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Abstract
This review is focused on recent data on the role of proline (Pro) in collagen biosynthesis and cellular metabolism. It seems 
obvious that one of the main substrates for collagen biosynthesis Pro is required to form collagen molecule. The question 
raised in this review is whether the Pro for collagen biosynthesis is synthesized “de novo”, comes directly from degraded 
proteins or it is converted from other amino acids. Recent data provided evidence that extracellular Pro (added to culture 
medium) had significant, but relatively little impact on collagen biosynthesis in fibroblasts (the main collagen synthesized 
cells) cultured in the presence of glutamine (Gln). However, extracellular Pro drastically increased collagen biosynthesis 
in the cells cultured in Gln-free medium. It suggests that Pro availability determines the rate of collagen biosynthesis and 
demand for Pro in fibroblasts is predominantly met by conversion from Gln. The potential mechanism of this process as 
well as possible implication of this knowledge in pharmacotherapy of connective tissue diseases is discussed in this review.
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Transcriptional regulation of collagen 
biosynthesis

Gene expression and protein synthesis are regulated in 
several stages: at the DNA level by changing the degree of 
chromatin packing, during transcription regulated by spe-
cific transcription factors, at posttranscriptional level due to 
modification of mRNA stability, and also during translation, 
the initiation of which is a controlled process [1]. The post-
translational modification stages are also of great importance 
for the efficiency of collagen biosynthesis, because deregu-
lation of this process leads to the formation of abnormal 
collagen molecules that may undergo intracellular degra-
dation [2]. For instance ascorbic acid is necessary for the 
hydroxylation of prolyl and lysyl residues, whereas lysyl 

oxidase requires the presence of Cu2+ ions [3, 4]. Changes 
in the intensity of collagen biosynthesis are the result of the 
regulation of the mRNA level by ascorbic acid [5]. Copper 
deficiency impairs the collagen cross-linking process, with-
out affecting the value of biosynthesis [6]. Growth factors 
in a differentiated way affect the biosynthesis of collagen. 
Epidermal growth factor (EGF) impairs the transcription of 
collagen genes and reduces the stability of mRNA and stim-
ulates the proteolysis of collagen by increasing the expres-
sion of collagenase [7]. Inhibitory effects at the transcription 
level are also manifested by fibroblast growth factor (bFGF), 
while the effect of platelet derived growth factor (PDGF) 
activity is dependent on the isoform of this dimeric protein 
[8, 9]. Strong inducers of collagen biosynthesis are insulin-
like growth factor-I (IGF-I) and transforming growth factor 
β1 (TGF-β1) [10]. TGF-β1 stimulates the transcription of 
not only collagen but also other cellular proteins, and IGF-I 
has a greater preference for collagen in this respect [5, 10, 
11]. Basic mediators of inflammation, i.e., interleukin 1 and 
tumor necrosis factor-α (TNF-α), as well as interferon-γ, 
impair collagen biosynthesis [12, 13]. This action, at least 
to some extent is mediated by the p50/p65 heterodimer of 
the NF-κB transcription factor, inhibiting the transcription 
of the genes of both collagen-type I-forming chains [12, 14, 
15]. Inhibition of collagen biosynthesis by NF-κB activation 
is a common mechanism of action for both physical agents 
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and chemical substances [16, 17]. Biosynthesis of collagen 
is also subject to hormonal regulation. Insulin acting via 
IGF-IR, progesterone and androgens stimulate this process, 
whereas the opposite effect is exerted by glucocorticoids 
[10, 18–21].

The interaction of collagen with integrin receptors may 
also contribute to changes in the expression of this protein. 
A signal from the α1β1 receptor inhibits collagen biosyn-
thesis based on the principle of negative feedback [22]. The 
α2β1 receptor plays an opposite role, stimulating transcrip-
tion of the type I collagen gene [23].

Sources of proline for collagen biosynthesis

Proline constitutes about 10% of total amino acids (AAs) 
in collagen, which accounts for one-third of proteins in 
mammals [24]. As the most abundant protein in the body, 
collagen is essential to maintain the proper structure and 
strength of connective tissue, such as bones, skin, cartilage, 
and blood vessels. The support of proline is required for 
biosynthesis of collagen as well as other proline-containing 
proteins. Therefore, regulation of proline availability for 
collagen biosynthesis is critical to maintain tissue integrity 
as for instance during wound healing [25]. In some recent 
studies it was found that endogenous synthesis of proline 
is insufficient for maximal growth and collagen production 
[26]. Proline handling is at least partially dependent on the 
route of administration; the small intestine takes up consid-
erable loads of dietary proline [27]. It was well established 
that supply of Pro is essential for the biosynthesis of col-
lagen. The knowledge comes from the experiment showing 
that proline analogues suppress collagen expression. The 
mechanism of proline analogues competition with Pro in 
collagen biosynthesis is well recognized [28]. However, 
impaired ability of fibroblasts to synthesize Pro was also 

shown in the cells incubated in medium without glutamine 
(Gln) [29, 30]. Mammals can synthesize proline from argi-
nine, glutamine and glutamate and the process is regulated 
by glucocorticoids [31]. However, an addition of exogenous 
Pro reversed this effect presumably as a result of competition 
mechanism [32].

Recent clinical and preclinical data suggested that argi-
nine (Arg) and ornithine (Orn) supplementation are the 
most effective in increasing collagen deposition. However, 
whether this was accomplished by conversion to proline has 
not been confirmed [25, 33]. It is known that glutamine plays 
a key role in protein metabolism. Therefore, glutamine is 
considered as a regulatory amino acid of proline availability 
for collagen biosynthesis [34].

Sources of free proline for cellular 
metabolism

Pro is formed from glutamate (Glu) which is produced from 
Gln. The main source of Gln in the body is Glu in muscle 
that is converted to Gln by glutamine synthase. The enzyme 
is widely distributed in tissues and was reported also in 
fibroblasts [35]. Glu metabolism is catalyzed by 1-pyrroline-
5-carboxylate (P5C) synthase and P5C reductase with P5C 
as an intermediate product that links the citric acid and urea 
cycle (Fig. 1).

P5C is formed from both Glu and Pro, due to intercon-
vertibility of this amino acid [36, 37]. P5C can be converted 
back to proline via P5C reductase in the presence NADPH 
in a reaction that is favored when collagen production is 
increased. This reaction is coupled to pentose phosphate 
pathway contributing to synthesis of purine nucleotides for 
DNA biosynthesis [38]. Alternatively, P5C is interchange-
able with a number of amino acids and metabolites through 
a variety of transformations linking the citric acid and urea 

Fig. 1   Amino acid interconversions and functional links between the tricarboxylic acid and urea cycles in collagen biosynthesis
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cycles. Arg and Orn play a particular role in interconver-
sion of proline, P5C and glutamate [39]. Arg is converted 
to Orn through the irreversible final step in the urea cycle. 
Subsequently, Orn can be converted to P5C by the action 
of ornithine aminotransferase (OAT). The action of OAT 
is readily reversible and is dependent on the availability of 
both substrate and products. Thus, when intracellular Orn 
concentration is low, the pathway is favored toward Orn. 
Conversely, increased Orn concentration promotes produc-
tion of P5C for Pro, Glu or Gln biosynthesis [40]. The pro-
duction of proline from Orn mediates a transfer of reducing 
potential from cytosolic NADPH to mitochondrial NAD+.

“De novo” proline synthesis for collagen biosynthesis is 
unfavorable energetically. When Pro is produced from Glu 
two molecules of NADPH are oxidized, one in mitochondria 
and one in cytosol. The oxidation requires 6 mol of ATP per 
mol of product only in mammals [26]. The synthesis of Pro 
from Gln requires 8 mol of ATP/mol of product, Arg to Pro 
(in all animals): 2.5 mol/mol product [26]. The conversion 
of Glu to Orn also requires ATP which is produced dur-
ing transfer of reducing potential within mitochondria from 
NADPH to NAD+ [32] (Fig. 1). Therefore, in cancer cells 
that frequently undergo Gln starvation arginine transporter 
expression as well as intracellular arginine level are signifi-
cantly increased [30] presumably as an alternative source 
of proline to support growth and protein synthesis. The data 
were corroborated by studies of Wu et al. [41] showing die-
tary requirement of proline, arginine and glutamate for daily 
growth rate in young pigs.

Another source of Pro is imidodipeptides hydrolyzed by 
prolidase [E.C.3.4.13.9]. This enzyme plays an important 
role for supplying proline for collagen biosynthesis [42]. 
However, the marginal role of prolidase for proline support 
was observed in the specific cellular culture conditions in 
Gln-free medium [29].

Function of proline in cellular metabolism

Pro as a product of prolidase-catalyzed reaction has an 
impact on the action of transcription factors. In fact Pro was 
shown as a HIF-1α-inducing agent in colon cancer RKO cell 
line [43]. Pro was found to inhibit hydroxylation of specific 
proline residue in the oxygen-dependent degradation (ODD) 
domain of HIF-1α, thus preventing targeting of HIF-1α for 
ubiquitination and proteasomal degradation [44]. Since RKO 
cells utilize proline by proline oxidase (POX) [45], HIF-1α 
expression is low in the cells. On the other hand in fibro-
blasts (the cells showing low expression of POX) the expres-
sion of HIF-1α is relatively high. It seems that, upregula-
tion of HIF-1α does not depend on the effect of metabolites 
of Pro. This process is upregulated in the absence of Gln 
[46] that in fibroblasts is converted to Glu and α-KG. It was 

found that Gln deprivation contributed to decrease in the 
concentration of α-KG [47, 48] and the cells become more 
susceptible to the stabilizing effect of proline on HIF-1α, as 
shown on Fig. 2.

However, we found that Pro analogues downregulated 
HIF-1α expression in fibroblasts and prevented its upregu-
lation by proline addition. Of special interest is observation 
that, proline analogues did not affect Pro-dependent upregu-
lation of collagen expression in fibroblasts. The data suggest 
that this process is not dependent on HIF-1 [29].

Since proline upregulates HIF-1α transcription factor 
that induces expression of several pro-survival genes, it has 
been speculated that increase in proline degradation by POX 
could contribute to pro-apoptotic phenotype of cells. In fact 
p53 is inducer of POX expression [45, 49]. The mechanism 
for regulation of POX by p53 was found in the POX pro-
moter, containing a p53-response element [50]. However, in 
fibroblasts proline did not affect POX expression. Moreover, 
increased expression of p53 did not affect cell viability sug-
gesting that apoptosis is not induced in these cells.

Fig. 2   The role of exogenous proline in regulation of collagen bio-
synthesis and HIF-1α expression in cultured fibroblasts. Glutamine 
of culture medium is converted in the cells into glutamate and 
α-ketoglutarate, intermediate of tricarboxylic acid cycle. Glutamate 
is also converted to proline, substrate for collagen biosynthesis that 
maintain high collagen biosynthesis rate. Exogenous proline slightly 
contributes to increase in collagen production. Glutamine depriva-
tion decreases cellular proline content resulting in downregulation of 
collagen biosynthesis. In this condition, exogenous proline restores 
intracellular proline pool, providing substrate for collagen biosynthe-
sis. Due to low expression of proline oxidase (POX) in fibroblasts the 
conversion of proline into glutamate is marginal. Moreover, proline-
dependent regulation of HIF-1α transcriptional activity is more pro-
nounced in the absence of glutamine since α-ketoglutarate induces 
HIF-1α hydroxylation and its ubiquitin-dependent degradation. In 
the absence of glutamine, α-ketoglutarate production is impaired, 
contributing to upregulation of HIF-1α transcriptional activity. In the 
presence of glutamine, proline-induced HIF-1α transcriptional activ-
ity is attenuated. CDP collagen degradation products, X-Pro imidodi-
peptides, POX proline oxidase, HIF-1α hypoxia inducible factor-1α,  
potential targets of collagen biosynthesis regulation
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Of interest is that the IGF-I signaling is involved in Pro-
dependent stimulation of intracellular collagen expression 
[29]. IGF-I has well established potency to stimulate col-
lagen biosynthesis [18, 51]. The mechanism of this process 
was found at the level of prolidase activity, the enzyme 
supporting proline for protein biosynthesis [42]. Moreover, 
products of prolidase catalytic activity, Pro and hydroxy-
proline (HyPro) induced increase in the amount of TGF 
β1 receptors. Therefore, it has been suggested that it may 
act as an interface between mTOR and phospho-mTOR in 
regulation of numerous TGF β receptor-dependent functions, 
including regulation of collagen biosynthesis [52].

Role of proline and glutamine in regulation 
of collagen biosynthesis

Gln induces collagen gene transcription [53]. Culture 
medium (DMEM) contains high concentration of Gln 
(4 mM) that is proline convertible amino acid supporting 
intracellular pool of Pro. It was found, that in fibroblasts 
Gln deprivation diminished collagen expression, while Pro 
counteracted this effect. The role of proline in this process 
cannot be linked to its conversion to Gln because activity 
of POX in fibroblasts is very low. Therefore, Gln depriva-
tion impairs Pro biosynthesis contributing to relative proline 
deficiency. Of interest is that it was partly normalized by Pro 
supplementation [29]. In fibroblasts cultured in glutamine-
free medium (showing very low expression of collagen) Pro 
induced collagen expression by about twofold, while in the 
medium only by about 30%, compared to control. It suggests 
that shortage of Gln favors exogenous Pro as a substrate for 
collagen biosynthesis. Nevertheless, only small amount of 
synthesized collagen is secreted outside the cell. However, in 
fibroblasts cultured in Gln-supplemented medium (showing 
high expression of collagen) exogenous Pro upregulated col-
lagen expression only by 30% without significant secretion 
of this protein into medium [29]. It suggests that exogenous 
Pro has lower than Gln influence on collagen biosynthesis. 
Recently we found that Pro deficiency resulting from a lack 
of Gln may be partly supplemented by recovery of Pro from 
imidodipeptides, intermediate products of protein degrada-
tion [54]. Thus, it can be concluded that fibroblasts prefer 
exogenous Gln, as an intermediate of proline for effective 
collagen biosynthesis. The data are supported by recent stud-
ies showing that glutamine is indispensable for conversion 
into Pro (but not into α-ketoglutarate) to support collagen 
protein biosynthesis [55]. Moreover, it was found that intra-
cellular concentration of Pro was drastically decreased after 
Gln withdrawal [30].

Although several lines of evidence suggest that Pro is 
conditionally essential amino acid that must be present in 
diet to support collagen biosynthesis, recent studies provided 

evidence that glycine is as well as important in diet to sat-
isfy the demands for the process [56]. However, it has been 
found that milimolar concentration of glycine is required to 
enhance type II collagen in bovine chondrocytes, while Pro 
and lysine evoked the effect at physiological concentrations 
[56].

Some studies considered proline-dependent regulation of 
NF-κB. It was documented that increase in prolidase activity 
contributed to increase in NF-κB p65 expression [42]. This 
transcription factor is important for collagen type I biosyn-
thesis, since transcription of genes coding type I collagen 
subunits is inhibited by NF-κB [12, 14, 57]. However, extra-
cellular Pro did not affect expression of NF-κB in fibroblasts.

It has been found that exogenous glutamine induced col-
lagen biosynthesis [58, 59]. However, in our recent data 
we showed that collagen biosynthesis was not suppressed 
completely in fibroblasts growing in Gln-deprived medium. 
Therefore, it seems that the effect can be associated with 
synthesis of Gln/Glu and recycling of Pro by prolidase. Pro 
is converted in mitochondria by POX to P5C and further 
to Glu, Orn, or again back to proline. The proline cycle 
is considered as a potential target for cancer therapy [34, 
60], while metabolism of glutamine in the new therapeutic 
approach to the treatment of liver fibrosis [61].

POX is expressed ubiquitously in the body, but POX 
activity was found previously to be undetectable in fibro-
blasts [62]. In our recent studies we noticed trace expression 
of POX in these cells, suggesting that proline in fibroblasts 
is mainly consumed for protein biosynthesis [29]. However, 
it seems that in standard conditions, extracellular proline 
has little impact on upregulation of collagen biosynthesis.

The results of these studies allow to conclude that avail-
ability of glutamine, as a substrate for proline biosynthesis 
represent limiting factor for utilization of exogenous proline 
for collagen biosynthesis [29]. The conclusion is supported 
by other authors, showing that an addition of proline has 
failed to increase collagen biosynthesis in fibroblasts and 
other cells [58, 63–65].

Prolidase in pathobiochemistry 
and experimental pharmacotherapy 
of connective tissue diseases

Prolidase is the only enzyme that hydrolyzes imidodipep-
tides with C-terminal proline. The role of imidodipeptides-
derived proline for collagen resynthesis is well established, 
particulary in respect to the action of some drugs. For 
instance, captopril is structurally similar to imidodipeptides 
having l-proline as the C-terminal position. As a competitive 
inhibitor of prolidase interferes with collagen metabolism 
[66–69]. During therapy with this drug dermatological man-
ifestations are observed. However, treatment of patients with 
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enalaprilat, metabolite of captopril gave a lower incidence of 
dermatological symptoms than those with captopril [70, 71].

In respect to other drugs it was found, that non-steroid 
antiinflammatory drugs, doxycycline, anthracyclines and 
plant-derived compound [(Z)-8,9-epoxyheptadeca-1,11,14-
triene] coordinately inhibited the metabolism of collagen 
and prolidase activity in fibroblasts [72–75].

In contrast, butyrate, hyaluronic acid, hydralazine, oxy-
thiamine and flavonoid glycosides increased collagen bio-
synthesis in cultured human skin fibroblasts that resulted 
from activation of prolidase activity [76–80].

The functional significance of the correlation between 
prolidase activity and collagen biosynthesis was found in 
several diseases. For instance an increased activity of liver 
prolidase was found during the fibrotic process [81]. There 
was also a positive correlation between prolidase activity 
and fibrosis in lung [82]. A significant increase in serum pro-
lidase activity was observed in patients with hypertension, 
which was interpreted as evidence of increased collagen deg-
radation with a higher collagen turnover rate in hypertension 
tissues, contributing to left ventricular hypertrophy [83].

On the other hand the deficiency of proline in the tis-
sues caused abnormal collagen production and negatively 
affected clinical healing. Consequently, the ability to form 
normal granulation tissue was impaired [84]. The most seri-
ous disease is prolidase deficiency (PD). The symptoms of 
the disease are: chronic leg ulcers and recurrent infections, 
as a result of disturbances in biosynthesis of immunoglobu-
lins and C1q, systemic accumulation of iminodipeptides 
with C-terminal proline or hydroxyproline, which subse-
quently get excreted in massive amounts in the urine, deplet-
ing the total pool of proline [85]. It has been speculated that 
the defect in the re-utilization pathway of proline leads to a 
relative deficiency of proline in the tissues, which may cause 
abnormal collagen production and negatively affect healing.

In many cases, congenital prolidase deficiency is also 
accompanied by mental retardation. It may result from lower 
levels of l-proline in the CNS. It is known that l-proline 
plays an important role in stimulating glutamatergic neu-
rons. Probably the biggest role in this process could play 
prolidase of erythrocytes. It is known that imidodipeptides 
(e.g., glicylo-l-proline) demonstrate the ability to penetrate 
the erythrocytes, where under the influence of prolidase are 
degraded to free amino acids. Due to the fact that erythro-
cytes do not utilize amino acids to their own life processes, 
can be assumed that with the help of prolidase they take an 
active part in the secretion of amino acids derived from imi-
dodipeptides. Prolidase deficiency reduces the concentration 
of l-proline in the circulation, which may interfere with the 
above-mentioned function of glutamatergic neurons.

There is no effective treatment for PD. Many experimen-
tal approaches have been made without success. Oral sup-
plementation of l-proline has been given to patients with 

minor results [86]. The topical application of a mixture of 
proline and glycine has given better result [87–89], however, 
some authors reported no benefit at all [88, 90].

Prolidase is not the only enzyme that recovers pro-
line from imidodipeptides. Another one is prolinase 
(E.C.3.4.13.8), termed “human cytosolic non-specific 
dipeptidase” that recovers proline from Pro-X dipeptides. 
The activity of prolinase and prolidase is different in some 
diseases [91, 92].

The data suggest that external application of proline alone 
or in form of imidodipeptides is not effective to achieve pro-
line-dependent function. It seems that intracellular process 
of proline and collagen metabolism plays critical role in 
maintaining cellular homeostasis. It has been demonstrated 
in several models of drug-treated fibroblasts.

The mechanism of drugs-dependent regulation of colla-
gen biosynthesis and prolidase activity was found at the level 
insulin-like growth factor-I receptor (IGF-IR), β1-integrin 
receptor [93, 94] and NF-κB signaling [78, 95].

While stimulation of IGF-IR and β1-integrin receptor 
induced collagen biosynthesis and prolidase activity, the 
NF-κB was inhibitory for these processes. In fact NF-κB is 
transcriptional inhibitor of genes for type I collagen subu-
nits [12]. Some experiments revealed indirect correlation 
between collagen biosynthesis and prolidase activity and 
expression. For instance, studies on the mechanism of inhi-
bition of collagen biosynthesis by camptothecin showed 
that underlying process is stimulation of NF-κB-dependent 
signaling pathway. However, in the course of experiment 
we observed increased prolidase activity and expression of 
β1-integrin receptor that activates NF-κB [95].

Similar mechanism was observed for the inhibitory effect 
of scutellarin (Scut) on collagen biosynthesis [17]. This fla-
vonoid is a component of the currently examined anti-infarct 
prodrugs. It was found that a SCUT-dependent decrease in 
collagen biosynthesis in cultured human skin fibroblasts 
was accompanied by an increase in prolidase activity and 
resulted from activation of NF-κB, which is responsible for 
downregulation of collagen gene expression.

It cannot be excluded that critical role in proline-depend-
ent functions play glycolysis. In fact, phosphoenolpyruvate 
(PEP) is known as a prolidase activity inhibitor “in vitro” 
[67]. It was found that PEP-dependent decrease in proli-
dase activity and expression was accompanied by parallel 
decrease in collagen biosynthesis [96].

Conclusion

Deregulation of proline metabolism is underlying mecha-
nism of some connective tissue diseases. Proline plays an 
important role in regulation of gene expression, transcrip-
tion factors, mTOR cell signaling, cellular redox reactions, 
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synthesis of ornithine, arginine, polyamines, glutamate and 
collagen. However, it is only single player in complex regu-
latory machinery of cellular metabolism that determine the 
source of Pro availability for collagen biosynthesis depend-
ently on the metabolic context. Since Gln shortage is a very 
rare phenomenon therefore supplementation of proline to 
counteract collagen metabolism defects has minor effective-
ness. More study has to be done to understand the mecha-
nism of proline-dependent functions.
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