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Abstract
During courtship, multiple information sources are integrated in the brain to reach a final decision, i.e., whether or not to 
mate. The brain functions for this complex behavior can be investigated by genetically manipulating genes and neurons, and 
performing anatomical, physiological, and behavioral analyses. Drosophila is a powerful model experimental system for 
such studies, which need to be integrated from molecular and cellular levels to the behavioral level, and has enabled pioneer-
ing research to be conducted. In male flies, which exhibit a variety of characteristic sexual behaviors, we have accumulated 
knowledge of many genes and neural circuits that control sexual behaviors. On the other hand, despite the importance of 
the mechanisms of mating decision-making in females from an evolutionary perspective (such as sexual selection), research 
on the mechanisms that control sexual behavior in females has progressed somewhat slower. In this review, we focus on the 
pre-mating behavior of female Drosophila melanogaster, and introduce previous key findings on the neuronal and molecular 
mechanisms that integrate sensory information and selective expression of behaviors toward the courting male.
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Introduction

Mating is an important biological event that has a major 
impact on the evolutionary fitness and survival of sexually 
reproducing species. In particular, females are responsible 
for their choice of mates. A male, therefore, displays multi-
ple cues and signals to attract a female’s attention, and courts 
her in a way that maximizes his value throughout the court-
ship. In Drosophila melanogaster, one of the best model ani-
mals for genetic analysis of sexual behaviors, males exhibit 
conspicuous courtship behavior to provide multimodal 
stimuli for arousing sexual motivation in females [1]. Upon 
encountering a courtship partner, females exhibit signatures 
of pre-mating rejection such as flapping, escaping, kicking, 
fending, and ovipositor extrusion to the courting male [2, 3]; 
during this time, females evaluate male response to judge the 
favorableness of copulation [4, 5]. As the female evaluates 

the sexual information of the male and becomes more sexu-
ally receptive, she decreases locomotion and eventually 
accepts copulation [6–12]. These pre-mating responses are 
instinctive, with both external stimuli and internal states 
determining the female’s decision-making and behavioral 
choices, from pre-mating rejection to mating acceptance, 
via a multistep neuromodulatory system and neural circuitry. 
Although research into the underlying mechanisms which 
influence female mating behaviors has advanced substan-
tially in recent years, much remains unclear regarding the 
exact nature of these mechanisms. Here we focus on the pre-
mating behavior of Drosophila melanogaster females and 
review past and recent studies that have expanded our knowl-
edge of the molecular and neural basis of sexual behavior 
in virgin females.

Males provide multiple cues to increase female 
receptivity

In the early stages of the courtship ritual, the female fly 
exhibits a rejection response consisting primarily of an 
escape response and an aggression response [6]. These 
encounter responses exhibited by the female are necessary to 
avoid adverse mating, and allow the female fly to recognize 
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the nature of the encounter, whether the male is indeed a 
conspecific male, and whether it is worthy of becoming a 
mate. To this end, female flies evaluate males by detecting a 
variety of male derived signals. In Drosophila melanogaster, 
these signals are mainly comprised of pheromonal (gusta-
tory and olfactory) and acoustic cues (Fig. 1a).

Gustatory and olfactory pheromonal cues

In Drosophila melanogaster, cuticular hydrocarbons and 
non-hydrocarbons play multiple roles as pheromonal cues, 
such as aggregation signals for food sources, species and sex 
recognition, and aphrodisiacs or sexual repulsion [13–15].
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Fig.1   Sensory signals that influence female receptivity. a Sensory 
organs of the Drosophila head are depicted in different colors. Red, 
compound eyes perceive visual information such as male’s courtship 
motion; green, third antennal segment and maxillary palps house 
olfactory receptor neurons (ORNs). Volatile pheromones are detected 
by specific olfactory receptors (ORs); purple, second antennal seg-
ment houses auditory mechanosensory neurons called Johnston’s 
organ (JO) neurons [54, 55]; blue, gustatory receptor neurons are 
located in labellum. b An insect olfactory sensillum is illustrated. 2–4 
ORNs are housed in a sensillum. The sensillum is filled with sensil-
lum lymph secreted from supporting cells at the base of the sensil-
lum. LUSH is an olfactory binding protein which binds with cVA 
and transfers it to Or67d. Orco is a co-receptor for ORs [24, 25]. c 
A schematic of the female brain depicting the flow of multiple sen-
sory information during courtship. Olfactory information detected 

by Or67d is transmitted to DA1 olfactory glomerulus. A downstream 
of olfactory projection neurons (PNs) aSP-g transfers cVA informa-
tion from DA1 to pC1/pCd, a potential integration center for female 
receptivity [20, 22, 29, 30]. Song information is received by JO-A/B 
primary auditory neurons. JO-A and JO-B project to the antennal 
mechanosensory and motor center (AMMC) zones A and B, respec-
tively [40, 55]. Secondary auditory neuron AMMC-B1 (aPN1) trans-
fers song information towards pC1/pCd via unidentified interneurons 
[57]. AMMC-B2 and AMMC-LN are local interneurons that suppress 
AMMC-B1 depending on the inter-pulse interval (IPI) of the song 
[49]. Lobular columnar 10 (LC10) cells transfer visual information 
of the male’s courtship motion to pC1/pCd [76, 77]. Non-volatile 
pheromones are detected by gustatory receptor neurons expressing 
ppk-23/ppk-25 [16]. 7-T, 7-tricosene; cVA, cis-11-octadecanyl acetate 
(cis-vaccenyl acetate)
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Gustatory and olfactory sensory neurons redundantly par-
ticipate in the detection of the pheromonal cues of males. 
Ion channels ppk-23 and ppk-25, which belong to the dege-
nerin/epithelial sodium channel (DEG/ENaC) family, and 
their expressing gustatory receptor neurons are required 
for detection of gustatory aphrodisiac pheromones that 
increase female receptivity for mating [16]. Multiple male 
pheromones are thought to be detected by ppk-23 and ppk-25 
expressing gustatory receptor neurons; however, the identity 
of the pheromone itself remains unclear [16]. With regards 
to sex recognition and aphrodisiacs, males produce male-
specific pheromones 7-tricosene (7-C23:1 or 7-T) and cis-
11-octadecenyl acetate (cis-vaccenyl acetate, cVA). Female 
flies copulate with shorter latency to males with 7-T applied 
to their cuticle surface, suggesting that 7-T is an aphrodisiac 
pheromone for females [17]. A gustatory receptor, Gr32a, 
has been reported as a 7-T receptor in male flies [18, 19]. 
In males, 7-T signals via Gr32a are required for aggressive 
behavior and inhibit male–male courtship [18, 19]. In con-
trast to the clear role of 7-T as an aphrodisiac for females, its 
receptor Gr32a is not required for the control of receptivity 
[18, 19], suggesting that there is an unknown 7-T recep-
tor in females. It has been reported that antennae, the main 
olfactory organ in flies, are required for females to sense 
concentration differences in 7-T [17]. Genetic exploration 
of olfactory receptor neurons may lead to the discovery of 
novel 7-T receptors.

The olfactory system is also important for the sensing of 
volatile pheromones. The male-specific volatile pheromone 
cVA is detected by olfactory receptor neurons expressing an 
olfactory receptor Or67d or Or65a, with Or67d and Or65a 
corresponding to acute and chronic responses, respectively 
[20–23]. The action of cVA on receptors is mediated by 
odorant binding protein LUSH, which facilitates binding to 
the Or67d receptor in the olfactory sensillar lymph [24, 25] 
(Fig. 1b). Another odorant binding protein, Obp69a, dynami-
cally changes its expression level depending on male–female 
social interaction. Although it is unclear if Obp69a and cVA 
interact, Obp69a is known to regulate sexual behaviors 
induced by cVA, such as female receptivity [26].

Or67d olfactory receptor neurons transfer male informa-
tion to the DA1 glomerulus in the antennal lobe, the primary 
olfactory center in the fly brain (Fig. 1c). It is ethologically 
interesting that the pheromonal signal of cVA at DA1 is 
enhanced by odor signals other than pheromones, such as 
the complex food odor vinegar, which additively increases 
neural response and enhances female sexual receptivity 
[27, 28]. This synergistic action of different odors has been 
proposed to be caused by interneurons that connect differ-
ent projection neurons with electrical synapses [27]. DA1 
projection neurons then transmit signals to aSP-g neurons, 
which activate pC1/pCd neurons, the main circuit for inte-
gration of sexual information and output regulation for the 

female sexual behavior [20, 22, 29, 30]. In addition to pro-
viding an aphrodisiac function for females, 7-T and cVA also 
play roles as anti-aphrodisiacs to repel other males during 
future copulation attempts [31–34], via transference with the 
male sex fluid during copulation and storage in the female 
reproductive tract [35–37].

Auditory cues

During courtship, male flies generate a courtship song via 
wing vibrations. This courtship song has a significant impact 
on female mating propensity [38]. Indeed, ablation of male 
wings significantly reduces the success rate of mating, with 
concurrent playback of a conspecific courtship song restor-
ing it [11]. Similarly, defects in female hearing reduce sexual 
receptivity [17, 39, 40]. The courtship song consists of both 
sine and pulse songs; the first is a humming sound around 
160 Hz, with the second being short pulses generated as 
pulse trains with a species-specific inter-pulse interval (IPI) 
[41, 42]. The IPI contributes to species recognition, and 
thus also has a significant impact on sexual selection [43, 
44]. The courtship song is genetically defined, but there is a 
certain degree of variation depending on the genetic back-
ground. Furthermore, males flexibly adjust their song bout 
patterning depending on social context provided by the tar-
get female [45, 46]. The existence of such song variation and 
adjustability also indicates that it is possible to investigate 
the mechanisms of genetic and neural control of the song 
production systems [47, 48]. Song playback experiments 
have demonstrated that female receptivity is increased by 
exposure to artificial songs that fit within the original range 
of conspecific IPI [49, 50] (Fig. 2a–c). Moreover, mating 
decisions are primarily revealed through either opening of 
the vaginal plates or ovipositor extrusion of females, both 
of which are indeed triggered in response to male courtship 
song and dependent upon the female’s mating status [51, 
52]. These findings suggest that courtship song contains 
important sexual information for informing mating deci-
sions. The tuning of song preference of female is compara-
tively broad in D. melanogaster, but is far narrower in other 
species [42, 53]. Although it had previously been believed 
that song preference is genetically fixed, recent findings 
have demonstrated that the wide-ranging preference of IPI 
is not a lifelong trait but instead reliant on auditory experi-
ence to songs containing conspecific IPI pulses, which can 
reshape song preferences within a fairly confined range [50] 
(Fig. 2d).

In fruit flies, the courtship song is perceived by the mech-
anosensory neurons of the Johnston’s organ (JO), located 
within the antennal ears [54, 55] (Fig. 1a). These mecha-
nosensory neurons, so-called JO neurons, project to the 
antennal mechanosensory and motor center (AMMC), the 
primary auditory center in the fly brain. In the AMMC, the 
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JO projection region forms a tonotopic map in which the 
major auditory regions are denoted as zones A and B [40, 
55] (Fig. 1c).

Recent studies have revealed the auditory neural pathway 
required for conspecific song detection [56, 57]. In this path-
way, JO neurons projecting to the AMMC zone B (JO-B neu-
rons) transfer song information to the AMMC-B1 neurons 
(also known as aPN1), a major type of secondary auditory 

neurons in the song-relay pathway [57]. When song signals 
activate AMMC-B1 neurons via JO-B neurons, females 
increase their receptivity for copulation. This increase, how-
ever, is counter-balanced partly by two subsets of GABAe-
rgic interneurons, namely AMMC-LN and AMMC-B2. 
AMMC-LN and AMMC-B2 neurons suppress AMMC-B1 
neuron activation, via GABAA receptors, to song stimuli car-
rying a faster rhythm than a conspecific song. Through such 
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Fig. 2   Exposure to a courtship song alters female receptivity. a 
Setup for song playback experiments. A virgin female is paired with 
a wing-clipped (mute) male. Artificial song is broadcasted from a 
loudspeaker [49, 50]. b Artificial song. The mean inter-pulse interval 
(IPI) of D. melanogaster song is about 35 ms. c Copulation rate dur-
ing the song playback. A song with 35 ms IPIs maximally accelerates 
copulations. Modified from Yamada et  al. (2018) [49]. d Auditory 
experiences with conspecific songs fine-tune song preferences. Proper 

auditory experience refines courtship song preference, with females 
decreasing responses for heterospecific songs [50]. e A model of 
the auditory pathways involved in relay of song signals to modu-
late female receptivity. In this pathway, JO-B neurons transfer song 
information to the AMMC-B1 neurons. Two subsets of GABAergic 
interneurons, AMMC-LN and AMMC-B2, modulate the response 
pattern of the AMMC-B1 neurons via GABAA receptors. Modified 
from Yamada et al. (2018) [49]
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interactions, these GABAergic interneurons tune the song 
response of the AMMC-B1 neurons [49] (Figs. 1c and 2e).

No sexual dimorphisms have so far been observed in 
these primary and secondary auditory neurons. In male flies, 
AMMC-B1 neurons transmit song information to the third-
order auditory interneuron vPN1, which then transmits sig-
nals to the pC1 neuron cluster, the integration center for mul-
tisensory information relating to courtship [58]. The female 
equivalent of vPN1 interneuron(s) remains to be identified.

Recently, a comprehensive map of neural activity of the 
Drosophila brain has been established, showing that neu-
ral activity in response to the courtship song is distributed 
throughout the brain and that the representation of auditory 
stimuli is diverse across brain regions [59]. This analysis 
also suggested that females have pulse-responsive neurons, 
equivalent to vPN1 neurons, in the same brain regions as 
males [59]. Recent advances of whole-brain connectomes, 
resources of molecular-genetic tools, and gene expression 
databases will facilitate anatomical and functional tracing 
of the un-revealed circuits [60–62]. Indeed, new subsets of 
auditory interneurons have been identified by the application 
of the split-Gal4 intersectional technique [63–66].

Exposure to a conspecific song permits virgin females 
to allow copulation, in contrast to mated females that typi-
cally refuse to mate when exposed to the song. vpoENs are 
cholinergic interneuron that respond to conspecific song and 
promotes the opening of the vaginal plate, which is the sign 
for accepting mating [66]. vpoINs are GABAergic interneu-
rons that also responds to conspecific song but suppress the 
vaginal opening [66]. Both vpoEN and vpoIN connect to 
the command-type neuron vpoDNs, which control the motor 
control of vaginal plate opening (see the following section) 
[66].

Potential involvement of visual information 
in pre‑mating behaviors

Substantial evidence suggests that females evaluate males 
based primarily on olfactory, gustatory, and auditory infor-
mation and make appropriate mating decisions. Visual infor-
mation may also be important for this evaluation process. 
Males provide visual information via dynamic movement 
and appearance characteristics, such as pigmentation, colors, 
shapes, and size. Body size is one of the most straightfor-
ward characteristics which suggests individual strength, but 
has recently been shown to be of low determinative value 
during partner selection by females [67–70]. The visual 
appeal of wings, which are important in other Drosophila 
species for successful mating [71–73], has been found to be 
a visual factor that influences the selection of reproductive 
partners in D. melanogaster females [74].

Although there is still a lack of knowledge about the sex-
ual attractiveness of male visual features as a criterion for 

the mate choice, whole-brain connectomics and functional 
identification of neural circuits are gradually revealing the 
intersection between visual information and female mating 
decisions. Connectome analysis of the adult brain has sug-
gested indirect connections between lobular columnar cells 
(LCs), which convey visual information, and pC1d, which 
is a potential integration center for female sexual behavior 
[75]. One such type of LC, LC10 neurons, are required for 
the tracking of a fly-sized object in males [76, 77] (Fig. 1c). 
Interestingly, the response properties of LC10 neurons to 
such objects are qualitatively and quantitatively similar in 
males and females [77]. If the movement pattern of males 
during courtship is detected by LC10 neurons, and thereby 
influences pC1d activity in females and hence female mating 
receptivity, this could provide insight into the female sexual 
preferences for male visual characteristics. LC10 motion 
detection has been observed in males as well as females 
[76]. In males at least, LC10 activation stimulated by detect-
ing female movement induces the initiation of courtship, and 
its activity is enhanced by sexual arousal [77]. The role of 
these LCs in the pre-mating behavioral choices of females, 
rejection or acceptance, remains to be clarified.

Internal states and mating experience affect 
receptivity

Age has a significant effect on virgin female receptivity. 
The first day after the adult Drosophila emerge from the 
pupa (day 0), females show extremely low receptivity to 
mating [78]. However, from day 2 onwards, female behavior 
changes to exhibit high receptivity [78]. The mechanisms 
which control this repressed receptivity are shrouded in mys-
tery. A major issue to be resolved is whether this receptivity 
simply depends on immaturity or if other mechanisms, e.g. 
endocrine control, are involved [79, 80].

A rich nutritional environment, such as yeast contain-
ing food, increases sexual receptivity in virgin females [81]. 
Yeast odor acetic acid, sensed by the ionotropic receptor 
Ir75a, can affect female receptivity only when yeast amino 
acids are present in the food substrate (Fig. 3). Thus both 
the perception of the hedonic value of a food (in this case 
smell) and the perception of its nutrient content are needed 
simultaneously to elicit receptivity in females [81].

Mating significantly changes the behavior of females. 
For instance, egg-laying rate increases, while receptivity to 
mating decreases. These post-mating responses persist for 
approximately a week in D. melanogaster [78]. The post-
mating reduction of female receptivity is induced by sex 
peptide (SP), which is delivered to the female via the male’s 
seminal fluid during copulation [82]. SP is received by SP 
receptors expressed in sex peptide sensory neurons (SPSNs) 
that connect the uterus to the abdominal ganglion [83–86] 
(Fig.  3). Downstream of the SPSNs are SP abdominal 
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ganglion (SAG) neurons located at the abdominal ganglion, 
whose axons project to the dorsal anterior cerebrum in the 
brain. SP induces female post-mating responses by inhibit-
ing the activity of the SPSN and SAG [87]. Additionally, 
a local circuit involved in post-mating behavioral switch-
ing has been identified in the abdominal ganglion. A key 
component is a group of neurons, the ventral abdominal lat-
eral (vAL) and ventral abdominal medial (vAM) interneu-
rons, which express a myoinhibitory peptide (Mip). These 
interneurons control female post-mating behavioral change 
by mediating SP information from SPSN to SAG neurons in 
the abdominal ganglion [88] (Fig. 3).

During and/or after mating, male flies deposit a mating 
plug in the female’s uterus to prevent females from remat-
ing with other males and to allow time for sperm storage 
[89–91]. This mating plug, therefore, represents one of 
the key determinants of female remating propensity. The 
length of time between mating and females ejecting the plug 
depends on numerous external and/or internal states, such 
as social interactions and nutritional status [92, 93]. Neuro-
peptides also play a role, with diuretic hormone 44 (Dh44) 
delaying the timing of plug ejection by mated females and 
sustaining post-mating behaviors [94–96] (Fig. 3). Further 
studies are needed to clarify how these post-mating factors 
result in mating rejection and how their neural mechanisms 
crosstalk with the pre-mating rejection mechanisms shown 
by virgin females.

Cellular identities of neurons linked to receptivity

The development and implementation of sophisticated 
molecular-genetic tools which enable neuronal manipula-
tions has led to the identification of the neural circuits and 
molecules regulating male sexual behavior, which is con-
spicuous and thus open for quantitative analysis [8, 97, 98]. 
Mature, receptive, and virgin females also exhibit a variety 
of distinct pre-mating behaviors in response to courtship 
stimuli, suggesting that a sexual dimorphic system should 
be involved in the neural and molecular bases of pre-mating 
behaviors [2, 3]. Whilst our understanding of the neural cir-
cuitry of female sexual behavior is still limited compared to 
equivalent male circuits, recent advances in female circuitry 
research have unveiled a number of molecular and neuronal 
components involved in integrating multiple sensory inputs 
and regulating motor outputs for female-specific behaviors.

One highly successful strategy employed over the past 
decade to identify neurons regulating sex-specific behav-
iors is morphological and functional dissection of neuronal 
populations which are molecularly defined as expressing 
master regulator genes for sexual dimorphism; fruitless (fru) 
and doublesex (dsx) [8, 99–102]. By utilizing the Gal4/UAS 
technique in combination with an intersectional approach, 
pC1 and pCd neurons have been identified as neuronal clus-
ters regulating female receptivity from approximately 140 
dsx-positive neurons in the female brain [103–106]. Intrigu-
ingly, calcium imaging analyses have revealed that pC1 
neurons respond to multimodal sensory inputs, including 
both auditory song and olfactory cVA input. Furthermore, 
neuronal responses of pC1 neurons are enhanced by simul-
taneous inputs of courtship song and male pheromone cVA. 
Therefore, the function of pC1 neurons is not restricted to 
merely acting as a command-like controller for the copu-
lation acceptance, but also appears to involve multimodal 
processing of male sensory information [103]. pC2 clus-
ter neurons, another type of dsx-positive neurons, also play 
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Fig. 3   Internal states and mating experience affect female receptivity. 
A yeast odor acetic acid and caloric nutrition sugar increase female 
receptivity via pC1 [81]. An ionotropic olfactory receptor Ir75a 
detects acetic acid. Internal sugar receptor Gr64a detects nutrition 
sugar. Sex peptide sensory neurons (SPSNs) connect uterus to the 
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ventral abdominal medial (vAM), mediate sex peptide (SP) informa-
tion transfer from SPSNs to SP abdominal ganglion (SAG) neurons 
[88]. Activation of SAG enhances female receptivity. SP suppresses 
SPSNs and SAG activity and induces post-mating behaviors of mated 
females. Male flies deposit mating plugs in female uteri, preventing 
female remating. Social interactions, such as crowded conditions, and 
food odor promote plug ejection by mated females, thus encouraging 
remating. A neuropeptide diuretic hormone 44 (Dh44) secreted from 
endocrine neurons in the brain inhibits mated female plug ejection 
[94–96]
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an important role in determining female sexual receptivity 
[107]. The pC2 cluster consists of both lateral (pC2l) and 
medial (pC2m) type clusters [105]. pC2l/m clusters in both 
of male and female brains respond to pulse songs and induce 
sex-specific behaviors [106, 107] (Fig. 4).

A recent study utilized an intersectional approach by 
applying the split-Gal4 technique to characterize vpoDNs, 
a pair of dsx-positive and fru-negative descending neurons 
in the female brain [66]. vpoDNs are command-type neurons 
involved in female vaginal plate opening behavior, with this 
occurring once females accept copulation [11, 47]. vpoDNs 

integrate information about the male courtship song with the 
female’s own mating status to control vaginal plate opening; 
however, it remains unknown how vpoDNs make decisions 
based on multiple information sources to determine the out-
come of this final step of copulation acceptance [66] (Fig. 4).

Virgin females with mutations in the gene spinster (spin) 
show severe rejection responses to a courting male and 
rarely mate [108, 109]. Mosaic analysis with a repressible 
cell marker (MARCM) which generated spin mutant clones 
in female brains revealed two neuronal clusters, denoted as 
Spin-D and Spin-A clusters, that regulate female receptivity 
[110] (Fig. 4). The Spin-D cluster is a subset of the second-
ary olfactory neurons, i.e., projection neurons (PNs) [110]. 
Spin-D PNs receive odor information from the VA1v glo-
merulus as well as from other five glomeruli in the anten-
nal lobe. The VA1v glomerulus receives inputs from Or47b 
expressing olfactory receptor neurons, which play a key role 
in determining the level of female sexual receptivity [110]. 
Although the ligand molecule for Or47b is not yet identified, 
Or47b neurons are known to at least respond to cuticular 
hydrocarbons extracted from conspecific flies [111]. This 
suggests that Spin-D neurons possibly mediate pheromonal 
cues to activate female mating acceptance.

The other cluster, Spin-A, is comprised of local neu-
rons located in the suboesophageal ganglion (also known 
as gnathal ganglia), which houses the primary center for 
gustatory-sensory processing [110]. This finding suggests 
that the Spin-A cluster may contribute to the sensory percep-
tion of non-volatile pheromones. Notably, neither fru nor dsx 
are expressed in Spin-A neurons, suggesting that they are not 
sexually dimorphic [110].

When a female is ready to accept a male’s courtship, 
her escape speed decreases and her frequency of pausing 
increases, similar to that seen in pre-mating preparatory 
behavior [47]. A homeobox transcription factor Abdomi-
nal-B (Abd-B) contributes to the development of neural cir-
cuits regulating virgin female pausing behavior during the 
courtship ritual [11] (Fig. 4). Abd-B neural cell bodies reside 
within the abdominal ganglion. Again, although a subset of 
these Abd-B neurons overlay with fru expression, this fru 
subset of Abd-B neurons do not contribute to virgin female 
pausing behavior [11]. How nonsexual dimorphic neurons 
contribute to sexual behavior in both sexes remains to be 
elucidated.

Cellular identities of neurons involved in virgin 
female pre‑mating rejection

The neuronal underpinnings of pre-mating responses of 
females are still being investigated. Pre-mating responses, 
such as flicking of the wing, kicking, fending, decamping, 
and ovipositor extrusion, can be categorized and detected as 
behavioral elements [2, 3]. With the exception of ovipositor 
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Fig. 4   Neurons promoting virgin female mating acceptance. Song 
promoting mating acceptance sections are labeled in red. Courtship 
song activates doublesex (dsx)-positive cluster of pC2 neurons (pC2l 
and pC2m), which increase female receptivity [106, 107]. Courtship 
song also activates neurons controlling vaginal plate opening. Cholin-
ergic vpoENs and GABAergic vpoINs exert excitatory and inhibitory 
control over vpoDNs, respectively, and regulate the timing of vagi-
nal plate opening [66]. Both vpoENs and vpoINs receive song infor-
mation from unidentified auditory neurons. Green, specific subsets 
of spinster (spin)-expressing neurons promote female mating [110]. 
Olfactory receptor 47b (Or47b) perceives unidentified male cuticular 
hydrocarbons (CHs) and promotes female mating response. Spin-D 
neurons mediate Or47b information to increase virgin female mating 
acceptance. Spin-A neurons mediate information transfer of non-vola-
tile pheromones received by gustatory systems to also promote virgin 
female mating acceptance. Blue, pausing behavior is increased before 
mating in virgin females. A homeobox transcription factor Abdom-
inal-B (Abd-B) contributes to developing neural circuits regulating 
this pausing behavior [11]



4812	 H. Ishimoto, A. Kamikouchi 

1 3

extrusion, each component of the pre-mating response is 
reminiscent of aggressive behavior, and indeed aggressive 
behavior is associated with reproduction [112–115]. Like 
other animals, both male and female D. melanogaster show 
aggressive behaviors to gain multiple resources for survival 
and reproduction [116–119]. Relevant genetic and neuronal 
elements have been investigated, and the neural circuits and 
genes regulating these aggressive behaviors have been in 
part characterized [120, 121].

Most recently, it has been shown that central transmem-
brane channel-like (Tmc-L) expressing neurons (CTNs) 
in the mesothoracic ganglion of the ventral nerve chord 
elicit a female defensive behavior (a swift kick [122]), 
mediated via tactile sensation of wing margin mechano-
sensilla [123] (Fig. 5a). In virgin females, a GABAergic 

subset of dsx-positive neurons inhibits CTNs, resulting in 
a reduced defense response [123]. In contrast, the defense 
response of mated females is enhanced. After mating, 
CTNs-dependent defense responses are enhanced via the 
peptide hormone Leucokinin (Lk), a human tachykinin 
homologue [123]. Future elucidation of the neural systems 
underlying the integration of male courtship cues/signals 
to control female state-dependent rejection responses is 
highly anticipated.

On the central brain side, the pC1 cluster has been 
found to be involved in female aggression as well as mat-
ing behavior [75, 124]. In females, a sex-determination 
gene, dsx, plays important roles in the development of the 
nervous system that controls female aggressive behaviors 
as well as mating behavior [5, 8, 101, 103, 125, 126]. 
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Fig. 5   Neurons promoting virgin female pre-mating rejection 
responses. a Role of neural control of aggression behavior and mating 
acceptance in virgin females. pC1d neurons promote mating accept-
ance in virgin females. One of the critical components of this mating 
acceptance is the opening of the vaginal plate. Vaginal plate open-
ing is regulated by vpoDNs, which connect to pC1d. pC1d recipro-
cally connects to aIPg fru-positive neurons. Both pC1d and aIPg are 
important circuitry nodes for aggression behaviors [75]. It is clear 
that control of both aggression behavior and mating acceptance by 
pC1d is also important for pre-mating behavior in virgin females, 
but the underlying mechanisms remain unclear. vpoDNs project to 
the abdominal ganglion. In the mesothoracic ganglion, central trans-
membrane channel-like (Tmc-L) expressing neurons (CTNs) receive 

mechanosensory signals derived from wing margin mechanorecep-
tor neurons and elicit swift kick responses. In virgin females, dsx-
positive GABAergic neurons suppress CTNs activity [123]. On 
the other hand, a peptide hormone Leucokinin (Lk) activates CTNs 
dependent on the activity of uterus neurons (UNs) in mated females 
[123]. b Two modes of neural control derived from pC1d regulate 
the female ovipositor. Ovipositor extrusion, a female courtship rejec-
tion response, is regulated by command-like neurons DNp13 (pMN1) 
[52, 106, 129]. Upstream neuron of DNp13 is pC2l, a song activated 
neuron. Ovipositor extension is required for egg-laying behavior of 
mated females. pMN2 is a command-like neuron which regulates ovi-
positor extension [106]. Both pMN1 and pMN2 are downstream of 
pC1d [65]
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Indeed, a group of neurons in the dsx-positive pC1 cluster 
promotes the persistence of hyper-aggression in females 
[127].

Recently, Schretter et al. identified two important cir-
cuitry nodes, aIPg and pC1d neurons, for regulation of 
female aggressive behaviors [75] (Fig. 5a). The aIPg cluster 
contains sexually dimorphic fru-positive neurons, whilst 
pC1d is a dsx-positive neuron that belongs to the pC1 cluster 
[75]. Both neurons are reciprocally connected and act as the 
command-type neurons of aggression behavior of females; 
activation of each induces persistent aggressive behavior, 
whilst its suppression inhibits aggressive behavior [75]. The 
extent to which the aggressive behavior regulated by aIPg 
and pC1d overlap with the control of pre-mating behavior 
has yet to be clarified, but inference based on the role of 
pC1d in promoting mating [103] could suggest considerable 
commonality between pre-mating rejection and aggressive 
behaviors in females. Indeed, neurons involved in oviposi-
tion and mating receptivity, such as pC1a and vpoDN, syn-
apse to pC1d [66, 75]. As for mating acceptance, oviposi-
tor control is also implicated in the behavioral response of 
females towards courting male [3, 52]. Ovipositor extension 
occurs at the time of egg laying in mated females, whereas 
ovipositor extrusion occurs irrespective of mating state dur-
ing courtship [3, 128]. In both cases, the ovipositor extends, 
but is controlled by different clusters of descending neurons. 
MARCM analysis applied to narrow down the number of 
potential dsx-positive neurons identified pMN2 as a sub-
set of descending neurons playing a critical role for ovi-
positor extension in egg-laying behavior [106]. DNp13 (also 
known as pMN1) is a subset of descending neurons having 
command-type functions for ovipositor extrusion during 
courtship [52, 106, 129] (Fig. 5b). In the ovipositor extru-
sion circuit, a dsx-positive cluster (pC2l neurons) regulates 
the action of pMN1 [52, 106]. Like the neurons involved 
in opening of the vaginal plate, both pC2l and pMN1 are 
activated by exposure to the courtship song [52]. It is nota-
ble that the reaction of males to ovipositor extrusion var-
ies depending on the female mating status [52]. Ovipositor 
extrusion exhibited by mated females provides anti-aphro-
disiacs, such as 7-T and cVA, and thus has an inhibitory 
effect on male courtship [52]. Although ovipositor extrusion 
of virgin females does not suppress male courtship, it may 
provide a cue for males to determine female mating status 
[52].

Involvement of visual and motor center 
in pre‑mating behavioral switching

Although how visual information, such as the appearance 
and movement of a courting male, is computed to derive 
value judgments in females is not yet understood, the region 
of the brain that integrates visual information in flies is 

known. In the Drosophila brain, the ellipsoid body (EB), 
a substructure of the central complex (CX) located at the 
center of the fly brain, integrates multisensory information, 
primarily visual motion, and is responsible for the coor-
dinated control of motor output [130]. In addition, EB is 
involved in the neural circuits for visual and olfactory learn-
ing, as well as in homeostatic regulation of behaviors related 
to hunger and sleep [131–137]. The EB has recently been 
found to contain a functional circuit that controls behavioral 
transition from pre-mating rejection to subsequent mating 
acceptance in virgin Drosophila females [138]. The major 
group of neurons that constitute the EB are called ring (R) 
neurons, whose axonal fibers form annular, layered neural 
structures located at the anterior-most region of CX in the 
central brain [139, 140] (Fig. 6a). R-neuron dendrites form a 
glomerular structure called a bulb and receive synaptic input 
from descending neurons in the anterior visual pathway 
[141]. Anatomical and developmental analyses have detected 
multiple types of R-neurons with different axonal morphol-
ogy and comprising different EB ring layers [139–143]. 
These layers of R-neurons in the EB communicate with 
each other and form a neural circuit which regulates female 
behavioral switching from rejection to acceptance during the 
pre-mating period [138]. This circuit is driven by dopamin-
ergic inputs and consists of R2/R4m and R4d.

PPM3, a cluster of dopaminergic neurons, extends their 
axons to the EB and their dendrites to the superior medial 
protocerebrum (SMP), in which neurons process multiple 
information sources derived from courting male, such as the 
male pheromone and the courtship song [29, 103]. PPM3 
inputs a dopamine (DA) signal to both R2/R4m and R4d 
neurons (Fig. 6b). Thermogenetic activation of PPM3 pro-
longs the time of pre-mating rejection [138] (Fig. 6c). The 
R-neurons to which PPM3 is connected have different roles 
in influencing female pre-mating behavior. Cholinergic R4d 
neurons promote rejection responses from virgin females 
toward a courting male [138]. GABAergic and glutamater-
gic R2/R4m neurons are connected unidirectionally toward 
R4d neurons [143]. Inhibiting GABAergic signaling in R4d 
neurons by knocking down the GABAA receptor subunit, 
Resistance to dieldrin (Rdl), causes the female to engage in 
persistent rejection behaviors toward the courting male [138] 
(Fig. 6d). Activation of R2/R4m neurons promotes mating 
acceptance, whilst suppression induces a significant increase 
in mating latency [138] (Fig. 6e). R2/R4m neurons thus act 
in the opposite manner to R4d neurons.

The probability of behavioral transition from female 
rejection to acceptance increases as male courtship pro-
ceeds. Therefore, information accumulation is thought to be 
involved in the temporal control of this behavioral transition. 
This temporal control could be explained by a retrograde sig-
nal from R4d to its suppressor R2/R4m [138] (Fig. 6f). Acti-
vation of R4d by DA input leads to rejection responses from 
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a virgin female, as observed during the pre-mating response 
toward a first-time courting male. Glutamate signaling from 
R2/R4m to R4d activates N-methyl-D-aspartate (NMDA) 
receptors in R4d that facilitate nitric oxide synthase (NOS) 
reactions that generate nitric oxide (NO) (Fig. 6f). NO dif-
fuses via the synaptic cleft back to R2/R4m and activates 
soluble guanylyl cyclase (sGC), which likely facilitates 
synaptic release of R2/R4m as a result of retrograde NO 
signaling [144] (Fig. 6f). When R2/R4m GABA release is 
sufficiently enhanced, R4d activity is suppressed via Rdl and 
rejection transitions to acceptance [138].

These properties of the PPM3/R-neuron circuit support 
the previously suggested idea that lateral inhibition from 
one type of R-neuron to another type of R-neuron helps 
fine-tune circuit output and behavioral shifts between dis-
tinct states, such as from pre-mating rejection to acceptance 
[145], though the exact visual features relevant for circuit 
operation remains to be investigated. The command-type 
descending neuron vpoDN integrates excitatory and inhibi-
tory inputs to control proper timing of vaginal plate opening 
for the acceptance of mating [66] (Fig. 4). It is tempting to 
assume that R4d neurons provide the vpoDN with inhibi-
tory information to sustain pre-mating rejection responses. 
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Fig. 6   An ellipsoid body circuit involved in pre-mating behavio-
ral switching. a Ellipsoid body (EB) of female Drosophila mela-
nogaster. Left, EB is located in the center of the brain; Right, the 
different ellipsoid ring neuron groups are visualized by different 
colors. Green, R3/R4d neurons; Blue, R2/R4m neurons; Red, R1 
neurons. Scale bar; 50  µm. b–e A schematic diagram of the neural 
circuitry which controls virgin female pre-mating rejection [138]. b 
The feedforward circuit formed within the EB consists of the dopa-
minergic PPM3, the glutamatergic and GABAergic R2/R4m, and the 
cholinergic R4d. DA, dopamine; Glu, glutamate; Ach, acetylcholine. 
c Activation of PPM3 induces rejection behaviors. d Resistance to 

dieldrin (Rdl) knock-down (KD) induces hyper-rejection responses. 
e Activation of R2/R4m suppresses R4d, which attenuates rejection 
responses. f Potential retrograde signaling from R4d to R2/R4m. R2/
R4m unidirectionally synapses to R4d. (1) Glutamate release from 
R2/R4m activates N-methyl-D-aspartate receptor (NMDAR), which 
triggers NOS activation via Ca2+/CaM signaling pathway in R4d. (2) 
Activated NOS generates NO, which retrogradely affects sGC activity 
in the pre-synaptic R2/R4m. sGC signals potentially facilitates syn-
aptic transmission of GABA. Adequate GABA release from R2/R4m 
weakens the R4d-mediated rejection response. Modified from Ishi-
moto and Kamikouchi (2020) [138]
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How male pheromonal information acts on PPM3 neurons 
and R-neurons from the SMP region needs to be physiologi-
cally investigated, but at the very least, bidirectional (excita-
tory and inhibitory) responsiveness of EB to the courtship 
pulse song have been shown [59]. It will also be important to 
examine the song-response properties of individual R-neu-
rons and their respective roles in sexual behaviors. Neither 
fru nor dsx are expressed in PPM3 and R-neurons, as in the 
spin-A cluster, which regulates female mating receptivity 
[98, 105]. Also, no morphological sexual dimorphism has 
been detected in these neurons [143]. Therefore, anatomical 
and functional identifications of how the PPM3/R-neuron 
circuitry is linked to command-type circuits that perform 
female-specific behaviors are required.

Evolutionarily conserved functions in sexual 
communication between the central complex 
and the basal ganglia

Regarding the anatomical similarity of laminated structures 
and the functional similarity of sensory integration, motor 
coordination, and action selection for adaptive behaviors, 
Strausfeld and others have proposed anatomical and func-
tional analogy between the insect CX containing EB/R-neu-
ron circuit and the vertebrate basal ganglia [146–149]. In the 
CX, various neurotransmitters such as DA, acetylcholine, 
glutamate, and GABA are functionally involved in the EB/R-
neuron circuitry to achieve neural control of the decision of 
virgin females to continue rejection or to switch to mating 
acceptance. In the basal ganglia, DA regulates the activity 
of the nucleus accumbens (NAc) and the ventral tegmental 
area via the differential modulation of glutamate and GABA 
release [150–153]. In monogamous rodents, sexual inter-
actions activate these neurochemical systems in the NAc 
of females, resulting in the formation and the maintenance 
of social bonding with males [154–157]. These pre-mating 
female brain mechanisms which determine mating partners 
show striking similarities between the fly CX/EB and the 
mammalian basal ganglia/NAc; further research could pave 
the way for the unraveling of evolutionary similarities and 
diversity of brain functions across the animal kingdom.

Conclusions and perspectives

In the pre-mating phase, mature, receptive, virgin female 
flies integrate the sensory information provided by the court-
ing male flies and from there assess the value of their mates, 
including their species and sex, before deciding whether to 
accept or reject his courtship. Because of the current paucity 
of knowledge about the brain systems that control sexual 
decision-making in pre-mating females, it is difficult to 
identify and extract general principles of causality between 

the genes, circuits, and behaviors that underlie sexual com-
munication with the courting male. Newly established tech-
nologies such as the whole-brain connectome, single-cell 
gene expression profiling, genome editing, and visualiza-
tion of brain molecular activity, in addition to conventional 
research methods of genetics, molecular neural manipulation 
and behavioral analysis, are, however, enabling the elucida-
tion of each and every complex brain function. Although 
sexual preferences and sexual behaviors are innate behav-
iors, suggesting they are to some extent genetically pro-
grammed and hardwired, mating behaviors are also flexible 
and sometimes modified by learning in response to situations 
such as internal states and environments. Understanding how 
these modulations are enacted and how sexual desire affects 
decision-making remains an open question to be addressed 
by future research.
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