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Abstract
Genome-scale metabolic networks for model plants and crops in combination with approaches from the constraint-based 
modelling framework have been used to predict metabolic traits and design metabolic engineering strategies for their manipu-
lation. With the advances in technologies to generate large-scale genotyping data from natural diversity panels and other 
populations, genome-wide association and genomic selection have emerged as statistical approaches to determine genetic 
variants associated with and predictive of traits. Here, we review recent advances in constraint-based approaches that inte-
grate genetic variants in genome-scale metabolic models to characterize their effects on reaction fluxes. Since some of these 
approaches have been applied in organisms other than plants, we provide a critical assessment of their applicability particu-
larly in crops. In addition, we further dissect the inferred effects of genetic variants with respect to reaction rate constants, 
abundances of enzymes, and concentrations of metabolites, as main determinants of reaction fluxes and relate them with 
their combined effects on complex traits, like growth. Through this systematic review, we also provide a roadmap for future 
research to increase the predictive power of statistical approaches by coupling them with mechanistic models of metabolism.
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Introduction

Advances in genotyping have provided unprecedented 
insights in the genetic variations among individuals of the 
same species. Allelic variations within a genome of the 
same species include the differences in the number of tan-
dem repeats at a particular locus, segmental insertions/dele-
tions (indels), and single-nucleotide polymorphisms (SNPs) 
[1]. Since SNPs represent the most abundant form of allelic 
variations [2], they represent the predominant factor that 
induces phenotypic differences among individuals. Usage 
of SNPs with modern machine-learning approaches have 

revolutionized molecular plant breeding, both with respect 
to applied research in prediction of traits and basic research 
in the mechanisms governing a trait [3–5]. Hence, charac-
terising the effects of SNPs on agronomically relevant traits 
is a key problem in the interlinked fields of plant systems 
biology, quantitative genetics, and plant breeding.

Depending on their genomic location, SNPs have the 
potential to alter all steps of transcription and translation. 
For instance, if a SNP lies in a transcriptional regulatory 
element, it can alter mRNA expression; in addition, SNPs 
that do not lie in protein-coding regions can affect splic-
ing, mRNA degradation, and the sequence of non-coding 
RNA. If a SNP that lies in a protein-coding region is synony-
mous, i.e. does not cause amino acid change, it can affect the 
translation rate and turnover of mRNA, ultimately reflected 
in changes of the protein abundance; finally, if the SNP is 
nonsynonymous (missense or nonsense), i.e. leads to amino 
acid change, it can modify the protein activity. Through their 
effects on mRNA, enzyme abundance and stability as well 
as enzyme activity, SNPs have direct effect on metabolic 
reactions catalysed by the respective enzymes.

Metabolism represents the entirety of biochemical 
reactions through which nutrients are imported from 

Cellular and Molecular Life Sciences

 *	 Zoran Nikoloski 
	 zniko@uni-potsdam.de

1	 Bioinformatics Group, Institute of Biochemistry 
and Biology, University of Potsdam, Potsdam, Germany

2	 Bioinformatics and Mathematical Modeling Department, 
Centre for Plant Systems Biology and Biotechnology, 
Plovdiv, Bulgaria

3	 Systems Biology and Mathematical Modeling Group, Max 
Planck Institute of Molecular Plant Physiology, Potsdam, 
Germany

http://orcid.org/0000-0003-2671-6763
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-021-03844-4&domain=pdf


	 H. Tong et al.

1 3

the environment and are transformed into the building 
blocks of biomass, ensuring growth, as well as other cel-
lular components that support defence, reproduction, and, 
ultimately, survival [6]. A quantitative characteristic of a 
metabolic reaction is its rate. The rate or flux of a reaction 
denotes the speed at which it transforms the substrates 
into products [7]. The flux of a reaction depends on the 
abundance, E , of the enzyme that catalyses the reaction, its 
turnover number, kcat , representing the number of substrate 
molecules that each active site of the enzyme converts to 
product molecules per unit time, and the concentration of 
metabolites, x , acting as substrates and/or effectors (e.g. 
allosteric regulators, inhibitors). In the most general form, 
the flux of a metabolic reaction r can be mathematically 
written as:

where K denotes a set of parameters (e.g. Michaelis–Menten 
constants, Km, equilibrium constants, Keq ), Vmax is the maxi-
mal enzyme activity, and �(K, x) is a function that models the 
effect of metabolite concentration on the flux.

Metabolic reactions do not operate in isolation and 
jointly affect the temporal change of metabolite concentra-
tions (Fig. 1a). A metabolic reaction can be described by 
the stoichiometry of its substrates and products, yielding 
the stoichiometric matrix, N  , over all reactions (Fig. 1b). 
The change of metabolite concentrations over time can 
then be modelled as dx

dt
= Nv , where v gathers the fluxes 

of all reactions in the modelled metabolic network. Cor-
respondingly, we can categorise the effect of SNPs on 
reaction fluxes into local, affecting kcat , and global, via 
transient effects of SNPs on enzyme abundance, E , metab-
olite concentrations, x . Given the role of reaction fluxes in 
shaping the main components of growth and other cellular 
tasks important for survival, it is paramount to determine 
the effects of SNPs on reaction fluxes and to further dissect 
them into local and global.

Reactions can be divided into extra- and intracellular 
based on whether or not they facilitate the exchange (i.e. 
import or export) of metabolites with the environment. 
Monitoring the change of extracellular metabolite concen-
trations over time can be readily used to estimate extra-
cellular reaction fluxes [8]. However, intracellular fluxes 
are more difficult to quantify, and require setting up iso-
tope labelling experiments and measurement of metabo-
lite labelling patterns which are then fitted to a metabolic 
model [9, 10]. In plants, the problem is further compli-
cated by the fact that time-resolved metabolite labelling 
patterns from feeding 13CO2 are required to infer intracel-
lular reaction fluxes in photoautotrophic growth [11, 12]. 
Therefore, isotope labelling experiments are currently too 
laborious to allow estimation of fluxes in a population of 

v
(
kcat,K,E, x

)
= kcatE�(K, x) = Vmax�(K, x),

individuals from a given species, rendering it infeasible to 
dissect the genetic architecture of fluxes in different model 
plants and crops following this approach.

As a result, other computational approaches have been 
developed to predict/estimate fluxes in the constraint-
based modelling framework based on the assumption that 
an organism optimises a cellular task (e.g. growth) under 
a set of physicochemical constraints [13] (Fig. 1c). This is 
the essence of flux balance analysis (FBA) which provides 
efficient means to estimate fluxes based on constraints from 
measurement of extracellular fluxes and growth of micro-
organisms [14]. Extension of FBA has led to variants that 
include additional assumptions capturing efficient usage of 
cellular resources [15]. Interestingly, this parsimonious strat-
egy is also often followed in application of constraint-based 
modelling approaches with plant metabolic networks [16, 
17]. In contrast to the isotope labelling experiments above, 
constraint-based approaches provide a feasible means to 
begin to unravel the genetic determinants of reaction fluxes 
in plants and to use them in plant breeding.

Here, we review a collection of recent modelling 
approaches, which allow the dissection of the genetic basis 
of reaction fluxes by identifying their association with 
SNPs that are integrated into metabolic networks. Since 
these approaches can be grouped based on whether or not 
they rely on the principles underlying genome-wide asso-
ciation and genomic selection, we also describe the basic 
methodology underlying these machine-learning and statis-
tical approaches. Focusing on the global effects of SNPs, 
we also provide a succinct review of studies that examine 
SNP effects on maximal enzyme activity in model plants 
and crops. We then offer a perspective for determining 
local effects of SNPs on kcat ’s by coupling of proteomics 
technologies and modelling approaches in diversity panels. 
Finally, we point out how these modelling approaches can 
help address the transferability of statistical models to make 
predictions of traits in unseen environments by their integra-
tion into mechanistic models of metabolism.

Constraint‑based metabolic models 
of model plants and crops

Access to a high-quality metabolic model of an organism is 
key to accurate estimation of fluxes. Genome-scale meta-
bolic models (GEMs) gather the entirety of documented 
metabolic reactions assembled based on annotation of the 
genome of an organism [18]. GEMs are further refined to 
include cellular compartments by considering information 
of protein localization and intracellular transporters. GEMs 
usually include a synthetic reaction, called biomass reaction, 
that expresses biomass as a defined ratio of macromolecules 
synthesised from metabolites, assembled from genome 
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annotation and metabolomics measurements [19]. Since 
metabolism differs between cell types, tissues, and organs, 
omics data (e.g. transcriptomics, proteomics, and metabo-
lomics) from these cellular context have been used in combi-
nation with constraint-based approaches to extract respective 
context-specific metabolic networks [20] (Fig. 1d).

Efforts in the last decade have resulted in the assembly 
of high-quality GEMs and metabolic models of central 

carbon metabolism for key model plants and crops, includ-
ing: Arabidopsis thaliana (Arabidopsis) [21–31], Oryza 
sativa (rice) [32–37], Zea mays (maize) [23, 30, 38–40], 
Solanum lycopersicum (tomato) [41], Solanum tuberosum 
(potato) [42], Hordeum vulgare (barley) [43], Brassica 
napus (oilseed rape) [44, 45], Medicago truncatula [46], 
Glycine max (soybean) [47], Setaria viridis [48] and Popu-
lus trichocarpa [49], as well as generic models for CAM, 

A C

D

B

E

Fig. 1   Concepts from constraint-based modelling of metabolic net-
works. a Simplified metabolic network of the Calvin–Benson cycle, 
starch and sucrose synthesis including two compartments (chloroplast 
and cytosol), 27 reactions and 24 compartment-specific metabolites. 
All triose-3-phosphates are lumped in a common pool denoted by 
T3P. b The concept of the stoichiometric matrix N on reactions R1 
to R4 and R27 from (a). c The system of linear equations represent-
ing the metabolic model has multiple solutions, forming the solution 
space. Data-driven constraints can be included to reduce the solu-
tion space, each resulting in a smaller subspace. d Integration of data 
from various technologies/approaches (genomics, transcriptomics, 
proteomics, fluxomics, and metabolomics) allow the reconstruction 

of cell type-, tissue- or organ-specific metabolic networks. e Data 
on maximal reaction rates ( V

max
 ) and biomass composition for dif-

ferent genotypes (here G1, G2, and G3) can be used to further refine 
the predictions from metabolic networks to obtain genotype-specific 
flux estimates. Metabolite abbreviations: 2PG—2-phosphoglycerate, 
RuBP—ribulose-1,5-bisphosphate, 3PGA—3-phosphoglycerate, 
T3P—triose-3-phosphates, FBP—fructose-1,6-bisphosphate, F6P—
fructose 6-phosphate, G6P—glucose 6-phosphate, G1P—glucose 
1-phosphate, ADPG—ADP-glucose, UDPG—UDP-glucose, PP—
pentose-5-phosphates, E4P—erythrose-4-phosphate, SBP—sedohep-
tulose-1,7-bisphosphate, S7P—sedoheptulose-7-phosphate, R5P—
ribulose-5-phosphate
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C3, and C4 plant species [50–53] (Fig. 2). The models differ 
with respect to whether they only include pathways from 
primary metabolism (e.g. AraCore in Arabidopsis [21]) or 
they also consider pathways of secondary metabolism (e.g. 
the Arabidopsis model of Mintz-Oron et al. [27]). Further, 
the models include different details of representation of the 
underling biochemical reactions, which particularly holds 
for lipid metabolism [54]. They also differ with respect to 
the number of cellular compartments modelled and genes 
included (Fig. 2). The latter is particularly important if 
missense SNPs are to be integrated in these models follow-
ing the gene–protein–reaction (GPR) rules, modelling the 
relation between genes, their products, and the reactions 
they catalyse [18]. Further, based on these GEMs, context-
specific metabolic networks have already been extracted for 
Arabidopsis cotyledon, flower bud, open flower, root, juve-
nile leaf and silique [27], mesophyll and guard cells [29, 50], 
root cell types [31], as well as mesophyll and bundle sheath 
cells in maize, along with models of maize leaf, embryo, and 
endosperm [23, 40]. These models have been used to make 
predictions and further analyse genome-scale flux distribu-
tions under different growth scenarios [16].

Determining the genetic basis of the flux for a given reac-
tion requires that it is quantified in multiple individuals (i.e. 
genotypes) whose metabolic networks may differ (Fig. 1e). 
To this end, availability of quantitative metabolomics data 
from different individuals allow the possibility to set up 
genotype-specific biomass reactions [55, 56]. In addition, 
measurements of extracellular fluxes across individuals as 
well as maximal enzyme activities, Vmax , can be used to 
establish genotype-specific constraints on the model’s input 

and output and intracellular fluxes [55]. Further, omics data 
from different genotypes in conjunction with context-spe-
cific model extraction approaches, mentioned above, can be 
used to extract more refined genotype-specific models. The 
resulting genotype-specific metabolic models together with 
constraint-based modelling approaches [14] can be used to 
obtain genotype-specific flux distributions, as a first step in 
dissecting the genetic basis of individual fluxes.

Statistical approaches for linking SNPs 
with metabolic traits

Establishing a link between genetic markers (e.g. SNPs) and 
a trait of interest is carried out by application of machine-
learning and statistical approaches. Two principal questions 
can be posed: (1) is the trait statistically associated with a 
genomic region or position? (2) Are the genetic markers 
predictive of the trait? (in the sense of predicting a major 
proportion of the variance). These questions can be used 
to group the statistical approaches to link genetic markers 
with (metabolic) traits into those that aim to conduct genetic 
mapping and those that devise models for genomic selection, 
respectively.

Genetic mapping approaches

Genetic mapping of a given trait can be used to determine 
and dissect the genetic architecture of the trait. Therefore, 
it provides a useful approach to improve crop breeding 
towards generation of better performing genotypes [57]. An 
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Fig. 2   Overview of available plant metabolic network reconstructions. The existing stoichiometric models of model plants and crops are com-
pared based on the number of compartments, metabolites and reactions included
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essential requirement for genetic mapping is having access 
to a population with available genotypic data, describing 
the genetic variation, and phenotypic data for studied traits. 
Genetic mapping consists of five steps: (1) design or select 
a population, (2) collect the genotypic and phenotypic data, 
(3) conduct a screen based on statistical genetic models, 
(4) prioritise the significant signal for candidate genes, and 
(5) validate candidate genes [58]. Based on the population 
employed, the statistical models used to link the genotypic 
with phenotypic variation can drastically differ: the approach 
using biparental populations (e.g. F2 populations, backcross, 
and recombinant inbred lines (RILs)) is termed as quanti-
tative trait loci (QTL) mapping (Fig. 3a), while that using 
natural populations (i.e. diversity panels) is at the core of 
genome-wide association studies (GWAS) [59] (Fig. 3b). 
Preprocessing of data on multiple traits based on principal 
component analysis can be also used to derive linear com-
binations of traits as latent variables, which can also be used 
in mapping [60].

QTL mapping

QTL for a studied trait denotes genomic regions that control 
the trait. QTL mapping relies on using low-density genetic 
markers, e.g. amplified fragment length polymorphism 
(AFLP), restriction fragment length polymorphism (RFLP), 
and simple sequence repeat (SSR), because the recombi-
nation blocks in biparental populations are relatively big. 
This approach has provided powerful means to identify 
loci that co-segregate with the studied trait in the employed 

biparental population, due to the smaller number of false 
positive candidates [59]. However, the resolution of QTL 
mapping is relatively low as it depends solely on the recom-
bination events that occur during the process of generating 
the population [61]. Multi-parent populations can increase 
the mapping resolution [62–64], but require high-density 
genetic markers which can readily be obtained with mod-
ern cost-effective genotyping technologies. The statistical 
approaches for QTL mapping are based on the linkage map, 
which is the order of markers on chromosome and genetic 
distance between marker pairs. The most widely used QTL 
mapping model is composite interval mapping (CIM) model 
that considers the covariates to eliminate the effect of mark-
ers outside the tested interval [65] (Fig. 3a).

GWAS

In contrast to QTL mapping, GWAS has a relatively higher 
resolution, often down to a single gene level, since it relies 
on high-density SNPs covering the entire genome [66]. 
Therefore, GWAS has been the method of choice to dissect 
the genetic architecture of quantitative traits in animals 
and plants in the last decade [67–69]. The evolutionary 
history of diversity panels leads to accumulation of alleles 
that are in linkage disequilibrium, allowing to detect asso-
ciation between genotype and phenotype. However, the 
power of GWAS to detect true associations can be affected 
by at least five factors: (i) the mapped trait should exhibit 
(approximately) normal distribution, (ii) size of the popu-
lation, which is related to the proportion of associations 
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Fig. 3   Statistical approaches for linking SNPs to (metabolic) traits. 
a Biparental mapping population based on crossing of parents that 
show differing values for a trait of interest together with a LOD 
scores for regions associated with the trait. b GWAS population com-
posed of genetically diverse genotypes along with a Manhattan plot 

showing the p value of the SNPs used in mapping. c The process 
underlying genomic selection, in which genotypic and phenotypic 
data in a training set is used to train a statistical model for a studied 
trait, followed by application of the model to a testing population that 
is only genotype to predict respective phenotypes
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of higher effects, (iii) population structure, which leads 
to identification of spurious associations, (iv) allele fre-
quency, that affects the resolution power, and (v) linkage 
disequilibrium, that assists in defining the significantly 
affected loci [59].

To address the issues of population structure and relat-
edness present in natural population, a mixed linear model 
(MLM) including kinship matrix and population structure 
was proposed [70], which is the most common used GWAS 
model in plants. The model is given by

where y is a vector of phenotypic data, X� is the inter-
cept other than SNP effect and population structure, S is 
a design vector for each SNP, � is the SNP effect, Q is the 
population structure matrix, v is the population structure 
effect, � ∼ MVN(0,K�2

u
) is the polygenic effect, and e is the 

residual error. The population structure can be revealed by 
approaches based on principal component analysis [71]. The 
polygenic effect and residual error are treated as random 
effects, while the others are fixed effects. Therefore, the vari-
ance of y is

where K is the kinship matrix, I is the identity matrix, �2
u
 

and �2
e
 are the variance component of polygenic effect and 

residual errors, respectively. These variance components 
are estimated by restricted maximum likelihood (REML) 
approach. The best linear unbiased estimation (BLUE) of 
fixed effects and best linear unbiased prediction (BLUP) of 
random effects are then calculated. The test of significance 
is performed by the F test or likelihood ratio test between 
the model without consideration of the SNP effect and the 
model that includes the tested SNP (Fig. 3b). The test of 
significance is carried out in a single locus analysis, so a 
multiple test correction must also be performed.

However, application of the MLM approach is compu-
tationally challenging with the increase in the number of 
samples and SNPs that are required to improve the resolution 
and power of the genetic mapping. Several efficient GWAS 
algorithms have been devised to handle the population struc-
ture and kinship by employing elegant matrix transforma-
tions (e.g. the efficient mixed model association (EMMA) 
[72], genome-wide EMMA (GEMMA) [73], and factored 
spectrally transformed linear mixed model (FaST-LMM) 
[74]). In contrast to the above methods, other algorithms 
estimate the polygenic effect only once, and keep it constant 
for every tested SNP (e.g. population parameters previously 
determined (P3D) [75]). In addition, to avoid control the 
population stratification via kinship and population structure 
matrix, the multi-locus mixed model (MLMM) has also been 
used in GWAS [76].

y = X� + S� + Qv + � + e,

V = K�2
u
+ I�2

e
,

From this brief review of computational approaches for 
genetic mapping based on GWAS, it is evident that they 
are all based on statistical approaches of association and do 
not consider mechanistic insights and constraints. Several 
pressing questions arise: can the coupling of the basic prin-
ciples of GWAS with mechanistic models of metabolism 
help in detecting causal SNPs with local effects on reaction 
fluxes? If so, could this be done with smaller population 
sizes, without reducing the power of the detected associa-
tions? These questions will be addressed in “Approaches 
based on GWAS”.

Genomic selection

Genomic selection (GS) is considered the most promising 
breeding method to speed up the development and release of 
improved genotypes [77]. It is based on a model to arrive at 
genomic estimated breeding value (GEBV) based on usage 
of genome-wide markers with various machine learning 
[78]. More specifically, GS uses machine learning to inte-
grate phenotypic data of a given trait with molecular markers 
in a statistical model for a training population. The model 
is then employed to predict traits values of genotypes in a 
testing population, which have been genotyped but not phe-
notyped [79] (Fig. 3c). The predictions for unseen genotypes 
can be used for selection without any further phenotyping. 
Therefore, an increase in GS accuracy for agronomically 
important traits can accelerate genetic gain by shortening 
the breeding cycles [77].

In contrast to GWAS, GS forgoes statistical testing for 
the effect of SNPs, as the goal is to devise a model of high 
predictive power. Nevertheless, like GWAS, the accuracy of 
GS is affected by several factors, including: (i) the sample 
size, (ii) genetic relationship within and between the training 
and testing population, (iii) marker density, (iv) heritabil-
ity of the trait, (v) linkage disequilibrium between markers 
and quantitative trait loci controlling the trait of interest, 
and (vi) non-additive genetic effects (e.g. epistasis) [80, 
81]. It has been observed that increases in the sample size, 
but also changes in the structure of the training set have a 
strong effect on the prediction accuracy of GS [82]. Further, 
increases in accuracy of GS have been found to plateau after 
certain level of marker density [83]. GS models that take 
into consideration multi-environment data allow for sharing 
information across environments and usually lead to increase 
in accuracy in comparison to models derived from single-
environment data [84]. However, the generation of such data 
takes considerable resources, so the question remains if the 
performance of single-environment models can be improved 
by modifying the modelling strategy. Finally, several studies 
have pointed out that epistasis is an important contributor 
to the long-term response to selection [85, 86]. However, 
while consideration of two-locus epistatic effects has led to 
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improvements in GS accuracy [87], general consideration of 
epistasis in GS models remains computationally challenging 
and deserves further method development.

Based on the machine-learning/statistical techniques 
employed, GS approaches can be roughly divided into those 
relying on regression, classification, and deep learning tech-
niques [5]. Ridge regression best linear unbiased prediction 
(rrBLUP) is one of the most common used GS models in 
plants [78]; it is a mixed-effect linear model, given by

where y is a vector of phenotype, X is the fixed effect design 
matrix, b is the fixed effect, Z is a matrix of genetic markers, 
u is the marker effect as random effect and e is the residual 
error. The variance of y is

where �2
u
 is the marker effect variance and �2

e
 is the residual 

error variance. Since the number of markers is consider-
ably larger than the number of observations (i.e. genotypes), 
regularisation techniques are usually used to estimate the 
model parameters. In comparison to ridge regression, the 
parameter � of the l2 norm is equivalent to � = �2

e
∕�2

u
 and 

penalises the ratio between the two random effect variance 
components. According to the mixed model theory, the value 
of GEBV can be solved and used to predict the phenotypic 
value in testing population.

This approach can shrink all effects toward zero equally 
across markers, under the assumption that all markers have 
a common variance. Other approaches, like genomic best 
linear unbiased prediction (GBLUP), estimate the kinship 
matrix from genomic markers to represent the pedigree 
information, then estimate GEBV in a mixed linear model 
that is equivalent to the rrBLUP model [88]. The GEBV can 
also be obtained from Bayesian statistics [78]. To compare 
the model performance in GS, one usually uses the predic-
tion accuracy. It is determined by k-fold cross-validations, 
whereby one fold is treated as testing population and other 
folds as training population. The prediction accuracy is 
the correlation coefficient between the predicted pheno-
typic value and measured phenotypic value in the testing 
population.

Like the GWAS approaches outlined above, GS is based 
on machine-learning algorithms and the transferability of the 
resulting models to unseen scenarios, i.e. different popula-
tion, different environments, and the combination of the two, 
remains one of the biggest challenges in the application of 
GS. Therefore, it is of interest to investigate if the prediction 
accuracy of GS for metabolic traits can be improved if the 
mentioned approaches are coupled with mechanistic models 
of metabolism, discussed in “Approach based on genomic 
selection”.

y = Xb + Zu + e,

V = ZZT�2
u
+ I�2

e
,

Application of genetic mapping approaches 
for maximal enzyme activity in plants

Determining the genetic architecture of metabolism entails 
genetic mapping of metabolic traits, including: metabolite 
levels (relative and absolute content, concentrations), pro-
tein abundances and activities, and reaction fluxes. There 
are plethora of studies that use GWAS and QTL mapping 
approaches in diverse plants and crops based on measure-
ment of metabolite levels and protein abundances [89, 90]. 
However, these studies rely on relative quantification of 
these traits, rendering it difficult to interpret the findings in 
terms of effects on reaction fluxes. A reaction flux depends 
linearly on the maximal activity, Vmax , of the respective 
enzyme, and is fully determined by it when the enzyme 
is substrate-saturated [91]. Thus, it may be expected that 
the results of genetic mapping of Vmax would coincide 
with those of the corresponding reaction fluxes. However, 
due to the interconnectedness of gene regulatory and pro-
tein–protein interaction networks that affect metabolism, 
QTL or associated SNPs can be found not only in cis posi-
tion (i.e. on the same chromosome and proximal) to the 
location of the corresponding structural genes (coding of 
structural proteins, rather than regulatory proteins), but 
also in trans position (i.e. on a different chromosome), 
denoting regulatory QTL.

To this end, all the statistical approaches for genetic 
mapping mentioned above can be readily used to deter-
mine the genetic architecture of Vmax of different enzymes 
as well as reaction fluxes, if these are measured in an 
investigated population. For instance, the only study to 
date that has performed QTL mapping of reaction fluxes 
uses flux estimations from a small model of Saccharo-
myces cerevisiae (yeast) central carbon metabolism [92] 
based on bounds of measured extracellular fluxes and pro-
filing of dry weight in 125 F2-segregants (genotyped by 
3727 SNPs) from a cross of two yeast strains [93]. These 
approaches identified four flux QTL and two gene variants 
that contribute to the explanation of the variations in the 
flux distributions in the population.

Since intracellular fluxes are more challenging to quan-
tify (see “Introduction”), majority of QTL mapping stud-
ies in plants have focused on dissecting the genetic basis 
of maximal enzyme activities. However, genome-wide 
profiling of maximal enzyme activities is currently not 
feasible, due to the limitations of the assays used [94]. 
As a result, these studies usually involve a handful to two 
dozens of enzymes, mostly covering key pathways in pri-
mary metabolism in maize, Arabidopsis, and tomato. For 
instance, Causse et al., Prioul et al., Thevenot et al., and 
Pelleschi et al. [95–98] measured the maximal enzyme 
activities of four enzymes, sucrose-phosphate-synthase, 
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sucrose-synthase, sucrose-invertase, and ADP-glucose 
pyrophosphorylase, covering key steps in carbohydrate 
metabolism in sources (i.e. leaves) and/or sinks (i.e. 
grains) in maize RIL populations. Colocation of QTL for 
maximal enzyme activity and structural gene were found 
for sucrose-phosphate-synthase and the invertase. Limami 
et al. [99] measured the activity of enzymes from nitrogen 
metabolism, including: glutamine synthase, NAD(H)-glu-
tamate dehydrogenase, the ferredoxin-dependent as well 
as the NAD(H)-dependent glutamate synthase, and phos-
phoenolpyruvate carboxylase in a population of 140 maize 
RILs, and identified QTL for glutamine synthase in the 
early and late stages of germination. An intermated RIL 
maize population was used to map QTL for the activity 
of ten enzymes, six from carbon and four from nitrogen 
metabolism [100]. All identified QTL for enzyme activi-
ties in this study were in trans to the respective structural 
genes, except for single cis-QTL for nitrate reductase, 
glutamate dehydrogenase, and shikimate dehydrogenase.

In addition, Mitchell-Olds and Pedersen [101] performed 
QTL mapping of maximal activity for ten enzymes (i.e. six 
glycolytic enzymes, glucose-6-phosphate dehydrogenase, 
fructose bisphosphatase, phosphoglucose isomerase, phos-
phoglucomutase, glucose-6-phosphatase, and hexokinase, 
as well as four enzymes putatively involved in defence path-
ways, peroxidase, shikimic dehydrogenase, myrosinase, 
and chitinase) in an Arabidopsis RIL population. In another 
Arabidopsis RIL population, Sergeeva et al. [102, 103] 
mapped the activity of phosphoglucomutase and sucrose-
invertase. The same population was later used to dissect the 
genetic architecture for the maximal activity of 15 enzymes 
[104]; QTL were detected for 10 of the 15 enzyme activities, 
which exhibited higher heritability, and involved respective 
structural genes as well as other genes with cis- and trans-
acting control. A tomato introgression population, generated 
by introgressing segments of the genome of the wild relative 
Solanum pennellii into the modern tomato cultivar Solanum 
lycopersicum, was used to investigate QTL for the maximal 
enzyme activities of 28 enzymes from central carbon metab-
olism [105]. To this end, measurements were conducted in 
the pericarp tissue of ripe tomato fruits from two field trial 
experiments. The identified QTL support the observations 
from Arabidopsis that maximal enzyme activity is under the 
control of trans-acting genes.

The only GWAS with maximal enzyme activities as a 
trait was carried out in an Arabidopsis diversity panel com-
posed of 349 accessions. To this end, associated SNPs for 
24 maximal enzyme activities in central metabolism were 
detected [106]. The study identified cis-QTL of moder-
ate effects for maximal enzyme activity of five enzymes, 
including UDP-glucose pyrophosphorylase, ADP-glucose 
pyrophosphorylase, fumarase, and phosphoglucose isomer-
ase. The remaining QTL were trans-acting of smaller effects 

than the cis-acting, and were found in genomic regions that 
include components involved in transcriptional and post-
translational modifications.

Genetic mapping of maximal enzyme activities in differ-
ent plant species demonstrates that genetic variants in both 
regulatory and structural genes can affect this trait of differ-
ent enzymes in central metabolism. Therefore, consideration 
of missense SNPs may only identify a small fraction of the 
phenotypic variance in this trait. The latter implies that the 
integration of SNPs into mechanistic models should consider 
the action of trans-acting genes for accurate predictions of 
their effects on metabolic traits.

Integration of SNPs in genome‑scale 
metabolic models

The approaches that integrate SNPs into a metabolic network 
can be grouped based on two criteria: (i) if they investigate 
the positioning of SNPs in metabolic network, using the 
GPR rules and (ii) if they characterize the effect of a SNP 
on reaction fluxes. With respect to the second criterion, one 
can further subdivide these approaches based on whether 
they rely on principles of GWAS or genomic selection, as 
principal statistical approaches for linking SNPs with traits.

Approaches based on the metabolic network 
structure

A first approach to investigate the role of SNPs in metabolic 
networks is to characterize their position in the metabolic 
network. Due to the possibility that a metabolic reaction is 
catalysed by isoenzymes and protein complexes, as well as 
due to the promiscuity of some enzymes, whereby they can 
catalyse multiple reactions [107], the product of one gene 
can affect the flux through multiple reactions [108]. As a 
result, the effects of a nonsynonymous SNP on such a gene 
can be readily determined by investigating its position in the 
metabolic network. Jamshidi and Palsson indicated that the 
effect of SNPs that reside in genes whose products catalyse 
reactions that form co-sets can be readily obtained [109]. A 
co-set is a maximal set of reactions whose fluxes are per-
fectly correlated across any steady-state that the network 
can support [110], and coincide with fully coupled reactions 
from flux coupling analysis [111]. We note that a co-set can 
be composed of a single reaction if that reaction is not fully 
coupled to any other in the network. As a result, SNPs in the 
same co-set are expected to have similar effects. A co-set 
can consist of a single reaction, reactions on a linear chain, 
or subnetworks of more intricate structure which may also 
be disconnected, denoted as co-sets of types A, B, and C, 
respectively (Fig. 4a). While this approach is useful in pro-
viding a partitioning of SNPs based on their participation in 
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A

B

C

D

Fig. 4   Approaches that integrate SNPs into metabolic models. a 
Examples of different types of co-sets on the metabolic network of 
Fig. 1a are presented by different coloured arrows. Orange diamonds 
show the SNPs in the gene coding for the proteins that catalyse reac-
tions in the co-sets. The causal SNPs affect the reactions, marked by 
an orange x symbol for knock-out, and result in the inability of the 
network to produce particular products. b The SNP effects in [113] 
are predicted through three optimization steps: (1) minimising the 
unexplained effects, (2) finding sparse reference flux distribution, 
and (3) minimising the flux effect of each SNP. In the fourth step, 
SNPs with the minimum effects larger than the threshold of � are 
considered as functional. c The positive or negative effect of SNPs 

are captured in SNPeffect [49] by an optimization problem, in which 
mass-action kinetics is assumed and relative growth rate, relative 
metabolite level and relative V

max
 are given. d Four steps presented in 

netGS [56] allows for prediction of growth in unseen genotypes: (1) 
the construction of reference metabolic model and the prediction of 
reference flux distribution, (2) prediction of flux distributions in other 
genotypes by finding the closest flux distributions to the reference 
one, which are compatible to physiological constraints, (3) building 
statistical models for fluxes based on SNPs, and (4) prediction of 
physiological flux distributions from statistical models by finding the 
closest steady-state flux distribution to that obtained from the statisti-
cal models
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specific subsets of reactions, it does not provide a quantifica-
tion of the effect of SNPs on reaction fluxes. Interestingly, 
to date, there has been no characterisation of the effect of 
SNPs with respect to other types of dependencies between 
steady-state reaction fluxes [112].

Approaches based on GWAS

One of the critical factors that determine the power of 
GWAS is the population size. Integration of SNPs in a 
metabolic network can facilitate characterisation of their 
effect on fluxes even with a very small population [113]. 
Here, we review two approaches, one based on structural 
sensitivity analysis and the other based on incorporation of 
metabolomics datasets under the assumptions about enzyme 
kinetics.

Structural sensitivity analysis and GWAS

This constraint-based approach is based on structural sensi-
tivity analysis [114], whereby the effect of a SNP in a gene is 
the same for every reaction that the gene product catalyses. 
Based on structural sensitivity analysis, the propagation of 
the SNP effect to the rest of the fluxes in the network can be 
determined. To this end, the problem is cast as a least-square 
adjustment of steady-state fluxes whose solution results in 
a sensitivity matrix, Si , for the genotype i . The following 
restrictions and assumptions apply: (i) only nonsynonymous 
SNPs in the genes included in the metabolic network are 
considered, (ii) the considered SNPs are allowed to only 
decrease reaction fluxes (as deleterious effects of mutations 
are more likely), and (iii) the effect of a SNP is the same in 
all analysed genotypes.

With these assumptions, the approach is based on repre-
senting the genotype-specific flux distribution, vi , in terms 
of a reference distribution, vref , and deviations from it; the 
deviations can either be explained by the nonsynonymous 
SNPs, Sie , or are unexplained by them, ui , i.e.

In this sense, ui can be seen as a residual error that can-
not be explained by the sensitivity matrix (via the effect 
of e ) and the reference flux distribution. The flux distribu-
tions vi are determined for all genotypes jointly by enforc-
ing steady-state in each, i.e. Niv

i = 0 , using experimentally 
determined, genotype-specific exchange rates for a subset 
of metabolites. The simultaneous solving of the steady-state 
equations is needed due to the relation between flux distri-
butions of different genotypes via the nonsynonymous SNP 
effects, given by e , e ≤ 0 . The four steps include: (1) finding 
a sparse solution for the unexplained effects (via minimiza-
tion of the first norm); (2) determining a sparse reference 

vi = ui + vref + Sie.

distribution (that specifies reaction fluxes in absence of 
SNPs); (3) minimising the effect, ej , of SNP j under the 
constraints of the spare solutions found in first two steps. 
This is needed due to the variability of ej in the feasible 
space, and helps with the interpretation of the SNP effects; 
and (4) only SNPs whose minimum effects are larger than 
an arbitrarily selected threshold � are considered to have 
functional effects (Fig. 4b). This algorithm was tested with 
18 strains of the Mycobacterium tuberculosis complex with 
556 nonsynonymous SNPs, and 88 SNPs were classified as 
functional with the used threshold value.

The approach can be viewed as a multi-locus GWAS [76], 
but does not provide statistics for associations, as it relies on 
the predictions from the integration of SNPs in the metabolic 
network. The findings from this approach depend on: (i) the 
number of nonsynonymous SNPs in the genotyping data, 
which would lead to different sensitivity matrices if the set 
of SNPs is altered, (ii) the number of genotypes used, as the 
number of variables grows linearly, leading to numerical 
issues with models of larger sizes, (iii) the order in which the 
factors, ui, vref, and e , of the genotype-specific flux distribu-
tion are estimated, (iv) the norm used to arrive at a sparse 
solution. Further, it is challenging to validate the predic-
tions for the reference flux distribution, as it is a concept that 
is not tied with a particular genotype. Moreover, the SNPs 
are modelled as present/absent, and no distinction can be 
made between homozygous and heterozygote genotypes for 
a gene of interest. Therefore, refinements of this approach 
are needed to apply it in plant and crop breeding.

SNPeffect

Like the constraint-based approach above, SNPeffect aims to 
determine whether a SNP is functional or not by characteris-
ing its effect on reaction fluxes [49] (Fig. 4c). The flux of a 
reaction j in genotype i is assumed to follow mass-action-
like kinetics while considering enzyme action [115]:

As a result, the flux vi
j
 can be expressed relative to a refer-

ence flux distribution as:

With measurements of available relative changes in maxi-
mal enzyme activities and metabolite levels with respect to 
a reference genotype, one can obtain lower and upper 
bounds. Deviation of the steady-state flux is then attributed 
to (positive/negative) additive effects of SNPs and saturation 
effects of the enzyme. There are three assumptions on which 
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SNPeffect is based: (i) a SNP is assumed to have consistent 
effect across all genotypes, i.e. it either increases or 
decreases reaction fluxes, (ii) the effect of a SNP is allowed 
to vary across genotypes, (iii) only nonsynonymous SNPs in 
genes included in the metabolic network are considered. 
Here, the effect of a SNP are simultaneously determined 
over all genotypes, by including constraints of steady-state 
and relative growth rate with respect to the reference geno-
type. Implementation of the approach clearly requires setting 
up a reference flux distribution or specifying lower and 
upper bounds, vref

l,j
 and vref

u,j
, for the fluxes in the reference 

genotype, resulting in the following constraint:

where 
∼

Vmax

i

j
 and x̃i

k
 are the relative maximal enzyme activity 

and relative metabolite content in genotype i with respect to 
the reference genotype, devi

neg,j
 and devi

pos,j
 denote deviations 

from the assumed enzyme kinetic and SNPi
pos,j

 and SNPi
neg,j

 
are linear combinations of SNPs denoting their negative and 
positive, additive effects, respectively. In the actual imple-
mentation, these constraints are simplified by assuming that 
∼

Vmax

i

j
= 1.

Like in the structural sensitivity approach, above, SNPef-
fect can be regarded as a multi-locus GWAS in which the 
SNPs as present/absent, i.e. without making distinctions 
between different alleles. Its performance depends on: (i) the 
optimization function used, which in the existing implemen-
tation minimises the effects of the deviations from steady-
state flux distribution that respect constraints from relative 
enzyme activities and metabolite levels, (ii) the reference 
flux distribution, determined by parsimonious FBA [15], and 
(iii) the number of metabolites and enzyme activities for 
which lower and upper bounds appearing in the expression 
above can be determined. In addition, SNPeffect inherits the 
factors that make its application challenging at a genome-
scale level due to the sheer number of SNPs that can be 
considered. The approach was tested with models of Arabi-
dopsis and Populus trichocarpa (poplar) [49], and identi-
fied functional SNPs in purine and amino acid biosynthesis 
pathways as well as lignin biosynthesis, respectively.

Approach based on genomic selection

Availability of flux distributions from a population of geno-
types whose size is preclusive to conduct GWAS can still 
be used in GS for reaction fluxes. Tong et al. [56] devel-
oped an extension to GS, called netGS, based on integration 
of the machine-learning models of GS in a metabolic net-
work. netGS relies on training a machine-learning model for 

vref
l,j

∼

Vmax

i

j

∏
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j
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steady-state fluxes obtained from genotype-specific meta-
bolic models in particular conditions. The genotype-specific 
models are obtained by modifying the biomass function and 
applying constraints with respect to the growth relative to 
a reference phenotype. netGS is a four-step approach: (1) 
a model of a reference genotype is developed and is used 
to obtain a reference flux distribution following constraint-
based approaches, like FBA [14]; (2) a flux distribution for 
another genotype is obtained by assuming that the difference 
to the reference is minimised, while ensuring that the ratio 
of predicted growth rates for the two accessions matches the 
ratio of measured fresh weights. This steps quantifies the 

flux of every reaction in the investigated genotypes; (3) each 
reaction flux is used as a trait for GS statistical modelling 
(implemented as rrBLUP), resulting a model with a specific 
predictability; (4) since the statistical models for each flux 
do not result in a steady-state flux distribution when applied 
to an unseen genotype, netGS next finds a flux distribution 
compatible with biochemical constraints given the flux pre-
dictions obtained from the statistical models based on the 
genomic data for the unseen genotype (Fig. 4d). In such a 
way, netGS allows prediction of growth, via the respective 
biomass reaction included in the model. This constraint-
based approach has also been extended to consider predic-
tions across environments. This extension is based on the 
assumption that the ratio between exchange fluxes for the 
reference genotype in two different environments is main-
tained across genotypes. With this additional constraint, 
the developed models in one environment can be used in 
another.

The statistical models that are devised in the third step 
of netGS inherits the shortcomings of GS models. How-
ever, through forcing these models to jointly respect phys-
icochemical constraints, netGS aims to improve the model 
performance for unseen genotypes and in scenarios when 
there are large differences between training and testing popu-
lations. The imposing of these constraints can be regarded as 
adjusting for epistatic interactions between SNPs, which are 
otherwise difficult to integrate in a statistical framework due 
to the large number of SNPs considered. In contrast to the 
approaches above, netGS is not limited to investigating only 
nonsynonymous SNPs, but can also consider SNPs which 
lie in non-coding regions of the genome—which boosts the 
usage of genomic data. netGS was tested with 67 Arabidop-
sis accessions for which genotype- and condition-specific 
biomass reactions were developed based on measurements. 
The results showed that, in comparison to classical GS, 
it improves the prediction accuracy of growth within and 
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across nitrogen environments by 32.6% and 51.1%, respec-
tively, as well as from optimal nitrogen to low carbon envi-
ronment by 50.4%. The approach can readily be applied to 
any plant species for which metabolic models of high-quality 
exist and can be coupled with constraints from phenotypic 
data of specific genotypes.

Roadmap for future research

The brief review of the approaches for linking SNPs with 
metabolic and complex traits highlighted the division of two 
sets of approaches rooted in different methodologies. On one 
side, approaches for QTL mapping, GWAS, and genomic 
selection are solely based on statistics; moreover, genomic 
selection can be regarded as a black box, machine-learning 
approach that does not provide mechanistic insights or can-
didates for further testing. On the other hand, constraint-
based approaches are applicable with large-scale models 
of metabolism and allow to establish a link between fine-
grained metabolic processes and complex traits, such as 
biomass accumulation and growth.

Our systematic review indicated the possibility for merg-
ing the two complementary types of approaches to over-
come their principle drawbacks, namely, the need for large 
populations, in the case of quantitative genetics approaches, 
and the need for depicting phenotypic diversity in a popula-
tion of genotypes, in the case of the constraint-based mod-
elling framework. While these approaches seem to have a 
great potential, demonstrating their added value necessi-
tates addressing the following issues: first, studies should 
be planned to compare and contrast the findings between 
the purely statistical approaches and those based on consid-
eration of SNPs in metabolic models. The existing studies 
have not performed this comparison due to the small sizes of 
the populations employed. Such comparative studies would 
require development of approaches for extraction of geno-
type-specific metabolic models for which no pipelines are 
yet freely available. Second, as shown on Fig. 2, there exist 
different metabolic models for the same plant species; these 
models different with respect to size, details, and modelled 
metabolic functionalities. Thus, it will also be important 
to investigate the effect of the model used for integration 
of genotypic data. Third, the consideration of SNP effect 
in constraint-based modelling can potentially introduce a 
lot of variables; thus, it is necessary to investigate how the 
preselection of SNPs may affect the findings from these 
approaches. In addition, since constraint-based approaches 
are marked with alternative solutions, one would have to 
design procedures to explore and/or further reduce the space 
of alternative solutions in a meaningful way.

The prospects for coupling mechanistic and statistical 
modelling approaches offer several new research avenues. 

First, one can aim to determine the statistical significance 
of a SNP effect obtained from constraint-based approaches. 
This can be accomplished by usage of permutation tests 
along with the aforementioned exploration of the space of 
alternative solutions. As a result, one would not need to rely 
on arbitrarily set threshold values to classify SNPs as func-
tionally significant. Second, similar to netGS, one can use 
other types of machine-learning approaches for genomic 
selection to partition the reactions into active/inactive or into 
those carrying large or small fluxes, opening the possibility 
for other modelling directions. Third, with the availability 
of algorithmic procedures for estimation of turnover num-
bers of enzymes in a given genotype (e.g. A. thaliana Col-0 
[116]), one can also aim to obtain such estimates in different 
genotypes, opening the possibility for using genetic mapping 
approaches and genomic selection. The resulting statistical 
models can, in turn, be employed to better constraint geno-
type-specific models using computational approaches, such 
as FBA with molecular crowding [117], MOMENT [118], or 
GECKO [119], or by incorporating macromolecular expres-
sion (so-called ME-models) [120] that are, however, still 
only applied to microbes.

We envision that these milestones can be achieved in the 
next 5–10 years of research in metabolic modelling of crops. 
Altogether, such prospects for a synergistic combination of 
machine-learning and metabolic models will pave the way 
for mechanistic modelling of complex traits in populations 
that involve both inbred and hybrid genotypes.
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