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Abstract
Neuronal Ceroid Lipofuscinosis (NCL), also known as Batten disease, is an incurable childhood brain disease. The thirteen 
forms of NCL are caused by mutations in thirteen CLN genes. Mutations in one CLN gene, CLN5, cause variant late-infantile 
NCL, with an age of onset between 4 and 7 years. The CLN5 protein is ubiquitously expressed in the majority of tissues 
studied and in the brain, CLN5 shows both neuronal and glial cell expression. Mutations in CLN5 are associated with the 
accumulation of autofluorescent storage material in lysosomes, the recycling units of the cell, in the brain and peripheral 
tissues. CLN5 resides in the lysosome and its function is still elusive. Initial studies suggested CLN5 was a transmembrane 
protein, which was later revealed to be processed into a soluble form. Multiple glycosylation sites have been reported, which 
may dictate its localisation and function. CLN5 interacts with several CLN proteins, and other lysosomal proteins, making 
it an important candidate to understand lysosomal biology. The existing knowledge on CLN5 biology stems from studies 
using several model organisms, including mice, sheep, cattle, dogs, social amoeba and cell cultures. Each model organism 
has its advantages and limitations, making it crucial to adopt a combinatorial approach, using both human cells and model 
organisms, to understand CLN5 pathologies and design drug therapies. In this comprehensive review, we have summarised 
and critiqued existing literature on CLN5 and have discussed the missing pieces of the puzzle that need to be addressed to 
develop an efficient therapy for CLN5 Batten disease.
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Introduction

Batten disease or Neuronal Ceroid Lipofuscinosis (NCL) 
is a group of fatal, inherited neurodegenerative disorders 
that predominantly affect children. Different forms of Bat-
ten disease are caused by mutations in thirteen CLN genes 
(CLN1-8 and 10–14), which results in substantial clinical 
variation, including symptoms and age of onset. The CLN 
genes encode proteins that are found mostly in the endoplas-
mic reticulum (ER), endosomes or lysosomes. CLN1, 2, 5, 
10 and 13 are localised to the lysosomal lumen, CLN3, 7 and 
12 are lysosomal membrane proteins, CLN6 and 8 reside 
in the ER, CLN4 and 14 are cytoplasmic whereas CLN11 
is extracellular [1, 2]. CLN1, 2, 10 and 13 act as lysosomal 
degradative enzymes, CLN5 is proposed to be a lysosomal 
enzyme, CLN8 and 12 act as transporters, CLN4 acts as a 
co-chaperone, CLN3, 6 and 11 regulate trafficking of lyso-
somal enzymes and the functions of the remaining CLNs 
are unknown [2]). Affected neurons and non-neuronal cells 
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accumulate autofluorescent storage material (ASM), but this 
deposition appears to be a consequence, rather than a cause, 
of neuronal dysfunction and death. Research into the roles of 
CLN genes in both neuronal homeostasis and Batten disease 
is crucial to determine what kills the neurons in disease and 
how this could be prevented or treated, therapeutically.

Mutations in CLN5 cause variant late-infantile NCL 
(vLINCL). The first group to report a Finnish variant of late 
infantile NCL (fvLINCL) highlighted that the onset of the 
disease occurred between 4 and 7 years of age [3–5]. Motor 
deficits, mental deterioration, cognitive impairment, visual 
impairment and epileptic seizures are the most common pre-
senting symptoms. For vLINCL patients, life expectancy is 
usually between 10 and 30 years of age [3, 5, 6]. Later stud-
ies have reported atypical phenotypes in infantile, juvenile 
and adult forms of CLN5 Batten disease. In the juvenile 
and adult forms, symptoms appeared at a later age and the 
patients survived until the fourth decade of life [7]. In the 
infantile form, symptoms appeared as early as four months 
of age, but, to date, is limited to a single reported case [8, 9].

A primary cellular phenotype of all forms of Batten 
disease is the dysfunction of the cellular waste recycling 
system—the lysosomes (reviewed in [2]) that are acidic 
vesicles containing many hydrolytic enzymes. Many of the 
CLN proteins are localised to the lysosome and their deficits 
cause lysosomal dysfunction. Among the CLN lysosomal 
proteins affected in Batten disease (CLN1, 2, 3, 5, 7, 10, 
12, 13), CLN5 plays a role in maintaining an acidic envi-
ronment in the lysosomes, a critical feature for a functional 
lysosome [10]. However, how CLN5 regulates lysosomal 
pH, and hence lysosomal homeostasis, is still unclear as 
the function of the CLN5 protein is unknown. Studies have 
argued that CLN5 is either a membrane-bound protein or a 
soluble protein, however, a membrane-bound protein being 
cleaved and processed into a soluble form appears likely. 
Several studies have revealed an association between CLN5 
and other CLN and non-CLN proteins, indicating that these 
CLN proteins work together and follow the common cellular 
pathway. Rare variants of NCL-related genes, such as CLN5 
and CLN7, have been described as candidate risk factors 
for dementia, Alzheimer’s disease and Parkinson’s disease, 
possibly facilitating the pathogenic mechanisms underlying 
these diseases [11–13].

Understanding the long-elusive function(s) of CLN5 
and how mutations cause Batten disease will not only shed 
much-needed light on Batten disease mechanisms but will 
also reveal the significance of lysosomal function in neu-
ronal homeostasis. To date, there is no approved targeted 
treatment or cure for CLN5 Batten disease. There are more 
than 150 research and review articles on CLN5, but none 
of them provide a big picture scenario for CLN5 and where 
we are heading in terms of future treatment options for 
CLN5 Batten disease. In this review, our aim is to provide 

a comprehensive overview of the CLN5 gene, including its 
expression and regulation, CLN5 protein expression, pro-
cessing and post-translational modifications, probable pro-
tein functions, and interacting partners, characterisation of 
the mutations causing CLN5 Batten disease and the use of 
different animal and cell-based models to study CLN5. We 
believe that a combined effort to investigate the structure, 
downstream targets/interactors of CLN5 and the effect of 
mutations on the transcriptome, epigenome, metabolome, 
and proteome will help us to understand the underlying 
pathogenesis and aid the development of mechanism-based 
treatments.

CLN5 biology

The CLN5 gene

In the 1990s, a group of Finnish geneticists mapped the 
location of the CLN5 gene to chromosome 13q21.1-q32, 
using linkage analysis and fluorescence in situ hybridiza-
tion [14–16]. The Finnish group was the first group who 
used positional cloning and screening of human fetal brain 
cDNA library to study CLN5. Their study revealed that 
CLN5 cDNA is 4.1 kb long, consisting of four exons with 
an open reading frame of 1380 bp and a coding sequence of 
1221 bp [16, 17]. Other studies from the 1990s reported four 
exons that span a 13 kb region of genomic DNA. Revised 
sequences on NCBI Reference Sequence (RefSeq, Accession 
number: NM_006493.4) show CLN5 is located on chromo-
some 13q22 between 76,992,081 bp and 77,005,117 bp. 
CLN5 mRNA is 5,243 bp long and the four exons span 
over a region of 10 kb in genomic DNA. The four exons are 
320 bp, 169 bp, 226 bp and 2,060 bp long. There are two 
reported transcript variants on RefSeq, although the previ-
ously reported transcripts encoding 407 aa protein [16] does 
not currently exist in RefSeq. The present RefSeq CLN5 
transcripts consist of a longer transcript encoding a 358 
aa protein and a shorter transcript encoding a 197 aa pro-
tein. Ensembl reports eight other protein coding transcripts 
(https:// asia. ensem bl. org/ Homo_ sapie ns/ Gene/ Summa ry? 
db= core;g= ENSG0 00001 02805;r= 13: 76990 660- 77019 
143), however, the 358 aa protein is considered as ubiq-
uitously expressed. It is not yet experimentally verified 
whether the expression of other CLN5 transcripts is depend-
ent on development, tissue type or disease condition. Blast 
searches for the CLN5 gene show that there are no known 
homologous genes or proteins. For CLN5, the 407 aa protein 
has been consistently used in the literature as the reference 
protein for the past two decades. However, due to the change 
of the protein length to 358 aa in the current RefSeq data-
base, in this review, we have adapted to the new CLN5 358 
aa protein and modified the mutation locations accordingly. 

https://asia.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000102805;r=13:76990660-77019143
https://asia.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000102805;r=13:76990660-77019143
https://asia.ensembl.org/Homo_sapiens/Gene/Summary?db=core;g=ENSG00000102805;r=13:76990660-77019143
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For the remainder part of this review, we will refer to the 
358 aa CLN5 protein, rather than the previously referenced 
407 aa protein.

Often 5′ and 3′ flanking genes play roles in gene expres-
sion regulation [18]. Using traditional and computational 
methods for transcript identification, Klockars et al. [17] 
found that the CLN5 transcript is flanked by four more 
genes, namely cDNA761, Ribosomal protein L7 pseudogene, 
RNAse helicase A/nuclear DNA helicase II / leukophysin 
pseudogene and PAM. However, the recent RefSeq database 
shows the locations of these four genes to be on different 
chromosomes. According to the UCSC genome assembly, 
the CLN5 adjacent genes are ubiquitin ligase complex subu-
nit FBXL3, E3 ubiquitin ligase MYCBP2 and pseudogenes 
DHX9P1 and RPL7P44. Their roles in relation to CLN5 
function has never been explored. Hence it is still unknown 
if these or other genes are positionally important for the 
regulation of CLN5 gene expression.

Regulation of CLN5 expression

Savukoski et al. [16] suggested three possible 50 bp pro-
moter sequences, but since then, no other study has defined 
the promoter region of CLN5. It remains unclear what regu-
lates CLN5, with only a few studies and prediction analy-
ses investigating CLN5 regulation. GeneHancer predicts 38 
promoter/enhancer elements regulating the CLN5 gene [19]. 
There are 58 predicted CpG islands near the CLN5 transcrip-
tion start site (source: UCSC GRCh38/hg38 assembly), but 
no known experimentally verified methylation or acetyla-
tion data are available in the literature. The first study to 
suggest a transcription factor associated with CLN5 [20] 
used somatic cell hybrid analysis to show that the Brn-3A 
transcription factor POU4F1 lies within the critical region 
defining the CLN5 locus. However, since the 1996 study, no 
other researchers have verified this transcription factor, rais-
ing questions about the actual association between POU4F1 
and CLN5.

While investigating the promoters of 96 genes encoding 
known lysosomal proteins, Sardiello et al. [21] revealed 
the Coordinated Lysosomal Expression and Regulation 
(CLEAR) gene network. A ChIP-Seq analysis from the study 
found that Transcription Factor EB (TFEB) binds to the 
CLEAR motif. This motif was enriched in the promoters of 
68 out of 96 genes, including CLN5 and other genes regulat-
ing lysosomal function and biogenesis. Upon manipulation 
of TFEB expression in HeLa and HEK293 cells, lysoso-
mal gene expressions were altered–including that of CLN1, 
CLN2, CLN3, CLN5, Cathepsin D (CLN10) and Cathepsin F 
(CLN13). For CLN5, the binding sites reported by Sardiello 
et al. were mapped to + 50 (CTC AAG TGTG) and + 74 (TTC 
AGG TGCC) on the promoter of CLN5 [21]. A 2011 study 
by Palmieri et al. confirmed the regulation of CLN genes via 

TFEB using microarray analysis, deep sequencing of chro-
matin immunoprecipitate, unbiased genomic and expression 
meta-analyses in HeLa cells [22]. However, apart from map-
ping the TFEB binding site on the CLN5 promoter, there is 
no experimental validation data available showing TFEB to 
be the sole regulator of CLN5. Furthermore, the experiments 
in the aforementioned studies were performed in non-neu-
ronal cells. Neuronal cells, with their unique morphology, 
are expected to harbour additional transcription regulatory 
elements when compared with HeLa and HEK293 [23]. 
TFEB is negatively regulated by the mechanistic target 
of rapamycin complex 1 (mTORC1), which disrupts the 
nuclear translocation of TFEB and inhibits autophagy [24]. 
Additionally, TFEB is also negatively regulated by serine/
threonine kinase Akt (protein kinase B,) and blocking Akt 
using trehalose in Cln3Δex7−8 mice showed improved survival  
[25]. Sheep and mouse models of CLN5 Batten disease also 
show autophagy impairment [10, 26]. Whether a similar 
improvement of disease phenotype in CLN5 Batten disease 
is possible by enhancing TFEB-mediated lysosomal gene 
activation needs further investigation.

Currently, there is no knowledge of other gene regulatory 
elements, such as non-coding RNAs, for CLN5. MicroRNAs 
(miRs) and long non-coding RNAs are the most well-known 
non-coding gene regulatory elements. miRWalk, a miR pre-
diction tool that provides both predicted and validated miR-
NAs targets, showed miR-124-3p (a brain-specific miR) has 
been validated to target CLN5 [27]. On further investigation 
into the literature and its associated supplementary informa-
tion, it became evident that miR-124-3p has been mistakenly 
stated as a CLN5 regulator. The same study involved a sec-
ond miR, miR-1 (not a brain-specific miR), which showed 
possible regulation of CLN5, but further experimental vali-
dation is required. Interestingly, miR-1 is upregulated in reti-
nitis pigmentosa, a group of inherited retinal degenerative 
diseases [28], and is of particular interest given vision loss 
and retinal degeneration are well-known clinical signs in 
CLN5 Batten disease [3, 5, 26]. Furthermore, several other 
miR prediction tools predicted miR-138-5p to target CLN5. 
Although miR-138 is regarded as a potential molecular 
regulator of human memory function [29], without further 
experimental validation, it would be futile to extrapolate 
if miR-138-mediated moderation of CLN5 contributes to 
impaired brain function in CLN5 Batten disease.

CLN5 translation

There are four ATG sites and potential start codons at the 5′ 
end of the CLN5 gene, which could lead to four forms of the 
CLN5 protein. The four respective methionines are at posi-
tions 1, 30, 50 and 62 aa, which when translated would pro-
duce polypeptides of 407, 378, 358 and 346 aa. Based on the 
consensus analysis, the first ATG was considered the site of 
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translation initiation resulting in a predicted polypeptide of 
407 aa weighing ~ 46 kDa [16, 17, 30, 31]. A recent update 
to the RefSeq sequence omitted the initial 49 aa, resulting 
in a 358 aa protein, corresponding to the use of the third 
ATG. Comparison between the new 358 aa and the old 407 
aa CLN5 sequences suggests that the new sequence only has 
two methionine sites at the first aa (previously 50th aa) and 
the twelfth aa (previously 62nd aa).

Although cell-free analyses of CLN5 showed the protein 
to use alternate start sites, in-cell analyses point towards 
a single start site. In 2002, two studies investigated the 
potential use of alternative start codons in CLN5. Vesa 
et al. [32] performed a cell-free translation assay resulting 
in four forms of CLN5 with molecular weights 47, 44, 41 
and 39 kDa. Upon mutation of the methionine sites, indi-
vidually as well as together, in fibroblast-like COS-1 cells, 
the study showed that the COS-1 translation machinery is 
able to use at least one methionine located at 1, 30 or 50 aa, 
however, their antibody failed to detect the 39 kDa band. 
Surprisingly, the study ignored higher molecular weight 
species (> 50 kDa), which were shown to be glycosylated 
forms of CLN5 in later studies. Isosomppi et al. [30] per-
formed similar cell-free translation assays and confirmed 
the aforementioned CLN5 molecular weights [30]. In the 
same study, when the group used a kidney cell line BHK-1, 
they found CLN5 being expressed as a 60 kDa glycoprotein, 
which when deglycosylated appeared as a 38 kDa protein. 
However, the specificity of the antibody used in the study 
by Isopompi et al. is questionable, as multiple bands were 
observed in both cellular and media extracts, especially after 
deglycosylation. The 38 kDa CLN5 protein would be the 
product of the methionine at 50 aa position, which is the 
start site on the currently favoured 358 aa sequence. The dif-
ference of CLN5 product size might suggest that expression 
and posttranslational modifications of CLN5 varies between 
cell lines and perhaps have tissue-specificity or overexpres-
sion of CLN5 alters glycosylation pattern. Our unpublished 
data in a kidney cell line, HEK293FT, and human-induced 
pluripotent stem cells (iPSCs) have shown a predominant 
glycosylated CLN5 form at ~ 60 kDa, which when degly-
cosylated, generates a ~ 38 kDa CLN5 species (J. Palmer, 
Basak, Hughes, unpublished).

Tissue expression of CLN5

Tissue expression of the CLN5 transcript and protein has 
been thoroughly studied in the last three decades and we 
have summarised the data (Table 1). The first compre-
hensive CLN5 tissue expression study was performed by 
Savukoski et al. [16], where the authors showed the high-
est level of adult CLN5 expression in the aorta, kidney, 
lung and pancreas (Table 1). In the fetus, the highest sig-
nal was obtained in the thymus as compared to the brain, 

and other peripheral organs, all of which showed uniform 
expression [16] (Table 1). GTeX portal data indicate that 
the highest expression of CLN5 is in the thyroid followed 
by the tibial nerve, ovary, tibial artery, coronary artery 
and aorta, with brain tissue showing moderate expression 
(Table 1). Heinonen et al. [33] showed that CLN5 had 
weaker expression in human embryos, as compared to that 
of CLN1, at the beginning of cortical neurogenesis, and 
its subsequent expression increased with cortical devel-
opment. Later, Holmberg et al. [34] used mouse tissue to 
show that Cln5 is expressed in the brain and peripheral 
organs (Table 1), where some tissue showed expression 
of more than one Cln5 transcript. The different Cln5 tran-
script expressions could suggest different isoforms or dif-
ferential processing of Cln5 in different tissues [34]. Cln5 
protein expression in these organs was also confirmed by 
De Silva et al. [35] (Table 1).

In the brain, throughout human embryonic development, 
CLN5 protein is found in the ventricular zone and in some 
more peripheral cells at E37. At E76, CLN5 is expressed 
in cells leaving the ventricular zone and migrating toward 
the cortical region (Table 1). In the cortical plate, CLN5 is 
mostly seen perinuclear, and CLN5-negative cells are inter-
spersed among strongly positive cells [33]. In mice, Cln5 is 
expressed from E15 and steadily increases from then on. At 
P7, 14, 24, and 60, Cln5 strongly stained cerebellum, cer-
ebral cortex and hippocampus (Table 1). These areas have 
been noted to particularly degenerate in CLN5 patients’ 
brains. Cln5 is also found in the hypothalamus. In the hip-
pocampus, CA3 pyramidal cells are specifically labelled, 
while the labelling in CA1 was weaker. In large neurons, a 
granular appearance existed predominantly in the cell soma 
with some staining extending into neurites. The Cln5 pro-
tein localised to neuronal extensions did not co-localise with 
Lamp1, which could indicate an extra-lysosomal function in 
neurons [34].

More recently, Cln5 has been found in the mitotically 
active zone of the cerebellum at E18.5, in the inner migra-
tory zone of the external granule layer, and in neurons 
located in the white matter and brain stem, including the 
facial nucleus [36] (Table 1). High levels of Cln5 were 
observed in the pons region across the cerebellum. Dur-
ing postnatal development up to day P7, Cln5 was found in 
the external granular cell layer of the cerebellum and on P7 
the Purkinje cell layer showed strong expression (Table 1). 
Expression in the internal granule layer of the cerebellum 
lasted into adulthood. During postnatal brain development, 
expression in the hippocampus remained strong: from P1 in 
pyramidal cells in CA2 and CA3, but also the dentate gyrus. 
This pattern continued into adulthood. Large neurons in the 
hippocampal region and cerebral cortex as well as corti-
cal neurons were positive (Table 1). The following regions 
also stained positive throughout development: old cortex, 
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retrosplenial granular cortex, hypothalamus, paraventricular 
thalamus, ventricular regions, choroid plexus [36] (Table 1).

Holmberg et al. [34] confirmed that mouse brain tissue 
showed increased Cln5 expression with development, a find-
ing later supported by Schmiedt et al. [37] and Fabritius 
et al. [36] (Table 1). Another interesting observation made 
by Savchenko et al. [38] confirmed that Cln5 loss caused 
impaired neurogenesis. All of these data suggest that Cln5 
plays a crucial role in brain development. Cln5 expression is 
concentrated mostly in the cerebral cortex and cerebellum in 
both developing and adult mouse brain tissue [34] (Table 1). 
Immunohistochemical staining of Cln5 in mouse brain tis-
sue confirmed immunoreactivity in neurons and glia [34] 
(Table 1). Interestingly, a later study by Schmiedt et al. [37] 
showed Cln5 mRNA expression is highest in microglia, fol-
lowed by astrocytes, oligodendrocytes and neurons, although 
it is not clear if these measurements were done in develop-
ing or adult mouse brain. By inducing microglial activation 
using lipopolysaccharide, Schmiedt et al. [37] showed that 
Cln5 expression increased threefold in microglia, suggest-
ing that Cln5 might also have a role to play in the immune 
response.

Glial cells have more than a supporting role to play in 
the brain. Major neurodegenerative diseases have confirmed 
pathologies in the glial cells that lead to amplified neurode-
generation [39–41]. Likewise, impaired glial morphology 
and function have been shown in Batten disease, as high-
lighted by Parviainen et al. [42] and Lange et al. [43] in Cln3 
and Cln1 deficient mice, respectively. These studies also 
showed that defective mouse glial cells could kill healthy 
cortical neurons, suggesting glial activation as an indica-
tion of neurodegeneration in Batten disease. Furthermore, 
microglial activation and astrocytosis have been shown in 
CLN5 Batten disease patients, especially in regions where 
neuronal demise was more prominent [44]. Cln5 knockout 
(−/−) mice show enhanced microglial activation and impaired 
myelination of oligodendrocytes [37]. Hence, the higher 
expression of CLN5 in glial cells suggests its regulatory 
role of glial cell function and a protective role in neurons. 
CLN5 disease patients often present loss of myelin [37, 
45], and genes related to myelination are downregulated in 
Cln5−/− mouse brains [46, 47]. Although the loss of mye-
lination is not considered as the primary effect of CLN5 
loss, defects in myelination are not only limited to humans 
but also have been reported in mouse models, which even-
tually could lead to axonal loss and subsequent neuronal 
loss. Defects in myelination could lead to axonal loss and 
subsequent neuronal loss. The volume of two major white 
matter tracts showed no significant atrophy at one and three 
months in Cln5−/− mice. Cultures of oligodendrocytes from 
Cln5−/− mice showed that fewer of them differentiated from 
progenitor cells. They retained small soma and numerous 
highly branched processes [34, 35, 37, 48].

The drastic neurological symptoms of all forms of Batten 
disease tend to overshadow any peripheral symptoms. How-
ever, the near-ubiquitous expression of CLN5 is a key obser-
vation suggesting that CLN5 possesses functions beyond 
the brain. Being a lysosomal protein, the absence or muta-
tion of CLN5 is expected to affect all cell types. It is well-
known that progressive development of cardiac pathology 
in CLN3 Batten disease is associated with the progression 
of the disease [49]. Furthermore, Australian cattle dogs with 
CLN5 mutation show deposition of autofluorescent inclu-
sions in the cardiac muscle of the heart ventricle [50]. It is 
expected that such peripheral symptoms will continue to 
emerge in the years to come. The higher expression of CLN5 
in peripheral tissues as compared to the brain and these non-
CNS symptoms will have implications when it comes to 
maximising therapeutic efficacy, which are currently devel-
oped with a predominant focus on the CNS. Hence, in future 
in vivo studies involving CLN5, assessment of extraneuronal 
pathologies should be intensified.

CLN5 post‑translational modifications, processing, 
trafficking and protein interactions

Proteolytic processing

Human CLN5 is synthesised as a preproprotein CLN5 
nascent polypeptide. The precursor protein moves into the 
lumen of the endoplasmic reticulum (ER) where the N-ter-
minal signal peptide is cleaved [35, 51–53] (Fig. 1a) and 
oligosaccharide side chains (known as glycans) are added 
to the polypeptide, all of which happens co-translationally. 
More recently, C-terminal cleavage of CLN5 has been sug-
gested to occur in an acidic environment  [35] (Fig. 1a). 
Lysosomal targeting of CLN5 is not dependent on the start-
ing methionine [51].

CLN5 was originally predicted to be an ER transmem-
brane protein [16] and early data supported this hypothesis, 
with CLN5 showing at least one transmembrane domain 
[32]. Endogenous CLN5 polypeptides detected from human 
fibroblasts were reported to be membrane-bound  [54]. Lar-
kin and co-workers investigated the membrane association 
of CLN5 in more detail in HEK293 and HeLa cells [52]. In 
this comprehensive study, Larkin et al. tagged CLN5 with 
human influenza hemagglutinin (HA) in different positions 
and detected several CLN5 bands on a western blot: 73 kDa 
glycosylated full-length uncleaved precursor, 60 kDa gly-
cosylated and cleaved, 50 kDa unglycosylated full-length 
uncleaved precursor, 35 kDa unglycosylated and cleaved 
and a 15 kDa signal peptide fragment [52] (Table 2). In a 
pulse-chase experiment, the 60 kDa mature form of CLN5 
present after a 50 min pulse indicated that N-glycosylation 
and signal peptide cleavage occur co-translationally [52]. 
This was in congruence with an earlier study by Schmiedt 
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et al., where the authors found a 60 kDa proform and a 
50 kDa mature human CLN5 detected with a C-terminal 
antibody in HeLa cells [51] (Table 2). A protease protection 
assay in the study conducted by Larkin et al. [52] indicated 
that the N-terminal tail was located in the cytoplasm and 
the C-terminus in the ER lumen. Subcellular fractionation 
of cells expressing various tagged CLN5 proteins resulted 
in the N-terminally tagged version being mainly found in 
the membrane fraction – strengthening the argument for an 
N-terminal transmembrane domain. However, CLN5 with 
a C-terminal tag and a tag after the signal peptide cleavage 
site were also identified as membrane-associated. Mature 
CLN5 remained tightly associated with the membrane but 
did not behave like a typical integral membrane protein [52].

The studies by Isosomppi et al. [30] and Holmberg et al. 
[34] showed the presence of glycosylated CLN5 poly-
peptides in the media of cultured cells and human CLN5 
and mouse Cln5 found in the soluble fraction. Isosomppi 
et al. suggested that an N-terminal signal peptide would be 
cleaved like other soluble lysosomal proteins [30]. Evidence 
supporting this hypothesis included staining in Golgi [32] 
and exclusive ER localisation with an N-terminal tag [52]. In 

a 2017 study [53] a topology assay performed in perforated 
intact HeLa cells showed that the N-terminal tail of CLN5 
was digested, placing it in the cytosol. Mature CLN5 was 
protected and therefore appears to be a soluble protein within 
the lumen of organelles. This supports a model with prepro-
CLN5 (unglycosylated) and proCLN5 (glycosylated) as type 
II transmembrane proteins cleaved into a mature soluble pro-
tein. A further membrane separation assay focused on the 
ER, finding the majority of HA-tagged CLN5 to be associ-
ated with the membrane fraction and a small amount in the 
soluble fraction. This supports the topology assay data, by 
placing preproCLN5 and proCLN5 as membrane-associated 
protein  [53]. CLN5-HA was found in the membrane frac-
tion when the internal membranes were left intact. When the 
membranes were isolated, CLN5 and other lysosomal pro-
teins are released into the soluble fraction [53], contradicting 
the membrane-associated results shown by Larkin et al. [52].

In 2015, De Silva et al. [35] studied the endogenous 
expression of CLN5 in HEK293 and HeLa cell lines, which 
resulted in two specific major bands on western blots: one 
around 56 kDa, and another around 52 kDa, indicating a 
proprotein and a different mature form (Table 2). Using an 

Fig. 1  CLN5 is a soluble lysosomal glycoprotein. a: The CLN5 pro-
tein contains a signal peptide (dark green), two predicted transmem-
brane regions (pale green), and a large soluble CLN5 domain within 
the lysosomal lumen (blue). The signal peptide is cleaved to form the 
mature protein, and there is also a cleavage site near the C-terminus. 
Eight experimentally validated N-linked glycosylation sites (red) are 

essential for the intracellular trafficking of CLN5 and there are also 
three predicted ubiquitylation sites (orange) and one predicted phos-
phorylation site (yellow). b: Disease-causing mutations (purple) are 
found throughout the CLN5 protein. Truncating and frameshift muta-
tions are shown on the upper row and amino acid substitutions on the 
lower row. Created with BioRender.com
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over-expressed myc-tagged protein, and a C-terminal anti-
body, the authors revealed that the C-terminus of CLN5 
is cleaved. N352Q, a CLN5 mutant that deletes a glyco-
sylation site, accumulated in the Golgi network and in the 
media [55], as both proprotein and mature variants. This 
suggested that the proteolytic processing can occur in the 
Golgi network which is mildly acidic. Secretory vesicles 
from the trans-Golgi network (TGN) also contained propro-
tein of overexpressed CLN5, but this secreted proprotein was 
larger (> 10 kDa difference) and the authors suggested fur-
ther modification such as fucosylation and sialylation when 
being transported from TGN to outside of the cells [35]. 
Interestingly, overexpressed sheep CLN5 with a myc-tag at 
the C-terminus was also only detectable in pre-lysosomal 
compartments, ER and Golgi, and also secreted [1] support-
ing C-terminal cleavage prior to lysosomal localisation.

While Schmiedt et al. [51] pointed towards cleavage of the 
signal peptide at residue 96 aa (New RefSeq sequence–47 
aa), mass spectrometry after immunoprecipitation identified 
CLN5 fragments beginning from residue 93 (New RefSeq 
sequence–44 aa), indicating a cleavage site at 92nd aa (New 
RefSeq sequence–43rd aa). There is some ambiguity that the 
mature protein could either be residues 93–407 aa or 89–407 
aa [53] (New RefSeq sequence–44–358 aa or 40–358 aa). 
Jules and colleagues discovered that the specific enzyme 
cleaving the CLN5 signal peptide is SPPL3. The SPP/SPPL 
family are known to cleave type II transmembrane proteins 
at different intracellular locations [56] (Friedmann 2006). 
Inhibition of one of the members, SPPL3, which localises 
to the ER and Golgi apparatus, prevented the cleavage of 
CLN5 from proCLN5 [53]. Transfection with a catalytically 
inactive form of SPPL3, as well as knockdown of SPPL3 
resulted in proCLN5 accumulation [53]. While classical sig-
nal sequences are usually 15–20 aa long [57] and cleaved 
during translation, CLN5 cleavage likely occurs after inser-
tion into the ER membrane. In an experiment where the 
N-terminus was replaced by a classical signal peptide of 
a lysosomal enzyme, CLN5 was still correctly localised to 
lysosomes in HeLa cells, indicating that its N-terminus is not 
critical for its localisation. Further experiments indicated an 
additional cleavage event via SPPL2b on the already cleaved 
N-terminal signal peptide. This intracellular domain is rap-
idly degraded by the proteasome [53].

Post‑translational modifications of CLN5

Glycosylation of CLN5 renders it a soluble and more sta-
ble protein undergoing a series of post-translational modi-
fications for proper folding and trafficking [32, 51]. Locali-
sation studies have suggested that various N-glycosylation 
sites of CLN5 have different effects on folding, traffick-
ing and the lysosomal function of CLN5 [55]. The CLN5 
sequence of 358 aa with a calculated molecular weight of 

48.36 kDa [16, 55], http:// www. rcsb. org/ struc ture/ 6R99) 
harbours 8 potential N-glycosylation sites: three encoded 
in exon 3: N130, 143, 178 and five encoded in exon 4: 
N203, 255, 271, 281 and 352 (Fig. 1a). The utilisation of 
these sites was confirmed by multiple studies using the 
enzymes Endoglycosidase H and Peptide N-glycosidase 
F [30, 32, 55, 58]. Point mutants eliminating individual 
glycosylation sites resulted in an approximately 2.5 kDa 
reduction. There were, however, slight mobility differ-
ences between them indicating that the modifications are 
not identical[55]. A patient mutation D230N introduces 
an extra potential glycosylation site and indeed leads to 
an increase in molecular weight of about 2.5 kDa [55].

Five N-glycosylation residues on human CLN5, N130, 
203, 255, 271 and 281 (Fig. 1a), are essential for proper 
protein folding [30, 55, 59]. In HeLa cells, mutations in 
N130, 203, 255 or 271 (Fig. 1a, b) lead to mis-localisation 
of CLN5 to the ER. Mutation of N281 resulted in CLN5 
localisation to both lysosomes and ER. The other two resi-
dues, N143 and N178, do not appear to play roles in CLN5 
folding or trafficking but were suggested to be crucial for 
the functionality of the CLN5 protein in lysosomes [55]. 
The human CLN5 N352 glycosylation site, not present 
in mouse, rat or zebrafish proteins [55], is essential for 
the lysosomal localisation of human CLN5. Without it, 
CLN5 accumulates in the Golgi membranes temporarily 
and is then secreted into the media. The mannose 6 phos-
phate (M6P) modification on N352 is the major determi-
nant marking human CLN5 to the M6P receptor (MPR)-
dependent lysosomal trafficking pathway [55, 60, 61]. 
Even though N271 and 281 of human CLN5 were identi-
fied as containing M6P moieties, they are not determinants 
for MPR-dependent transport for CLN5.

Altered posttranslational processing of N271 has 
recently gained more attention when it was identified as a 
risk variant for Alzheimer’s disease [11]. As reported by 
Moharir et al. [55], this variant leads to ER entrapment 
of CLN5 and decreased amounts in the media of cultured 
cells. Overexpression of the N271S mutant in HeLa and 
N2a cells also resulted in a small decrease in intracellular 
full-length amyloid precursor protein and an increase in 
the ratio of procathepsin D to mature cathepsin D [11].

While N-glycosylation of CLN5 is well established, 
other posttranslational modifications have not been stud-
ied in great detail so far. High throughput studies however 
give some insight into CLN5 post-translational modifi-
cations. Phosphosite.org (https:// www. phosp hosite. org/ 
prote inAct ion. action? id= 36414 03& showA llSit es= true, 
accessed 8/5/2020) lists three ubiquitylation sites: K65 
[62], K105 [62–64] and K215 [65], as well as one phos-
phorylation site on T283 [66] (Fig. 1a), but these sites 
remain unverified experimentally, and their function 
remains to be established.

http://www.rcsb.org/structure/6R99
https://www.phosphosite.org/proteinAction.action?id=3641403&showAllSites=true
https://www.phosphosite.org/proteinAction.action?id=3641403&showAllSites=true
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CLN5 localisation and trafficking

The subcellular localisation of CLN5 is recognised as lyso-
somal (Fig. 2), as well as some co-localisation with Golgi- 
and endoplasmic reticulum (ER) markers which was subse-
quently lost upon block of protein synthesis [30, 32]. When 
CLN5 was tagged at different locations, either at the N-ter-
minus or after the signal peptide cleavage site, the tagged 
forms localised in a similar manner to the untagged CLN5 
[52]. After a 1-hour chase in a pulse-chase experiment, both 
tagged and untagged CLN5 were detected in the extracel-
lular media [52].

Glycosylated human CLN5 is suggested to be trafficked 
via the M6P-dependent pathway (Fig. 2) [60, 61, 67]. Phos-
phorylation of CLN5 glycans followed by binding to MPR 
(Fig. 2), leads to sorting and movement of CLN5 to the late 
endosome where the MPR disassociates as the pH reduces 
from 6.5 to 5.5. Next, the glycans are dephosphorylated 
and CLN5 is transported to lysosomes, while the MPRs are 
recycled to the TGN or plasma membrane (Fig. 2) [68]. In 

addition to the M6P-dependent pathway, CLN5 also uses 
an alternative route to lysosomes [51] (Fig. 2). A fraction 
of M6P-phosphorylated CLN5 proteins “miss” binding to 
the intracellular MPR in the Golgi apparatus, and is instead 
enclosed into secreted protein budding vesicles, and secreted 
into the media via exocytosis (Fig. 2). These secreted CLN5 
molecules can be taken back up into the cells by binding to 
plasma membrane MPR, transported to the early and late 
endosomes, and finally to lysosomes (Fig. 2) [69]. In sup-
port of the unconventional route of CLN5 secretion, Huber 
et al. showed that in Dictyostelium, CLN5 secretion during 
the early stage of Dictyostelium development occurred by 
bypassing the Golgi complex [58].

Protein–protein interactions

With the CLN5 structure solved and the study predicting it 
to be a lysosomal protease (http:// www. rcsb. org/ struc ture/ 
6R99), it will be interesting to discover the true substrates 
of CLN5. So far, several CLN and non-CLN candidate 

Fig. 2  CLN5 is processed in the ER and trafficked to the lysosomes 
via M6P-dependent pathways. CLN5 is synthesized as a prepropro-
tein (1). The signal peptide is cleaved from the pre-proform of CLN5 
in the ER by SPPL3 (2) and CLN5 gets glycosylated (3). CLN5 is 
transported to the Golgi apparatus where complex-type sugars are 
added and some mannose residues are phosphorylated at carbon 6 
(4). CLN5 is then transported through the early endosome and traf-

ficked to lysosomes via the M6P-dependent pathway (indicated 
by solid black arrows) (5a). A small amount of CLN5 protein also 
joins the secretory pathway (indicated by dashed red arrows) and is 
secreted into the media via exocytosis (5b). CLN5 can re-enter the 
cell via M6P receptor-mediated endocytosis and transported to the 
early and late endosomes and finally to the lysosomes (indicated by 
dashed black arrows). Created with BioRender.com

http://www.rcsb.org/structure/6R99
http://www.rcsb.org/structure/6R99
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proteins have been shown to interact directly or indirectly 
with CLN5, which is summarised in the following sections.

Like CLN5, several other NCL proteins are trafficked 
through the ER–Golgi network and localised in the lys-
osomes, suggesting that they may share common interlinked 
pathways, especially when mutations in all CLN genes show 
similar pathologies [70–72]. CLN5 interacts with several 
other NCL proteins in vitro using human or murine over-
expression systems, including PPT1/CLN1, TPP1/CLN2, 
CLN3, CLN6 and CLN8 [32, 47, 70–72] (Table 2).

CLN5 and CLN1/PPT1 colocalise from the ER to the lys-
osome [47, 70] CLN5 is thought to already interact with pre-
mature ER forms of CLN1 which are di- or triglycosylated 
[70]. In CLN5 deficient patient fibroblasts, overexpression 
of a trafficking-deficient variant of CLN5 that was retained 
in the ER also restricted CLN1 to the ER. Overexpression 
of CLN1 in cell culture restored localisation of otherwise 
ER-retained mutated CLN5 (Finnish major mutation, dis-
cussed later) to lysosomes [70]. However, overexpression 
of CLN5 could not rescue a localisation-defective mutant 
of CLN1 despite the interaction between the two proteins 
[70], suggesting the significance of CLN1-CLN5 interaction 
in maintaining CLN5 localisation and function. Interactions 
between CLN5 and mature CLN2 are reported to occur after 
the proteins have left the ER[47], possibly in late endosomes 
or lysosomes [70]. Mutations (Finnish major mutation, 
Swedish and European mutations) in CLN5 resulted in the 
loss of interaction with CLN2. The CLN2 activity in CLN5 
patient’s fibroblasts is increased [32]. Trafficking of CLN3 
is partially affected by the simultaneous expression of the 
aforementioned mutated CLN5, possibly suggesting that 
CLN5 and CLN3 proteins interact in the ER [32, 47]. Stud-
ies have suggested that CLN5 and CLN6 are likely to inter-
act in the CNS [70, 73]. Despite different cellular localisa-
tions of mature lysosomal CLN5 and the ER-resident CLN6, 
there are similar manifestations of brain pathologies between 
CLN5 and CLN6 Batten disease. Human CLN5 also inter-
acts with the ortholog of CLN7 expressed in Dictyostelium 
[74] and is hypothesised to be functionally related to CLN8 
[75], however, further research is required to understand the 
interaction between CLN5, CLN7 and CLN8.

Apart from NCL proteins, a number of interacting part-
ners of CLN5 have been reported. CLN5 co-immunopre-
cipitates the lysosomal sorting receptor sortilin, Rab7 and 
Rab5 but not Rab1a [76]. Based on the data identifying 
sphingolipids downstream of dihydroceramide synthase 
(CerS) in CLN5 patient fibroblasts [at the time incorrectly 
described as CLN9 variant [77]], the interaction of CLN5 
with CerS was confirmed by Haddad et al. [76]. A co-immu-
noprecipitation (co-IP) against CerS1 in normal and CLN5 
depleted fibroblasts found gamma-actin to be missing from 
CLN5 depleted fibroblasts [75]. Interestingly, the authors 
continued with a second co-IP against the missing protein 

gamma actin from normal and CLN5 depleted fibroblasts 
and identified 8 proteins missing: vimentin, the histone 
proteins H2AFZ/H3F3A/H1H4H and H2A type 2-C [75, 
76]. The absence of gamma actin from the CLN5 depleted 
fibroblasts might explain the associated growth defects in 
CLN5 depleted fibroblasts observed by the authors, which 
can further explain the absence of these abundant histone 
proteins from CLN5 depleted fibroblasts [75]. More recent 
studies with proteomics analysis on CLN5-deficient cells 
have not supported these results [78]. Furthermore, a 2013 
proteomic study [79] identified abundant nuclear and cyto-
plasmic proteins to be present as contamination in most pro-
teomic studies, casting doubt on the results from Haddad 
et al. [75] (showing histones and vimentins altered in CLN5 
deficient cells).

The studies described to this point were low-throughput 
studies, usually working with a candidate approach. CLN5 
has been also studied using high-throughput approaches 
and at least 43 interactors were identified by affinity cap-
ture – mass spectrometry methods over 5 studies referenced 
on NCBI and the BioGRID (https:// www. ncbi. nlm. nih. gov/ 
gene/ 1203; https:// thebi ogrid. org/ 107614  [80–85] (Table 2). 
F-box protein 6 (FBXO6) was found in three of the studies 
[81–83]; odorant binding protein 2A (OBP2A), calreticulin 
3 (CALR3) and lipase member H (LIPH were each found 
in both Huttlin et al. studies [81, 82], while all other inter-
actors were only identified in one study each. Scifo et al. 
[83] performed targeted immunoprecipitation followed by 
mass spectrometric analysis, however, they did not report 
any CLN proteins interacting with CLN5. The other reports 
were not directed at CLN5, which could be why none of 
the studies reported any CLN proteins as interacting part-
ners of CLN5. The different studies investigating CLN and 
non-CLN iterating partners of CLN5 used different prot-
eomic techniques, Thus some CLN proteins could have been 
missed in more stringent conditions. A more comprehen-
sive quantitative proteomics approach in human neurons is 
required to learn about the interacting partners of CLN5 
that may address the molecular phenotypes of CLN5 Batten 
disease.

Role of CLN5 in the regulation of cellular components/
processes

CLN5 and  retromer association Retromers are a group of 
proteins that form the endosomal protein sorting machin-
ery, which returns proteins from the endosomes to the 
TGN or plasma membrane, avoiding lysosomal degrada-
tion [86]. Efficient targeting of lysosomal proteins from the 
endosome to the TGN requires trafficking of the lysosomal 
sorting receptors sortilin and the cation independent-MPR 
via the retromer complex  [87, 88]. CLN5 plays a role in 
regulating this process by controlling the localisation and 

https://www.ncbi.nlm.nih.gov/gene/1203
https://www.ncbi.nlm.nih.gov/gene/1203
https://thebiogrid.org/107614
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activation of the retromer-interacting GTPase Rab7 to the 
endosomal membrane [76]. CLN5 interacts with the lyso-
somal sorting receptor sortilin but does not fit the require-
ments for a cargo itself as CLN5 can interact with sortilin 
itself at acidic pH [76]. Loss of CLN5 leads to a phenotype 
similar to retromer-depleted cells or cells deficient in Rab7 
palmitoylation, which is required for retrograde trafficking 
of lysosomal sorting receptors [89]. The membrane-bound 
fraction of the retromer component Vps26 was reduced in 
CLN5 depleted cells, yet increased in the cytosolic frac-
tion, supporting a role for CLN5 in retromer recruitment 
to endosomal membranes. Mamo et al. showed that CLN5 
knockdown in HeLa cells impairs the localisation of Rab7 
and Rab5, while immunoprecipitation experiments showed 
interaction between CLN5, Rab7 and Rab5. Furthermore, 
the authors showed that CLN5 activates Rab7, but not 
Rab5 in HeLa cells. CLN5 indirectly interacts with Rab5 
and Rab7, most likely via sortilin or CLN3 or both [76]. 
The binding of Rab7 to Rab-interacting lysosomal protein 
(RILP) was less efficient in CLN5 knockdown HeLa cells, 
indicating that CLN5 might be acting as a scaffold and is 
required to recruit and activate Rab7, which subsequently 
recruits retromer to endosomal membranes [76].

CLN5 and macrophages / lipid trafficking Like several other 
neurodegenerative diseases showing disturbed lipid metab-
olism, CLN5 deficiency also results in an altered serum 
lipid profile. Serum samples collected from one-month-old 
Cln5−/− mice had increased total cholesterol and phospho-
lipid transfer protein activity. High density lipoprotein parti-
cles were especially elevated in Cln5−/− serum, with only a 
slight increase in very low density lipoprotein. Macrophages 
are an important cell type for lipid processing in tissues. 
When peritoneal macrophages were isolated from Cln5−/− 
mice and loaded with labelled cholesterol-low density lipo-
protein, the uptake was not affected, but higher efflux was 
recorded. With sphingolipid-metabolism closely related to 
sterol metabolism, sphingolipid trafficking was assessed. 
In Cln5−/− macrophages as well as fibroblasts, the sphin-
golipid transport from endo-lysosomes to Golgi appeared 
delayed [37], suggesting a direct or indirect role of CLN5 
in lipid transport.

CLN5 and  biometals Metal dyshomeostasis is a common 
phenomenon in neurodegenerative diseases like Alzheimer’s 
and Parkinson’s disease, which could lead to oxidative stress 
and neuronal demise [90–92]. A study that investigated the 
levels of biometals in the CNS of mouse models of CLN1, 
3 and 5 diseases, found that in Cln5−/− mice, the levels of 
zinc, copper, manganese, cobalt and iron were significantly 
elevated (calcium, magnesium, potassium and sodium were 
not tested) [93]. The increase for zinc was apparent by five 
months and was statistically significant from seven months. 

Zinc increased by 34% in the hippocampus and 130% in 
the olfactory bulb. Copper levels were elevated in the hip-
pocampus at five months and CNS-wide at seven months. 
Manganese levels continued to progressively rise over the 
course and were increased in the cortex, olfactory bulb 
and cerebellum at seven months. Iron levels were elevated 
in the olfactory bulb, the cerebellum and the spinal cord 
at seven months. Cobalt concentration in the cerebellum, 
cortex and olfactory bulb were the earliest metal changes 
detected at five months and progressively increased in 
every tissue except the hippocampus by seven months [93]. 
Hence, further research on metal transporters might reveal 
valuable information on metal homeostasis in CLN5 Batten 
disease. Whether metal transporters are affected in CLN5 
deficient cells, whether metal dysregulation also occurs 
in other affected tissues, and whether metal dysregulation 
contributes to the disease manifestation and progress are all 
uncharted territories that need to be explored in future stud-
ies.

CLN5 and  organelle crosstalk Organelle crosstalk is dis-
rupted in neurodegenerative diseases [94, 95]. Similarly, 
CLN5 loss causes mitochondrial dysfunction, which could 
be a secondary effect of organelle cross-talk. Doccini et al., 
performed a proteomic study using neurons-like SHSY-
5Y cells, Cln5−/− mice and NCL patient skin fibroblast to 
show that loss of CLN5 disrupts oxygen consumption, ATP 
production and respiratory chain enzyme activity [78]. Fur-
thermore, CLN5 loss caused generation of reactive oxygen 
species and increased mitophagy that contribute to impaired 
synapse formation, axonal growth and neuritogenesis [78]. 
However, how a lysosomal protein causes mitochondrial 
changes are yet to be explored. Cross-talk between lys-
osomes and ER is well established, particularly in neurode-
generative disease  [96]. Not much is known about the role 
of CLN5 in lysosome-ER crosstalk. CLN6, an ER-resident 
NCL protein, regulates the correct transport of CLN5 to the 
lysosome, and loss of CLN6 disrupts transport of CLN5 
[59]. Mutations in four NCL genes (CLN1, CLN3, CLN6 
and CLN8) can mount ER stress eventually leading to apop-
tosis [96]. However, nothing is known in ER stress with the 
loss of CLN5, although CLN5 mutants have been shown to 
be retained in the ER.

CLN5 human disease–mutations 
and pathology

To date, 58 disease-causing mutations and polymorphisms 
in the CLN5 gene have been reported, which include 22 mis-
sense mutations, 10 nonsense mutations, 2 frameshifts, 9 
deletions, 3 insertions and 12 sequence variants (Table 3, 
Fig. 1b). The first cases of CLN5 vLINCL (also known as 
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fvLINCL) were identified by Santavuori in 1982 [3, 16] in 
Finland, and showed an onset between 4 and 7 years of age. 
The symptoms were mental retardation, blindness, ataxia, 
muscular hypotonia, myoclonus and epilepsy [3, 16]. A fol-
lowing report by the same group in second patient cohort 
identified additional symptoms including clumsiness, motor 
and cognitive decline. Reported subsequently, additional 
symptoms include hyperactivity, aggression, intolerance, 
anxiety, obsessive activities, hallucination, sleep alterations, 
autistic features, attention deficits and speech regression 
[31]. All of these symptoms manifest before 11 years of age 
[4, 5]. The initial Finnish patients were found to carry the 
Y392* (New RefSeq sequence–Y343*, Finnish major muta-
tion, Table 3) in the CLN5 gene, as confirmed by Savukoski 
et al. [16] The average life expectancy of CLN5 patients is 
between 10–30 years, with some patients reported to survive 
until 39 years of age [4].

In the 1990s, Savukoski et al. first reported the Fin major, 
Fin minor and Fin European (in a Dutch patient) mutations 
in CLN5 (Table 3). Several other mutations in CLN5 were 
reported from different parts of the world over the past 30 
years. Later studies found additional CLN5 mutations in 
other European countries, the United States, Canada, south 
America, the Middle-East, China, India and Pakistan [7–9, 
11, 16, 31, 32, 54, 59, 75, 97–113] (Table 3, Fig. 1b). The 
identification of more CLN5 patients also highlighted dif-
ferential disease progression. For example, juvenile forms 
of the disease in Colombian patients (R112H, (New Ref-
Seq sequence–R63H) (Table 3) show onset of symptoms 
after the age of 9 years [101], whereas only one report from 
Argentina accounts for onset of symptoms as early as four 
months of age, suggesting the existence of an infantile form 
of CLN5 Batten disease [9]. Do the differential mutations 
dictate how CLN5 is dysregulated, not just in the brain but 
in peripheral tissues, and lead to associated pathologies? Do 
the mutations dictate the age of onset? These unanswered 
questions are difficult to understand without knowing the 
function of CLN5.

Neuronal demise in the cerebrum and the cerebellum 
are key features of CLN5 Batten disease pathology. Mag-
netic resonance imaging (MRI) in affected children between 
6–11 years of age revealed that cerebellar atrophy is one 
of the leading signs at the time of diagnosis, while a later 
study showed cerebral atrophy in affected children between 
6.6–17.4 years of age [97, 114]. Macroscopic analysis of 
fvLINCL brains showed thinner cerebral cortex, reduced 
white matter and enlarged ventricles [45]. In advanced 
stages, loss of cortical neurons is observed in layers III and 
V, accompanied by severe cerebral cortical astrocytosis [44, 
45]. Moderate-to-severe loss of myelin and gliosis are also 
observed in cerebral white matter. Cerebellar purkinje cells 
and neurons in the granular layer of the cerebellar cortex are 
destroyed [45]. This is accompanied by astrocytosis and an 

increase in glial cells in the cerebellum. Neurodegeneration 
is also shown in the thalamus, in addition to the loss of large 
striatal neurons, nigral and spinal motor neurons [45]. Reti-
nal dystrophy and pan-retinal degeneration are considered 
to be earlier pathologies in CLN5 Batten disease. Bull’s eye 
maculopathy, diffuse pigmentary degeneration, arteriolar 
attenuation and optic atrophy develop with the progression 
of disease [115]. These phenotypes have also been con-
firmed in animal models of CLN5 Batten disease, discussed 
in section “Tissue expression of CLN5” [26].

A common feature in NCL-affected neuronal cells is 
accumulation of autofluorescent storage material (ASM) in 
the lysosomes, a key hallmark of all Batten disease vari-
ants. Ultrastructural investigation of the ASMs in fvLINCL 
showed fingerprint, curvilinear and rectilinear bodies [3, 
7, 45, 101] as compared to granular osmophilic deposit 
(GROD) lipopigment and fingerprint morphology observed 
in infantile and adult forms of the disease [116, 117]. The 
main constituent of this lysosomal storage material was 
found to be subunit C of mitochondrial ATP-synthase, 
while lipids are found as minor components with profiles 
attributable to lysosomal/endosomal origins [45]. In addition 
to the ASM found in the brain cells, peripheral cells also 
show similar deposits. Cardiomyocytes, skin eccrine glands, 
peripheral neurons and parietal cells in gastric mucosa show 
extensive deposits, whereas hepatocytes, smooth muscle 
cells, kidney tubules, adrenal cortex, adipocytes, thyrocytes 
and pancreatic cells show less storage material accumulation 
[48]. It is still unclear whether the accumulation of storage 
materials leads to neurodegeneration.

Lysosomes, the cellular waste recycling machinery, 
require an acidic environment for the effective degradation 
of cellular substrates. In fibroblasts derived from CLN5 
Batten disease patients, the lysosomal pH is significantly 
higher than control fibroblasts, without changing the cyto-
plasmic pH [118]. This phenotype has also been identified 
in the CLN5 sheep and mice models [10, 26]. Our group has 
previously shown autophagic impairment in CLN5 ovine 
cultures [10], however, it is still not clear if lysosomal pH 
change leads to autophagy defects or autophagy impairment 
leads to changes in lysosomal acidity. An elevated pH will 
render the lysosomal enzymes dysfunctional, resulting in 
improper degradation and clearance of waste material deliv-
ered to the lysosome. It is generally believed that the loss 
of the major lysosomal function leads to the accumulation 
of storage materials. In neurons, in addition to degradation 
and recycling function of lysosomes, they regulate neuronal 
health and development, synaptic activity and RNA mol-
ecule transport [119–124]. Hence, elevated lysosomal pH 
might impair one or all of these lysosomal regulatory roles 
as well. Our previous study has indicated defects in bulk 
synaptic endocytosis in a CLN5 ovine neural culture model 
[10]. One report suggested that impaired mitophagy and 
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multiple defects in the activity of respiratory chain enzymes 
in the cerebral cortex is also associated with CLN5 Batten 
disease, suggesting mitochondrial defects in addition to the 
lysosomal impairment [78]. Whether mitochondrial dysfunc-
tion is a primary or a secondary effect due to loss of CLN5 
is still unclear.

Given the post-mitotic nature of neurons, waste clearance 
is even more critical in these cells than in dividing cells. 
Nonetheless, CLN5 deficiency-related phenotypes are not 
just restricted to neurons, but have the potential to have far-
reaching effects in other cells/organs, including the heart. 
Hence, targeting multiple cell types is key for developing 
a treatment or cure for CLN5 Batten disease. With CLN5 
expression being fairly high in several peripheral tissues, and 
the effect of loss of CLN5 still unknown in most of these tis-
sues, a cautious approach needs to be taken while developing 
therapies to treat CLN5 Batten disease.

Model organisms used to study CLN5

As is the case for many forms of Batten disease, the lack of 
knowledge surrounding CLN5 function severely hampers 
the development of prospective therapies. The development 
and use of robust model systems, from single cells to large 
animals, is critical to advancing our understanding of CLN5 
disease pathology, identifying novel therapeutic targets and 
developing therapies. Several model organisms came into 

the limelight due to the naturally occurring mutations in 
CLN5. In conjunction with genetically modified organ-
isms, CLN5 model systems range from multicellular social 
amoeba and in vitro cell culture models, to small (mouse) 
and large (sheep, cattle and canines) vertebrates. With simi-
lar pathologies to those observed in humans and a conserved 
CLN5 sequence (Fig. 3), these models are key to under-
standing the underlying biology of CLN5 Batten disease. 
We have provided details on the systems used for modelling 
CLN5 disease and highlighted the recent advances that have 
been achieved through the use of these models (Table 4).

Small animal models

Among small animal models, mouse models are well estab-
lished and commonly used in the study of human neuro-
logical conditions. Owing to their ease of use, short lifespan 
and breeding cycles, the variety of established mouse-based 
research tools and their proven physiological phenotypes/
similarity with the human genome they provide a power-
ful tool to test preclinical therapies and investigate disease 
pathogenesis.

Mice

The mouse Cln5 gene encodes a 341 aa protein, shares 74% 
identity with human CLN5 (Fig. 3), is expressed throughout 
the mouse brain (discussed in section “Tissue expression of 

Fig. 3  Mature CLN5 is highly conserved throughout species. Black 
bars represent the percent conservation of each human CLN5 resi-
due across the 397 CLN5 protein sequences available on UniProt. 
Stacked grey bars represent the percent conservation of amino acids 
with similar chemical properties. Underneath are the aligned amino 
acid sequences for CLN5 from the model organisms used to study 

CLN5. Amino acids are coloured according to their chemical proper-
ties: non-polar residues (G, A, V, C, P, L, I, M) are in green; polar, 
uncharged residues (S, T, Y, N, Q) are in purple; basic, positively 
charged residues (K, R, H) are in blue; acidic, negatively charged 
residues (D, E) are in red; and aromatic residues (W, F) are in yel-
low. Created using Microsoft Excel and Powerpoint
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CLN5”) and has five N-glycosylation sites (N113, N161, 
N186, N238 and N254) [125]. The Cln5−/− mouse model 
was developed through the insertion of a neomycin cassette 
into exon 3 of the Cln5 gene resulting in a truncated protein 
[46]. The first pathological symptom in mice, congruent 
to that in humans, is progressive visual loss beginning at 
13 weeks of age, indicating neurodegeneration in the visual 
system [46]. Characteristic ASM accumulation is present in 
the retina and the brain, with cortical neurons displaying the 
fingerprint lamellar profile. From four months of age, neu-
ronal loss becomes first apparent in the cortex, as opposed 
to the thalamocortical regions in mouse models for other 
NCLs [46, 47]. GABAergic interneuron loss is seen in mul-
tiple brain regions by six months and brain atrophy seen by 
twelve months [46, 47]. In Cln5−/− mice, increase in prolif-
eration of neural progenitor cells (NPC) is accompanied by 
impairment in NPC migration, however, the mature neurons 
are generated with normal morphology [36, 38]. Adult mice 
also displayed cortical hyperexcitability and had decreased 
numbers of hippocampal parvalbumin-positive interneurons 
[126]. In both Cln5−/− embryos and primary cultures there 
are deficits in neuronal differentiation and the development 
of interneurons, highlighting the potential for a much earlier 
development of CLN5 disease than previously thought.

In Cln5−/− mice astrocytosis and microgliosis starts from 
one month of age and even before the observed neurodegen-
eration [37]. The expression of CD68, a marker for activated 
microglia, is already higher in the somatosensory cortex and 
ventral posterior nucleus of the thalamus by three months of 
age in Cln5−/− mice. This increased CD68 expression is also 
widespread to other CNS structures, such as other thalamic 
relay nuclei, cortical regions, subiculum, selected hippocam-
pal subfields, globus pallidus and substantia nigra. Staining 
with Iba-1, a marker for ramified/resting as well as activated 
microglia, showed wildtype cells with long, branched pro-
cesses and small cell bodies, whereas Cln5−/− cells showed 
darker stained microglia with a larger cell soma and fewer 
branched processes, indicating the ongoing microglial 
activation at an early age (one month). When cultured, 
Cln5−/− microglia were still capable of mounting an immune 
response, as they secreted similar amounts of cytokines as 
compared to wildtype cells [37]. As discussed in section 
“CLN5 and macrophages / lipid trafficking”, Cln5 deficiency 
showed altered lipid metabolism, in addition to sphingolipid 
transport and defective myelination prior to neurodegenera-
tion [37].

While studying the retinal pathology in the Cln5 mouse 
model, electroretinography revealed signs of pathological 
events in the retina from one month of age. Progressive 
decline in retinal function is observed alongside photore-
ceptor apoptosis, ASM accumulation, glial infiltration and 
increased autophagy. Rod photoreceptor-mediated func-
tional decline occurs earlier followed by late stage cone Ta
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photoreceptor-mediated functional decline. The observed 
vision loss in mice is primarily due to photoreceptor degen-
eration and is postulated to be due to failure of the lysosome 
to degrade phagosomes and autophagosomes. No optic nerve 
injury was reported [26].

While the only known Cln5 mouse model has advanced 
our understanding of disease pathogenesis, there are still sig-
nificant gaps in behavioural phenotypes, disease course and 
endpoint manifestation as compared to the human disease. 
Humans and mice significantly differ in size, longevity, brain 
structure and mental function which likely underpins why 
many of the therapies tested in mice do not translate well to 
human application.

Large animal models

Large animal models are more comparable to humans than 
mouse models in terms of pathophysiology, size, lifespan, 
genetics, CNS structure and anatomy. This makes them 
essential in bridging the gap between ‘simpler’ models and 
patients, both in terms of understanding disease pathogen-
esis and testing therapeutics. Naturally occurring CLN5 
mutations have been identified in sheep, dogs and cattle 
(Table 4). However, many of these are just case reports with 
no further research, which provides potential opportunities 
for future work.

Sheep

The ovine CLN5 has 91% homology with the human 
CLN5 (Fig. 3). Naturally occurring CLN5 disease in the 
New Zealand Borderdale sheep was first reported in 2002 
[127]. These sheep were identified as displaying NCL-like 
pathology which was subsequently confirmed to be due to 
a nucleotide substitution in CLN5 resulting in a truncated 
protein (CLN5:c.571 + 1G > A [128]). The CLN5 Borderd-
ale sheep are excellent models of the human disease, show-
ing many similarities in clinical progression and pathology. 
Like in their human counterparts, the first clinical symptom 
is blindness, presenting from ten to eleven months, followed 
by progressive cognitive decline and behavioural changes, 
culminating in death at around 2 years old  [127, 128]. These 
symptoms are accompanied by classical pathologies, includ-
ing ASM accumulation and advanced cortical atrophy as 
well as synaptic alterations throughout the motor cortex 
[129]. As discussed previously, advanced cortical atrophy 
is a major pathology observed in humans, but is absent from 
the mouse model, emphasising the importance of the sheep 
model. Further characterisation combining electromyogra-
phy, electrooculography and electroencephalography meas-
urements identified sleep abnormalities, as has been reported 
in both human and dog CLN5 disease [130–132].

The New Zealand Borderdale sheep flock has been uti-
lised for gene therapy testing since 2008. Initial work focus-
ing on vector optimisation showed relatively low levels of 
transduction with lentiviral mediated gene delivery limited 
to near the intracortical injection site [133]. However, this 
was sufficient to attenuate CLN5 disease progression [134]. 
The use of AAV9 vectors produced widespread expression 
from a single injection site and, as was seen for the lenti-
viral therapy, prevented the development of CLN5 disease 
pathology and behavioural deficits [134]. While promis-
ing, this work was carried out pre-symptomatically, which 
doesn’t reflect what would likely be currently possible for 
human patients. As the majority of human NCL patients 
are diagnosed following the onset of disease symptoms, a 
follow up study was carried out in sheep with established 
clinical disease (seven months age). When given after dis-
ease onset, AAV9-CLN5 treatment was able to stabilise 
the disease [134]. Furthermore, extensive characterisation 
of this flock has led to a battery of biomarkers including, 
but not limited to, behavioural tasks, clinical measure-
ments, computed tomography scan, electroencephalogram 
and electroretinogram [134, 135]. These biomarkers will be 
essential for future work in testing and optimising therapeu-
tic strategies. This work highlights the usefulness of this 
model in establishing the natural history of the disease and 
identifying biomarkers in order to analyse therapeutic doses, 
vector distributions and track therapeutic efficacy. To this 
end, although the results from these trials are very promis-
ing, the treatments were not able to prevent blindness in 
the post-symptomatically treated sheep [134]. It is likely 
that the vectors did not target or persist long enough in, the 
retina to prevent the observed retinopathy. This highlights 
the need for further therapeutic optimisation and the likely 
need for combinatorial treatments with simultaneous retinal 
targeting.

 Dogs

The canine CLN5 has 92% homology with the human CLN5 
(Fig. 3) and naturally occurring CLN5 mutations have been 
identified in several breeds of dogs. The most common 
mutation, CLN5:c619 C > T[136], was first identified in 
Border Collies. This same mutation has since been identi-
fied in Australian cattle dogs [50], a mixed breed Australian 
Cattle-German Shepherd [132] and most recently a mixed 
breed dog of unknown parentage [132]. A different CLN5 
disease causing mutation, CLN5:c934_935delAG, has also 
been identified in Golden Retrievers [137].

Affected dogs show symptoms from as early as six 
months, with obvious and progressive neurological decline 
by twelve months and progressive visual loss by eighteen 
months, ultimately culminating in death by 3 years [132, 
138]. Affected dogs display many of the symptoms and 
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pathologies seen in human patients including, but not limited 
to, progressive cognitive and visual decline, seizures, brain 
atrophy and accumulation of ASM. Some of the affected 
dogs have shown aggressive behaviour, which are not as 
pronounced in human patients [132, 138].

Cattle

The cattle CLN5 gene shows 89% homology (Fig. 3) to the 
human gene and encodes a 358 aa protein [139]. A naturally 
occurring CLN5 mutation has been identified in Australian 
Devon cattle. This mutation (c.662dupG) causes premature 
termination and is predicted to result in a truncated CLN5 
protein. Cattle with this mutation show pathological simi-
larities to human CLN5 disease with ASM accumulation, 
cortical atrophy, progressive visual impairment, behavioural 
abnormalities and premature early death [139]. Since this 
initial characterisation, no further studies using cattle have 
been published.

Cellular models of CLN5 Batten disease

Cellular models of CLN5 Batten disease have been invalu-
able tools to understand the underlying molecular pathology 
and range from ancient social amoeba Dictyostelium discoi-
deum, to immortalised cell lines, patient derived fibroblasts 
and iPSCs and primary neural cultures from mice and sheep 
(Table 4). These models can be genetically manipulated with 
commonly used molecular biology techniques including site 
directed mutagenesis and CRISPR/Cas9 to generate specific 
mutations to understand CLN5 protein biology. Non-human 
derived models have human orthologs of CLN5 with similar 
functions. However, simple model organisms for CLN5 are 
restricted to Dictyostelium with no orthologs in yeast, Dros-
ophila or C. elegans. When compared with animal models, 
cellular models are cost effective and easy to maintain and 
manipulate. Furthermore, cellular models can be used to 
test cell-type specific effects of potential treatments. It is 
due to the aforementioned advantages that cellular models 
provide a useful tool for preliminary screening of potential 
therapeutics. However, cellular models must be used in con-
junction with animal models to validate potential treatments, 
as cellular models cannot test pharmacokinetics and phar-
macodynamics of potential treatments. Below we describe 
cellular models used in the study of CLN5 Batten disease.

Multicellular social amoeba

Dictyostelium has a 24-hour life cycle, with separate cell 
division and development processes [140, 141] making 
these features valuable to study development and growth 
processes individually. Furthermore, non-lethal mutants 
that affect development pathways, while leaving cell growth 

unchanged, can be isolated and studied [142]. Another 
advantage of using Dictyostelium over a cell culture model 
is that the social amoeba provides the opportunity to study 
disease in a whole organism that has a 24-hour asexual sin-
gle and multicellular cell life with the capability to study 
developmental and cellular processes, including lysosomal 
pathways [143].

Dictyostelium has a fully sequenced and annotated 34 MB 
haploid genome comprising six chromosomes, which 
encodes approximately 12,500 proteins [143–145]. The 
CLN5 ortholog in Dictyostelium, encoded by the Cln5 gene, 
is a 322 aa, 37 kDa protein. Sequence homology between 
human CLN and Dictyostelium highlights a similar 301 aa 
region, with 30% of the aa conserved (Fig. 3). Interactome 
studies of Cln5 reveals interactions with numerous pro-
teins including lysosomal enzymes (β-galactosidase and 
α-mannosidase), cysteine proteases and other NCL proteins; 
TppB/Cln2, CtsD/Cln10 and CtsF/Cln13. Cln5 secretion is 
influenced by Cln3 and therefore has a strong interaction 
with proteins linked to Cln3 function such as AprA, a quo-
rum sensing protein, and CadA, a calcium-dependent cell 
adhesion protein [58].

Although Dictyostelium does not have a nervous sys-
tem, cells that lack Cln5 show accumulation of ASM and 
autophagic vacuoles, pathologies seen in human CLN5 Bat-
ten disease  [58]. Glycosylated Cln5 in the ER is transported 
to the cell cortex where it is secreted through an uncon-
ventional pathway, whereas in human CLN5 the presence 
of a signal peptide promotes secretion [58]. Cln5 secre-
tion is reduced when autophagy is induced, suggesting an 
autophagy link with Cln5 secretion also observed in mouse 
models  [58]. In the early stages of Dictyostelium develop-
ment, reduced expression of Cln5 leads to reduced cell–cell 
adhesion, which is further intensified under autophagic 
conditions—another similarity with the Cln5 mouse model. 
Research by Huber and colleagues expressed human CLN5-
GFP and Dictyostelium Cln5-GFP in the amoeba cells, 
immunoprecipitated the proteins and performed glycoside 
hydrolase activity assay, hence concluding that both the 
CLN5s are hydrolases [58]. Leubben et al. (unpublished) 
(http:// www. rcsb. org/ struc ture/ 6R99) have solved the struc-
ture of CLN5 and have predicted the human protein to be a 
lysosomal protease. However, it is yet to be shown whether 
the human CLN5, isolated from human cells, shows hydro-
lase or protease activity.

Cell culture models

A large body of work relating to CLN5 protein function and 
localisation has been performed in immortalised cell culture 
models. Human immortalised cell lines are an advantageous 
model in studying CLN5 disease as they are both time and 
cost efficient and easy to handle. These cells are also highly 

http://www.rcsb.org/structure/6R99
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amenable to gene editing techniques, making them ideal 
candidates to study particular CLN5 pathogenic mutations. 
A variety of immortalised cell types have been used in the 
study of CLN5 Batten disease. Below we highlight studies 
that have linked cellular findings to human pathology.

Immortalised cell lines Studies comparing tissue specific 
CLN5 expression with immortalised cell lines have used spe-
cific cell lines; A431 (skin epidermis), HEK293 (embryonic 
kidney), HeLa (cervix), HepG2 (liver), HT1080 (connective 
tissue) and SH-SY5Y (neuroblastoma) [35]. HEK293 and 
HeLa cell lines have served as useful tools to understand 
CLN5 trafficking, post-translational modification and pro-
tein–protein interactions, as discussed in section “CLN5 
post-translational modifications, processing, trafficking and 
protein interactions”. Using SH-SY5Y stable lines, the inter-
actomes of CLN3 and CLN5 revealed that both CLN vari-
ants share a common disease pathway  [70, 83]. Recently, 
Doccini and colleagues demonstrated that SH-SY5Y CLN5 
KO cells exhibit mitochondrial dysfunction and increased 
autophagy  [78]. However, there have been concerns high-
lighted for the use of the SH-SY5Y cell line for the study 
of neurological disorders [146]. The SH-SY5Y cell line is 
not a pure neuronal cell line as it is immortalised from a 
neuroblastoma. Although these immortalised cell lines have 
served as invaluable tools to understand CLN5 biology, the 
cancerous properties of these cell lines separate the physi-
ological characteristics from a pure neuronal population 
which may influence differentiation, cell viability, growth, 
genomic stability and metabolism.

Fibroblasts Human fibroblasts represent a better model for 
understanding biology when compared with immortalised 
cell lines showing cancerous nature. Patient derived fibro-
blasts alongside healthy primary fibroblasts have allowed 
researchers to study naturally occurring CLN5 pathogenic 
mutations on a defined genetic background that show 
peripheral phenotypes [12, 35, 78]. These fibroblasts have 
been used to study protein trafficking, processing, stability 
and activity of lysosomal enzymes. Obtaining fibroblasts 
is relatively easy without the need for invasive procedures 
and they represent the patient age as well as their environ-
mental etiopathology. Histological studies characterising 
CLN5 Batten disease used human fibroblasts from affected 
individuals to describe key pathologies of CLN5 Batten 
disease, including accumulation of intralysosomal inclu-
sion bodies  [31]. Fibroblasts deficient in CLN5 have dense 
material accumulated in vacuoles and lysosomes. Further-
more, an increase in the expression of p62 leads to inhi-
bition of autophagosome–lysosome maturation, indicating 
that CLN5 is crucial for normal cell function.

The key disadvantage of patient-derived fibroblasts is 
that they cannot mimic cell-specific phenotypes observed 

in neurons (largely neurodegeneration) or cardiac cells (con-
tractility) due to inherent differences between somatic cell 
types in metabolic processes. The drift in cell types in cul-
ture over passages, clonal variations and stark differences 
in the gene expression profiles and signalling mechanisms 
between fibroblasts and neurons limit their potential to accu-
rately understand CLN disease pathologies and screen for 
potential therapeutics in fibroblasts. Moreover, the controls 
used for some of these studies were commercial fibroblasts, 
which were not age and sex matched for the CLN5 patient-
derived fibroblasts. However, their potential in deriving 
iPSC-mediated neuronal differentiation or direct reprogram-
ming into human neurons gives the fibroblast an absolute 
advantage over immortalised cell lines.

Induced Pluripotent Stem Cells (iPSCs) iPSCs have the 
potential to revolutionise the way we study CLN5 disease, 
but they are still in the early stages of experimentation. Uusi-
Rauva and colleagues reported the first CLN5 iPSC model 
[147]. Fibroblasts from a CLN5 patient were reprogrammed 
via expression of SOX2, OCT3/4, KLF4 and MYC to gen-
erate the  CLN5Y392* (New RefSeq sequence: Y343*) iPSC 
line, the predominant mutation in CLN5 Batten disease. 
This model can be differentiated to mature neurons, with 
the expected morphology which recapitulates key patholo-
gies of CLN5 Batten disease including accumulation of 
ASM, changes in lysosomal structure and abnormal sphin-
golipid transportation. The study by Uusi-Rauva and col-
leagues did not report an isogenic control for the  CLN5Y392* 
(New RefSeq sequence: Y343*) iPSC cell line. Many study 
designs use unaffected family members for controls. How-
ever, family members are not suitable controls as they are 
not genetically identical. Single Nucleotide Polymorphisms 
(SNPs) are often dismissed despite the fact that SNPs can 
contribute to or dictate a disease phenotype. Future studies 
can be designed with either (1) wild type iPSCs and intro-
ducing the human mutation(s) into the iPSCs or (2) recti-
fying human mutation in iPSCs from patients, both using 
CRISPR technology. Both these techniques will ensure an 
isogenic control for the CLN5 mutation. Ideally, multiple 
iPSC lines with the same mutation from multiple patients 
can be generated using the second approach, which will pro-
vide a battery of excellent tools to analyse inter-individual 
variation in the disease.

A couple of caveats with iPSCs may limit their applica-
tion in neuroscience, albeit depending on the research ques-
tion. Tissue specific methylation, in the iPSCs, may not be 
properly corrected during reprogramming or may be carried 
through the passaging stages, affecting terminal differen-
tiation of specific cell types [148]. A second caveat in the 
human iPSC model is that it is grown as a monolayer of 
cells, which does not represent the human brain environ-
ment. iPSCs have successfully been differentiated into brain 
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organoids [149] that have been used as a model for CLN3 
Batten disease [150]. Although these are not fully defined 
organs, they represent the brain better than monolayer cells, 
providing a more synonymous environment to diseased 
human organs.

Primary neural cultures Limited work has been done on 
primary cell cultures from CLN5 ovine and mouse models. 
Primary cultures are an inexpensive, easy model to main-
tain. They are critical for understanding pathophysiology 
and disease progression in CLN5 disease, as well as screen-
ing for potential therapeutic compounds. Like other cellular 
models, primary cultures are not able to fully recapitulate 
the human phenotype and cannot be used to study CLN5 
Batten disease at the organism level.

Primary cultures of neurons, neuroblasts, astrocytes 
and microglia derived from CLN5 sheep (discussed under 
“Sheep” in “Large animal models” section) exhibit hallmark 
features of Batten disease including a decrease in lysosomal 
acidity, autophagy and endocytosis [10]. In the study con-
ducted by Best et al. [10], the CLN5 ovine neurons were 
physiologically smaller than wildtype neurons, but the 
authors did not comment on whether the cells accumulate 
ASM. The accumulation of ASM is a late onset phenotype 
and the sheep may not have been old enough to see altered 
ASM in the neurons. However, our group has previously 
observed that ASM was not apparent at neuronal culture 
plating, but appeared within a week of culturing cells from 
older foetuses [1]. Gene therapy replenishing wildtype 
CLN5 in the neural cultures reduced ASM accumulation, 
demonstrating that ovine cultures are a good model to study 
both CLN5 pathophysiology and to screen therapeutics.

Besides the ovine primary neural cultures, mouse primary 
neural cultures have been indispensable for our understand-
ing of the disease pathology. Mixed mouse primary neural 
cultures of cortical neurons, oligodendrocytes, astrocytes 
and microglia have been used to show that Cln5 has higher 
expression in glial cells than neurons, and that astrocytes 
exhibit markers of cell death before neurons do [37]. In 
mixed mouse hippocampal neurons, Cln5 colocalised to the 
lysosome [34]. Cortical neurons from Cln5−/− mice showed a 
differential distribution of proteins involved in the cytoskel-
eton and growth cone [47]. These primary cultures are excel-
lent tools to study CLN5 pathophysiology, however, none 
of these studies have commented on whether these cultures 
exhibit hallmark features of CLN5 Batten disease. Hence, 
proper characterisation of the mouse primary cultures is 
essential to ensure recapitulation of human disease phe-
notypes, including ASM accumulation, lysosomal acidity, 
autophagy and synaptic endocytosis.

In considering all of these models, be it whole organisms 
or cellular models, it is important to remember that it is not 
a ‘one size fits all’ scenario. Each model comes with its own 

set of advantages and disadvantages (Table 4), which need to 
be carefully considered both when selecting a model system 
for experimental analysis and interpreting results. Saying 
that, the amount of knowledge obtained from studying these 
models has advanced CLN5 research to an extent where we 
are close to developing gene therapy to treat the disease. 
Hence, a combinatorial approach with cellular and animal 
models may represent the best way forward, with delivery 
mechanism, long term efficacy and safety investigation in 
large animal models still being irreplaceable before under-
taking a clinical trial.

Future directions

Since the discovery of mutations in vLINCL families in 
1998, CLN5 has been intensively studied both to understand 
its function and its potential as a therapeutic for CLN5 Bat-
ten disease. The story is still far from complete, 22 years on. 
In this review, we have highlighted the key findings, con-
troversies over protein localisation and processing, human 
clinical and pathological symptoms, model systems and pro-
gress towards therapy. This is an exciting time to be involved 
in neurodegenerative disease research, and particularly rare 
disease research, where clinical trials are fast-tracked and the 
families, researchers, clinicians and biotechnology compa-
nies are joining together towards finding a cure.

CLN5 Batten disease is ultra-rare and as such models 
are essential in establishing treatments. The limited pool 
of patients that can be recruited for any one clinical trial 
means that we must provide the best possible evidence for 
efficacy and function. Knowing how CLN5 mutations cause 
Batten disease and having the right models and readouts to 
test efficacy is vital. Variation in disease progression, even 
between siblings, suggests a role for genetic modifiers in 
Batten disease. The significance and identification of such 
modifiers, however, remains to be established.

The CLN5 field has a strong array of model systems 
which are adept to test both protein function, pathologies 
and high-throughput screens of potential therapeutics. The 
recent developments in CRISPR-Cas9 and iPSCs will allow 
many of these exploratory studies to be completed in human-
derived neural cells. Patient-derived iPSCs must be comple-
mented with isogenic controls, corrected for the mutation to 
control for polygenic effects. Basic multicellular organisms 
such as Dictyostelium provide a link between cell culture and 
vertebrate models, however some caution should be taken 
due to the low level of identity between the Dictyostelium 
and vertebrate CLN5 primary sequences. The use of brain-
derived cells is important in studying the neural basis of Bat-
ten disease as there is increasing evidence for neural specific 
roles of several Batten associated genes including CLN1, 3 
and 6 [150–154]. The achievement of a structure for human 
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CLN5 (PDB 6R99) will allow comparative modelling and 
predictions of possible catalytic activity and effects of muta-
tions on structural integrity. If CLN5 is indeed a lysosomal 
protease it will be important to characterise its substrates in 
neurons, as these could be targets for interventions.

While gene therapy can be achieved with limited knowl-
edge of the protein defects and normal protein function, 
natural histories of both human cases and model systems 
are critical to developing therapies and testing efficacy. 
However, gene therapy has limitations – no vector has 100% 
transduction efficiency and careful consideration needs to be 
given to regulation of expression and cell type-specific tar-
geting. Further studies on the regulation of transcript abun-
dance, translation and post-translational modification at the 
cell-type and tissue level are still required in order to fully 
optimise gene therapy. In addition, although CLN5 can be 
secreted from transduced cells, its essential role in glial cells 
in the brain has not been established. Most gene therapy vec-
tors in common clinical use target neurons: a requirement 
to target glial or other non-neuronal cells in the brain will 
require development of new vectors. In addition, as gene 
therapy improves brain function and survival, the integrity 
and function of other organs may be compromised. Already 
there is an obvious need to target the retina in CLN5. Other 
organs are yet to be studied. Both CLN5 mouse and sheep 
models provide strong face validity for aspects of disease 
progression and sheep have already proved useful in devel-
opment of a gene therapy strategy for CLN5 Batten dis-
ease. Sheep and mouse studies have also provided strong 
natural history landmarks including pathological, imaging 
and behavioural measures. Both these models can easily be 
used to test efficacy of therapies given at different stages of 
disease and with different routes of administration. While 
sheep have numerous advantages including a more human-
like brain structure and size as compared to rodents, they 
are restricted in terms of research costs (most studies are 
completed on only 3–4 sheep per group). In addition, any 
oral drug delivery is complicated by their ruminant anatomy. 
For this reason, some researchers have turned to transgenic 
pig models (J. Weimer, Sanford Research, SD, personal 
communication).

While structure underpins function, an understanding of 
basic cellular biology and how mutations cause complex 
changes in neuronal function and neurodegeneration remains 
to be determined for all neurodegenerative diseases. Under-
standing CLN5 function not only has the potential for treat-
ments of CLN5 Batten disease. CLN5 allelic variation in 
Alzheimer’s disease and the common pathologies of lyso-
some dysfunction in many other neurodegenerative diseases 
mean that future focus on CLN5 will likely drive our under-
standing of brain function more widely.

Families are a critical component of research. Without 
their support and insight, many key symptoms and hints 

towards function of NCL proteins would be missed. Fur-
thermore, families and foundations are often the drivers of 
integration and collaborations between researchers, clini-
cians and biotechnology companies. Therefore, a combined 
effort between the families, foundations and researchers and 
clinicians will drive strategies towards finding a cure for 
CLN5 Batten disease.
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