ongoing conventional treatments. Despite 
the traditional liposome-formulated chemotherapeutic drugs 
have been widely used in the clinical practice in breast can-
cer treatment, there are some barriers for the clinical imple-
mentation of these new liposome formulations. In the case of 
the triggerable liposomes, the triggering mechanisms need 
to be further investigated when designing such liposome 
formulations. For example, the choice of the phospholipid 
component for light-triggered liposomes needs to be based 
on the desired photo-induced mechanisms. If a photochemi-
cal pathway, such as photo-oxidative reaction, is applied, 
unsaturated phospholipids would be used in the formula-
tion. In addition, active ingredients used in the triggerable 
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liposome formulation also need to be optimized to weight 
up their benefits and risks to the healthy tissues.

From the perspective of the clinical applications, we envi-
sion that far-reaching development of the liposome technol-
ogy will eventually benefit the breast cancer patients. Many 
studies confirmed that various liposome constructs loaded 
with drugs can lower the levels of cardiotoxicity, address 
drug resistance and improve the overall drug release profile. 
By modifying the liposome surface with targeting ligands, 
these liposomes additionally offer opportunities for design-
ing site-specific therapy, minimising non-specific effect of 
traditional chemotherapeutic drugs. The new generation 
liposomes with triggering features even allows exquisite 
control of payload release, largely enhancing the therapeutic 
outcomes for breast cancer patients. We believe that these 
liposome formulations would expand the range of drug/
gene delivery options for the treatments of breast cancer, 
addressing the critical problems of drug toxicity and limited 
therapeutic effects.
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