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Abstract
The successful treatment of human cancers by immunotherapy has been made possible by breakthroughs in the discovery of 
immune checkpoint regulators, including CTLA-4 and PD-1/PD-L1. However, the immunosuppressive effect of the tumor 
microenvironment still represents an important bottleneck that limits the success of immunotherapeutic approaches. The 
tumor microenvironment influences the metabolic crosstalk between tumor cells and tumor-infiltrating immune cells, creat-
ing competition for the utilization of nutrients and promoting immunosuppression. In addition, tumor-derived metabolites 
regulate the activation and effector function of immune cells through a variety of mechanisms; in turn, the metabolites and 
other factors secreted by immune cells can also become accomplices to cancer development. Immune-metabolic checkpoint 
regulation is an emerging concept that is being studied with the aim of restoring the immune response in the tumor microen-
vironment. In this review, we summarize the metabolic reprogramming of various cell types present in the tumor microenvi-
ronment, with a focus on the interaction between the metabolic pathways of these cells and antitumor immunosuppression. 
We also discuss the main metabolic checkpoints that could provide new means of enhancing antitumor immunotherapy.

Keywords Antitumor immunotherapy · Immune checkpoint · Tumor metabolism · Metabolic reprogramming · Metabolic 
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Background

Extensive interactions occur between tumor cells and other 
cell types in the tumor microenvironment (TME), in which 
immune cells have a particularly important role in the malig-
nant progression of tumors [1]. As a defense system against 
tumors, the immune system can recognize and activate 
immune clearance mechanisms to specifically kill malig-
nant cells, thereby preventing them from further develop-
ing into malignant tumors; this mechanism is called tumor 
immune surveillance. However, immune escape is one of 
the basic biological characteristics of malignant tumors [2]. 
Tumor cells can survive and proliferate by evading or resist-
ing the recognition and attack of the immune system through 
a variety of mechanisms [3, 4]. The TME comprises diverse 
immune cell types, including T cells, B cells, tumor-associ-
ated macrophages (TAMs), myeloid-derived suppressor cells 
(MDSCs), neutrophils and mast cells [5, 6]. They establish a 
complex network of intercellular interactions that enhances 
and maintains the immunosuppressive microenvironment 
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and promotes immune escape, which ultimately enhances 
tumor progression [7, 8].

Increasing the immunogenicity of tumor cells and the 
cytotoxic susceptibility of targeted effector cells can effec-
tively enhance the antitumor immune response [9]. There-
fore, tumor immunotherapy has become a powerful and 
promising strategy for the treatment of advanced, recurrent 
and refractory tumors. Several immunotherapy approaches 
have been developed, such as tumor vaccines, adoptive T 
cell transfer (ACT) therapy, and immune checkpoint therapy. 
ACT involves the isolation, ex vivo expansion and reinfusion 
of immune cells to mediate tumor regression and remission 
[10]. Presently, several types of ACT have been developed 
for tumor immunotherapy, such as tumor-infiltrating lym-
phocytes (TILs), T cell receptor (TCR) T cells, and chimeric 
antigen receptor (CAR) T cells; CART cells were the first 
gene therapy approved by the US Food and Drug Adminis-
tration (FDA) [11].

With the ongoing advances in antitumor immune 
research, the discovery of immune checkpoints, including 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), pro-
grammed death-1 (PD-1) and programmed death ligand-1 
(PD-L1), has opened a new chapter in tumor immunotherapy 
[12–15]. CTLA-4 is a CD28 homolog mainly expressed on 
T cells, and it binds with high affinity to B7 on antigen-
presenting cells (APCs) to play a negative regulatory role in 
T cell activation [16]. PD-1 is an immune checkpoint recep-
tor present on T cells, and it induces T cell exhaustion and 
immunosuppression by binding to its ligand PD-L1, which 
is highly expressed on tumor cells [17]. Thus, CTLA-4 and 
PD-1 have similar negative effects on T cell immune func-
tion, and inhibition of these checkpoints can reactivate the 
immune system and result in immune-mediated antitumor 
activity [18]. The inhibitors of immune checkpoints (such as 
antibodies that block the CTLA-4 and PD-1/PD-L1 proteins) 
have led to durable responses in some patients with various 
tumor types [19–21]. For example, the breakthrough results 
of a phase III clinical trial (KEYNOTE-042) of patients with 
PD-L1-expressing, previously untreated, locally advanced 
or metastatic non-small-cell lung cancer showed that, com-
pared with chemotherapy, pembrolizumab (anti-PD-1) 
monotherapy led to better response rates and fewer side 
effects as a first-line treatment and could greatly improve 
overall survival (OS) [22]. However, some patients have no 
response to antitumor immunotherapy, or have tolerance and 
recurrence, leading to immunotherapy resistance and relapse 
[23–25]. Metabolic reprogramming is one of the important 
hallmarks of tumors and has been found to be associated 
with immunotherapy resistance [26–29]. Tumor cells con-
tinuously adjust their metabolism and nutrient acquisition to 
maintain sustained proliferation and thus alter the metabolic 
landscape of the TME [30]. The production of immunosup-
pressive metabolites in the TME can inhibit immune cell 

infiltration and other antitumor immune functions. There-
fore, based on the relationship between tumor metabolism 
and the immune response, combined therapies that target 
metabolic and immune checkpoints may enhance the effec-
tiveness of antitumor therapy and overcome resistance to 
immunotherapy [31].

This review covers the most recent literatures on the met-
abolic characteristics of tumor cells and immune cells in the 
TME. We also discuss the complex relationships between 
antitumor immunosuppression and metabolic crosstalk in the 
TME. The potential metabolic checkpoint inhibitors that can 
be used in combination with immune checkpoint inhibitors 
will help us find the next key breakthroughs for improving 
antitumor immunotherapy.

Cancer is a metabolic disease

A specific physical microenvironment is formed during 
tumor development, including hypoxia, low potential of 
hydrogen (pH), nutrient pressure and oxidative stress [32]. 
The altered metabolic landscape of the TME can induce the 
metabolic reprogramming of immune cells, which further 
interferes with immune surveillance and promotes cancer 
progression [33, 34]. Considering that immune cells have 
similar metabolic needs as tumor cells, here we first sum-
marize the characteristics of cancer metabolism. Cancer is a 
heterogeneous and metabolic disease, and the heterogeneity 
of tumor cells gives rise to their complex metabolic pat-
terns [33, 35]. Tumor cells predominantly use glycolysis for 
adenosine triphosphate (ATP) production. Glutamine and 
lipids are also essential for tumor cell proliferation [36].

Hypoxia

Balanced oxygen sensing and oxygen uptake are indispen-
sable for cells to maintain normal function [33]. In 1955, 
Thomlinson first proposed the concept of tumor hypoxia 
[37]. The following decades of clinical and experimen-
tal confirmation established that hypoxia is a widespread 
feature in many solid tumors [38]. The unlimited expan-
sion and abnormal vascular structure of tumor cells cause 
increased oxygen consumption and inadequate oxygen sup-
ply [39]. In response to hypoxia, hypoxia-inducible factors 
(HIFs) are triggered to allow cells to adapt to low-oxygen 
conditions [40]. As a transcriptional regulator, HIF can 
regulate the transcription of downstream target genes that 
mediate diverse cancer hallmarks, such as proliferation, 
differentiation, metabolism, angiogenesis, invasion and 
metastasis [41–45]. Considering that HIFs are an effec-
tive target in tumor therapy, many HIF inhibitors have 
been developed, and they can inhibit the expression and/or 
function of HIF-1α and HIF-2α through direct or indirect 
mechanisms [46, 47]. Among these inhibitors, everolimus 
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and temsirolimus have been used to treat metastatic renal 
cell carcinoma with significant effects. Another important 
HIF-1α inhibitor, digoxin, has mainly been used to treat 
heart failure in the past. Recently, some studies showed that 
digoxin can effectively inhibit the growth and metastasis of 
breast cancer and is a potential therapy for medulloblastoma 
[48, 49]. In addition, early clinical trials of other HIF inhibi-
tors, such as 2-methoxyestradiol (NCT00030095), 17-AAG 
(NCT00118248), PT2385 (NCT02293980), and EZN-2208 
(NCT01295697), are ongoing or have been completed [50, 
51].

Hypoxia is also a major cause of resistance to antitu-
mor treatments, such as radiotherapy, chemotherapy and 
immunotherapy [52–56]. In terms of immunotherapy, the 
hypoxic microenvironment can contribute to the immuno-
suppression phenotype and thereby promote anti-PD-L1 
therapy resistance [57]. Previous studies have shown that 
patients that co-expressed HIF-1α and PD-L1 had a high 
risk of tumor recurrence, metastasis and mortality [58, 
59]. Mechanically, PD-L1 is a direct target of HIF-1α, and 
blocking PD-L1 under hypoxic conditions can enhance T 
cell activation [60]. Thus, a combinational therapy block-
ing PD-L1 along with HIF-1α inhibitors may represent a 
novel approach to tumor immunotherapy. In addition, as 
the root cause of tumor recurrence, tumor-initiating stem 
cells can also enhance resistance to immunotherapy, such 
as ACT treatment [61]. The hypoxic microenvironment is 
conducive to the proliferation of these stem cells, which 
involve the same mechanisms as in embryonic stem cells, 
such as the HIF-ALKBH5-NANOG signaling pathway [62]. 
Moreover, hypoxia can inhibit oxygen-dependent ten–eleven 
translocation (TET) enzyme activity, which then increases 
epigenetic abnormality, such as hypermethylation, leading 
to the inhibition of tumor suppressor gene expression [63]. 
In conclusion, targeting tumor hypoxia or maintaining the 
oxygen supply in tumors may be an effective method for 
improving immunotherapy. A recent study first defined the 
molecular hallmarks of tumor hypoxia across cancer types, 
which influence tumor evolution and aggressivity; thus, the 
identification of these hallmarks may help to develop new 
therapies that target multiple hypoxia-related therapeutic 
tolerance and metastases [64].

Glycolysis

As the main source of cellular energy, glucose is oxidized 
in respiration through glycolysis and the tricarboxylic acid 
(TCA) cycle. Glucose is maintained in an equilibrium state 
in normal cells. When the oxygen content is normal, pyru-
vate enters the TCA cycle and undergoes oxidative phospho-
rylation (OXPHOS), which uses oxygen as the final recep-
tor of the respiratory electron-transport chain to generate 
energy; however, in the absence of oxygen, glucose converts 

pyruvate into lactate [65]. In malignant tumor cells, even in 
the case of sufficient oxygen content, glucose uptake and 
lactate accumulation are abnormally high, showing active 
glycolysis and decreased OXPHOS. This metabolic state is 
called aerobic glycolysis or the “Warburg effect” [66, 67]. 
Glycolysis provides a large amount of energy and intermedi-
ates for tumor metabolism [68]. The intermediates of glyco-
lysis, namely, glucose-6-phosphate (G-6-P), glyceraldehyde-
3-phosphate (G-3-P) and fructose-6-phosphate (F-6-P), can 
synthesize nicotinamide adenine dinucleotide phosphate 
(NADPH) via the pentose phosphate pathway (PPP), thereby 
reducing intracellular reactive oxygen species (ROS) lev-
els and increasing tumor dependence on glycolysis [66, 69, 
70]. Tumor glycolysis greatly influences the T cell-mediated 
antitumor response and the activity of tumor-infiltrating 
myeloid cells [71]. As the end product of glycolysis, lactate 
is delivered to the external environment of cancer cells by a 
monocarboxylic acid transporter (MCT). The accumulation 
of lactic acid in the TME disrupts T cell metabolism via 
blockade of lactate transport in T cells, thereby suppressing 
their proliferation and activation [72]. In addition, tumor-
derived lactate can also modulate and inhibit tumor necrosis 
factor (TNF) secretion by human monocytes by blocking 
glycolytic flux [73].

The Warburg effect represents the transformation of glu-
cose utilization from OXPHOS to glycolysis. The regulatory 
network of such energy metabolism changes is extremely 
complex and includes genetic changes, such as alterations in 
mitochondrial DNA, some oncogenes and tumor suppressors 
[74]. Activation of some oncogenes (such as RAS and MYC) 
and inactivation of several tumor suppressors (such as PTEN 
and p53) can abnormally regulate key metabolic enzymes, 
thereby promoting glycolysis and reducing OXPHOS 
[75–78]. These key metabolic enzymes for glycolysis, such 
as glucose transporter 1 (GLUT1), hexokinase (HK), phos-
phofructokinase (PFK) isoforms, phosphoglycerate kinase 
1 (PGK1) and pyruvate kinase (PK), are tumor markers and 
can significantly affect the development of tumors [79, 80]. 
The aggressive glycolytic rates lead to clear proliferative 
advantages in the process of carcinogenesis, which might 
contribute to other hallmarks of cancer, such as invasion 
and metastasis [81]. Thus, inhibition of glycolysis can effec-
tively control the proliferation of tumor cells and even play 
a role in killing tumor cells, and targeting glycolysis-related 
metabolic enzymes has become a focus of antitumor ther-
apy [82]. For example, lonidamine is an oral HK inhibitor 
with significant antitumor activity, especially when used in 
combination with chemotherapy, and it has been studied in 
preclinical and clinical trials. In addition, shikonin is a naph-
thoquinone derivative that inhibits the expression of PK, and 
it has entered a clinical phase II trial for treatment of bladder 
carcinoma [83]. Although interventions that target glycoly-
sis are being studied in several clinical trials, it should be 
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noted that since tumor cells and normal cells use several of 
the same glycolytic enzymes, targeting these enzymes may 
cause other clinical responses.

Glutaminolysis

Glutamine is a secondary essential nutrient for tumor cells 
besides glucose, and the uptake of glutamine by tumor cells 
is approximately 10 times than that of other amino acids 
[84]. As the most abundant free amino acid in the human 
body, glutamine can be catabolized to α-ketoglutarate 
(α-KG), which is an intermediate product of the TCA cycle. 
Specifically, glutamine enters cells through transporters, 
such as solute carrier family 1 member 5 (SLC1A5) and 
solute carrier family 7 member 5 (SLC7A5), and is then 
deaminated to produce glutamate and ammonia by glu-
taminase (GLS). Glutamate is then converted to α-KG by 
glutamate dehydrogenase (GDH) or transaminase [85]. 
Tumor cells rely on glutaminolysis to maintain biosynthesis, 
energy metabolism, and cellular homeostasis that are neces-
sary for rapid growth and proliferation [86]. In addition to 
transporting glutamine from the extracellular space, tumor 
cells can also obtain glutamine through the breakdown of 
macromolecules under nutrient-eficient conditions. Several 
oncogenes, such as MYC and KRAS, have been shown to 
mediate glutamine reprogramming, leading to tumor growth 
and survival [87–90]. Moreover, a recent study identified a 
homeostatic role for the tumor suppressor p53 in adaptation 
to glutamine starvation [91].

Due to the dependence of tumor cells on glutamine 
metabolism, the levels of glutamine are correlated with the 
sensitivity of tumors to antitumor therapies [92]. For exam-
ple, tumor cells can utilize glutamine to acquire a nitrogen 
source and synthesize nucleotides, thereby promoting effi-
cient DNA damage repair and ultimately leading to radio-
therapy resistance [93]. For immunotherapy, glutamine 
consumption by tumors can inhibit T cell proliferation, acti-
vation, and regulate the transition of  CD4+ T cells towards 
to inflammatory subtypes [94]. Thus, interventions targeting 
glutamine metabolism in tumor cells may affect the immune 
states of TME. GLS controls the first step of glutaminoly-
sis, and high GLS expression is closely related to various 
types of tumors, such as pancreatic cancer, breast cancer and 
lung cancer [95–97]. Therefore, GLS is considered to be a 
potential effective target for tumor treatment. CB-839 is a 
small-molecule allosteric inhibitor of GLS that is undergo-
ing clinical trials in different stages for various cancers [98]. 
CB-839 is a very well-tolerated drug and shows promising 
results in combination therapies with other drugs, such as 
MLN128 (mTOR inhibitor) and everolimus (mTOR inhibi-
tor) [99]. In addition to CB-839, a recent study reported that 
a new glutamine antagonist, JHU083, could overcome tumor 
immune evasion and enhance antitumor responses [100]. 

JHU083 treatment can enhance ACT immunotherapy, and 
combined treatment with JHU083 and anti-PD-1 antibody 
can significantly enhance the antitumor effects in different 
mouse models, which means that JHU083 has the potential 
to become a broad-spectrum antitumor inhibitor [101].

In addition to glutaminolysis, the high consumption of 
other amino acids, such as arginine and tryptophan, is also 
a metabolic feature of many tumor cells [102–104]. Thus, 
tumor cells can choose different metabolic reprogramming 
pathways to produce available ATP and biomacromolecules 
according to the concentration and content of external nutri-
ents, such as glucose, glutamine, serine, arginine and fatty 
acids [105]. From the perspective of systems biology and 
evolutionary biology, studies have quantitatively analyzed 
the use of amino acids for protein synthesis in tumor cells 
and showed that tumor cells evolve to minimize the bio-
synthetic energy cost of amino acids by optimizing gene 
expression [106].

De novo fatty acid synthesis

De novo synthesis of fatty acids often takes place during 
embryogenesis; in contrast, most adult cells preferentially 
utilize fatty acids in the circulatory system to synthesize 
functional lipids. However, proliferating cancer cells have 
increased fatty acid synthesis regardless of whether the fatty 
acids in the circulation are sufficient [107]. Thus, uncon-
trolled de novo fatty acid synthesis is an important meta-
bolic hallmark of cancer cells [108, 109]. The metabolite 
acetyl-coenzyme A (acetyl-CoA) is the required carbon 
source and synthetic precursor for de novo fatty acid syn-
thesis [110]. Tumor cells synthesize a large number of lipids 
to promote the formation of cell membranes and acceler-
ate cell division; the intermediates of lipid metabolism also 
positively regulate tumor proliferation and growth signal-
ing pathways [111]. De novo fatty acid synthesis in tumor 
cells also contributes to the production of lipids involved 
in the regulation of proto-oncogene activity, such as phos-
phatidylinositol, phosphatidylserine and lecithin, which are 
crucial for the activation and mediation of the proliferation 
and growth signaling pathways [112]. Many lipogenesis-
related enzymes, such as ATP-citrate lyase (ACL), acetyl-
CoA carboxylase (ACC), and fatty acid synthase (FAS), are 
highly expressed in many cancers [113, 114]. In tumor cells, 
most fatty acids are produced primarily by FAS catalysis; 
therefore, FAS is a novel antitumor drug target. Although 
blocking fatty acid metabolism can be used as a strategy for 
treating tumors, certain specific cancer types are resistant to 
fatty acid metabolism inhibition. The synthesis of unsatu-
rated fatty acids requires stearoyl-CoA desaturase (SCD), 
and previous studies showed that SCD is overexpressed 
in prostate cancer, liver cancer, kidney cancer and breast 
cancer. However, liver cancer and lung cancer cells are not 
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affected by SCD expression, and they can utilize alterna-
tive fatty acid desaturation pathways to promote membrane 
biosynthesis during proliferation [115], which can explain 
the tolerance of cancer to fatty acid metabolism inhibition.

Immune cell metabolism in the TME

The metabolic reprogramming of tumor cells is influenced 
by the complex and variable TME. Tumor cells and immune 
cells are exposed to a similar TME, and thus they share many 
metabolic features. The immune system contains a variety 

of immune cells, which are in a static state when the body is 
immunologically stable, and will be activated quickly when 
the body is stimulated by infection, inflammation or other 
external stimuli. Studies have shown that immune cells have 
significant differences in energy utilization between their 
quiescent and activated states [8]. T lymphocytes, especially 
 CD8+ cytotoxic T cells (CTLs), are considered the major 
effector cells involved in the antitumor immunity process; 
this process is associated with the presentation of tumor 
antigens by dendritic cells (DCs) [116]. However, T cell 
dysfunction-associated immune escape occurs because of 
different immune-suppressive cell populations in the TME, 

Fig. 1  Overview of the complex interactions between tumor cells and 
immune cells and the metabolic characteristics of these cells. Dur-
ing tumorigenesis and malignant progression, a complex intercellular 
interaction network is established between tumor-infiltrated immune 
cells and tumor cells that improves and maintains the immunosup-

pressive microenvironment and promotes immune escape. Black 
arrow recruit or promote, Pink T-line inhibit, Red up arrow upregu-
late, Red down arrow downregulate, TME tumor microenvironment, 
TAM tumor-associated macrophage, Treg regulatory T cell, DC den-
dritic cell, MDSC myeloid-derived suppressor cell
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such as TAMs, MDSCs and Tregs (Fig. 1). This review 
mainly focuses on these immune cell types to describe how 
metabolic alterations in these cells regulate tumor progres-
sion or dormancy.

Tumor‑infiltrating T cells

Although T cells are essential for immune defense, they fre-
quently have low activity in TME and are generally unable 
to control tumor development [117]. T cell dysfunction in 
the TME is mainly caused by T cell anergy, exhaustion and 
senescence (Fig. 1). T cells exhibit dynamic metabolic pat-
terns depending on their activation states. Naïve T cells main-
tain a quiescent state and only exhibit basic nutrient uptake 
and a minimal rate of glycolysis; they mainly generate energy 
through fatty acid oxidation (FAO) and OXPHOS [118]. 
Under normal circumstances, upon activation, these cells (dif-
ferentiating into effector T cells) exhibit increased dependence 
on glycolysis and glutaminolysis to meet the energy and bio-
synthesis demands required for their rapid proliferation and 
effector function. Activated T cells also increase OXPHOS 
and lipid synthesis but suppress FAO [119]. Mechanistically, 
TCR-mediated signaling pathways (e.g., the PI3K-AKT-
mTOR pathway) activate transcription factors, such as HIF-1α 
and c-Myc, which in turn promote the expression of glucose 
and amino acid transporters on the T cell surfaces and direct 
metabolic reprogramming to glycolysis and glutaminolysis 
[120]. However, in the TME, glucose and glutamine con-
sumption by tumors can inhibit and reduce glycolysis and 
glutaminolysis in effector T cells. Memory T cells undergo 
a metabolic pattern similar to that of naïve T cells, but they 
exhibit a higher aerobic respiration that facilitates their rapid 
activation after re-infection [121].

CD8+ cytolytic T lymphocytes have been shown to be key 
regulators of antitumor immunity.  CD8+ T cell expansion, 
activation and effector function strongly rely on glycolysis. 
Acylglycerol kinase (AGK) is a lipid metabolic enzyme that 
is indispensable for  CD8+ T cell metabolic programming, 
which occurs via the activation of PTEN and PI3K-mTOR 
signaling [122]. Similar to  CD8+ effector T cells,  CD4+ 
effector T cells (Th1, Th2, and Th17) also predominantly 
use aerobic glycolysis to generate energy, whereas CD4 
regulatory T cells are more reliant on FAO and OXPHOS 
[123]. In addition, as a nutritional sensor, mTOR signaling 
is extremely important for the differentiation of  CD4+ T cells 
into effector cells and the formation of memory  CD8+ T 
cells [124, 125]. Of course, there are distinct metabolic dif-
ferences between  CD8+ and  CD4+ T cells [126]. The TCR-
induced downstream signaling pathways in these effector 
T cell types are different [127].  CD8+ effector T cells are 
less dependent on GLUT1 and environmental oxygen lev-
els compared to  CD4+ effector T cells [128]. In addition, 
 CD8+ T cells exhibit a higher metabolic flexibility than their 

 CD4+ counterparts, which make  CD8+ T cells proliferate 
more rapidly, even under conditions of nutrition starvation 
[129]. For example,  CD8+ T cells have a higher glycolysis 
flux and do not rely solely on glucose, while in the glucose-
deficient TME, they can oxidize glutamine to support sur-
vival and effector function [130]. Furthermore, OXPHOS is 
a key metabolic pathway that distinguishes T cell subtypes; 
 CD4+ T cells have higher OXPHOS levels than their  CD8+ 
counterparts in melanoma and squamous cell carcinoma of 
the head and neck [131].

Tumor‑associated macrophages (TAMs)

TAMs are the most abundant component in the TME and 
are characterized by high heterogeneity and plasticity [132]. 
TAMs play key roles in accelerating the proliferation of 
cancer cells, promoting angiogenesis and the formation of 
an immunosuppressive TME (Fig. 1). Macrophages are a 
heterogeneous cell population with a wide range of activa-
tion states. Ideally, macrophages can be classified into two 
extreme types: classically activated (pro-inflammatory) M1 
macrophages and alternatively activated (anti-inflamma-
tory) M2 macrophages. Macrophages undergo polarization 
between M1 and M2 phenotypes depending on changes in the 
environmental stimuli. M1 macrophages arise from stimu-
lation with LPS and Th1 cytokine interferon-γ (IFN-γ). In 
contrast, Th2 cytokines, such as interleukin 4 (IL-4), IL-13, 
glucocorticoids and macrophage colony-stimulating factor 
(M-CSF), induce the polarization to M2 macrophages [133]. 
M1 and M2 macrophages play opposite roles in tumor devel-
opment by secreting diverse growth factors, chemokines and 
cytokines. The polarization of macrophages changes in differ-
ent stages of the tumor: TAMs tend towards M1-like pheno-
types during tumor initiation. M1 macrophages secrete high 
amounts of ROS, inflammatory cytokines (e.g., IL-1, IL-6 
and IL-12) and have a high antigen presentation rate; thus, 
they can promote an antitumor immune response [134]. Dur-
ing tumor development, TAMs are hijacked by tumor cells 
and are gradually reprogrammed into M2-like macrophages 
that express high levels of anti-inflammatory cytokines (e.g., 
IL-10 and transforming growth factor-β (TGF-β)), growth 
factors, and extracellular matrix degrading enzymes, which 
support tumor growth and immunosuppression [135].

Metabolic reprogramming is considered to be the mate-
rial foundation for the phenotypic transformation between 
M1-like macrophages and M2-like macrophages. The 
enhancement of nitric oxide (NO) synthesis is a characteris-
tic of pro-inflammatory M1-like macrophages, while tumor-
promoting M2-type macrophages show increased glutamine 
metabolism [136]. Compared to the M1 type, the M2 type 
has an enhanced ability to biosynthesize other molecules 
from glucose [137, 138]. The metabolic patterns of TAMs 
change according to the TME, and are often characterized 
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by enhanced glycolysis and fatty acid synthesis [139]. The 
glucose metabolism process of TAMs undergoes a similar 
change to that of tumor cells, that is, acquiring highly active 
aerobic glycolysis, which is related to the maintenance of 
angiogenic and metastatic functions [140]. Although in the 
TME of ischemia, hypoxia, and nutritional competition, 
TAMs have a large amount of lipid accumulation. Studies 
have shown that saturated free fatty acids (FFAs) activate 
macrophages via toll-like receptor 4 (TLR4) and downstream 
nuclear factor kappa B (NF-κB) and JNK pathways [141, 
142]. The inhibition of monoacylglycerol lipase (MGLL) is 
also a major cause of lipid accumulation in TAMs [143]. 
TAM-derived metabolites play a non-negligible role in tumor 
resistance to chemotherapy or other targeted therapies. Gem-
citabine is a first-line chemotherapy drug for the treatment 
of pancreatic ductal adenocarcinoma (PDA), and TAM abun-
dance is closely correlated with a worse response to therapy 
in PDA [144]. Recently, Halbrook et al. identified that TAMs 
release a spectrum of metabolites, including pyrimidine 
nucleosides, which are structurally similar to gemcitabine 
and may therefore reduce the efficacy of gemcitabine [145].

Regulatory T cells (Tregs)

Tregs are generally considered the brakes that restrict the 
function of effector T cells, thereby negatively regulating 
the pathological and physiological immune responses. Under 
normal circumstances, Tregs can inhibit excessive immune 
responses and prevent autoimmune diseases. However, Tregs 
can secrete a variety of inhibitory cytokines into the TME, 
which in turn suppresses antitumor immunity, allowing 
tumor cells to escape immune surveillance (Fig. 1) [146]. 
The migration of activated Tregs to inflammatory sites is an 
important prerequisite for their immune regulation. Glucoki-
nase (GCK)-dependent glycolysis contributes to the migra-
tion of Tregs through the PI3K-mTORC2-mediated pathway. 
In addition, mTORC1-dependent cholesterol biosynthesis 
is important for Treg proliferation and immunosuppressive 
functions [147, 148]. Researchers have previously tried to 
relieve immunosuppression by eliminating Tregs, but sur-
prisingly, the failed clinical trial showed that the immuno-
suppressive effect did not disappear, rather it was strength-
ened. A recent study addressed this question and found that 
Tregs are highly apoptotic in the TME, and these apoptotic 
Tregs mediate immunosuppression via an oxidative-stress-
associated mechanism [149]. Tregs can migrate to the tumor 
from throughout the body, resulting in a large number of 
Tregs being recruited to the TME. However, when the Tregs 
proliferate, their apoptosis rate also increases. Thus, there 
are many live and apoptotic Tregs in the tumor at the same 
time [150, 151]. Such apoptotic tumor-infiltrating Tregs are 
powerful immune suppressors, which can eliminate spon-
taneous and PD-L1 blockade-mediated T cell antitumor 

immune responses. Mechanistically, apoptotic Tregs release 
and convert large amounts of ATP to adenosine via CD39 
and CD73, thereby mediating immunosuppression [149]. 
The apoptosis of Tregs is usually associated with a weak 
antioxidant system and a high susceptibility to free reactive 
oxygen species in the TME. Therefore, the oxidative pathway 
can be used as a metabolic checkpoint to control the func-
tion of Tregs, improving the efficacy of PD-L1 checkpoint 
therapy. At present, the conventional therapeutic approaches 
that target Tregs still aim for Treg depletion and functional 
modulation; these approaches include small molecules and 
immune checkpoints inhibitors with Treg-depleting effects 
and agonistic antibodies that suppress Tregs [152]. How-
ever, considering the immunosuppressive effect of apoptotic 
Tregs, researchers will next develop an approach to prevent 
Tregs from traveling into the TME, thereby reducing or 
controlling immunosuppression and allowing more cancer 
patients to benefit from immunotherapy. In addition, a recent 
study proposed a method different from the Treg depletion 
treatments, that is, reprogramming tumor-infiltrating Tregs 
to create a local inflammatory autoimmune reaction, thereby 
increasing the sensitivity of tumors to immunotherapy [146].

Myeloid‑derived suppressor cells (MDSCs)

MDSCs represent a heterogeneous population of immature 
myeloid cells that are activated and expanded in response to 
a variety of growth factors and pro-inflammatory cytokines 
secreted by tumor cells. MDSCs have the ability to promote 
the formation of an immunosuppressive TME, which con-
tributes to tumor progression and immune escape (Fig. 1) 
[153]. MDSCs mainly consist of two subsets: polymorpho-
nuclear MDSCs (PMN-MDSCs) and monocytic MDSCs 
(M-MDSCs). PMN-MDSCs exert relatively modest immu-
nosuppressive activity via an antigen-specific mechanism, 
whereas M-MDSCs exhibit strong suppressive activity in 
a non-specific manner [154]. There is increased lipid accu-
mulation in tumors, and thus, the uptake of exogenous lipid 
promotes tumor-infiltrating MDSC metabolic reprogram-
ming from glycolysis to FAO, thereby forming a metabolic 
symbiotic relationship with tumor cells in the TME [155, 
156]. Mechanically, some tumor-derived cytokines, such as 
granulocyte-colony stimulating factor (G-CSF) and granu-
locyte–macrophage colony stimulating factor (GM-CSF), 
can lead to an increase in lipid transport receptors in tumor-
infiltrating MDSCs, resulting in increased lipid uptake [157]. 
The accumulation of lipids in MDSCs increases oxidative 
metabolism, shifting MDSCs towards an immunosuppres-
sive and anti-inflammatory phenotype [158]. MDSCs medi-
ate immunosuppression through several primary mecha-
nisms: (1) MDSCs increase the production of NO and ROS 
by expressing different enzymes, such as inducible nitric 
oxide synthase (iNOS) and NADPH oxidase, thereby 



180 F. Wei et al.

1 3

inhibiting T cell proliferation and activation; (2) MDSCs 
induce the depletion of L-arginine and L-cysteine, which 
are two key nutrients required for T cell proliferation and 
activation; and (3) MDSCs induce the expansion of Tregs 
and macrophage M2 polarization through the secretion of 
inhibitory cytokines, ultimately promoting and maintaining 
an immunosuppressive microenvironment [159]. Further-
more, a recent study reported that the uptake of arachidonic 
acid (AA) and the synthesis of prostaglandin E2 play impor-
tant roles in the acquisition of immunosuppressive activity 
by MDSCs [160]. Hypoxia in the TME and tumor glycolysis 
can also mediate the differentiation of functional MDSCs. 
Therefore, MDSCs are an important target in tumor immu-
notherapy, and the most promising approach is based on the 
promotion of myeloid differentiation.

Dendritic cells (DCs)

DCs are the most powerful professional APCs and play a 
key regulatory role in activating the immune response and 
maintaining autoimmune tolerance [161]. Cell metabolism 
has an important influence on the activation and function 
of DCs. DCs in a resting state acquire energy mainly by 
mitochondrial OXPHOS, while activated DCs rely on War-
burg metabolism to survive, at which point lactate produc-
tion increases and the TCA cycle decreases [162]. DCs are 
potent activators of the T cell immune response via the 
uptake, processing, and presentation antigens in the TME, 
which can effectively eliminate target tumor cells. How-
ever, many studies have found that the function of tumor-
infiltrating DCs usually changes, which in turn affects the 
antitumor immunity of T cells, leading to tumor immune 
escape (Fig. 1) [163]. Tumor-associated DCs produce ROS, 
which in turn induces endoplasmic reticulum (ER) stress 
and further activates the transcription factor X-box binding 
protein 1 (XBP1) to induce lipid synthesis. The accumula-
tion of lipids in DCs can reduce the antigen presentation 
ability, thereby inhibiting the antitumor response [164]. In 
addition to lipid accumulation, the increased decomposition 
of arginine and tryptophan in tumor-associated DCs can also 
alter the immune function of T cells [165]. Moreover, tumor 
cells also secrete several factors that act on DCs to induce 
the production of adenosine- and lactate-tolerant DCs.

Relationship between antitumor 
immunosuppression and metabolic 
crosstalk

The success of tumor immunotherapy reveals the critical 
role of the host immune system in the antitumor immune 
responses; however, the immunosuppressive TME is still the 
bottleneck restricting the success of tumor immunotherapy. 

Due to the common demand for nutrition, there is meta-
bolic competition between tumor cells and immune cells 
in the TME, which has been proved to be closely related to 
the occurrence of antitumor immunosuppression. The acti-
vation and effector function of immune cells are regulated 
by metabolites or waste from tumor cells through various 
mechanisms. Meanwhile, immune cell-derived metabolites 
or secretions can be utilized by tumor cells to promote their 
survival and proliferation.

Metabolic competition dampens antitumor 
immunity

Immune cells and tumor cells have similar metabolic pat-
terns. For example, they both preferentially utilize glycoly-
sis to obtain the energy required for rapid proliferation and 
acquire the raw materials for cytoskeleton formation, such 
as carbon and oxaloacetic acid [119, 166]. Due to the urgent 
need for cell proliferation and activation during the anti-
tumor process, immune cells need to compete with tumor 
cells for energy utilization [167], and the failure of immune 
cells in this competition is an important reason for antitu-
mor immunosuppression (Fig. 2). Given the critical role of 
tumor-infiltrating T cells in immunotherapy, we will focus 
on the competition of tumor cells and T cells for nutrition 
in the TME.

Glucose consumption by tumors can affect the metabolic 
reprogramming of T cells to directly dampen their antitu-
mor function and promote tumor progression; this process 

Fig. 2  Metabolic competition and tumor-derived metabolite-mediated 
immunosuppression in the tumor microenvironment. Tumor cells 
compete with immune cells to preferentially utilize glucose and glu-
tamine in the microenvironment. Tumor-derived metabolites, such as 
lactate, PGE2 and  K+, can inhibit T cell movement, effector function 
and TAM polarization and promote stemness, ultimately promoting 
immune escape
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involves many mechanisms and pathways [128, 168]. Using 
a mouse sarcoma model, researchers revealed that the large 
uptake of glucose by tumors in the TME inhibits calcium 
signaling and the activity of nutrient sensor mTOR in T 
cells, thereby restricting glycolysis and IFN-γ produc-
tion, inducing T cell exhaustion and immune escape [167]. 
Blockade antibodies against CTLA-4, PD-1 and PD-L1 
can weaken the glycolysis of tumor cells to restore the glu-
cose levels in the TME, thereby promoting glycolysis in 
T cells [167]. In addition, glucose consumption by tumor 
cells can metabolically restrict T cells via downregulating 
the expression of methyltransferase, which epigenetically 
inhibits the multifunctional cytokine production and T cell 
survival [169, 170]. Furthermore, the accelerating depletion 
of extracellular glucose by tumor cells suppresses glycolysis 
in T cells and the downstream metabolite phosphoenolpyru-
vate (PEP), which eventually inhibits the effector function 
of T cells. The overexpression of phosphoenolpyruvate 
carboxykinase 1 (PCK1) can promote gluconeogenesis and 
increase PEP production, thereby restoring TCR-induced 
 Ca2+ flow and the antitumor function. Therefore, manipu-
lating metabolism to improve immune function may be a 
new direction for future immunotherapy [171]. Although 
glucose is the preferred energy source for T cells, in the 
face of low oxygen and glucose conditions in the TME, T 
cells can also survive by generating energy through fatty 
acid oxidation [172].

In addition to glucose, glutamine, tryptophan and argi-
nine can also provide nutrition for immune cells [85]. Glu-
tamine is a key nutrient for cell proliferation; therefore, a 
lack of glutamine inhibits the activation and differentiation 
of T cells [94, 173]. By blocking the glutamine pathway 
in tumor cells, this amino acid content will increase in the 
TME, which can effectively enhance antitumor immune 
responses [94]. Tryptophan is another essential amino acid 
for the effector function of T cells. Tumor cells can inhibit T 
cell activity by depleting the tryptophan required for T cell 
survival or triggering Tregs to induce immunosuppression 
[174]. In addition to tumor cells, other immunosuppressive 
cells also compete with T cells for nutrients in the TME. For 
example, MDSCs increase sharply during tumorigenesis, 
leading to the upregulation of arginase 1 (ARG1), which 
reduces the extracellular levels of L-arginine, inhibiting 
T cell activation [175, 176]. The depletion of L-arginine 
also can cause G0-G1 cell cycle arrest in T cells [177]. Col-
lectively, these studies suggest that amino acid deficiency 
can lead to many immunosuppressive factors in the TME 
through various mechanisms, which together suppress anti-
tumor immune responses.

Tumor cell‑generated metabolites induce immune 
cell incompetence and immunotherapy resisitance

Tumor cells produce a variety of immunosuppressive 
metabolites that accelerate the dysfunction of immune cells 
(Fig. 2). Lactate, a metabolite of glycolysis, has multiple 
roles in the TME, including intercellular signaling and 
epigenetic reprogramming [178]. Tumor cells and tumor-
associated fibroblasts (CAFs) are the main sources of lactate 
production. Tumor-derived lactate inhibits the movement, 
cytotoxicity and effector function of T cells [179], and tar-
geting L-lactate dehydrogenase A (LDHA)-associated lactic 
acid can restore T cell infiltration [180]. In addition, high 
lactate concentrations disrupt the immune surveillance of 
NK cells and promote the survival of Tregs and a tolerogenic 
phenotype in DCs, thus creating an environment in which 
tumor cells are not attacked by the immune system [181]. 
Moreover, the lactate-rich TME also mediates macrophage 
polarization to promote tumor growth. For example, tumor-
derived lactate suppresses ATP6V0d2 expression in mac-
rophages by activating the mTOR-TFEB axis, resulting in 
macrophage reprogramming into a pro-tumoral phenotype 
[182]. Collectively, the above studies indicate that tumor 
derived-lactate inhibits the function of immune cells and 
lead to immune escape. In addition to lactate, tumor-derived 
lipid metabolites and amino acids also have profound effects 
on immune cells in the TME. Prostaglandin E2 (PGE2) is 
a metabolite of arachidonic acid and is in a class of highly 
active inflammatory mediators [183]. Tumor-derived PGE2 
can stimulate the secretion of CXCL1 and IL-6 and is nec-
essary for the development of suppressive TAMs [184]. In 
addition, the extracellular shedding of gangliosides from 
tumor cell membranes can recruit immunosuppressive 
MDSCs into the TME [185]. Moreover, tumor cells and 
CAFs promote immunosuppression by degrading trypto-
phan to kynurenine [186]. Kynurenine can act as a ligand 
to activate the aryl hydrocarbon receptor (AHR), leading to 
AHR-dependent Treg generation [187].

Many other tumor cell-generated metabolites can also 
induce immune cell incompetence, directly or indirectly. 
Due to insufficient nutrient supply, tumors usually con-
tain areas of cellular necrosis. Necrotic tumors release 
potassium ions into the TME, leading to the suppression 
of T cell effector function [188]. Surprisingly, a recent 
study revealed that elevated potassium also triggers stem 
cell-like properties of some antitumor T cells. Elevated 
potassium ions trigger functional caloric restriction and 
autophagy, which drive metabolic and epigenetic repro-
gramming of T cells, thereby limiting the T cell effector 
function and remaining stemness [189]. This mechanism 
may lead to novel therapeutic strategies that enhance can-
cer immunotherapies. T cell senescence can also induce 
a potent suppression function that aids in the immune 
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escape of tumors. Tumor-derived cAMP has been shown 
to directly induce T cell senescence and is also a key 
regulator for Treg cells to induce T cell senescence [190, 
191]. In summary, these studies have shown that tumor 
cells can not only deprive immune cells of nutrients in 
the TME, but they also produce metabolites that inhibit 
immune defense.

In general, tumor-derived metabolites can induce 
immune cell incompetence, which further affects the 
efficacy of immunotherapy and may cause resistance 
and recurrence [192, 193]. For example, high levels of 
lactate are closely related to ACT therapy resistance [71]. 
Tumor-derived lactate can induce the upregulation of 
PD-L1, thereby affecting the efficacy of immunotherapy 
[194]. Increased serum LDH is negatively related to the 
clinical efficacy of immunotherapy, so targeting LDH-
associated L-lactate is a potential method for overcom-
ing immunotherapy resistance [195]. High levels of fatty 
acids can prevent T cells from killing tumor cells so that 
the tumor can resist the attack of the immune system, 
thereby reducing the efficacy of antitumor drugs that 
rely on the functional immune system [196]. In addition, 
some tumor-derived amino acids (such as kynurenine) 
and nucleotides (such as adenosine) also have an inhibi-
tory effect on the efficacy of immunotherapy, and many 
inhibitors targeting these molecules can be used in com-
bination with PD-1 monoclonal antibodies to alleviate 
treatment resistance to a certain extent (which will be 
discussed in the following section).

Immune cell‑derived metabolites and secretions 
are complicit in tumor progression and metabolic 
reprogramming

Immune cell functions can be regulated by metabolites 
derived from tumors. In turn, some types of immuno-
suppressive cells can also directly or indirectly assist 
tumor progression and metastasis by secreting cytokines, 
growth factors and proteases. In melanoma, TAMs can 
produce arachidonic acid metabolites, TGF-β and TNF-α, 
thereby inducing tumor cells to secrete IL-8 and vascular 
endothelial growth factor-A (VEGF-A), promoting tumor 
angiogenesis [197]. TAM-secreted IL-6 can induce PGK1 
phosphorylation in tumor cells to enhance tumor cell gly-
colysis, ultimately promoting the malignant progression 
[198]. Moreover, TAM-secreted extracellular vesicle 
(EV)-packaged lncRNA can be taken up by cancer cancer 
cells to promote aerobic glycolysis [199].

A new method of cancer immunotherapy: 
immunometabolic checkpoints

Cancer immunotherapy refers to treatments that aim to 
kill or suppress tumors by activating and increasing the 
immune response (enhancement tumor immunotherapy) 
or restoring a lost antitumor immunity (normalization 
tumor immunotherapy) [200]. “Immune checkpoint” refers 
to the proteins on the surface of immune cells that are 
responsible for regulating the degree of immune cell acti-
vation, and the most widely studied immune checkpoints 
are CTLA-4 and PD-1/PD-L1 [17]. Although immune 
checkpoint therapy has led to a paradigm shift in cancer 
treatment, the majority of patients still have no response to 
such therapy, which is inseparably related to the metaboli-
cally suppressive TME [201]. Tumor cells always adjust 
their metabolism and nutrient acquisition to maintain sus-
tained proliferation and, thus, alter the metabolic land-
scape of the TME, which can impose metabolic stress on 
infiltrating immune cells and affect the presentation and 
recognition of antigens, resulting in immunosuppression 
and immune escape [30]. The limited therapeutic efficacy 
of immune checkpoints is presumably due to the insuffi-
cient metabolic reprogramming of the immunosuppressive 
TME and thus impacts the reinvigoration of the antitumor 
immune response [27, 193]. “Metabolic checkpoints” refer 
to the important enzymes or receptors in metabolic path-
ways, and their activity levels can affect immune cell func-
tion [100]. Therefore, the modulation of various metabolic 
functions of immune cells is another important branch of 
immunotherapy. Effective interventions that target dysreg-
ulated metabolic checkpoints may reprogram the immune 
status of the TME, regulate the activation and function of 
T cells, increase the immunogenicity of tumor cells, and 
synergistically enhance effectiveness of immune check-
point therapy.

IDO

Tumor cells metabolize tryptophan to kynurenine by 
indoleamine 2,3-dioxygenase (IDO). Tryptophan is 
important for T cells to exert an immune function, while 
kynurenine inhibits the antitumor immune response of T 
cells [202]. Therefore, IDO ultimately promotes immune 
escape as an immunomodulatory enzyme that can dampen 
the proliferation and function of effector T cells and form 
a positive feedback loop with Tregs [203, 204]. IDO is 
overexpressed in tumor cells and in a variety of inhibitory 
immune cells in the TME, including TAMs and MDSCs 
[193]. Highly expressed IDO can inhibit T cell activity 
through two mechanisms, direct inhibition and indirect 



183Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression…

1 3

inhibition (Fig. 3). IDO can directly deplete the trypto-
phan required for T cell survival and can also form a 
positive feedback regulation loop with Tregs to suppress 
the immune response [205]. Blocking IDO can reduce 
the number of Tregs and restore the function of T cells.

IDO inhibitors are new type of immunotherapeutic 
drug that blocks tryptophan metabolism in cancer cells, 
activates T cells, and improves the lethality of immune 
cells [206]. Currently, several IDO inhibitors are being 
combined with immunotherapy or chemotherapy in clini-
cal research, including epacadostat, indoximod, navoxi-
mod, EOS200271 and BMS-986205 [207]. As an oral 
drug, epacadostat has shown a very significant therapeu-
tic effect in early trials, especially in melanoma [208]. 
Indoximod is a small-molecule compound that directly 
reverses the IDO inhibition of immune cells, and its 
strong activity has also been observed in early clinical 
trials [209]. IDO inhibition combined with anti-PD-1 
antibodies was once considered to be the most promising 
treatment for cancers, and the early clinical data showed 
a high efficiency. Epacadostat was the first IDO inhibi-
tor to be combined with anti-PD-1 antibody to treat solid 
tumors in phase III clinical trials. Regrettably, Incyte 
and Merck have recently announced that epacadostat in 
combination with keytruda (PD-1 antibody) for phase III 
clinical trials of malignant melanoma had failed [210]. 
Compared to the anti-PD-1 antibody alone, the combina-
tion therapy has more side effects and does not prolong 
the patient’s progression-free survival (PFS) or estimated 
OS. Although this clinical trial has failed, IDO inhibitors 
combined with anti-PD-1 antibodies still provide a new 
treatment model for reversing immunotherapy resistance.

ACAT1

Cholesterol is the main component of membrane lipids and 
is closely related to the TCR clustering and the formation of 
immunological synapses [211]. As a key cholesterol esteri-
fication enzyme, acetyl-CoA acetyltransferase 1 (ACAT1) 
converts free cholesterol into cholesterol ester. Knocking out 
or inhibiting ACAT1 can increase the level of cholesterol 
in  CD8+ T cells membranes, thereby making them more 
sensitive to antigens and eventually improving the immune 
response (Fig. 3) [212, 213]. Treatment with the small-mol-
ecule ACAT1 inhibitor avasimibe in a mouse model of mela-
noma achieved a good antitumor effect [213]. Moreover, the 
combination of avasimibe and anti-PD-1 antibody effectively 
enhanced the antitumor immunotherapy. Most importantly, 
avasimibe underwent phase III clinical trials for the treat-
ment of cardiovascular and neurodegenerative diseases and 
showed no obvious side effects [214]. Therefore, avasimibe 
may be a good candidate for cancer immunotherapy. In addi-
tion, a recent study found that the high expression level of 
a cholesterol transesterase called sterol O-acyltransferase 1 
(SOAT1) is closely related to the poor prognosis of hepa-
tocellular carcinoma (HCC) patients [215]. As a SOAT1 
inhibitor, avasimibe could also significantly reduce the size 
of tumors in a patient-derived tumor xenograft (PDX) mouse 
model of HCC [215]. Therefore, avasimibe is expected to 
become a new drug for the precise treatment of HCC.

Adenosine signaling

Adenosine signaling is one of the major immunosuppressive 
mechanisms in the TME, and it is also a potential thera-
peutic target for tumor therapy (Fig. 3). Adenosine is an 
endogenous nucleoside distributed throughout human cells 
and can be used as an important intermediate for the syn-
thesis of ATP and adenine [27]. Adenosine is produced in 
many different types of tumors and is maintained at a high 
level in the TME, which is beneficial for tumor development 
and immune escape [216]. The ectonucleotidases CD39 and 
CD73 are key mediators of adenosine accumulation in the 
TME. Preclinical animal model studies have shown that 
both tumor cells and immune cells can express CD39 and 
CD73 to promote tumor immune escape, development and 
metastasis [217]. Thus, targeting CD39 and CD73 activity 
to reduce adenosine production can effectively block tumor 
growth and metastasis [218]. Several CD73 monoclonal 
antibodies are currently undergoing clinical trials, including 
MEDI9447, TJD5 and BMS-986179. In addition to antibod-
ies, small-molecule inhibitors have been developed, such 
as AB680 and hydrochlorothiazide derivatives. The clinical 
trials targeting CD73 in solid tumors primarily focus on the 

Fig. 3  Modulation of T cell-mediated antitumor immunity by target-
ing metabolic checkpoints. Targeted inhibition of metabolic check-
points, such as IDO, ACAT1, CD39, CD73 and A2A, can enhance 
the antitumor effects of T cells. IDO indoleamine 2,3-dioxygenase, 
ACAT1 acetyl-CoA acetyltransferase 1
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efficacy and safety of these inhibitors when used in combina-
tion with PD-(L)1 monoclonal antibody.

Tumor-derived adenosine can bind to any of four adeno-
sine receptors (adenosine receptor A1 (A1R), A2AR, A2BR, 
and A3R) on the surface of infiltrating immune cells, and 
of these receptors, A2AR and A2BR are usually associated 
with immunosuppression [219]. A2A is a G protein-cou-
pled receptor and is often expressed in many immune cells, 
including T cells, NK cells, TAMs, and DCs. Adenosine 
binds to A2AR and inhibits the ability of immune cells to 
attack tumors [220]; this occurs through two primary mecha-
nisms. First, adenosine can block the activation and function 
of antitumor immune cells. Second, adenosine increases the 
number of Tregs and contributes to Treg-mediated immuno-
suppression. Studies have shown that apoptotic Tregs release 
large amounts of ATP via CD39 and CD73 and convert them 
to adenosine, thereby mediating immunosuppression via the 
A2AR pathway [149]. Small-molecule oral A2AR antago-
nists that have been clinically tested include preladenant, 
CPI-444, AB928, AZD4635 and NIR178. Among these 
antagonists, CPI-444 has shown good clinical efficacy and 
tolerance, both as a monotherapy and in combination with 
PD-L1 antibody [221]. In general, A2AR antagonists can 
enhance the activity of immune cells and promote antitumor 
immunity, and their prospects in immunotherapy are prom-
ising. In addition to the above purinergic receptors selec-
tive for adenosine (P1 receptors), another type of purinergic 
receptor selective for ATP (P2 receptor) also plays a piv-
otal role in the tumor immune response [222]. P2 receptors 
contain two subfamilies: P2X ion channels and G-protein 
coupled P2Y receptors, among which the P2X7 recep-
tor (P2X7R) is highly regulated by ATP levels [223]. The 
expression and function of P2X7R can modulate the infil-
tration of immune cells and the concentration of ATP in the 
TME [224]. Some preclinical models indicated that P2X7R 
antagonists can inhibit tumor proliferation and metastasis. In 
addition, P2X7R blockade (A740003) increases the infiltra-
tion of  CD4+ T effector cells and reduces the expression of 
CD39 and CD73, thereby inhibiting immunosuppression in 
the TME [225].

Microbial metabolites

The intestine is the largest immune organ in our body and 
is the home of 70% of immune lymphocytes [226]. There-
fore, there is a direct relationship between the intestinal flora 
and the immune system. The intestinal flora of patients with 
malignant tumors is often dysregulated, which can affect 
intestinal homeostasis, intestinal metabolism, immune func-
tion and promote cancer development [227]. Many studies 
have found that the intestinal microbiota is closely associated 
with the effectiveness of antitumor immunosurveillance. In 
2015, two studies first indicated that the composition of 

intestinal microbes in cancer patients influenced the effec-
tiveness of immunotherapy targeting CTLA-4 and PD-L1 
checkpoints. The antitumor immune responses following 
CTLA-4 blockade are associated with B. thetaiotaomicron 
and B. fragilis in mice and patients. Tumors in germ-free 
mice have little response to CTLA-4 blockade, which can 
be overcome by the transplantation of B. fragilis [228]. 
Another study found that Bifidobacterium is beneficial for 
the therapeutic effects of antibodies targeting PD-L1 [229]. 
Recently, three more studies have focused on the key role 
of intestinal microbes in immunotherapy. Researchers have 
discovered that Akkermansia muciniphila can promote the 
efficacy of PD-1-based immunotherapy in lung cancer and 
kidney cancer [230]. Another study in the same journal con-
ducted oral and intestinal microbial analysis of melanoma 
patients treated with PD-1 inhibitors and found that Rumi-
nococcaceae is involved in the immunotherapy responses 
[231]. In addition, Bifidobacterium longum, Collinsellaaero-
faciens, and Enterococcus faecium are more abundant in 
patients who respond to anti-PD-1-based immunotherapy 
[232]. Therefore, the composition of intestinal microbiota 
affects the therapeutic activity of immune checkpoint inhibi-
tors targeting CTLA-4 or PD-1/PD-L1, and the regulation of 
the microbiome is expected to improve the efficacy of tumor 
immunotherapy in the future.

Conclusions and perspectives

Antitumor immunotherapy provides possibilities for the 
clinical treatment of cancer, but a considerable number of 
patients do not respond to or become resistant to these treat-
ments; thus, it is necessary to fully understand the mecha-
nisms of immune escape in the TME. Cancer is a metabolic 
disease in which nutrients and metabolic signaling changes 
can affect the fate and function of tumor cells and immune 
cells. In addition to macromolecules such as glucose, amino 
acids and lipids, there are many vitamins and trace metals 
in the TME, including vitamin C, zinc and copper. These 
micronutrients may be cofactors of various metabolic 
enzymes and may also form complexes with intracellular 
proteins to participate in metabolic cycles and exert sig-
nal transduction functions. However, the function of these 
cofactors in tumors and immune cells remains unclear and 
requires further research. Regulating metabolic reprogram-
ming to promote the immune response has gradually become 
the frontier of current antitumor immunotherapy. Although 
scientists have achieved encouraging results in the field of 
immunometabolism in recent years, there is still a great deal 
of work to be done to conquer tumors. First, the composi-
tion of the TME is extremely complex and dynamic, and 
the metabolic landscape and relationships (cooperativity and 
competition) within this microenvironment remain poorly 
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understood. Few metabolic pathways are confined to tumor 
cells, which increases the potential of toxic effects on nor-
mal cells. Therefore, it is of great significance to develop 
metabolic inhibitors that can preserve T cell function and 
have high specificity for tumor cells. Moreover, targeting 
metabolism-based immunotherapy aims to reprogram the 
immunosuppressive TME and thus reinvigorate antitumor 
immunity. In light of the high metabolic adaptability of 
tumor cells, when any metabolic pathways encounter obsta-
cles, the tumor cells will automatically switch or activate 
other pathways to escape stress damage. Thus, tumor meta-
bolic regulation should jointly block or regulate multiple 
metabolic pathways to maximize synergy, which requires a 
comprehensive understanding of the metabolic mechanisms 
of immune evasion and the metabolic needs of immune cells 
in the future research.
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