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Abstract
Histone deacetylases (HDACs) are conserved enzymes that regulate many cellular processes by catalyzing the removal of 
acetyl groups from lysine residues on histones and non-histone proteins. As appropriate for proteins that occupy such an 
essential biological role, HDAC activities and functions are in turn highly regulated. Overwhelming evidence suggests that 
the dysregulation of HDACs plays a major role in many human diseases. The regulation of HDACs is achieved by multiple 
different mechanisms, including posttranslational modifications. One of the most common posttranslational modifications 
on HDACs is reversible phosphorylation. Many HDAC phosphorylations are context-dependent, occurring in specific tissues 
or as a consequence of certain stimuli. Additionally, whereas phosphorylation can regulate some HDACs in a non-specific 
manner, many HDAC phosphorylations result in specific consequences. Although some of these modifications support normal 
HDAC function, aberrations can contribute to disease development. Here we review and critically evaluate how reversible 
phosphorylation activates or deactivates HDACs and, thereby, regulates their many functions under various cellular and 
physiological contexts.
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Introduction

Histone deacetylases (HDACs) are a family of enzymes that 
have the ability to catalyze posttranslational modifications 
(PTMs) of their target substrates, of which the best known 
is lysine deacetylation. The human HDAC family is made up 
of 18 enzymes, which were identified and classified based 
on sequence homology to yeast deacetylases. The Classi-
cal HDAC family includes the Class I, II, and IV HDACs, 
whose deacetylase activity is dependent on  Zn2+. The Class I 
HDACs (HDACs 1, 2, 3, and 8) are homologous to the yeast 
Rpd3 protein, whereas the Class II HDACs (HDACs 4, 5, 6, 
7, 9, and 10) are similar to the yeast Hda1 enzyme. The sole 
Class IV HDAC is HDAC11, which is similar in sequence 
to both Classes I and II. The Sirtuin (SIRT) family, also 
referred to as the Class III HDACs, is similar to the yeast 

Sir2 protein and is dependent on  NAD+ for its deacetylase 
activity [1].

PTMs occur as a response to changing conditions within 
the cellular microenvironment and can serve as a mechanism 
of intracellular communication to elicit biological functions 
mediated by the target proteins [2–4]. Although HDACs 
catalyze the addition and removal of PTMs from their tar-
get substrates [1, 5–15], they themselves can undergo the 
addition or removal of a variety of modifications on specific 
amino acid residues. These modifications include chemi-
cal groups or proteins, such as an acetyl group or ubiquitin, 
many of which have been characterized in regard to their 
effects on target protein characteristics [2]. Many post-
translational modifications of HDACs have been identified 
through high-throughput mass spectrometry approaches 
using different cell lines, tissue types, and drug treatments. 
Some of these sites have been validated and explored in a 
functional context.

Perhaps one of the best-studied modifications of HDACs 
is phosphorylation. In response to extracellular stimuli, sig-
nal transduction pathways are activated, which can lead to 
protein phosphorylation most commonly on target serine 
(Ser, S), threonine (Thr, T), and tyrosine (Tyr, Y) residues. 
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In the context of phosphorylation, eukaryotic kinases cata-
lyze the addition of phosphate from ATP to these target resi-
dues, proteins containing domains (e.g., SH2) that recognize 
the phosphorylated site bind to the modified protein to medi-
ate signaling, and phosphatases reverse this modification [2, 
3, 16–18]. Extensive studies have gone into understanding 
the mechanisms and functions of protein phosphorylation, 
and it is well established that due to the additional (− 2) 
negative charge introduced through the phosphate, phospho-
rylation can induce the protein to undergo a conformational 
change, which can alter the interactions and activity of the 
target protein to elicit a biological response to the stimulus 
[2–4, 19–21]. The response of cells to the cascade of sign-
aling events and changes in protein functions contributes 
to the regulation of cellular functions. This is particularly 
critical for the maintenance of healthy cells, where dysregu-
lation of signaling pathways and consequent changes in the 
phosphorylation state of the target protein can give rise to 
the development of disease states.

The mechanisms associated with HDAC phosphorylation 
have been studied in a variety of cellular contexts and dis-
ease states. This has led to the identification of class-wide 
characteristics such as the relationship between Class IIa 
HDAC phosphorylation and subcellular localization. How-
ever, given the complexity of phosphorylation as a regula-
tory mechanism and the unique roles of each HDAC, even 
for those of the same class, there is still much to be discov-
ered and clarified regarding the mechanisms and cellular 

context of HDAC phosphorylation. Here we discuss the 
biochemical and physiological effects of phosphorylation of 
HDACs to address the similarities and differences among the 
known regulatory mechanisms and to highlight important 
areas for future research and therapeutic relevance. A sum-
mary of the effects of phosphorylation on HDAC attributes 
is provided in Table 1.

Modulation of HDAC enzymatic 
and functional activities by phosphorylation

Phosphorylation can regulate the activity of HDACs in a 
variety of settings to generate responses that are specific 
to the enzyme and cellular environment. In early studies, 
serine phosphorylation of Class I HDACs was identified 
as a mode of regulating their enzymatic activity, although 
the mechanism and effects of phosphorylation are different 
for each protein. Class I HDACs are members of different 
co-repressor complexes, which augment their deacetylase 
activity and through which they could regulate transcription 
[1]. HDAC1 and HDAC2 are part of the NuRD (nucleo-
some remodeling and deacetylating), Sin3, CoREST (co-
repressor for element-1-silencing transcription factor), and 
MiDAC (mitotic deacetylase) complexes, whereas HDAC3 
is part of the SMRT (silencing mediator of retinoid and 
thyroid hormone receptors)/N-CoR (nuclear receptor co-
repressor) complex [1, 22–24]. HDAC1 interactions with 

Table 1  Effect of phosphorylation on histone deacetylase (HDAC) enzyme attributes

Class Protein Affected protein attribute References

Class I HDAC1 Deacetylase activity, protein interactions [24, 26, 120]
HDAC2 Deacetylase activity, transcriptional repression activity, 

protein interactions, acetylation, ubiquitination, protein 
stability

[26–29, 68, 110, 120, 130, 152]

HDAC3 Deacetylase activity, protein interactions [31–34, 112]
HDAC8 Enzymatic activity, protein structure [35–37]

Class IIa HDAC4 Protein stability, protein interactions, subcellular locali-
zation

[52, 53, 55, 56, 61, 62,  64, 70, 78, 97, 98, 113, 153]

HDAC5 Deacetylase activity, protein interactions, subcellular 
localization, protein structure

[54–59, 60, 62, 63, 78, 98, 100, 104, 107, 113, 114, 127, 
128, 153–158]

HDAC7 Protein interactions, subcellular localization, phospho-
rylation (hierarchical)

[55, 56, 92, 94, 101, 102, 113, 154, 156, 159]

HDAC9/MITR Protein interactions, subcellular localization [55, 62, 78, 99, 156]
Class IIb HDAC6 Deacetylase activity [38, 40, 41, 129]
Sirtuin SIRT1 Deacetylase activity, protein interactions, protein stabil-

ity, protein structure, subcellular localization
[44–48, 65, 69, 75, 76, 79, 80, 84, 89, 118, 121, 122, 126, 

160]
SIRT2 Deacetylase activity, protein stability, protein interac-

tions, subcellular localization
[50, 51, 72, 95, 96, 161]

SIRT3 Deacetylase activity [87]
SIRT6 Mono-ADP ribosylation activity, protein interactions, 

ubiquitination, protein stability
[49, 73, 162]

SIRT7 Subcellular localization, protein stability [74]
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other members of the Sin3, CoREST, and NuRD co-repres-
sor complexes (MTA2, RbAp48, mSin3a, and CoREST), 
and consequently its deacetylase activity, were found to 
be dependent on its phosphorylation at S421 and S423 by 
casein kinase 2 (CK2) [24]. Interestingly, discrepancies in 
the identified effect of phosphorylation on HDAC1 have 
been associated with the substrate and conditions tested. 
Pflum et al. found that S421 and S423 phosphorylation is 
necessary for HDAC1 activity towards isolated hyperacety-
lated core histones, where mutation of these sites to alanine 
to mimic the loss of phosphorylation diminished its activity 
(Fig. 1) [24]. In contrast, alkaline phosphatase treatment did 
not alter HDAC1 deacetylase activity towards a synthetic 
acetylated histone H4 N-terminal peptide [25]. However, 
Galasinski et al. found soon after that the activity of sensitive 
deacetylases—identified as HDAC1 and HDAC2—follow-
ing okadaic acid phosphatase inhibitor treatment increased 
towards their acetylated histone H4 N-terminal peptide, but 
not isolated hyperacetylated histones [26].

There is a similar discrepancy in the findings of the effect 
of HDAC2 phosphorylation on its activity. A study by Tsai 
et al. led to the finding that HDAC2 phosphorylation at S394 
by CK2 is necessary for its deacetylase activity towards 
core histones and its interactions with mSin3 and Mi2, 
members of co-repressor complexes. However, they found 
that S394 phosphorylation does not impact its transcrip-
tional repression activity [27]. In another study, Adenuga 
et al. corroborated that HDAC2 phosphorylation by CK2 is 
important for its interactions with other proteins, including 
HDAC1 and p53 [28]. In contrast, however, they found that 
HDAC2 phosphorylation stimulated by oxidative stress due 
to cigarette smoke extract treatment was associated with its 
reduced deacetylase activity and higher global histone H4 
acetylation, as measured by a fluorometric assay, but higher 
transrepression activity using a reporter with Gal4-binding 

sites [28, 29]. The difference in the findings of these studies 
could depend on the sites that are modified within HDAC2, 
whereas Tsai et al. demonstrated that the phosphorylation 
of S394 affected HDAC2 activity [27], Adenuga et al. found 
that mutation of this site under the condition of oxidative 
stress did not notably affect HDAC2 phosphorylation lev-
els [28]. Instead, they found that the double mutation of 
S422 and S424 to alanine (A) in conjunction with the S394A 
mutation or C-terminal truncation had a notable reduction 
in the overall phosphorylation level of HDAC2, suggesting 
that these are the key residues under this condition [28]. Of 
note, it is interesting that the phosphorylation of HDAC1 
and HDAC2, which share 85% sequence similarity [30], at 
corresponding sites (S421 and S423 in HDAC1 and S422 
and S424 in HDAC2) leads to opposite effects on their enzy-
matic activity. It may be that these proteins are specifically 
regulated, rather than through a common mechanism. Alter-
natively, since these studies were carried out in different 
contexts, it is possible that the environmental condition may 
have influenced the outcome and that the effect could vary 
by stimulus or cell type.

Unlike HDAC1 and HDAC2, there has been greater 
consensus regarding the effect of phosphorylation on the 
activity of the other Class I HDACs, HDAC3, and HDAC8. 
HDAC3 phosphorylation is important for its deacetylase 
activity towards core histones [31]. Specifically, phos-
phorylation of the HDAC3-H1.3 complex by CK2 during 
mitosis has been associated with histone H3K9 deacety-
lation, and phosphorylation of HDAC3 by leucine-rich 
repeat kinase 2 (LRRK2) in neurons was associated with 
the deacetylation of histone H4K5 and histone H4K12 
[32, 33]. Similarly, tyrosine phosphorylation of HDAC3 
by proto-oncogene tyrosine-protein kinase Src (c-Src) 
in the SKBR3 human epidermal growth factor receptor 
2 (HER2)-positive breast cancer cell line increases its 

Fig. 1  Increased deacetylase activity of HDAC1 upon phosphoryla-
tion. Phosphorylation of HDAC1 at S421 and S423 by CK2 has been 
demonstrated to be necessary for its activity in deacetylating histones. 

Histone deacetylation leads to tighter binding of the DNA and histone 
proteins in a “closed conformation,” such that gene transcription is 
repressed [24]. P phosphate, Ac acetyl group
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activity, as measured by a fluorometric assay kit specific 
for HDAC3 [34]. Unlike the other Class I HDACs, HDAC8 
is phosphorylated by cyclic AMP (cAMP)-dependent pro-
tein kinase A (PKA), which is associated with its reduced 
deacetylase activity towards histones H3 and H4 [35, 36]. 
It has been suggested that this effect may be due to a struc-
tural change induced by the phosphorylation of HDAC8 
at S39 [37].

In contrast to the effect of phosphorylation on Class I 
HDAC histone deacetylase activity, HDAC6 phosphoryla-
tion impacts its tubulin deacetylase activity, which further 
affects cellular functions dependent on intracellular traffick-
ing. Phosphorylation of HDAC6 by epidermal growth factor 
receptor (EGFR) at Y570 was found to reduce its activity, 
such that changes in the trafficking of endosomes led to the 
lysosomal degradation of EGFR [38, 39]. Downstream of 
EGFR-mediated signaling, extracellular signal-regulated 
kinase (ERK) phosphorylates HDAC6 at S1035, which 
increases its alpha-tubulin deacetylase activity and thereby 
promotes cell migration [40]. Phosphorylation of HDAC6 
by glycogen synthase kinase-3 beta (GSK3β) specifically 
in hippocampal neurons also promotes its tubulin deacety-
lase activity, but the effect is a reduction in the movement 
of mitochondria. According to what is known about the 
relationship between improper mitochondrial transport and 
neurodegenerative diseases, this pathway is suggested as a 
possible therapeutic target [41–43].

Phosphorylation also modulates the activity of sirtuins 
in modifying a variety of substrates. In particular, phos-
phorylation of SIRT1 influences its deacetylase activity to 
regulate DNA damage responses in different contexts and 
mechanisms. It has been noted that SIRT1 S152 phospho-
rylation is reduced in aging mice. Mechanistically, SIRT1 
phosphorylation at this site is necessary for both its enzy-
matic activity and the expression of estrogen receptor beta 
(ERβ), which are involved in reducing DNA damage in the 
endothelium [44]. A study by Kang et al. found that SIRT1 
is phosphorylated by CK2 at four serine residues following 
ionizing radiation-induced DNA damage, which increases 
its deacetylation rate and substrate-binding affinity. SIRT1 
modification in this context increases the deacetylation of 
p53 and thereby protects cells against apoptosis [45]. The 
increased deacetylation of p53 following SIRT1 phospho-
rylation by the dual-specificity tyrosine-phosphorylated and 
regulated kinases (DYRK) DYRK1A and DYRK3 has been 
attributed to a modification-induced conformational change 
in SIRT1 that increases the turnover—defined as the dea-
cetylation and release—of its substrates rather than changing 
its catalytic ability [46]. In contrast, modification of SIRT1 
by homeodomain-interacting protein kinase 2 (HIPK2) fol-
lowing DNA damage and by AMP-activated protein kinase 
(AMPK) in hepatocellular carcinoma cells reduces its dea-
cetylase activity towards p53, leading to apoptosis [47, 48].

Similar to SIRT1, the role of SIRT6 in DNA damage 
response can also be affected by its phosphorylation state. 
A study by Van Meter et al. showed that SIRT6 is phospho-
rylated at S10 by c-Jun N-terminal kinase (JNK) following 
the induction of oxidative stress by paraquat treatment. This 
modification increases the mono-ADP ribosylation activity 
of SIRT6 towards poly [ADP-ribose] polymerase 1 (PARP1) 
as a substrate and consequently promotes genome stabil-
ity through DNA double-strand break repair [49]. Unlike 
SIRT1 and SIRT6, studies of SIRT2 have shown that its 
phosphorylation affects its deacetylase activity towards 
substrates that are involved in functions other than DNA 
damage-related processes. SIRT2 phosphorylation by Cyc-
lin-dependent kinase (Cdk) proteins inhibits its enzymatic 
activity to promote functions such as mitotic entry and neu-
ronal mobility [50, 51].

Influence of phosphorylation state on HDAC 
subcellular localization

The regulation of Class IIa HDACs by phosphorylation and 
consequent change in subcellular localization has been stud-
ied extensively. In response to a variety of cellular signaling 
processes, Class IIa HDACs can be phosphorylated at sites 
that regulate either their nuclear export or import, which 
further influences their ability to regulate gene transcrip-
tion. The change in subcellular localization can depend on 
the interaction between Class IIa HDACs and 14-3-3 pro-
teins, chaperones that recognize specific phosphoserine- or 
phosphothreonine-containing motifs [52, 53]. McKinsey 
et al. identified a nuclear export sequence in HDAC5 that is 
conserved in HDAC4 and HDAC7 and is activated by  Ca2+/
calmodulin-dependent protein kinase (CaMK)-mediated 
phosphorylation in the 14-3-3 binding site of these HDACs 
[54]. Upon their interaction with 14-3-3 proteins, Class IIa 
HDACs undergo nuclear export, which is associated with 
reduced transcriptional repression due to the loss of their 
interaction with myocyte enhancer factor-2 (MEF2) tran-
scription factors (Fig. 2).

Phosphorylation and consequent nuclear export of Class 
IIa HDACs occurs through both signaling-dependent and 
signaling-independent mechanisms to regulate gene expres-
sion in a cell type-specific manner. Several studies have 
demonstrated that some mechanisms can be extended to all 
Class IIa HDACs. Through the activation of the tumor sup-
pressor liver kinase B1 (LKB1), the salt-inducible kinases 
(SIK) SIK2 and SIK3 phosphorylate the Class IIa HDACs 
in their 14-3-3 binding sites. Due to their subsequent nuclear 
export, these HDACs are unable to repress MEF2-depend-
ent transcription as it pertains to myogenesis [55]. In their 
study of HDAC7 phosphorylation, Dequiedt et al. identi-
fied that Class IIa HDACs, by extension, are constitutively 
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phosphorylated by the hPar-1/MARK (microtubule affinity-
regulating kinase) members EMK and C-TAK1, which pro-
mote their binding to 14-3-3 proteins and nuclear export 
[56]. Other studies have shown that the mechanism of regu-
lation is only applicable to a specific HDAC. For example, 
a study by McKinsey et al. led to the finding that 14-3-3 
binding is constitutive for HDAC4 in yeast and mamma-
lian cells. In contrast, the interaction between HDAC5 and 
14-3-3 is dependent on CaMK signaling, as was simulated 
by the overexpression of constitutively active CaMKI in Cos 
cells and 10T1/2 fibroblasts [57]. CaMKII activation under 
the condition of genotoxic stress, when cellular reactive 
oxygen species levels are increased, also leads to HDAC5 
phosphorylation and nuclear export, which has been associ-
ated with p53-dependent apoptosis due to reduced p53 dea-
cetylation [58].

On the other hand, signaling-related mechanisms of 
phosphorylation can also promote the nuclear localization 
of Class IIa HDACs. For example, HDAC5 phosphoryla-
tion within its nuclear localization sequence is needed for its 
nuclear import, where the loss of its phosphorylation (e.g., 
S279A mutation) resulted in greater cytoplasmic localization 

[59]. In cardiomyocytes, phosphorylation of HDAC5 by 
PKA, activated by cAMP signaling, prevents the binding 
of HDAC5 with 14-3-3 proteins. As a result, HDAC5 is 
not exported from the nucleus and can perform in its role 
to transcriptionally repress cardiac fetal gene expression, 
genes that are related to cardiomyocyte hypertrophy [60]. 
Similarly, cAMP signaling and PKA activation in Schwann 
cells results in HDAC4 phosphorylation, which induces 
its nuclear localization. Through these series of events, 
HDAC4 is able to contribute to myelin sheath development 
by repressing c-Jun expression. While this study was focused 
on HDAC4, this model of cAMP-mediated nuclear shuttling 
in Schwann cells is extended to all Class IIa HDACs [61].

Cellular signaling can also lead to the dephosphoryla-
tion and nuclear import of Class IIa HDACs. Interestingly, 
whereas cAMP signaling has been associated with the inhi-
bition of HDAC nuclear export through their phosphoryla-
tion as described above, it has also been found to promote 
nuclear import through other mechanisms. In myoblasts, 
cAMP signaling leads to nuclear import through the dephos-
phorylation of HDAC4, HDAC5, and HDAC9 in their con-
served SP motif, referring to the serine phosphorylation site 

Fig. 2  14-3-3-mediated nuclear export of phosphorylated Class IIa 
HDACs. One of the general mechanisms by which Class IIa HDACs 
are regulated is phosphorylation-dependent change in subcellular 
localization. Though the phosphorylation of Class IIa HDACs can 
promote their nuclear import or export under specific stimuli and cel-
lular contexts, many studies have presented the finding that the phos-

phorylation of Class IIa HDACs promotes their binding to 14-3-3 
proteins and nuclear export under a wide variety of stimuli and con-
texts. As a consequence of their localization in the cytoplasm, Class 
IIa HDACs are unable to repress MEF2-mediated gene transcription 
[52–54]. P phosphate
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and the subsequent proline residue that respond to cAMP 
activation and change in localization. Notably, this mecha-
nism is not extended to HDAC7 because it does not contain 
the SP motif in its sequence, demonstrating how the Class 
IIa HDACs can be differentially regulated [62]. Specific to 
HDAC5, it was identified that β1-adrenergic receptor acti-
vation and PKA activation in adult rat cardiomyocytes lead 
to its dephosphorylation by serine/threonine-protein phos-
phatase 2A (PP2A), promoting its nuclear accumulation and 
repression of MEF2-dependent gene transcription [63]. This 
is interesting because, as noted above, PKA can also directly 
phosphorylate HDAC5 to prevent its nuclear export in car-
diomyocytes [60]. In another study, PP2A activity was also 
found to dephosphorylate HDAC4 to promote its nuclear 
import [64]. Thus, these studies demonstrate the complexity 
of HDAC regulation by phosphorylation and highlight the 
intricacies of the signaling pathways, cellular context, and 
protein-specific attributes that may contribute to the conse-
quence of this modification.

Although the regulation of subcellular localization by 
phosphorylation has largely focused on Class IIa HDACs, 
there has been some investigation into the regulation of 
SIRT1 localization by phosphorylation. One study found 
that SIRT1 phosphorylation by JNK1 under conditions 
of oxidative stress increased its nuclear localization and 
affected its activity in a substrate-specific manner. Whereas 
SIRT1 phosphorylation promoted its enzymatic activity 
towards histone H3, the acetylation of p53, a SIRT1 sub-
strate, was unaffected [65]. It is possible that the change 
in SIRT1 localization may regulate genes that protect cells 
from apoptosis due to oxidative stress [65–67].

Role of phosphorylation in regulating HDAC 
stability

In several contexts, it has been demonstrated that HDAC 
phosphorylation can promote their stability through 
diverse and protein-specific mechanisms (Fig. 3). In neu-
rons, phosphorylation of HDAC2 at Y222 by tyrosine-
protein kinase ABL1 (c-Abl) is important for maintaining 
HDAC2 protein expression. The loss of its phospho-
rylation by site mutation or c-Abl inhibition resulted in 
HDAC2 poly-ubiquitination and proteasomal degradation, 
thereby reducing the transcriptional repression of its target 
synaptic and neuronal genes, such as Synaptotagmin and 
GluR1 [68]. Similarly, SIRT1 phosphorylation by  Ca2+/
calmodulin-dependent protein kinase kinase β (CaMKKβ) 
stimulated by pulsatile shear stress in vascular endothelial 
cells was associated with an increase in its stability and 
activity, consequently promoting an anti-oxidative stress 
response and anti-inflammatory effects that are protec-
tive against atherosclerosis [69] In a study focusing on 

osteoblastic cells, Shimizu et al. identified that PKA act-
ing downstream of parathyroid hormone signaling serves 
not only to phosphorylate HDAC4 at S740 to promote 
its nuclear export, but also to stimulate PP2A-mediated 
dephosphorylation of HDAC4 at S355. Dephosphorylation 
of HDAC4 at this site then leads to its partial lysosomal 
degradation [53].

Phosphorylation can also directly destabilize these pro-
teins under other conditions. HDAC4, in particular, contains 
a PEST1 sequence, a region that is enriched in proline (P), 
glutamic acid (E), serine (S), and threonine (T) residues, 
that can link its interaction with E3 ubiquitin ligases [70, 
71]. As demonstrated by the S298D mutation to mimic 
constitutive phosphorylation in this region, HDAC4 under-
goes poly-ubiquitination and degradation [70]. A study by 
Adenuga et al. found that exposing human bronchial epithe-
lial and primary small airway epithelial cells, macrophages, 
and mouse lungs to cigarette smoke extract led to HDAC2 
phosphorylation through a CK2-mediated mechanism, and 
further to its ubiquitination and subsequent degradation. 
This finding provides a rationale and strategy to reverse the 
loss of HDAC2 in lung inflammation-related diseases [29].

The destabilization of several sirtuins by their phospho-
rylation has particularly been described in the context of 
cellular stress and death. Tyrosine phosphorylation of SIRT2 
by c-Src reduces its protein stability and expression, which 
is associated with increased p53 expression and apoptosis 
[72]. SIRT6 phosphorylation by RAC-alpha serine/threo-
nine-protein kinase (AKT1) leads to its ubiquitination by 
the E3 ubiquitin-protein ligase MDM2 and degradation. This 
reduces the ability of SIRT6 to promote cell cycle arrest and 
apoptosis, thus supporting the proliferation of breast cancer 
cells [73]. Another study found that upon energy starvation, 
SIRT7 undergoes phosphorylation by AMPK, leading to a 
change in its localization from the nucleolus to the nucleo-
plasm and its ubiquitin-independent degradation through the 
REGγ proteasome. This mechanism reduces the energy-con-
suming rDNA transcription mediated by SIRT7 to allow cell 
survival under the imposed stress conditions [74].

For SIRT1, differential effects of kinase activities on its 
stability demonstrate the importance of balance among the 
regulatory mechanisms. SIRT1 phosphorylation at S46 by 
JNK1 results in its proteasome-mediated degradation in 
murine macrophage cells during the lipopolysaccharide-
activated macrophages inflammatory response, as well as 
in obese mice [75, 76]. However, in this study, Gao et al. 
found that both JNK1 inactivation and its persistent activa-
tion lead to SIRT1 degradation, where SIRT1 S46 phospho-
rylation first increases its enzymatic activity for a period of 
time, after which it eventually undergoes ubiquitination and 
proteasomal degradation [76]. Conversely, JNK2 activity has 
been found to promote SIRT1 stability and was correlated 
with SIRT1 phosphorylation at S27 in vitro [76, 77].
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Regulation of HDAC attributes 
by phosphorylation during mitosis

Several studies have found that phosphorylation dynamics 
can regulate HDAC interactions, functions, and localization 
during mitosis. One study demonstrated that HDAC2, but 
not HDAC1, is hyperphosphorylated during mitosis follow-
ing spindle checkpoint activation, where its hyperphospho-
rylation is associated with increased deacetylase activity 
[26]. Additionally, HDAC3 phosphorylation at Ser424 and 
interaction with linker histone subtype H1.3 in complex were 
found to be higher under mitotic conditions. The associated 
increase in HDAC3 activity towards histone H3K9 under 
these circumstances has been suggested to influence a more 
compact mitotic chromatin conformation and polar micro-
tubule dynamics [32]. A study of HDAC5 phosphorylation 

during mitosis showed that modification in its nuclear locali-
zation sequence by Aurora kinase B (AurB) resulted in the 
sequestration of HDAC5 in the spindle midzone, such that 
it was unable to interact with members of the N-CoR co-
repressor complex and to repress gene transcription. Though 
HDAC4 and HDAC9 can also be phosphorylated by this 
mitotic kinase, HDAC7 does not contain the AurB consensus 
sequence [78].

SIRT1 and SIRT2 are also subject to regulation by phos-
phorylation during mitosis. SIRT1 phosphorylation dur-
ing mitosis suppresses centriole duplication. Specifically, 
to this end, its phosphorylation by the mitotic centrosomal 
kinase Aurora kinase A (AURKA) promotes its interaction 
with, and subsequent deacetylation and ubiquitin-dependent 
degradation of, the centrosome protein polo-like kinase 2 
(Plk2). Thus, hypophosphorylation of SIRT1 during late  G1 

Fig. 3  Phosphorylation of HDAC2 influences its stability. Phospho-
rylation of HDAC2 can have different effects on its stability depend-
ing on the cellular context. HDAC2 phosphorylation by CK2 in lung 
epithelial cells, macrophages, and mouse lungs following exposure to 
cigarette smoke leads to its ubiquitination and proteasomal degrada-
tion. Loss of HDAC2 through this mechanism is proposed to play a 

role in inflammation and steroid resistance associated with asthma 
and chronic obstructive pulmonary disease (COPD) [29]. In neurons, 
loss of HDAC2 phosphorylation at Y222 leads to the proteasomal 
degradation of HDAC2, releasing its repression of the transcription of 
neuronal genes that otherwise occurs in Alzheimer’s disease [68]. P 
phosphate, Ub ubiquitin
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allows Plk2 accumulation and centriole duplication to be 
initiated [79]. SIRT1 phosphorylation by Cyclin B/Cdk1 is 
also important for cells to enter the  G2 phase in the cell cycle 
and thus regulates cell proliferation [80]. SIRT2 phospho-
rylation, however, can either promote or inhibit its function 
in regulating cell proliferation depending on the kinase and 
phosphorylation site. One study proposed that the bind-
ing of group IVA cytosolic phospholipase A2  (cPLA2α) to 
SIRT2 results in Cdk2-mediated phosphorylation of SIRT2 
at S331. This modification promotes mitotic entry by reduc-
ing SIRT2 activity, as detected towards acetylated histone 
H4 peptide and acetylated histone H4K16, and its recruit-
ment to centrosomes and mitotic spindles [50]. In contrast, 
another study found that Cdk1-mediated phosphorylation of 
SIRT2 at S368 during mitosis does not affect its deacetylase 
activity, but instead supports its anti-proliferative function 
by delaying cell cycle progression in glioma cells [81]. It 
would be interesting to determine if this is a cell type-spe-
cific mechanism or if it can be applied to other contexts.

Physiological and disease relevance of HDAC 
phosphorylation

Cellular signaling and phosphorylation events are involved 
in the maintenance of normal physiological processes, as 
well as the development of disease states. HDACs, as well, 
play a role in regulating a wide range of cellular processes 
and have also been associated with diseases, such as cancer 

and metabolic disorders. Importantly, many HDAC phos-
phorylation sites have been identified in the context of cer-
tain diseases, tissue types, and signaling mechanisms. Some 
examples of HDAC phosphorylation in health and diseases 
are listed in Table 2. Phosphorylation of SIRT1 and its effect 
on the tumor suppressor p53 under various contexts are illus-
trated in Fig. 4. These examples provide insight into possible 
avenues by which to specifically target HDAC activity and 
function for therapeutic applications.

Cancer

HDACs have been studied extensively in relation to cancer. 
Several HDAC inhibitors have been approved by the United 
States Food and Drug Administration (FDA) and other drugs 
are under clinical investigation for the treatment of cancer 
[82, 83]. According to the complexity of the tumor micro-
environment and the activated signaling pathway(s), it is 
critical to consider whether the role of HDAC phosphoryla-
tion supports oncogenic or tumor suppressor functions. For 
example, SIRT1 phosphorylation can have opposite effects 
depending on the tumor type. In U2OS cells, AMPK-medi-
ated phosphorylation of SIRT1 at T344 causes its dissocia-
tion from Deleted in Breast Cancer 1 (DBC1), its inhibitor, 
to result in p53 deacetylation [84]. However, another group 
found that SIRT1 phosphorylation at the same site by AMPK 
in liver cancer cells led to its inactivation, although the role 
of DBC1 was not evaluated in this study [48, 84]. The activ-
ity of different HDACs can also be involved in regulating 

Table 2  Histone deacetylase (HDAC) phosphorylation in physiological processes and disease

Protein Process/disease References

HDAC1 Osteoblast differentiation, Diet-induced obesity, Hepatosteatosis [103, 120]
HDAC2 Cardiac hypertrophy, Diet-induced obesity, Hepatosteatosis, Neurodegenerative dis-

eases, Alzheimer’s disease, COPD-related inflammation
[28, 29, 68, 110, 120, 130]

HDAC3 HER2-positive breast cancer, Parkinson’s disease, Glycolysis [33, 34, 112]
HDAC4 Glioblastoma, Skeletal myogenesis, Muscle cell differentiation, Cardiac hypertrophy, 

Gluconeogenesis, Myelin sheath development
[61, 85, 86, 97, 104, 105, 113]

HDAC5 Glioblastoma, Immune signaling, Skeletal myogenesis, Muscle cell differentiation, 
Angiogenesis, Cardiac hypertrophy, Gluconeogenesis, Insulin resistance (Type II 
diabetes, obesity), Neuronal differentiation, Synaptic plasticity, Depression, Cocaine-
reward behavior

[57, 60, 85, 86, 98, 99, 104, 107, 108, 
113, 114, 127, 128, 158]

HDAC6 Neurodegenerative diseases, Mitochondrial transport [41, 129]
HDAC7 Glioblastoma, Immune signaling, Muscle cell differentiation, Angiogenesis, Gluco-

neogenesis
[85, 86, 101, 102, 113]

HDAC9/MITR Glioblastoma, Muscle cell differentiation [85, 86, 99]
SIRT1 Liver cancer, Osteosarcoma, Diet-induced obesity, NAFLD, Lipid homeostasis, Hepa-

tosteatosis, Atherosclerosis, DNA damage response
[44, 48, 69, 84, 89, 118, 121, 122, 126]

SIRT2 Microglial inflammation, Listeria monocytogenes infection [95, 96]
SIRT3 Colon carcinoma, Triple-negative breast cancer, Glioblastoma [87]
SIRT6 HER2-positive breast cancer [73]
SIRT7 Cardiac fibrosis [111]
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the same tumor type. In HER2-positive breast cancer cells, 
HDAC3 phosphorylation by c-Src increased its activity to 
promote cell proliferation, suggesting that this mechanism 
may potentially serve as a target in treatments for this breast 
cancer subtype [34]. SIRT6 promotes cell growth in HER2-
positive breast cancer through another mechanism, by which 
it contributes to trastuzumab resistance. Specifically, SIRT6 
phosphorylation by AKT1, interaction with the E3 ubiquitin 
ligase MDM2, and subsequent degradation reduces its inhi-
bition of cell cycle arrest and apoptosis [73].

Phosphorylation of Class IIa HDACs has been associ-
ated with resistance to glioblastoma (GBM) therapies. It was 
initially found that mTOR Complex 2 (mTORC2) activa-
tion in EGFRvIII mutant GBM leads to the phosphoryla-
tion and subsequent inactivation of Class IIa HDACs, fol-
lowed by higher acetylation of the forkhead box proteins 
FoxO1 and FoxO3, as well as Myc proto-oncogene protein 
(c-Myc) upregulation. The phosphorylation of Class IIa 
HDACs therefore has therapeutic relevance because acti-
vated mTORC2 signaling, acetylated FoxO proteins, and 
higher c-Myc levels are all associated with metabolic repro-
gramming and poor prognosis in glioblastoma patients [85]. 
Further study indicated that the auto-activation of mTORC2 
and inactivating phosphorylation of Class IIa HDACs in 
EGFRvIII mutant GBM occur when nutrients, including 
glucose and acetate, are present at higher levels. Rictor 

acetylation was increased as a consequence of HDAC inac-
tivation, resulting in an inability to inhibit mTORC2. In par-
ticular, Rictor acetylation in this process is connected with 
resistance to therapies that target EGFR, phosphoinositide 
3-kinase (PI3K), and AKT [86].

Other drug resistance mechanisms related with phos-
phorylation status can be extended across tumor types. One 
study identified that radiation induces the co-localization 
of Cyclin B1-Cdk1 and SIRT3 at the mitochondria. Cdk1-
mediated phosphorylation of SIRT3 at T150 and S159 pro-
motes the deacetylation of mitochondrial proteins, as was 
tested in HCT116 colon carcinoma, MDA-MB-231 triple-
negative breast cancer, and U87 glioblastoma cell lines. 
SIRT3 phosphorylation is important for mitochondrial func-
tions, such as ATP production and maintenance of the mito-
chondrial membrane potential, and tumor adaptive resistance 
to radiation therapy [87]. Another mechanism of resistance 
is through interleukin 6 (IL-6)-mediated protection of can-
cer cells from chemotherapy drug-induced apoptosis [88, 
89] This is detrimental, considering that the downstream 
Janus kinase-signal transducer and activator of transcription 
3 (JAK-STAT3) pathway is activated in many tumor types, 
including lung adenocarcinoma and breast cancers [89, 90]. 
However, SIRT1 phosphorylation by JAK1 downstream of 
IL-6 stimulation serves as a negative feedback mechanism 
that targets STAT3 transcriptional activity and IL-6 activity 

Fig. 4  Relationship between SIRT1 phosphorylation and p53-medi-
ated apoptosis. a Phosphorylation of SIRT1 at T344 by AMPK can 
have opposing effects on p53 acetylation, depending on the cellular 
context. SIRT1 phosphorylation in hepatocellular carcinoma cells 
inhibits its activity in deacetylating p53 and promotes apoptosis [48]. 
In contrast, its phosphorylation in osteosarcoma cells disrupts its 
interaction with its inhibitor, DBC1, allowing SIRT1 to deacetylate 
p53 and inhibit apoptosis [84]. b Genotoxic stress leads to the phos-

phorylation of SIRT1 at different sites by several kinases, including 
CK2, DYRK1A, DYRK3, and HIPK2, which influences the ability of 
SIRT1 to deacetylate p53. CK2- and DYRK-mediated phosphoryla-
tion of SIRT1 support its ability to deacetylate p53 and inhibit apop-
tosis [45, 46]. In contrast, SIRT1 phosphorylation by HIPK2 disrupts 
its interaction with its activator, AROS, which inhibits the deacetyla-
tion of p53 and leads to apoptosis [47]. P phosphate, Ac acetyl group
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to overcome the resistance to chemotherapy. In this way, 
SIRT1 phosphorylation can oppose IL-6-induced cancer cell 
survival [89]. Thus, a better understanding of the mecha-
nisms that regulate specific HDACs in different tumor types 
can aid in the development of new therapeutic strategies 
and improve the design of current approaches to overcome 
drug resistance.

Infection and immune response

Several cases of HDAC phosphorylation in relation to the 
immune system have been described. One study found 
that B cell antigen receptor (BCR) activation in B lym-
phocytes leads to protein kinase D (PKD) enzymes-medi-
ated phosphorylation of HDAC5 and HDAC7, followed 
by their nuclear export and reduced impact on transcrip-
tional repression, as was demonstrated by nuclear recep-
tor Nur77 reporter activation [91]. In thymocytes, T cell 
receptor (TCR) activation leads to HDAC7 phosphorylation 
by PKD1 through a calcium-independent mechanism. As 
a consequence, HDAC7 undergoes nuclear export, lead-
ing to the transcriptional activation of Nur77. This series 
of events causes thymocytes to undergo apoptosis [92–94]. 
In cytotoxic T lymphocytes (CTLs), however, HDAC7 has 
also been found to be constitutively phosphorylated and 
bound to 14-3-3 proteins through a mechanism that does not 
require TCR stimulation. Under these conditions, HDAC7 
is localized in the cytoplasm and is unable to repress the 
transcription of cytokines and their receptors, as well as 
adhesion molecules. A demonstrated consequence of the 
loss of HDAC7 phosphorylation in CTLs was the repression 
of cytokine receptor CD25 expression and the consequent 
loss of effector cytokine interferon-gamma (IFNγ) produc-
tion. Importantly, it was indicated that although HDAC7 
phosphorylation is not a response to TCR activation, it still 
plays a role in mediating the effector response, as IFNγ was 
not produced upon TCR activation in CTLs expressing the 
HDAC7 phosphorylation-inactive mutant [94]. In total-
ity, these findings demonstrate how a deacetylase enzyme, 
namely HDAC7, can be regulated by different mechanisms 
among various cell types to produce specific effects.

SIRT2 phosphorylation also plays several roles in infec-
tion and immune response. One study found that the loss 
of SIRT2 phosphorylation at S331, as was mimicked by 
mutation of the site to alanine, resulted in an increase in its 
deacetylase activity towards NFκB and consequent reduc-
tion in pro-inflammatory gene transcription in microglia. 
Accordingly, SIRT2 phosphorylation has been suggested as 
a target for microglial neurotoxicity and associated inflam-
mation [95]. A role for the phosphorylation status of SIRT2 
was additionally identified in the context of Listeria mono-
cytogenes infection. Specifically, SIRT2 dephosphorylation 
at S25 following infection promotes its association with 

chromatin, deacetylation of H3K18, and transcriptional 
repression to support infection-related outcomes [96].

Differentiation and development

Class IIa HDACs are involved in differentiation and develop-
ment processes due to their regulation of MEF2-mediated 
transcription in a variety of contexts. Phosphorylation, in 
particular, has been important for their function in these pro-
cesses. As described above, phosphorylation of Class IIa 
HDACs can regulate their subcellular localization, which 
thereby influences their interaction with MEF transcription 
factors to regulate gene expression. A study by Liu et al. 
suggested crosstalk between the beta-adrenergic signaling 
pathway and muscle activity-dependent pathway in skel-
etal muscle fibers. In this study, HDAC4 phosphorylation 
at S265 and S266 by PKA following beta-adrenergic acti-
vation led to its nuclear influx and suppression of MEF2-
mediated transcription of skeletal muscle genes, whereas 
its phosphorylation at S246, S267, and S232 by CaMKII 
following muscle fiber activity led to its nuclear efflux to 
have the opposite effect on transcription [97]. HDAC4 and 
HDAC5 phosphorylation downstream of CaMK signaling 
leads to their nuclear export, allowing MEF2 to interact 
with myoblast determination protein 1 (MyoD) and activate 
gene transcription for the muscle differentiation program for 
skeletal myogenesis [57, 98]. In myoblasts, phosphorylation 
of the nuclear localization sequence of Class IIa HDACs, 
as demonstrated in HDAC5 and the HDAC9 splice variant 
MITR, by Mirk in myoblasts reduces their nuclear accumu-
lation and inhibition of MEF2C transcription factor, which 
allows myogenin transcription to promote muscle cell dif-
ferentiation. Importantly, muscle cell differentiation is rel-
evant to the therapeutic regeneration of damaged skeletal or 
cardiac muscle [99].

Angiogenesis is a process that is involved in vascular 
development. In endothelial cells, signaling downstream 
of vascular endothelial growth factor (VEGF) stimulation 
can lead to Class IIa HDAC phosphorylation, consequently 
influencing MEF2-mediated transcription of genes involved 
in angiogenesis. In this context, HDAC5 phosphorylation 
at S259 and S498 by PKD resulted in its nuclear export 
and activated transcription of MEF2-target genes related to 
endothelial cell migration and tube formation, processes that 
are representative of angiogenesis [100]. Similarly, down-
stream of VEGF stimulation, HDAC7 phosphorylation at 
S178, S344, and S479, was mediated by PKD1. HDAC7 
cytoplasmic localization under this circumstance was asso-
ciated with the transcriptional activation of the matrix 
metalloproteinases MMP10 and MT1-MMP, which sup-
port endothelial cell migration and tube formation [101]. 
Another study additionally identified that HDAC7 phos-
phorylation reduces its repression of angiogenesis-related 
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genes, including Nur77 and RCAN2, accordingly promoting 
proliferation and migration [102].

Unlike the cases described above, HDAC1 phosphoryla-
tion has been suggested to play a role in osteoblast differ-
entiation. Gemini-Piperni et al. performed a study to better 
understand the mechanisms involved in osteoblast adhesion, 
as is relevant to the clinical application of hydroxyapatite 
(HA) scaffolds for bone tissue regeneration. HDAC1 phos-
phorylation at S421 by cyclin-dependent kinase 5 (CDK5) 
was found to be associated with osteoblast differentiation. 
Further, HDAC1 phosphorylation levels were higher in cells 
that were adhering to HA surfaces, as opposed to the tissue 
culture plate, a difference that was attributed to osteoblast 
differentiation [103].

Cardiac hypertrophy

Class IIa HDAC regulation of MEF2-mediated transcrip-
tion extends to the development of cardiac hypertrophy. 
Hypertrophic stimuli and their downstream signaling pro-
cesses have been found to regulate the phosphorylation of 
HDAC4 and HDAC5 to influence their role in the fetal gene 
response, which is the reprogramming of gene expression 
in cardiomyocytes to allow the consequent hypertrophic 
phenotype [104]. Phosphorylation of HDAC4, but not other 
Class IIa HDACs, by the  Ca2+/calmodulin-dependent pro-
tein kinase II form CaMKIIδB and of HDAC5 by PKD in 
cardiomyocytes reduces their repression of MEF2-mediated 
fetal cardiac gene expression, thereby contributing to the 
development of cardiac hypertrophy [104–106]. However, 
the different pathways leading to HDAC5 phosphorylation 
in cardiomyocytes must be balanced to appropriately regu-
late hypertrophy-related gene expression. Specifically, PKA 
activation downstream of acute beta-adrenergic signaling 
is associated with HDAC5 phosphorylation at S279 and its 
nuclear accumulation, in opposition to its nuclear export and 
transcriptional activation due to its phosphorylation at S259 
and S498 by CaMKII and PKD downstream of G-protein 
coupled receptor (GPCR) signaling [107]. Notably, HDAC5 
was also identified to be phosphorylated at S259 by protein 
kinase Cδ (PKCδ), a kinase that plays a role in myocardial 
hypertrophy and heart failure [108, 109].

Hypertrophic stimuli-mediated signaling can also induce 
the phosphorylation of other HDACs to promote the devel-
opment of cardiac hypertrophy. Through immunohistochem-
istry and immunoblot methods, HDAC2 phosphorylation at 
S394 was detected to be higher in the heart tissue of patients 
with hypertrophic cardiomyopathy relative to normal heart 
tissue. HDAC2 phosphorylation by CK2 occurring down-
stream of hypertrophic stimuli leads to its increased enzy-
matic activity towards genes that promote disease develop-
ment [110]. In cardiofibroblasts, angiotensin-II stimulation 
leads to an increase in the phosphorylation of SIRT7, which 

is suggested to influence changes in gene transcription 
through ERK and Mothers against decapentaplegic homolog 
2 (Smad2) phosphorylation and activation. The changes in 
gene expression promote the differentiation of cardiac fibro-
blasts to myofibroblasts, thereby supporting the development 
of cardiac fibrosis [111].

Metabolic processes

HDAC phosphorylation has also been studied in the context 
of metabolic processes and diseases. For example, HDAC3 
S424 is phosphorylated through the PI3K/AKT/mTOR 
pathway downstream of insulin stimulation, which pro-
motes the deacetylation and activation of phosphoglycerate 
kinase 1 (PGK1) to produce ATP and 3-phosphoglycerate 
(3-PG) during glycolysis. HDAC3 modification is therefore 
suggested as a relevant target for diseases involving PGK1 
dysfunction, such as hemolytic anemia [112]. A study by 
Mihaylova et al. showed that treatment of hepatocytes with 
the fasting hormone glucagon leads to the dephosphoryla-
tion of HDAC4, HDAC5, and HDAC7, which promotes their 
nuclear localization, deacetylation of FOXO, and subsequent 
activation of the FOXO family of transcription factors at the 
promoters of genes involved in gluconeogenesis. Given that 
the suppression of Class IIa HDACs was shown to improve 
hyperglycemia in mouse models of type 2 diabetes, it is 
suggested that the phosphorylation, and subsequent nuclear 
export, of Class IIa HDACs may be a mechanism by which 
to target metabolic syndrome [113].

Many studies have specifically focused on the role of 
HDAC phosphorylation in obesity and fatty liver. It was 
found that HDAC5 phosphorylation by AMPK in skeletal 
muscle is associated with its nuclear export, thereby reduc-
ing the transcriptional repression of glucose transporter 
type 4 (GLUT4) [114]. Given that higher GLUT4 expres-
sion is involved in overcoming insulin resistance related to 
obesity and type 2 diabetes, a therapeutic strategy in this 
context would be to promote HDAC5 phosphorylation in 
skeletal muscle [114–117]. SIRT1 phosphorylation has 
also been shown to have a protective effect against diet-
induced obesity, as its consequent increased activity leads 
to the transcriptional activation of genes that promote higher 
thermogenic function and fatty acid oxidation. Therefore, 
another proposed therapeutic strategy is to promote SIRT1 
phosphorylation at S434 downstream of beta-adrenergic 
signaling and the cAMP pathway in skeletal muscle and 
brown adipose tissue. [118, 119]. Additionally, HDAC1 
and HDAC2 phosphorylation is also protective against diet-
induced obesity, though through a different mechanism. 
Since dephosphorylation of HDAC1 S393 and HDAC2 S394 
by mitogen-activated protein kinase phosphatase 3 (MKP-3) 
reduces their ability to repress lipogenic gene expression in 
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the liver, regulation of MKP-3 activity presents a therapeutic 
target to oppose the development of hepatosteatosis [120].

Interestingly, SIRT1 can have differing effects on hepa-
tosteatosis and fatty liver, depending on the context under 
which it is phosphorylated. CK2 expression and SIRT1 S164 
phosphorylation levels were found to be higher in liver sam-
ples of non-alcoholic fatty liver disease (NAFLD) patients 
and were indicative of severity [121]. Under glucose starva-
tion conditions, AMPK-mediated phosphorylation of SIRT1 
at T530 reduces its degradation by the REGγ proteasome 
and allows its deacetylation of the autophagy proteins Atg5 
and Atg7 to promote autophagy [122]. This balance between 
SIRT1 proteasomal degradation and autophagy is involved 
in regulating lipid homeostasis, further influencing attributes 
of metabolic disorders, where the consequence of SIRT1 
phosphorylation is protective against steatosis and fatty liver 
[122–125]. Furthermore, Lu et al. generated mouse models 
that expressed knock-in T522A loss of phosphorylation and 
T522E (threonine to glutamic acid) phosphomimic muta-
tions to show that the effect of SIRT1 T522 phosphorylation 
is tissue-dependent and must therefore be tightly regulated. 
Whereas T522 phosphorylation is necessary for systemic 
energy homeostasis, its dephosphorylation is needed for adi-
pogenesis. Although constitutive phosphorylation of SIRT1 
was related with an improvement in high-fat diet-induced 
dyslipidemia, loss of phosphorylation was associated with 
the development of hepatic steatosis under high-fat diet 
conditions because the expression of genes that promote 
hepatic fatty acid oxidation was lower [126]. These cases 
demonstrate how HDAC phosphorylation occurs in a variety 
of contexts to influence different outcomes. In the design 
of therapeutic approaches for metabolic disorders, it will 
be necessary to consider the intricacies of each pathway 
involved and the specific phosphorylation site that must be 
targeted without producing a harmful effect through another 
pathway.

Neurological disorders

Phosphorylation of HDACs also influences their roles in 
neurological development and disorders. HDAC4 phospho-
rylation downstream of cAMP signaling and PKA activa-
tion in Schwann cells leads to its nuclear localization and 
consequent repression of c-Jun to promote myelin sheath 
development [61]. Another study identified HDAC5 phos-
phorylation by SIK1 as a consequence of brain-derived 
neurotrophic factor (BDNF) signaling in cortical neurons. 
HDAC5 subsequently undergoes nuclear export, leading to 
an increase in MEF2 transcriptional activity. It is suggested 
that the transcriptional changes in this pathway are relevant 
to processes regulating neuronal differentiation and synap-
tic plasticity [127]. In hippocampal neurons, stimulation by 
ketamine, which is associated with antidepressant effects, 

leads to the activation of the CaMKII and PKD-dependent 
pathway and phosphorylation of HDAC5 at S259 and S498. 
MEF2 transcriptional activity is increased due to the nuclear 
export of HDAC5, presenting the possibility that HDAC5 
phosphorylation induces anti-depressive effects. The phos-
phorylation of HDAC5 may therefore be relevant to the 
mechanism of action of ketamine [128].

In the context of neurodegenerative diseases, it was iden-
tified in the SH-SY5Y neuroblastoma cell line that HDAC6 
phosphorylation by CK2 resulted in its increased cytoplas-
mic deacetylase activity, preventing protein aggregate accu-
mulation and associated cellular stress that would otherwise 
lead to cytotoxicity [129]. In contrast, it has been proposed 
that HDAC6 may be phosphorylated by GSK3β, and that its 
increased tubulin deacetylase activity in hippocampal neu-
rons could lead to issues in mitochondrial transport. Thus, 
Chen et al. proposed that this mechanism may serve as a 
therapeutic target for neurodegenerative disorders in which 
proper mitochondrial transport is affected [41]. HDAC2 
phosphorylation has also been suggested as a therapeutic 
target for neurodegenerative diseases. HDAC2 phospho-
rylation at S394 was reduced under oxidative stress con-
ditions, as demonstrated by cerebral ischemia in mice and 
hydrogen peroxide  (H2O2) treatment of HT-22 hippocampal 
neurons. As a consequence of its loss of phosphorylation, 
HDAC2 was unable to interact with the transcription factor 
FOXO3a, leading to an increase in the expression of the 
cyclin-dependent kinase inhibitor p21, which has a protec-
tive effect against apoptosis under stress conditions [130]. 
Additionally, HDAC2 phosphorylation at Y222 by c-Abl 
is induced by Aβ oligomer damage in neurons, which pro-
motes HDAC2-mediated repression of neuronal gene expres-
sion in Alzheimer’s disease [68]. HDAC3 phosphorylation 
contributes to cellular stress in the context of Parkinson’s 
disease. 6-hydroxydopamine (6-OHDA) treatment of neu-
rons to model Parkinson’s disease conditions resulted in 
HDAC3 phosphorylation at S424 by LRRK2, which pro-
moted HDAC3 activity. Consequences of HDAC3 modifica-
tion included inhibition of MEF2D transcriptional activity, 
deacetylation of histone H4K12, and cytotoxicity [33]. Thus, 
HDACs produce different effects related to neurodevelop-
ment and neurodegeneration, which can be targeted through 
their phosphorylation.

Looking to the future

As has been demonstrated and described above, phospho-
rylation can influence many different aspects of HDAC 
enzymes, including enzymatic activities, protein–protein 
interactions, protein localization, and protein stability, to 
affect physiological functions. Here, we have separated 
the effects of phosphorylation on protein regulation into 
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different categories, such as activity and subcellular local-
ization, but in many cases, these effects are not mutually 
exclusive and can influence one another. Accordingly, it is 
important to consider that phosphorylation can coordinate 
with other PTMs through crosstalk, such as ubiquitination, 
acetylation, and phosphorylation at other sites within the 
same protein, to regulate its characteristics and functions 
[28–30, 70]. Another manner of the temporal regulation of 
a protein is through its modification by different PTMs at the 
same residue under separate contexts [2]. These factors add 
layers of complexity to the identified mechanisms.

Although a few mechanisms of the effects of HDAC 
phosphorylation have been well-characterized, there are 
still many unknowns regarding intricacies in the cellular and 
molecular contexts. It is clear that while some sites within 
HDACs may be constitutively phosphorylated, many phos-
phorylation events occur as a response to a cellular stimulus. 
It would be valuable to determine whether identified mecha-
nisms could be extended to other cell lines and conditions 
that actively undergo the same signaling processes. Though 
this has been explored to some extent, many studies focus 
on one protein within a given cellular context, which in itself 
could provide useful information regarding specificity. Addi-
tionally, numerous discoveries of HDAC phosphorylation 
sites have been made in certain cell lines under specific treat-
ment conditions to mimic normal physiological processes or 
disease states. Elucidating the underlying conditions lead-
ing to HDAC phosphorylation, the downstream mechanism, 
and further, the biological outcome, is therefore particularly 
critical for the development of effective and specific targeted 
therapies that could target this modification.

A variety of tools and databases have helped to organize 
high-throughput PTM data in a comprehensive manner that 
is easily accessible to the public. Databases such as Phos-
phoSitePlus, Phospho.ELM, and Phosida provide an exten-
sive range of information about predicted or validated sites, 
including their evolutionary conservation and the conditions 
under which they were detected [131–136]. Other databases, 
such as NetPhos 3.1, GPS (Group-based Prediction System), 

and Human Protein Reference Database (HPRD) Phospho-
Motif Finder, offer predictions for phosphorylation sites and 
possible kinases or phosphatases based on sequence motifs 
[137–142]. These resources present a starting point for stud-
ies of protein phosphorylation to understand what is known 
and yet unknown. We anticipate that these resources will 
help uncover many more instances of HDAC phosphoryla-
tion, as well as point to their biological consequences.

There are many HDAC phosphorylation sites that have 
yet to be identified or validated. Though a protein may be 
phosphorylated at a certain site, this modification may elude 
detection if it occurs at low abundance or only transiently 
under specific conditions [4, 30]. Of note, the phosphoryla-
tion of HDAC10, HDAC11, SIRT4, and SIRT5 has not been 
extensively characterized, although several putative modi-
fied residues have been detected in mass spectrometry analy-
ses (Table 3). Interestingly, HDAC10 Ser368 phosphoryla-
tion has been identified in several high-throughput analyses 
of cancer tissue and cell lines, including breast cancer and 
leukemia [131, 143–146]. HDAC11 threonine phosphoryla-
tion has been identified under the condition of ventricular 
tachycardia, and SIRT5 phosphorylation was predicted in 
acute myelogenous leukemia and lung cancer [131, 147]. 
Characterization of these predicted phosphorylation sites 
would provide some insight into the mechanisms by which 
these proteins are regulated, as well as their possible physi-
ological relevance.

An additional point to be noted is that many charac-
terized HDAC phosphorylation mechanisms involve the 
modification of serine and threonine residues, but fewer 
cases of tyrosine phosphorylation have been described. 
This difference can be attributed to the cellular or dis-
ease conditions under which the phosphorylation sites 
were detected and the transient nature of tyrosine phos-
phorylation [148]. Importantly, tyrosine phosphorylation 
has been taken into consideration and incorporated into 
the design of targeted therapeutic approaches due to its 
roles in growth factor-mediated signaling and regulation 
of cellular processes leading to disease development and 

Table 3  Putative 
phosphorylation sites on histone 
deacetylases (HDACs) that 
require further characterization

Protein Site Cellular context References

HDAC10 S368 Breast cancer, T-cell leukemia cells, Mitotic cells [131, 143–146]
S373 Mitotic cells [144]
S393 Liver tissue [163]
S540 T-cell leukemia cells [131]

HDAC11 T5, T76 Heart tissue, Ventricular tachycardia [131]
Y199 Mantle cell lymphoma cells [164]

SIRT4 S255, S261, S262 HeLa cells [165]
SIRT5 Y76 Bone marrow tissue, Acute myelogenous leukemia [131]

T87 Lung cancer cells [166]
S160 Lung cancer cells [147]
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progression [2, 3, 148]. The clinical relevance of tyrosine 
phosphorylation is supported by the many tyrosine kinase 
inhibitors that have been approved as treatment options, 
such as for cancer, in which aberrant tyrosine phospho-
rylation has been associated with cellular transformation 
and proliferation [148–151]. Therefore, although tyros-
ine phosphorylation may be more difficult to detect, it is 
a promising, yet largely unexplored, avenue of research 
regarding HDAC regulation and relationship with diseases.

Additional challenges in the study of protein phos-
phorylation arise as a result of the extensive variation in 
the effect of phosphorylation on the HDACs due to the 
complexity added by a multitude of factors, including the 
location of the modified site within the protein, such as 
the catalytic domain or nuclear localization sequence, and 
crosstalk between other PTMs. However, discrepancies in 
the conclusions made from experiments evaluating the 
effect of phosphorylation of the same site(s) within the 
same protein can also arise from differences between the 
methodologies used. As discussed above, HDAC1 phos-
phorylation at S421 and S423 was found to have different 
effects depending on whether core histones or the histone 
H4 peptide was used as the substrate to assess changes in 
deacetylase activity [24–26].

Further, it has been suggested that the results can vary 
depending on the approach used to induce or simulate a 
change in the phosphorylation state. Ideally, a study will 
employ 1) a genetic approach to generate mutants that 
mimic constitutive phosphorylation or loss of phospho-
rylation at the site and 2) a chemical approach through 
treating cells with activators or inhibitors of kinases or 
phosphatases. One such case that demonstrates the dif-
ferences in results associated with genetic and chemical 
approaches is an evaluation of the phosphorylation state 
of HDAC1. In their study, Pflum et al. suggested that S421 
and S423 may be constitutively phosphorylated because 
they are buried sites within the structure of HDAC1 and 
may thus be inaccessible to phosphatases [24]. In con-
trast, though, Galasinski et al. identified in their study that 
HDAC1 is basally phosphorylated, but that it can still be 
hyperphosphorylated upon treatment with the phosphatase 
inhibitor okadaic acid [26]. Also in contrast to the study 
by Pflum et al., Galasinski et al. found that hyperphos-
phorylation of HDAC1 through phosphatase inhibition in 
fact interfered with the ability of HDAC1 to interact with 
HDAC2, mSin3A, and YY1 [24, 26]. A possible explana-
tion for this discrepancy may be in the methods employed 
in these studies, whereas Pflum et al. tested the effect of 
the loss of site-specific phosphorylation through mutations 
of S421 and S423 to alanine, Galasinski et al. evaluated 
the general phosphorylation of HDAC1 through treatment 
with the phosphatase inhibitor okadaic acid [24, 26].

Concluding remarks

HDACs regulate a variety of cellular processes, in addition 
to gene transcription, in different tissue types, thereby influ-
encing normal physiological functions and disease develop-
ment. Therefore, it is critical to define the mechanisms that 
regulate these enzymes and to identify the functional con-
sequences associated with their dysregulation, particularly 
in the larger context of disease states. As has been discussed 
here, the modification of HDACs by phosphorylation can 
affect its protein characteristics and functions in different 
ways. Many class-wide, as well as protein-specific, mecha-
nisms of phosphorylation have been described, but ample 
remain to be identified and validated. Further characteriza-
tion of the intricacies regarding the regulation of HDACs 
by phosphorylation will be clinically relevant, as a better 
understanding of the underlying mechanisms will support 
the design of therapeutic strategies to selectively inhibit or 
activate any HDAC in a given physiological state.
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