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Abstract
Tau is a microtubule-associated protein involved in regulation of assembly and spatial organization of microtubule in neurons. 
However, in pathological conditions, tau monomers assemble into amyloid filaments characterized by the cross-β structures 
in a number of neurodegenerative diseases known as tauopathies. In this review, we summarize recent progression on the 
characterization of structures of tau monomer and filament, as well as the dynamic liquid droplet assembly. Our aim is to 
reveal how post-translational modifications, amino acid mutations, and interacting molecules modulate the conformational 
ensemble of tau monomer, and how they accelerate or inhibit tau assembly into aggregates. Structure-based aggregation 
inhibitor design is also discussed in the context of dynamics and heterogeneity of tau structures.

Keywords  Protein aggregation · Liquid–liquid phase separation · Drug design · Conformation transition · Intrinsically 
disordered protein

Introduction

Tau protein is encoded by the MAPT gene which is located 
on chromosome 17. Six different tau isoforms are gener-
ated by alternative splicing, containing zero, one or two 
N-terminal inserts and three or four microtubule-binding 
repeats [1]. The constructs of 2N4R and 2N3R are illus-
trated in Fig. 1a. Tau protein can be divided into four distinct 
portions: the N-terminal domain (NTD), the proline-rich 
domain (PRD), the microtubule-binding domain (MTBD), 
and the C-terminal domain (CTD). The two aggregation-
prone hexapeptide motifs, PHF6* (275VQIINK280) and PHF6 
(306VQIVYK311), are located on the R2 repeat and R3 repeat 
of MTBD, respectively. Consequently, the 4R tau isoform 
contains two hexapeptide motifs, and the 3R tau isoform has 
only one hexapeptide motif.

Tau is mainly expressed in central and peripheral nerve 
systems, where it is largely distributed in axons. As a micro-
tubule-associated protein, tau regulates assembly and spatial 

organization of microtubule, thus playing a critical role in 
axon development and navigation (Fig. 1b) [2, 3]. Tau mono-
mer is intrinsically disordered, with some transient second-
ary structure elements populated. However, tau monomers 
assemble into amyloid filaments characterized by the cross-β 
structures in a number of neurodegenerative diseases known 
as tauopathies, including Alzheimer’s disease (AD), Pick’s 
disease (PiD), chronic traumatic encephalopathy (CTE), and 
corticobasal degeneration (CBD) [4–7]. Consequently, tau 
protein is widely believed to be a major target for treatment 
of tauopathies [8–11]. In addition to its standard function as 
a microtubule regulating protein, tau has numerous binding 
partners and is distributed into various cell compartments. 
Recent studies show that tau also plays roles in signaling, 
cytoskeletal organization, and chromosome stability [12, 
13].

In this review, we summarize recent structural charac-
terization on tau monomer and filaments, aiming to reveal 
how post-translational modifications (PTMs), amino acid 
mutations, and interacting molecules modulate the confor-
mational ensemble of tau monomer, and how they acceler-
ate or inhibit tau aggregation. We pay special attention to 
the liquid–liquid phase separation (LLPS) of tau monomer 
and structure-based screening/designing of tau aggregation 
inhibitors.
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Structure of tau monomer

Tau is a polyelectrolyte. The NTD and CTD are nega-
tively charged, whereas the PRD and MTBD are posi-
tively charged (Fig. 2a). Disordered propensity predictions 
suggest that tau is highly disordered except the MTBD 
(Fig. 2b). Consistently, experimental characterization has 
shown that tau does not have well-defined three-dimen-
sional structures [14–20]. Circular dichroism (CD), Fou-
rier transform infrared spectroscopy, and nuclear magnetic 
resonance (NMR) have revealed that dynamic and residual 
secondary structures are present in tau monomer [14, 18, 
21, 22]. In particular, the PHF6* and PHF6 motifs adopt 
β-strand conformations [20, 22, 23]. The mean radius of 
gyration (Rg) of tau (5.1 ± 0.5 nm from single molecule 
Förster resonance energy transfer (smFRET) measure-
ment or 6.5 ± 0.3 nm from small-angle X-ray scattering 
(SAXS) measurement) is smaller than that of random coil 
of equal length [16, 17]. Therefore, tau is globally compact 
in solution. Further characterization shows that tau can 
form long-range contacts, some of which are mediated by 
electrostatic interactions [18, 22, 24, 25]. For example, the 
C-terminus folds on to the MTBD and the N-terminus is in 
contact with the C-terminus. Such an overall structure of 

tau can be described by the “paperclip-like” model [26]. 
Although tau is globally compact, different domains have 
distinct conformational characteristics and the conforma-
tion of MTBD can be altered by the flanking domains. For 
example, MTBD becomes more compact when it is iso-
lated from the full-length protein [27]. Furthermore, back-
bone dynamics analysis revealed that the NTD is highly 
mobile while the MTBD shows increased rigidity [22].

Several atomic conformational ensembles of tau mono-
mer have been constructed based on paramagnetic relaxation 
enhancement, residual dipolar coupling, cross-linking data, 
and computational sampling, further demonstrating the glob-
ular conformations of tau with distinct topology and variable 
secondary-structure elements (Fig. 2c) [17, 18, 22, 25, 28]. 
The free energy landscape of tau monomer may have several 
minima separated by free energy barriers. Therefore, distinct 
tau conformer species can be detected and isolated. Single-
molecule fluorescence anisotropy combined with an anti-
Brownian electrokinetic trap has revealed that tau resides in 
two groups of conformations, i.e., a more compact family 
and a less compact family [29, 30]. In another study, after 
sonication treatment, two tau monomeric species were iso-
lated from tau fibrils, i.e., the inert monomer “Mi” and the 
seed-competent monomer “Ms” [31]. Although CD showed 
no observable difference between Mi and Ms, conformation 

Fig. 1   Domain organization 
and conformation states of 
tau. a Illustrations of two tau 
isoforms, 2N4R and 2N3R. The 
2N4R isoform contains two 
N-terminal inserts (N1 and N2), 
two proline-rich regions (P1 and 
P2), and four microtubule-bind-
ing repeats (R1, R2, R3, and 
R4). The repeat-like segment R’ 
in the C-terminus is also indi-
cated. The microtubule-binding 
repeat R2 is not present in 
the 2N3R isoform. b Sche-
matic illustrations of the three 
conformation states of tau. The 
disordered while compact tau 
monomers bind to microtubule, 
forming elongated conforma-
tions. Under certain conditions, 
tau monomers aggregate into 
filaments characterized by the 
presence of cross-β structures. 
The length of individual domain 
is not to scale

(b)

(a)
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modeling using restrains from cross-linking data revealed 
that the PHF6* and PHF6 are buried in Mi but are relatively 
exposed in Ms. Furthermore, the Ms group itself is heter-
ogeneous as Ms from AD patient brain and CBD patient 
brain encodes one tau prion strain and three tau prion strains, 
respectively [32]. Other observations also suggest that tau 
can reside in different conformational states, some of which 
are called “pathological conformation” and can be recog-
nized by specific antibodies [33–35]. By monitoring the end-
to-end distance distribution of PHF6 and PHF6* through 
pulsed double electron–electron resonance measurements, 
Eschmann et al. found that the extended β-strand confor-
mational states of PHF6 and PHF6* constitute a defining 
signature of aggregation-prone tau [36]. Since different tau 
conformational states could exhibit distinct rigidity, struc-
ture propensity, and steric hindrance surrounding PHF6* 
and PHF6 motifs, they may possess different aggregation 
propensity and contribute differently to tau-related diseases.

Mutations, PTMs as well as intermolecular interactions 
can remodel the conformational ensemble of tau monomer 
(Fig. 2d), thus promoting or suppressing its aggregation. 
The pro-aggregant mutant ΔK280 is found to suppress long-
range intermolecular contacts and stabilize the β-strand con-
formations [24]. The aggregation-prone PHF6 motif forms 
metastable compact structures with its upstream sequence 
and is shielded by a β-turn structure in the inert monomer 

state [31]. P301 mutations destabilize this local structure 
and trigger spontaneous aggregation [37]. Depending on 
the phosphorylation state, the overall conformation of tau 
monomer and the transient intramolecular interactions could 
be modified [38]. Phosphorylation mimic in the epitopes 
recognized by the AT8 antibody (S199E, S202E, T205E) 
enhances tau aggregation by reducing the electrostatic 
attraction between NTD and PRD or by moving NTD away 
from CTD [39, 40]. Phosphorylation at Ser202 and Thr205 
induces formation of a turn-like structure, protecting tau 
against aggregation [41]. On the contrary, hyperphospho-
rylation by glycogen synthase kinase-3β results in global 
expansion of tau and increased exposure of PHF6 [38]. 
SmFRET characterization showed that binding of aggre-
gation enhancers (e.g., heparin and cytoplasmic polyphos-
phates) eliminate long-range contacts and induce expansion 
of tau [17, 27, 42]. The mean Rg of tau is increased from 
5.1 ± 0.5 to 6.0 ± 0.6 nm upon addition of heparin [17]. 
NMR titration showed that the segment at the beginning of 
R2 exhibits the largest chemical shift displacements [23]. 
Although the MTBD becomes more compact upon heparin 
binding [27], the PHF6 and PHF6* motifs remain extended 
[36]. A similar chemical shift pattern is observed when tau 
is bound to polyglutamic acid [23]. Binding of polyglutamic 
acid also compacts the MTBD and tightens the interactions 
between PHF6 and PHF6* [43].

Fig. 2   Sequence and structure 
properties of tau monomer. a 
Net charge per residue (NCPR) 
distribution of 2N4R tau 
analyzed by CIDER [174]. b 
Disorder prediction of 2N4R 
tau using the PONDR VLXT 
[175, 176]. c Conformational 
ensemble of tau constructed 
based on cross-linking data and 
computational sampling [28]. 
Five conformations are shown 
by different colors. d Schematic 
illustration of conformation 
remodeling of tau

(a)

(b)

(c) (d)
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In contrast to 4R tau isoform, structural investigations 
on 3R tau are very limited. Molecular dynamics simulation 
and NMR characterization have been applied to compare 
the structural difference between K18 (the repeat region of 
4R tau) and K19 (the repeat region of 3R tau) constructs of 
tau [23, 25]. K18 and K19 show similar β-structure propen-
sity at the beginning of repeats [23]. In K18, the R1 repeat 
interacts with R2 but not R3 or R4. In contrast, in K19, R1 
interacts with both R3 and R4 [25]. Therefore, although the 
removal of R2 does not affect the local β-structure propen-
sity of MTBD, it remodels the global intramolecular interac-
tions of tau.

Liquid–liquid phase separation 
and structure of tau in the droplet‑like 
assembly

When the solution conditions favor formation of massive 
dynamic intermolecular interactions, some intrinsically dis-
ordered proteins (IDPs) will demix into a light phase and a 
dense phase. Such a process has been termed as liquid–liquid 
phase separation, which underlies the formation of the mem-
braneless compartments in cells [44–49]. Importantly, some 
IDP droplets can convert into solid states, suggesting that 
the liquid condensates are on pathway to fibers and LLPS 
can be related to the progression of some neurodegenerative 
diseases [50–53].

Recent studies have revealed that tau readily undergoes 
LLPS in the presence of macromolecular crowding agents or 
in cells [54–58]. The concentration of tau can be increased 
more than ten-fold upon LLPS [56, 59]. Fusion, fission, fluo-
rescence recovery after photobleaching and electron para-
magnetic resonance spectroscopy of droplets indicate that 
tau droplets are in liquid state [57, 60, 61].

LLPS of tau is sensitive to the concentration of salt. 
Decreasing salt concentration promotes LLPS while 
increasing salt concentration suppresses droplets formation 
(Fig. 3a) [54, 55, 57, 62]. The sensitivity of LLPS to salt 
concentration suggests that electrostatic interactions are crit-
ical for the formation of tau droplets [55, 57]. The charges 
are clustered along the tau sequence (Fig. 2a). Truncation 
experiments suggest that interactions between the positively 
charged domains and the negatively charged domains are 
the main driving force of tau LLPS (Fig. 3c) [57]. Although 
the K18 construct of tau is also able to undergo LLPS under 
very high concentration, its LLPS is sensitive to 1,6-hex-
anediol rather than salt concentration, indicating that the 
main driving force of K18 LLPS is hydrophobic interac-
tions rather than electrostatic interactions [55, 59]. Similarly, 
under high salt conditions where electrostatic interactions 
are screened, droplets formed by N-terminal truncated tau 
are dissolved with 1,6-hexanediol [63]. PTMs also regulate 
LLPS of tau (Fig. 3b). Acetylation neutralizes the positive 
charges on lysine residues, thereby reducing electrostatic 
attractions that drive intramolecular and intermolecular 
contacts. Consequently, acetylation suppresses LLPS of tau 

(a) (b)

∆

(c)

− −
− − − − − − −

Fig. 3   Liquid–liquid phase separation of tau. a A phase diagram illus-
trating the effect of salt concentration on LLPS of tau. b The muta-
tions, acetylation sites, and phosphorylation sites that influence tau 
LLPS. c Intermolecular interactions that may be critical for tau LLPS, 

such as electrostatic interactions between the negatively charged NTD 
and the positively charged PRD and MTBD of tau, electrostatic inter-
actions between tau and RNA, and metal ions mediated interactions
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[64]. By introducing negatively charged groups into PRD 
and MTBD, phosphorylation also reduces electrostatic 
attractions. However, phosphorylation of tau, either intro-
duced by MARK2 or SF9 insect cells, promotes LLPS of tau 
[55, 56]. Interestingly, phosphorylation reverses the sensitiv-
ity of tau LLPS to salt and 1,6-hexanediol, where LLPS of 
phosphorylated tau is insensitive to increasing salt concen-
tration but sensitive to the addition of 1,6-hexanediol [56]. 
It seems that phosphorylation suppresses tau LLPS driven 
by electrostatic interactions but promotes tau LLPS driven 
by hydrophobic interactions. It is possible that phospho-
rylation modulates the conformations of PRD and MTBD 
and induces exposure of hydrophobic segments. Structural 
investigations on phosphorylated tau will be valuable for 
further understanding the influence of phosphorylation on 
tau LLPS. Taken together, these data show that tau LLPS is 
driven by a complex combination of electrostatic and hydro-
phobic interactions.

Tau forms droplets with various types of RNA, which 
may result from the complex coacervation effect [60–62]. 
Lysine/RNA and arginine/RNA interactions are critical in 
forming the complex coacervate phase [61]. Phosphoryla-
tion reduces the propensity of tau/RNA LLPS, likely due to 
electrostatic repulsion between the phosphorylated residues 
and the negatively charged RNA [60]. Acetylation also sup-
presses LLPS of tau with RNA, probably due to the removal 
of positive charges on lysine sidechains [61].

Metal ions play important roles in regulating the func-
tion of tau. Rane et al. showed that Al3+ and Zn2+ enhance 
tau LLPS [65]. Singh et al. further showed that the two 
cysteines within the MTBD are required for Zn2+ to induce 
tau droplet formation [66]. Metal ions may promote LLPS of 
tau through a conformational change favorable for intermo-
lecular electrostatic attractions or mediating intermolecular 
contacts [65].

Structural characterization of tau droplets remains chal-
lenging. However, progress has been made. Double elec-
tron–electron resonance spectroscopy characterization 
indicated that the mean distance flanking the PHF6* region 
remains unchanged when tau undergoes LLPS with RNA 
[62]. However, the entire polypeptide chain of tau adopts 
more extended conformations in the droplet state [67]. Sec-
ondary structure characterization of tau K18 via CD and 
NMR indicated that the level of β-structure content and the 
propensity for β-hairpin conformation are increased upon 
LLPS [55, 59]. Although the thioflavin T fluorescence of 
tau droplets gradually increases over incubation, its intensity 
is much weaker than what is observed in the presence of 
heparin [55, 62]. Therefore, the β-structure content of tau in 
the droplets is much smaller than that in the amyloid fibrils.

Whether LLPS of tau is related to fibril formation remains 
controversial. Some studies suggest that LLPS of tau medi-
ates and facilitates aggregation. Aggregation enhancing 

factors, including heparin, pro-aggregation mutations, and 
K274 acetylation, promote LLPS of tau [56, 64, 68]. Protein 
disulfide isomerase directly interacts with tau and suppresses 
the formation of tau droplets and aggregates [69]. EFhd2 is 
associated with aggregated tau species in AD brains. Recent 
results showed that EFhd2 regulates tau aggregation and 
LLPS in a calcium dependent manner [58]. Furthermore, 
droplets formed by phosphorylated tau rapidly transition 
from a liquid state to a gel-like state, and finally transition 
into large aggregates containing β-structures [56]. Therefore, 
tau concentrated in the droplets is postulated to be on path-
way to fibril formation. On the contrary, other studies point 
out that LLPS and amyloid aggregation of tau are independ-
ent processes although they occur in overlapping conditions 
[63]. Lin et al. systematically investigated the impacts of 
LLPS on tau aggregation by evaluating the conformation 
of tau, kinetics of aggregation and fibril quantity [63]. They 
found that none of these properties are influenced directly by 
LLPS. The presence of extended β-strand conformation of 
PHF6 and PHF6* has been postulated as a defining signature 
of aggregation-prone tau [36]. However, structural investiga-
tion discussed above shows that the β-structure content of 
PHF6 and PHF6* in the droplets is almost indistinguishable 
from that in the dilute state. Though LLPS may not directly 
promote aggregation of tau, Kanaan et al. showed that phase 
separation of tau could facilitate the formation of non-fila-
mentous pathogenic tau oligomers in vitro [70]. It is noted 
that all tau phase separation studies have been carried out 
in vitro or in cells. So far, no study shows a direct connec-
tion between LLPS of tau and neurodegenerative diseases 
in vivo or tau undergoing LLPS in neurons in situ in brain. 
Taken together, LLPS of tau is promoted by a variety of fac-
tors. Tau concentration is increased inside the droplets and 
tau molecules adopt conformations that are slightly different 
from those in dilute state. The connection between LLPS 
and tau aggregation remains elusive and requires further 
investigation.

Structures of soluble tau oligomers

Soluble tau oligomers with various molecular weights have 
been identified and they have been suggested as the toxic 
species in vivo [35, 71–86]. Once formed, tau oligomers can 
be released and taken up by cells [87]. The conformations of 
oligomeric tau could be different from those of monomeric 
tau as monoclonal antibodies raised against tau oligomers 
show no reactivity toward monomeric tau [73, 88, 89]. Since 
some tau oligomers can be converted to amyloid fibrils, 
hydrophobic segments in the MTBD may become exposed 
upon oligomerization [31, 75, 90]. While some studies show 
that tau dimers can be stabilized by intermolecular disulfide 
bonds [84, 85], non-disulfide linked tau dimers are also 
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observed [91–93]. Via force measurement, Rosenberg et al. 
showed that two tau monomers can associate in an antiparal-
lel configuration stabilized by complementary electrostatic 
interactions between the negatively-charged NTDs and the 
positively-charged PRDs [91]. Moreover, a tau dimer can 
be formed via bridging by a heparin molecule [72, 94, 95]. 
Although tau oligomers have been recognized as important 
players in tau pathogenesis for a long time, structural char-
acterization on tau oligomers is very limited and requires 
more studies in the future.

Structures of tau filaments and aggregation 
mechanism

It’s challenging to characterize the structures of tau aggre-
gates because they are partially disordered and heteroge-
neous. Nevertheless, accumulated evidence from studies 
using various constructs of recombinant tau shows that the 
amyloid core is dominantly formed by the MTBD, ranging 
from the second half of R1 to the first half of R4 [96]. Jakes 
et al. further revealed that the core of paired helical filament 
(PHF) in AD is restricted to the repeat regions of 3R and 4R 
tau isoforms [97]. The repeats pack against each other paral-
lel and form β-sheets [98–100]. Except the amyloid core, the 
remainder of tau protein remains highly mobile, forming the 
fuzzy coat [4, 20, 101–103].

Since six tau isoforms are expressed in adult human brain, 
different neurodegenerative diseases can have different tau 
isoform compositions and filament structures [104, 105]. 
Limited proteolysis applied on aggregates extracted from 
patient brains shows different banding patterns in immu-
noblot analyses for PiD, AD, CBD, and progressive supra-
nuclear palsy [106]. However, the atomic structures of tau 
fibrils in pathological conditions are not available until the 
last 3 years when structures of tau aggregates from various 
sources were determined by cryo-EM [107–111].

In AD, tau filaments are made of PHFs and straight fila-
ments (SFs), where all six tau isoforms are present [107]. 
Early electron microscopy images indicated that PHFs and 
SFs have a common C-shaped morphology [112, 113]. 
Recently, atomic cryo-EM structures revealed that the fila-
ment core is made of amino acids V306-F378, compris-
ing R3 and R4, as well as part of the C-terminal domain 
(Fig. 4a) [107]. Similar to AD, all six tau isoforms assem-
ble into filaments in CTE, and residues K274-R379 of 3R 
tau and S305-R379 of 4R tau form the enlarged C-shaped 
filament core (Fig. 4b) [110]. Importantly, a hydrophobic 
cavity which is not present in the AD filament is observed 
within the filament core from CTE. Hydrophobic cofac-
tors may be incorporated during tau aggregation in CTE. 
In PiD, two filament forms (narrow and wide) have been 
identified [109]. Narrow filaments are composed of a single 

protofilament while wide filaments are made of two narrow 
filaments. Different from the C-shape core of AD, the fila-
ment core of PiD is an elongated structure, which comprises 
amino acids K254-F378 of 3R tau (Fig. 4c). The latest tau 
filament structure is from CBD [111]. The CBD filaments 
are made of 4R tau exclusively. Two types of filaments are 
observed depending on the numbers of protofilaments. The 
CBD filament core comprises K274-E380 and adopts a four-
layered fold (Fig. 4d). An additional uncharacterized density 
surrounded by the sidechains of K290, K294, and K370 is 
found within the filament core.

The structures of fibers derived from different patients 
are identical, indicating that they are disease- rather than 
patient-specific. So far, it remains unknown what factors 
drive tau into specific conformations in tauopathies. PTMs, 
mutations, and cofactors may be critical. The structural het-
erogeneity of tau filaments suggests that different factors 
or tau segments may play different roles in the aggregation 
process. On one hand, the cellular environment is much 
more complicated than what we can mimic in a test tube. 
It is not surprising that the structures of heparin-induced 

(a) (b)

(c) (d)

(e) (f) 

Fig. 4   Structure models of tau from various filaments. a 3R/4R 
tau filaments from AD patients. b 3R/4R tau filaments from CTE 
patients. c 3R tau filaments from PiD patients. d 4R tau filaments 
from CBD patients. e Heparin induced 2N4R tau filaments. f Hepa-
rin induced 0N4R tau filaments. Additional uncharacterized density 
found within the filament core of the CTE and CBD folds are indi-
cated the by the black dots
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tau filaments are different from those in diseases (Fig. 4e, f) 
[114, 115]. On the other hand, the marked difference in the 
structures of tau filaments suggests the existence of distinct 
seeds of tau in different tauopathies [116–118]. Since stable 
seed-competent tau monomers can be isolated from patient 
brains [32], it is important to determine whether these seeds 
will serve as templates to drive tau assembling into filaments 
identical to those observed in patients.

In vitro, the aggregation process of tau is generally 
described by the classic nucleation-elongation model, with 
the nucleating species thought to be the assembly-competent 
monomer [119] or soluble oligomer [75, 85]. Recent studies 
have demonstrated that monomeric tau species derived from 
heparin-induced aggregates or isolated from patient brains 
are capable of seeding tau aggregation both in vitro and in 
cultured cells [31, 32]. Through a photochemical cross-link-
ing technique, Patterson et al. demonstrated that dimeriza-
tion is an early step in the aggregation process of tau and 
these dimers self-associate to form larger aggregates [73]. 
Tau aggregation induced by heparin further suggests that the 
aggregation-competent tau species is a tau dimer which may 
be bridged by a heparin molecule [72, 94, 95]. Exposure of 
hydrophobic segments in the assembly-competent monomer 
and dimer may be critical for the subsequent self-assembling 
process [31, 75].

Tau is stable under normal conditions. However, factors 
inducing formation of oligomers or enhancing exposure 
of hydrophobic segments will promote tau aggregation. 
Previous analysis has revealed that tau is often mutated or 
hyperphosphorylated in tauopathies, suggesting that muta-
tion or phosphorylation regulates tau aggregation. Indeed, 
mutations found in frontotemporal dementias promote tau 
aggregation [19, 120–123]. Although these mutations gen-
erate marginal change on the overall structure of tau mono-
mer, they enhance local β-structure propensity [19, 124]. On 
the contrary, proline mutations within the two hexapeptide 
motifs (I277P and I308P) disrupt β-structure and abrogate 
aggregation [20]. The influence of phosphorylation on tau 
aggregation is also complicated. The abnormally hyperphos-
phorylated tau from AD brain or tau phosphorylated by gly-
cogen synthase kinase-3β has been found to self-aggregate 
into PHF-like structures [125, 126]. Specific phosphoryla-
tion patterns promote tau aggregation can be recognized [41, 
127]. However, hyperphosphorylated tau obtained by in vitro 
phosphorylation with recombinant extracellular-regulated 
kinase or rat brain extract, or obtained from recombinant 
expression in Sf9 cells shows no significant increased sus-
ceptibility to in vitro aggregation than unphosphorylated tau 
[83, 128]. Furthermore, phosphorylation has also been found 
to protect tau against aggregation [129, 130]. Importantly, 
kinetics studies suggest that even when phosphorylated tau 
is aggregated, phosphorylation enhances but not triggers tau 
aggregation [131, 132].

Interactions with surrounding molecules can modulate 
the conformational ensemble of tau monomer or shift the 
equilibrium between tau monomer and oligomer. The tau 
fibril core is mainly made of the positively charged MTBD 
which interacts with various polyanions, including DNA, 
RNA, heparin, polyphosphates and polyglutamic acid. Struc-
tural and kinetic characterization suggests that polyanions 
enhance tau aggregation by remodeling the conformational 
ensemble of monomeric tau and noncovalent cross-linking 
of multiple tau monomers [42, 43, 94, 95, 133, 134]. Tau 
contains multiple metal ion binding sites. Binding to metal 
ions has been showed to enhance tau aggregation although 
the mechanism remains unclear [9, 65, 135–137]. Further-
more, crowded cell-like environments can significantly 
promote tau aggregation by accelerating the nucleation step 
[138–140].

Structure‑based design of tau aggregation 
inhibitors

Tau aggregation can be inhibited by binding to various mol-
ecules. Molecular chaperones suppress tau aggregation effi-
ciently. Hsp70 suppresses the formation of tau nuclei [141]. 
Hsp27 delays tau fibril formation by weakly interacting with 
early species in the aggregation process, whereas HspA8 is 
highly efficient at preventing tau fibril elongation, possibly 
by capping the ends of tau fibrils [142]. A number of chap-
erones bind tau at or around the PHF6* and PHF6 motifs 
[143–145]. Thus, a major mechanism of anti-aggregation 
activity of molecular chaperones seems to be the direct bind-
ing to tau at the aggregation-prone regions [144]. Antibod-
ies and protein disulfide isomerase may also adopt similar 
mechanism to inhibit tau aggregation [69, 146].

Small molecules can inhibit tau aggregation, although 
the mechanism remains elusive [9, 147–158]. Based on the 
K18 conformational ensembles, Kiss et al. analyzed the 
potential hot spots and small molecule binding sites using 
FTMap [159]. They found that the PHF6 and PHF6* motifs 
have the highest probability of forming the hot spots. Chong 
et al. also identified nine druggable cavities from the K18 
conformational ensembles [160]. Docking of methylene 
blue with various tau conformations revealed that methyl-
ene blue binds in close proximity of C291/C322 [159] and 
NMR characterization showed that the molecular tweezer 
CLR01 binds preferentially to Lys residues in the MTBD 
[161]. Recently, through molecular dynamics simulations 
and ensemble docking, Baggett and Nath identified novel 
tau aggregation inhibitors [162]. Since the structure of tau 
monomer is highly dynamic, small molecules may bind to 
tau in a fuzzy way [163, 164].

PHF6 and PHF6* are critical for tau aggregation. Tau 
molecules lacking these two hexapeptide motifs cannot 
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aggregate [165]. Consequently, it is possible to block tau 
aggregation by shielding these two motifs. Based on the 
atomic structures of amyloid fibrils formed by PHF6 and 
PHF6*, molecules have been designed to cap the ends of tau 
fibrils and they are found to efficiently inhibit the aggrega-
tion of 3R and 4R tau isoforms [166–170].

Conclusions and perspectives

Tau is a major target for tauopathies treatment, the struc-
tures of whose monomer and fiber have been studied for 
decades. It turns out that the conformational ensemble of 
tau monomer is very dynamic and can be remodeled by a 
variety of factors. Up to date, atomic models of unmodified 
free tau monomer are available. For better understanding the 
conversion of tau from inert state to aggregation-prone state, 
it is urgent to determine the structures of tau monomer upon 
phosphorylation, acetylation, or binding to other molecules.

As indicated above, the cryo-EM structures of tau fibers 
in distinct diseases are different. It remains unclear what 
factors induce or determine the heterogeneity of tau fiber 
structures. It is noted that the PRD is absent in the cores 
of available fibril structures. However, PRD is subjected 
to extensive PTMs. One possibility is that PTMs on PRD 
induce formation of various aggregation-prone tau spe-
cies, which act as templates in the subsequent aggregation 
process. Furthermore, unknown densities are present in the 
cryo-EM structures of tau fibers. Clarifying their identities 
will be also valuable for understanding the heterogeneity of 
tau structures in the future.

Inhibiting the aggregation of tau has been widely 
accepted as a therapeutic strategy for tauopathies. It is 
appearing that inhibitors can be designed to bind tau mono-
mers to block their seeding or to cap tau fibrils to block 
their propagation. The distinct structures of filaments from 
different tauopathies and the difference between structures 
of heparin-induced tau aggregates and those of filaments 
isolated from diseased brains indicate the complexity of tau 
assembling process. Reconstruction of disease specific tau 
filaments will be valuable to test the efficacy of inhibitors 
in this regard. The LLPS of tau seems to be related to tau 
aggregation. Therefore, molecules designed to suppress the 
formation of tau droplets may be also able to inhibit tau 
aggregation. LMTX is a potent tau aggregation inhibitor. 
While LMTX failed to show effects on the primary cognitive 
endpoints in two phase 3 trials [171, 172], pharmacologi-
cal activity has been demonstrated on brain structure and 
function at the 8 mg/day dose [173]. Further clinical trials 
in mild/moderate AD will be required to confirm efficacy at 
this dose. Due to the dynamics of tau monomer, heterogene-
ity of fibril structures, and enrichment of PTMs, a variety 

of tau aggregation inhibitors are expected to be designed in 
the future.
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