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Abstract
Stem cells can differentiate to diverse cell types in our body, and they hold great promises in both basic research and clinical 
therapies. For specific stem cell types, distinctive nutritional and signaling components are required to maintain the pro-
liferation capacity and differentiation potential in cell culture. Various vitamins play essential roles in stem cell culture to 
modulate cell survival, proliferation and differentiation. Besides their common nutritional functions, specific vitamins are 
recently shown to modulate signal transduction and epigenetics. In this article, we will first review classical vitamin functions 
in both somatic and stem cell cultures. We will then focus on how stem cells could be modulated by vitamins beyond their 
nutritional roles. We believe that a better understanding of vitamin functions will significantly benefit stem cell research, 
and help realize their potentials in regenerative medicine.
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Introduction

Vitamins are natural organic compounds that play essen-
tial roles in normal physiological functions in minimum 
amounts, but the host either cannot synthesize them, or can-
not produce an adequate amount to meet the normal physi-
ological demands [1]. The word vitamin comes from the 
Latin word “vita” meaning “life”, which reflects its essential 
roles in the survival and well-being of humans [2]. Vitamins 
are involved in diverse cellular functions, and their defi-
ciency often leads to serious symptoms to people, sometimes 
even death [3]. Since the discovery of vitamin A in 1912, 
13 vitamins have been identified based on their essential 
roles in human health [4]. Most vitamins can be obtained 
through balanced food intake, and vitamin supplements are 
also widely used in healthcare practices. In the 1950s, peo-
ple found that vitamin supplements are also essential for 

in vitro cell culture due to their nutritional functions [5, 6]. 
Recently, various vitamins are shown to possess regulatory 
mechanisms on the cellular level, especially in stem cells [7].

Stem cells are a special group of cells that can proliferate 
extensively and have the potential to generate various cell 
types in the human body [8]. Embryonic stem cells (ESCs) 
are pluripotent and can differentiate to all cell types. ESCs 
only transiently exist during embryogenesis, and finally give 
rise to all the cells in an embryo. Adult stem cells possess 
limited potential to differentiate to specific cell types, and 
can be classified into multipotent and unipotent stem cells 
[9]. They are responsible for the daily maintenance and 
repair of tissues [10]. With somatic reprogramming tech-
nologies, stem cells can now be generated from somatic cells 
with defined factors [11]. Stem cells are widely used in basic 
research to understand embryogenesis and homeostasis, to 
model diseases, and are also important source materials for 
cell therapies in regenerative medicine [12]. Most stem cell-
related studies and applications involve cell culture systems, 
which provide essential components for specific cell types to 
survive and properly exert their normal functions.

A typical cell culture system normally contains ten cat-
egories of components, including water, inorganic salts, 
growth factors, amino acids, buffering reagent, energetic 
substrates, extracellular matrix, vitamins, vitamin-like 
organic factors and the cell culture atmosphere. Functional 
stem cells require a culture system in which all components 
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are suitably balanced. To realize the great potentials of 
stem cells in regenerative medicine, people often modulate 
and optimize cell culture components to improve stem cell 
functions. Regulation of signal transduction pathways with 
growth factors has traditionally been the main approach [13, 
14]. However, nutritional regulation is emerging as a viable 
target for stem cell modulation, which could affect not only 
cell survival but also pluripotency and cell fates [15–17]. 
As an essential part of cell culture, the important roles of 
vitamins are manifested in our daily use of cell culture in 
basic research and clinical applications. This article will try 
to review how vitamins are utilized in stem cell applications. 
We will first introduce the general vitamin requirements in 
cell culture. Then we will focus on vitamin A, vitamin  B3, 
vitamin C and vitamin E, and discuss how they are utilized 
in stem cell applications [18–21].

A brief background on vitamins 
in the human body

Human vitamins are generally categorized into two classes, 
nine water-soluble vitamins and four fat-soluble vitamins 
(Table 1) [22]. Water-soluble vitamins include 8 members of 
the B type vitamins and vitamin C, and fat-soluble vitamins 
include vitamins A, D, E and K. All the vitamins can be 
obtained from food to fulfill the nutritional needs (Table 1). 
Some vitamins can be synthesized in the human body, but 
at a very low rate (Table 2) [23, 24]. In this review, we will 
briefly summarize some key vitamin-dependent processes 
and the role these vitamins play in stem cell biology.

All the water-soluble vitamins are coenzymes for impor-
tant metabolic enzymes that are essential for cellular 

functions. Their essential roles in metabolic pathways are 
illustrated in Fig. 1. Vitamins  B1,  B3,  B6 and  B7 are involved 
in glucose metabolism that includes glycolysis, pentose 
pathway, glycogenolysis and gluconeogenesis. Fatty acid 
synthesis and degradation require vitamins  B2,  B3 and  B5. 
Meanwhile, amino acid degradation requires vitamins  B3, 
 B6,  B9 and  B12. The TCA cycle and oxidative phosphoryla-
tion take place in mitochondria, and utilize vitamins  B1,  B2, 
 B3,  B5 and  B7 in specific steps. Often times, multiple vita-
mins are involved in the same metabolic process. For exam-
ple, When acetyl-CoA is generated from pyruvate by pyru-
vate dehydrogenase, four of the five coenzymes involved 
in this step are vitamins, including vitamins  B1,  B2,  B3 and 
 B5 [25, 26]. Any deficiency in these vitamins could lead to 
malfunction of the TCA cycle.

Besides type B vitamins, other vitamins’ functions are 
more diverse. Vitamin C is the only water-soluble vitamin 
that does not belong to the vitamin B family, and it is known 
to regulate collagen synthesis by acting as a cofactor for pro-
lyl hydroxylases, reducing its iron center [27–29]. In addi-
tion, vitamin C is an antioxidant that suppresses the produc-
tion of reactive oxygen species (ROS). It is well known for 
its role in the prevention of scurvy [30, 31]. Vitamin A fam-
ily members have distinctive functions, including the preven-
tion of night blindness. At the molecular level, vitamin A 
functions through antioxidation and transcriptional regula-
tion [32, 33]. Vitamin D is a hormone that binds to nuclear 
receptors to regulate transcription, and it is best known for 
its role in calcium absorption [34]. Vitamin E is a potent 
fat-soluble antioxidant. Some vitamin E isoforms were also 
reported to modulate signal transduction [35]. Vitamin K 
is a cofactor for γ-glutamyl carboxylase that is essential for 
blood clotting [36, 37].

Table 1  Vitamins and their functions [25, 26, 34, 36, 71, 92, 161, 166, 199, 207, 248, 249, 251, 253–259]

Vitamin Names Daily dose Cellular function

Vitamin  B1 Thiamine 1.2 mg Glycolysis, non-oxidative phase of pentose pathway
Vitamin  B2 Riboflavin 1.2 mg Coenzyme in carbohydrate and lipid metabolism; activation of  B6 and 

 B9; antioxidant
Vitamin  B3 Niacin, nicotinamide, nicotinamide riboside 15 mg Coenzyme in carbohydrate, amino acid and lipid metabolism
Vitamin  B5 Pantothenic acid 5 mg Coenzyme in carbohydrate and lipid metabolism, lipid biosynthesis
Vitamin  B6 Pyridoxine, pyridoxamine, pyridoxal 1.5 mg Coenzyme in glycogenolysis and amino acid metabolism
Vitamin  B7 Biotin 30 µg Lipid synthesis; leucine catabolism; conversion of amino acids and 

propionate to glucose in liver; gluconeogenesis
Vitamin  B9 Folic Acid 400 µg Coenzyme in nucleotide synthesis, methylation of chromatin, DNA, 

RNA, histone and transcription factors, amino acid metabolism
Vitamin  B12 Cobalamin 2.4 µg Coenzyme in folate and homocysteine metabolism
Vitamin C Ascorbic acid 85 mg Antioxidant; coenzyme in collagen synthesis
Vitamin A Retinoic acid, retinol, all-trans-RA 800 µg Vision, cell differentiation, reproduction
Vitamin D Cholecalciferol, ergocalciferol 15 µg Mg, Ca and P absorption
Vitamin E Tocopherols, tocotrienols 15 mg Antioxidant, cell membrane integrity
Vitamin K Phylloquinones, menaquinones 115 µg Protein synthesis in blood coagulation
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Essential vitamins in regular cell culture

Because of vitamins’ important functions, they are essen-
tial not only for the whole organism but also for individual 
cells. However, the vitamin dependency of the human body 
is often different from cells in culture media. The impor-
tance of individual vitamins is gradually discovered through 
the years. In 1950, Morgan and colleagues first showed that 
cell survival was improved by a vitamin mixture in serum-
free synthetic medium [38]. In 1955, Eagle systematically 
analyzed the impact of individual vitamins on the growth 
of both mouse fibroblasts and Hela cells [39]. Six vita-
mins were shown essential for cell proliferation of both cell 
lines. They all belong to the B vitamin complex, including 
 B1,  B2,  B3,  B5,  B6 and  B9. The medium was named Basal 
Medium Eagle (BME), which is the first synthetic medium 
with defined vitamin functions. In the following years, Mini-
mum Essential Medium (MEM) and Dulbecco’s Modified 
MEM (DMEM) were developed with increased amino acid 

or vitamin concentrations, but the vitamin composition still 
remained at six [40, 41].

Although the above basic media can support short-term 
proliferation of a few cell lines, their capacity is insufficient 
for many other lines in long-term culture. To support clonal 
growth and long-term culture of Chinese hamster cell lines, 
Ham developed the Ham’s F-10 and F-12 media that contain 
additional  B7 and  B12 [42, 43].  B7 was important for the cell 
growth and viability of a variety of cell types [44], while 
vitamin  B12 was found to be essential for lipid metabolism 
[45, 46]. People later found that cell growth is improved 
when DMEM and Ham’s F12 are mixed in a 1:1 ratio, and 
this medium was named DMEM/F12 [47]. The eight B vita-
mins  (B1,  B2,  B3,  B5,  B6,  B7,  B9 and  B12) in DMEM/F12 are 
also present in a variety of other basic media such as RMPI, 
IMDM and α-MEM [48]. These vitamins are generally con-
sidered as essential vitamins for most cells cultured in vitro. 
DMEM/F12 is the most commonly used base medium for 
human embryonic stem cells [17, 49–51], so we will use 

Table 2  Vitamins in cell culture media [1, 39, 44, 45, 47, 50, 71, 79, 155, 157, 235, 260–265]

Vitamin Concentration in blood Concentration 
in DMEM/F12

Endogenous source Application in stem cells

Vitamin  B1 66–200 nM 6.44 µM Gut bacteria In all the base medium; used for somatic 
and stem cell culture

Vitamin  B2 174–471 nM 0.58 µM Colon bacteria In all the base medium; used for somatic 
and stem cell culture

Vitamin  B3 81–213 nM 16.6 µM Biosynthesis from tryptophan
Colon bacteria

In all the base medium; used for somatic 
and stem cell culture

Vitamin  B5 0.5–1.9 µM 4.7 µM Colon bacteria In all the base medium; used for somatic 
and stem cell culture

Vitamin  B6 15–73 nM 9.8 µM Colon bacteria In all the base medium; used for somatic 
and stem cell culture

Vitamin  B7 > 400 ng/L
1.64 nM

14.3 nM Hindgut bacteria In most base medium, such as BME, 
α-MEM, Ham’s F12 and DMEM/F12; 
Used for somatic and stem cell culture

Vitamin  B9 > 3.0 nM 6 µM Gut bacteria In all the base medium; used for somatic 
and stem cell culture

Vitamin  B12 118–716 pM 50 nM Gut bacteria; not clear whether  B12 can 
across colon

In most base medium, such as α-MEM, 
Ham’s F12 and DMEM/F12; Used for 
somatic and stem cell culture

Vitamin A 1.4–3.2 µM – – Retinol promotes self-renewal and pluri-
potency; Retinoic acid mainly drives cell 
differentiation by modulating epigenetics

Vitamin C 25–85 µM – In kidney and liver (except high primates) Supports cell reprogramming, survival and 
collagen production; Reduces ROS

Vitamin D 30–100 μg/L – Precursor synthesized in the sebaceous 
glands of the skin

Leukocyte production and differentiation

Vitamin E 20–35 µM – – Component of B-27 supplement and 
chemically defined lipid concentrate; 
Protects stem cells and progenitor cells 
against oxidative stress; Affects ESC dif-
ferentiation through ROS levels

Vitamin K 0.22–2.22 nM – Menaquinones synthesized by bacteria in 
the large intestine

Promotes the differentiation of dental pulp 
stem cells (DPSCs) to osteoblast in vitro
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DMEM/F12 as a reference to discuss vitamin formula and 
concentration effect in this review.

When comparing vitamin composition in blood and in 
DMEM/F12, there are two obvious discrepancies (Table 2). 
First, all B vitamins are present in DMEM/F12, but not other 
vitamins including vitamins A, C, D, E and K. Consider-
ing all B vitamins are coenzymes for essential metabolic 
processes, it is understandable that they are required for cell 
culture. It also implies that the non-B vitamins are probably 
not required for most cell types. It is also possible that those 
vitamins could be provided through serum or medium sup-
plements such as B27. Second, all individual vitamins are 
provided at significantly higher concentrations in DMEM/
F12 than in blood (Table 2). It indicates that cells in culture 
have differential reliance on vitamins.

Vitamin‑like nutrients for cell culture

In addition to essential vitamins, DMEM/F12 and many 
other basic media also contain minute amount of some 
organic compounds that are required to be supplemented 
to the organism from food sources (Table 3). We will brief 
some of them here.

Choline can be biosynthesized from serine [52], and 
it was first demonstrated as essential for cell survival and 
proliferation in Eagle’s original vitamin study [39]. Cho-
line is essential for the generation of phosphatidylcholine 
(PC) that is crucial for lipid transport and plasma membrane 
integrity. Choline is also used to generate acetylcholine that 
is important for neurotransmission [39, 53]. Choline can 
serve as methyl donor in one-carbon transfer pathways, and 
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contribute to DNA modulation and histone epigenetic modi-
fication with the help of vitamins  B9 and  B12 [54].

Inositol can be naturally synthesized by the human body 
from glucose in many tissues [55, 56], and Myo-inositol 
was also identified by Eagle as an essential factor for cell 
survival and proliferation in a wide variety of human cells, 
both malignant and nonmalignant [57]. Myo-inositol is the 
main source of phosphatidylinositol that mediates cell sig-
nal transduction, neurotransmission and osmoregulation [58, 
59].

Besides choline and inositol, essential fatty acids, such 
as omega (ω)-3 and 6, are often found in culture media. 
They are metabolized to form eicosanoids that affect lipid 
homeostatic processes as well as the inflammatory response 
[60–63]. These lipids usually bind to albumin, and can be 
supplemented to cells through albumin without notice.

Vitamin dependence in cell culture

Cells in culture, including somatic and stem cells, have dif-
ferent vitamin dependency in comparison with the human 
body as a whole. We believe that such difference is caused 
by the inherent difference between the human body and arti-
ficial cell culture systems. First, not all vitamins that are 
needed for the human body will be essential for cell cul-
ture. The deficiency of some vitamins often affects just one 
or a few specific organs in the human body. For example, 
vitamin K deficiency usually affects blood clotting but no 
other physiological functions [37, 64]. When it comes to 
cell culture, a vitamin may not be required for general cell 
culture if it is needed for the survival and proliferation of 
a specific cell type. Second, the human body usually has 
specific organs to produce and store vitamins, which allows 
people to tolerate temporary vitamin deficiency. However, 
there is no endogenous backup mechanisms to complement 
vitamin needs in cell culture, and all essential vitamins have 
to be provided. If an essential vitamin is not provided in cul-
ture, severe symptoms often emerge quickly in cells. For this 
reason, cell culture platforms have led to novel discoveries 
of vitamin functions in recent years. Third, some nutrients 
are not essential for the body, because specific organs can 

produce sufficient amounts for all the cells in the body. How-
ever, in cell culture, these nutrients are considered vitamin-
like for cell culture, because they have to be provided for 
normal cellular functions in the medium. Fourth, cell culture 
is an artificial system, and nutrient concentrations in cell 
culture can be modulated as needed. Often times, nutrients 
can be tested and studied at concentrations that do not exist 
in physiological conditions. Some novel vitamin-dependent 
phenomena could only be identified in cell culture, in arti-
ficial conditions.

Differential vitamin dependence exists not only between 
individual cells and the whole organism, but also among 
different cell types. Vitamins affect metabolism similarly 
in both somatic and stem cells, but they could have addi-
tional impacts on stem cells. In somatic cells, modulation 
of specific vitamins will not change the cell identity. How-
ever, such changes might lead to loss of stemness or cell fate 
changes in stem cells. A few vitamins have gathered inten-
sive interest in stem cell applications, and we will discuss 
them in more details here.

Vitamin A

Vitamin A was the first vitamin discovered, and is actually 
a group of compounds also known as retinoids, including 
retinol, retinal and retinoic acid (RA) (Fig. 2). Vitamin A 
compounds are usually found in food of animal origin, while 
their precursor, carotenoid, is present in plants. Humans can 
synthesize vitamin A from carotenoids such as β-carotenes, 
a lipid-soluble pigment responsible for the vivid colors in 
plants. β-Carotenes can be converted into two retinals by 
β-carotene 15,15′-deoxygenase [65]. Retinal is then reduced 
to retinol by retinaldehyde reductase, using NAPDH (vita-
min  B3) as a cofactor. Retinol either is esterified by acyl-
transferases LRAT (lecithin-retinol acyltransferase) and 
ARAT (retinol acetyltransferase) into retinyl palmitate for 
storage, or is oxidized into retinoic acid by aldehyde dehy-
drogenase (ALDH) [66]. In human cells, retinal and retinol 
are interconvertible; however, the conversion to retinoic acid 
is irreversible [67].

Table 3  Vitamin-like factors [1, 266–268]

Names Solubility Function Endogenous source

Choline Hydrophilic Lipid transport and metabolism, neuro-
transmission, methyl group donor

Choline de novo synthesized through S-adenosylmethionine (SAM)-
dependent methylation of phosphatidylethanolamine by phosphatidyle-
thanolamine N-methyltransferase (PEMT). This process occurs mostly in 
liver

myo-
inositol, 
Inositol

Hydrophilic Signal transduction and osmoregulation Inositol can be de novo synthesized from glucose, and the biosynthesis 
occurs in brain, liver, and kidney
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Although belonging to the same family, retinal, retinol 
and retinoic acid play quite different roles in the human 
body. For example, retinal is incorporated into the light sen-
sitive receptor rhodopsin in the retina, and prevents night 
blindness. In contrast, retinoic acid can cause night blindness 
by suppressing retinal production through the transcriptional 
inhibition of ocular retinol dehydrogenases [33].

Vitamin A family members also play distinctive roles in 
embryogenesis and stem cells in culture. Retinol and retinal 
are readily oxidized in culture, so they can act as antioxi-
dants to promote cell survival and growth [32, 68]. Retinol 
has been reported to help maintain the pluripotency and self-
renewal of hESCs [69], mESCs [70] and other progenitor 

cells [71–73]. In contrast, retinoic acid is a strong cell fate 
modulator, which will be discussed in more detail below.

As a lipid-soluble compound, retinoic acid can diffuse 
into the cytoplasm, bind to its nuclear receptor, and initi-
ate nuclear translocation and downstream regulation. Reti-
noic acid initiates the dimerization of retinoic acid receptor 
(RAR) and retinoid X receptor (RXR). The heterodimer 
then either directly regulates gene expression through a 
DNA response element, or indirectly modulates transcrip-
tion through intermediate transcription factors [74]. Over 
500 genes are influenced by the action of retinoic acid, and 
many of the genes are involved in stem cell differentiation 
and metabolism [74]. It was shown to be an inducer that 
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Fig. 2  Vitamin A metabolism and function. Vitamin A is a group of 
compounds derived from β-carotene. In humans, its alcohol isoform 
has been reported to be beneficial for visual health. It also acts as an 
antioxidant and promotes the pluripotency of stem cells. The acid 
form, all-trans-retinoic acid, can interfere with the effect of retinol 

in vision. Retinoic acid is a determinant for embryonic development, 
and promotes cell proliferation. It can also promote reprogramming 
of stem cells and differentiation of progenitors and act as a tumor sup-
pressor



1777Roles of vitamins in stem cells  

1 3

initiates differentiation in ESCs, and also a modulator in 
lineage specific differentiation [75].

Retinoic acid modulates stem cell pluripotency and differ-
entiation through the expression of mRNA and microRNA 
[21, 76]. It alters the expression of genes involved in DNA 
methylation, histone acetylation and histone methylation. In 
hESCs, the average level of DNA methylation is increased 
by RA, promoting stem cell differentiation [77]. RA also 
affect histone modifications, including acetylation of H3, 
H4 and H3K in hESCs and mESCs, which leads to stem 
cell differentiation [78, 79]. RA suppresses methylation in 
H3K27 while promoting methylation in H3K4 in mESCs 
and neuroblastoma, both stimulating cell differentiation [78]. 
At the same time, retinoic acid targets genes in metabolism, 
cell proliferation and pluripotency. It usually suppresses 
pluripotency gene expression, and promotes ectodermal dif-
ferentiation in ESCs upon the exit of self-renewal [21, 80, 
81]. Retinoic acid is used to promote neural differentiation 
through MAPK and integrin pathways [82].

Retinoic acid’s roles during embryogenesis has been 
well documented. Retinoic acid promotes the expression 
of genes involved in the development of central nervous 
system, embryonal circulatory as well as heart asymmetry 
[83]. Vitamin A-deficient embryos presented various con-
genital malformations, such as absence of eyes as well as 
deficiencies in the central nervous system, skin, lungs and 
heart [84–86].

Retinoic acid also plays critical roles in cell fate deter-
mination in later stage of embryogenesis. For example, in 
heart development, retinoic acid is involved in cardiac dif-
ferentiation. It modulates vascularization by suppressing the 
gene expression of N-cadherin, Msx1 and TGFβ pathways; 
It affects heart asymmetry through the inhibition of Nodal, 
Snail and Pitx2 genes; It also promotes cell proliferation 
and enhances BMP2 pathway by affecting the cardiogen-
esis transcription factor GATA4 [87–94]. Based on retinoic 
acid’s function in embryogenesis, it has been used to gener-
ate atrial cardiomyocytes [20]. In hematopoiesis, retinoic 
acid enhances the ex vivo maintenance and viability of 
transplantable hematopoietic stem cells [95]. Retinoic acid 
suppresses the proliferation of dormant hematopoietic stem 
cells (HSCs), and prevents HSC differentiation to down-
stream cell types [96, 97]. As a result, retinoic acid helps 
maintain the multipotency of HSCs, being enriched in these 
cells compared to other multipotent progenitors [97–99]. 
Furthermore, retinoic acid is also involved in germline dif-
ferentiation. Due to its interaction with BMP and NOTCH 
pathways, retinoic acid’s targets are involved in four main 
developmental stages of fetal germ cell development [82, 
93, 100]. Retinoic acid increases the expression of germline 
markers VASA, SCP3, TEKT1 and GDF9 [101], and pro-
motes the generation of tailed male gamete-like cells that 
could generate offspring in mice [102].

Enzymes involved in retinoid acid production play 
essential roles in embryogenesis. The oxidation of retinol 
to retinal is the rate-limiting step in RA production, and the 
enzymes RDH10 (short-chain dehydrogenase in charge of 
the second oxidation of retinol) and DHRS3 (short-chain 
dehydrogenase reductase in charge of reducing retinal to 
retinol) are key in this process. Knockouts of these enzymes 
result in developmental defects in craniofacial, heart and 
limb patterning. RDH10-K.O. is lethal between E10.5 and 
E14.5, and DHRS3-K.O. is lethal between E17.5 and E18.5 
[103–105]. Retinaldehyde dehydrogenase, which facilitates 
the generation of retinoic acid from all-trans retinal, is a key 
enzyme involved in cell fate determination [20, 66].

Although retinoic acid leads to ESC differentiation, it 
is also paradoxically a potent promoter for somatic repro-
gramming. Somatic cells can be reprogrammed to induced 
pluripotent stem cells (iPSCs) by the overexpression of tran-
scription factors, such as OCT4, KLF4, MYC and SOX2 [11, 
106, 107]. The activation of retinoic acid pathway acceler-
ates reprogramming, while its removal suppresses repro-
gramming efficiency [108, 109]. The activation of retinoic 
acid pathway is essential component in chemically induced 
reprogramming without overexpressing transcription fac-
tors [110, 111]. Short-term treatment with retinoic acid is 
reported to promote pluripotency of iPSCs by inhibiting 
the canonical Wnt pathway, while positively modulating 
AKT/mTOR signaling [112]. Additionally, retinol and RA 
promote the transcription of Ten-eleven translocation (Tet) 
proteins in naïve pluripotent stem cells, and the regulation 
of Tet proteins by vitamin A is independent of vitamin C, a 
known modulator of enzymatic activities (see more discus-
sions in “Vitamin C” section) [113]. In addition, retinoic 
acid signaling is found to maintain the dormancy of HSCs 
through cell cycle regulation [97].

Vitamin  B3

Similar to vitamin A, vitamin  B3 is also a family of com-
pounds including niacin (nicotinic acid), nicotinamide 
(NAM) and nicotinamide riboside (NR). They are pre-
cursors of nicotinamide adenine dinucleotide (NAD) and 
nicotinamide adenine dinucleotide phosphate (NADP) that 
serve as cofactors or substrates in a wide range of metabolic 
reactions [114, 115], so they are implicated in all metabolic 
processes that utilize NAD or NADP (Fig. 1). Because of 
NAD’s importance in metabolism, there are both de novo 
and salvage pathways for NAD synthesis from niacin, nicoti-
namide and NR (Fig. 3). Nicotinamide is usually maintained 
at around 100–200 nM range in blood, while 16.6 μM nico-
tinamide is supplied in DMEM/F12, which is sufficient to 
sustain nutritional requirement of cells in vitro (Table 2).
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Nicotinamide has been utilized in clinical applications 
(Table 4). Nicotinamide ameliorates age-related macular 
degeneration phenotypes [116]. It prevents hepatosteatosis 

in obese mice while improving glucose metabolism and 
increasing health span in mice [117]. These therapeutic 
effects imply that nicotinamide could be involved in func-
tions beyond nutritional regulation.

Compared to regular culture for somatic cells, a higher 
concentration of nicotinamide (5–10 mM) are often used 
in stem cell manipulations [19]. Nicotinamide in medium 
can easily cross plasma membrane and translocate into 
cytoplasm [19]. Nicotinamide was reported to promote cell 
survival of hESCs. In differentiation, it promotes cardiomyo-
cyte differentiation, and facilitates the generation of endo-
crine pancreatic cells [118, 119]. Nicotinamide is also used 
in the maintenance of somatic stem cells [120], as well as 
organoid culture of different cell types [121–123]. It is used 
in the expansion of hematopoietic progenitors [124].

Nicotinamide is involved in various stem cell applica-
tions, but its exact molecular mechanism in each process is 
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Fig. 3  Vitamin  B3 function in metabolism and signal transduction. 
 NAD+ is synthesized in humans by de novo and salvage pathways. In 
the salvage pathway, the enzyme nicotinamide phosphoribosyltrans-
ferase (NAMPT) converts NAM (nicotinamide) to NMN (nicotina-
mide mononucleotide), which is then metabolized to  NAD+. NAMPT 
is the rate-limiting step in this process and is a crucial factor to main-
tain  NAD+ levels. Nrk1 can directly phosphorylate NR (nicotinamide 

riboside) to NMN, bypassing NAMPT, and NR can also be digested 
into NAM. In the de novo pathway, QA (quinolinic acid) and niacin 
are metabolized into NaMN (nicotinic acid mononucleotide) which 
can be further catalyzed into NaAD (nicotinic acid adenine dinucleo-
tide). At high concentration, NAM functions as inhibitors in sirtuin, 
PARP and kinase pathways

Table 4  Clinical applications of nicotinamide [269–275]

Conditions Dose of nicotinamide

Acne 750 mg/day
Vitamin  B3 deficiency (Pellagra) 300–500 mg/day
Diabetes 1.2 g/mL/day
Hyperphosphatemia 0.5–1.75 g/day
Larynx cancer 60 mg/kg of 

niacinamide/h before 
inhaling carbogen

Skin cancer (other than melanoma) 0.5 g niacinamide/day
Osteoarthritis 3 g/day
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still unclear. At high concentration, nicotinamide can inhibit 
the activities of sirtuins, a family of protein deacetylases 
that regulate epigenetic modification and potential cell fates 
[125]. Nicotinamide is used to enrich  CD34+ hematopoietic 
progenitors as a SIRT1 specific inhibitor [124]. At the same 
time, nicotinamide is also an inhibitor of poly(ADP-ribose) 
polymerase (PARP) that is involved in cell death [126, 127]. 
It is thought to improve cell survival by inhibiting apoptosis.

Recently, nicotinamide was identified as a kinase inhibitor 
at high concentration (millimolar range) [19]. Nicotinamide 
targets multiple kinases that are involved in cell survival 
and pluripotency. It binds and inhibits ROCK kinases, and it 
suppresses cell death caused by ROCK activation after cell 
individualization. Nicotinamide is also an inhibitor of casein 
kinase 1 (CK1). The inhibition of CK1 leads to the exit of 
self-renewal, and also promotes differentiation towards reti-
nal pigment epithelium [19]. It is foreseeable that nicotina-
mide could be involved in additional stem cell regulations as 
a modulator in sirtuin, PARP and kinase pathways.

The concentration-dependent phenomena also exist in 
some other nicotinamide derivatives, such as nicotinamide 
mononucleotide (NMN) and NR. Recent studies show that 
NMN and NR have functions beyond NAD synthesis. With 
elevated concentration, NMN reverses vascular dysfunction 
and oxidative stress, and promotes cardioprotection via gly-
colysis and acidic pH [128, 129]. NMN also protects against 
cognitive impairment and neuronal death induced by the 
inhibition of long-term potentiation (LTP) after Aβ1–42 
oligomer treatment [130]. NR at elevated concentration 
increases mitochondrial recycling and cell survival in hemat-
opoietic stem cells [131]. It also prevents aging, and extends 
life span [132]. It is intriguing why nicotinamide derivatives 
have such concentration-dependent effect. It would be inter-
esting to explore potential connections in these biological 
processes.

Vitamin C

Vitamin C, or l-ascorbic acid (AA/LAA), is soluble in 
water due to its sugar-like structure. Although ascorbic 
acid is found at equal amounts in both isomeric states, l 
and d-ascorbic acid, only LAA is chemically active. Ascor-
bic acid can be synthesized in plants and the majority of 
animals (Fig. 4, adapted from Linster’s and Schaftingen’s 
review) [133]. In vertebrates, the last step of ascorbic acid 
biosynthesis from glucose is the formation of 2-keto-gulono-
lactone which spontaneously enolizes into ascorbic acid. The 
enzyme for this step, l-gulonolactone oxidase, is found inac-
tive in high primates, including humans, so human beings 
have to take vitamin C from food sources [133, 134]. LAA 
is not stable in nature due to its hydrogen ion, and acidic 
pH will increase its stability. When exposed to light, it gets 

oxidized to dehydroascorbic acid (DHA) [135]. In practice, 
more stable LAA derivatives are used in cell culture, such 
as magnesium ascorbyl phosphate (MAP) and ascorbyl 6 
palmitate (AA6P) [136–138].

Vitamin C is a potent antioxidant and reduces reactive 
oxygen species (ROS), and it participates in various bio-
logical processes [139]. In addition, vitamin C acts as a 
kinase inhibitor. When it is oxidized into dehydroascorbic 
acid (DHA), it inhibits IκBα Kinase β and modulates NF-κB 
signaling [140, 141]. Vitamin C also reduces ferric to fer-
rous iron, and increases its absorption in the intestine [142].

High doses of vitamin C can actually promote an oxi-
dative state in cancer cells, acting as a potential anti-can-
cer therapy [143–145]. It is proposed that the anti-cancer 
effect may be due to induction of ferroptosis, a form of pro-
grammed cell death related to vitamin E deficiency and lipid 
peroxidation [146–148]. High doses of ascorbic acid was 
reported to regress Charcot-Marie-Tooth disease in mice, a 
neuropathy with impairment in the myelination of periph-
eral nerves, due to the myelination effect of ascorbic acid 
[149–152]. The lack of Vitamin C is the trigger of a well-
known avitaminosis called scurvy, which if prolonged in 
time can be fatal due to hemorrhages and impaired wound 
healing [31].

Vitamin C plays critical roles in promoting PSC survival 
and derivation. When hESCs are transitioned from mTeSR 
medium to albumin-free and more defined condition, cells 
die in the absence of vitamin C after a few days [50]. At the 
same time, vitamin C also regulates the homeostasis of the 
extracellular matrix [18]. It affects the folding and deposi-
tion of collagen proteins, which may have contributed to its 
effect on hESC attachment and survival [27, 50, 153]. Dur-
ing reprogramming, ascorbic acid promotes reprogramming 
in human and mouse cells [50, 154]. Vitamin C reduces cell 
senescence during reprogramming by suppressing p53 [155, 
156]. It was shown to act through a mechanism independ-
ent from its antioxidant role, and accelerates transcriptional 
changes during reprogramming [154, 157]. Vitamin C also 
influences cell survival in reprogramming through epige-
netic modulation. It is a cofactor for polyhydroxylates and 
demethylases [158], and promotes demethylase activity on 
shore CpG islands involved in tissue-specific DNA methyla-
tion and reprogramming [159, 160].

Besides its use for the maintenance of pluripotent stem 
cells, vitamin C also impacts the differentiation of multiple 
cell lineages. Vitamin C triggers mesoderm differentiation 
of mouse embryonic stem cells [161]. It promoted myogen-
esis and osteogenesis, and inhibited adipogenesis. Vitamin 
C inhibits neurogenesis to favor myogenesis through the 
activation of the p38 MAPK/CREB pathway and chromatin 
remodeling [161, 162]. It also promotes cardiac differen-
tiation and increases the proliferation of cardiac progenitor 
cells by enhancing collagen synthesis [163].
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In addition to ESCs, vitamin C also regulates mesen-
chymal stem cell growth and differentiation [164–166]. 
It suppresses hypoxia inducible factor 1 (HIF1α) activity 
through two parallel pathways. Vitamin C suppresses HIFα 
transcription, while activating HIF1α hydroxylase to break-
down HIF1α. Inhibition of HIF1α leads to mitochondrial 
activation, affecting cell proliferation and metabolism [167]. 
MSCs cultured with vitamin C show upregulation of Oct4 
and Sox2, without affecting the expression of MSC markers 
such as CD105 and CD13 [168, 169]. Vitamin C in combi-
nation with TGFβ treatment was shown to promote MSC 

differentiation toward vascular smooth muscle cell types 
[170, 171]. Vitamin C also facilitates osteogenic differen-
tiation by increasing collagen secretion, since it is used as a 
cofactor for enzymes that hydroxylate proline and lysine in 
pro-collagen [171–174]. Vitamin C also enhances chondro-
genic differentiation [175], and protects chondrocytes from 
oxidative stress due to hydrogen peroxide  (H2O2) [176].

Vitamin C is also beneficial to hematopoietic differen-
tiation and it has been used to promote the maturation of 
T cells and NK cells from HSC-derived progenitors [177, 
178]. Ascorbic acid is used to generate hematopoietic 

Fig. 4  a Vitamin C regulation 
in stem cells. Vitamin C, com-
monly referring to as l-ascorbic 
acid, cannot be synthesized by 
humans due to the lack of the 
hydrolase gluconolactonase 
enzyme. Similar to vitamin A, 
it acts as an antioxidant and 
tumor suppressor, and increases 
the myelination of neurons. Its 
effect on chromatin remodeling 
and other epigenetics marks 
allows it to affect reprogram-
ming of pluripotent stem cells, 
but it is also necessary for the 
culture of both embryonic and 
mesenchymal stem cells. It pro-
motes hematopoiesis differen-
tiation and promotes mesoderm 
lineages including cardiomyo-
cytes, bone and cartilage. The 
effect of vitamin C on adipocyte 
differentiation depends on 
the platform and concentra-
tion. b Vitamin C regulation 
of reprogramming. l-Ascorbic 
acid facilitates the reaction 
that converts ferric ions  (Fe3+) 
to ferrous ions  (Fe2+).  Fe2+ is 
required for the activity of both 
Tet proteins and JHDM histone 
demethylases, and it is oxidated 
into  Fe3+ when α-KG and  O2 
are converted into succinate and 
 CO2 during DNA and histone 
demethylation

2-keto-Gulonolactone

D-Glucose

L-Ascorbic Acid

Myelination 
Neuropathies

Myogenesis/Osteogenesis/
Chondrogenesis

Stem Cell Survival/ 
Reprogramming

HaematopoiesisAdipogenesis/ 
Neurogenesis

hydrolase gluconolactonase

Inactive in high primates

Antioxidant

Cancer

Epigenetic Modulation/
Transcription

TET

Reprogramming

L-Ascorbic Acid

DNA methylation

DNMT
Deoxycytidine 5mC 5hmC

SAM

SAH

O2 + α-KG

Succ + CO2

Fe2+

Fe3+

DHA

Fe2+ Fe3+

One-Carbon
Metabolism

SAM

JHDM

L-Ascorbic Acid

Mono-methyl 
Lysine Lysine

O2 + α-KG

Succ + CO2

Fe2+

Fe3+

DHA

Fe2+ Fe3+

CH2O

Histone methylation

A

B



1781Roles of vitamins in stem cells  

1 3

stem cell progenitors (hemangioblasts) from hESCs [179]. 
Ascorbic acid concentration is high in human and mouse 
hematopoietic stem cells (HSCs), and declines upon differ-
entiation. With the accumulation of intracellular ascorbic 
acid, HSC frequency is limited, while leukemogenesis is 
suppressed [180, 181].

Besides its antioxidant activity, vitamin C mainly acts 
as an enzyme cofactor for the demethylation of DNA and 
histone in stem cells (Fig. 4b). Changes in DNA and histone 
methylation are often associated with stem cell differentia-
tion and reprogramming [182–184]. The methylation on the 
fifth position of the pyrimidine ring of cytosine (5mC) is 
the most common DNA modification, and its demethyla-
tion to 5-hydroxymethylcytosine (5hmC) is catalyzed by 
Tet proteins [185–187]. On the other hand, histone demeth-
ylation is carried out by histone demethylases such as the 
Jumonji-C domain-containing family (JHDMs) [184, 188, 
189]. Both Tet and JHDM proteins are vitamin C-depend-
ent,  Fe2+/alpha-ketoglutarate-dependent hydroxylases 
 (Fe2+/α-KGDDs). During demethylation,  Fe2+/α-KGDD 
catalyzes the reaction that converts α-ketoglutarate (α-KG) 
and  O2 into succinate and  CO2.  Fe2+/α-KGDD activity 
requires  Fe2+ that is oxidized to  Fe3+ in the process [148, 
181, 190–192]. Vitamin C reduces  Fe3+ back to  Fe2+ which 
could then be utilized by Tet or JHDM in demethylation 
again, while vitamin C itself is oxidized into dehydroascor-
bic acid (DHA) [113, 193]. Vitamin C influences the bio-
logical outcome of Tet-mediated DNA demethylation, and 
promotes the demethylation of histones such as H3, H3K9, 
H3K36 and H3K27 [194]. Collectively, vitamin C enhances 
the efficiency of somatic programming [154]. In addition, 
vitamin C also impacts stem cell differentiation. Vitamin 
C improves HSC differentiation by modulating Tet activity 
[180, 181], and it also increases the expression of key genes 
in dopaminergic neurons in the fetal brain [195], as well as 
trophectoderm genes like Cdx2, Eomes and Elf2 in the dif-
ferentiation of mouse embryonic stem cells [196].

Vitamin E

Since the discovery of α-tocopherol in 1922 [197], vitamin 
E has been extensively studied and become one of the most 
commonly consumed vitamins. There are eight known natu-
ral isoforms of vitamin E, including four tocopherols and 
four tocotrienols, each designated as α, β, γ and δ based 
on the position of methyl groups on the chromanol ring 
[198–200]. Vitamin E exists in almost all the tissues in 
the human body, with highest levels in the adipose tissue 
and adrenal gland [200]. Early studies on vitamin E mostly 
focused on α-tocopherol, the most abundant vitamin E iso-
form [200]. Compared to the other isoforms, α-tocopherol 
has higher bioavailability and longer retention time, due 

to its preferential incorporation into lipoproteins by alpha-
tocopherol transfer protein (α-TTP) in the liver [199, 201]. 
It is also the isoform commonly provided in dietary sup-
plements [199]. In recent years, non-α-tocopherols have 
received increasing attention, and the tocotrienols are 
reported to be superior over tocopherols in many clinical 
applications [201–203]. Synthetic forms of vitamin E and its 
chemically modified analogs, such as trolox [204], tocoflexol 
[205] and esters of vitamin E [206–209] are also widely used 
for improved bioavailability and stability.

Vitamin E is a lipid soluble, chain-breaking antioxidant, 
capable of neutralizing free radicals and terminating chain 
reactions in the oxidation of polyunsaturated fatty acids. It 
is one of the major antioxidants in the human plasma [210]. 
Due to its lipid solubility, vitamin E effectively protects 
against oxidative damage from lipid peroxidation in the 
membrane as well as in lipid vesicles, but is less effective 
against damage from aqueous free peroxyl radicals [210, 
211].

In addition to its antioxidant role, vitamin E also mod-
ulates cellular signal transduction through kinases, phos-
phatases, lipid mediators and transcription factors [35, 212]. 
α-Tocopherol inhibits protein kinase C (PKC), while other 
vitamin E isoforms were reported to have no influence or 
opposing effect [213–215]. Regulation of PKC by vitamin 
E leads to changes in cell proliferation, adhesion, gene 
expression and downstream signal transduction [35, 213, 
216, 217]. Another important target of vitamin E is protein 
kinase B (PKB/AKT), which plays a key role in cell sur-
vival. Vitamin E may activate or inhibit PI3K/AKT pathway 
and cell survival in a cell type-specific manner [218–221]. 
Other signaling pathways regulated by vitamin E include 
ERK [219], p38 MAPK [222] and Wnt signaling [223]. Due 
to its influence on membrane composition, vitamin E can not 
only directly or indirectly activate/inhibit its targets, but also 
change specific structural features of the plasma membrane 
(such as lipid rafts), which may be involved in the membrane 
translocation or activation of signaling molecules [212].

Vitamin E was frequently used in primary cell culture to 
prevent cell death and preserve cell function after exposure 
to stress conditions, and both antioxidant and signal trans-
duction modulating mechanisms may be involved. For exam-
ple, vitamin E treatment during enzymatic dissociation pro-
tected rat mammary epithelial cells against oxidative damage 
and improved survival [224]. γ-Tocotrienol was reported to 
enhance AKT phosphorylation in intestinal tissue following 
total body irradiation, thereby protecting the tissue against 
damage by radiation [221]. Low micromolar concentrations 
of α-tocopherol suppressed the rise of metalloproteinase 1 
(MMP-1) expression in UVA-irradiated fibroblasts, sug-
gesting a photoprotective effect [225]. In an endothelial cell 
model for type I diabetes, 20 mg/L α-tocopherol showed 
protective effects against endothelial dysfunction caused by 
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hyperglycemia [226]. In some studies, high concentrations 
(200–2500 µmol/L) of vitamin E were used for cell culture 
[227–229], far exceeding the reported plasma vitamin E lev-
els ranging from 15 to 27 µmol/L [230–233].

Commercial cell culture supplements containing vitamin 
E are available. The B-27 supplement is widely used for neu-
ronal cell culture [234, 235], and chemically defined lipid 
concentrate is used to support mammalian and insect cell 
culture in place of fetal bovine serum [236]. The isoform of 
vitamin E supplied in these supplements are α-tocopherol 
or α-tocopherol acetate in low micromolar concentrations.

As a potent antioxidant, vitamin E was reported to be pro-
tective for stem cells and progenitor cells which are sensitive 
to oxidative stress. Treatment with α-tocopherol protected 
mesenchymal stem cells (MSCs) against  H2O2-induced 
apoptosis and promoted MSC survival via the AKT path-
way [220, 237]. Similarly, trolox was reported to enhance the 
proliferation of human dental pulp stem cells under oxygen 
tension [238]. α-tocopherol also promoted the survival of 
cultured human neural progenitors, and the effect was abol-
ished by inhibitors of PI3K/AKT and Src signaling [239]. 
This is consistent with in vivo studies using mouse models, 
in which vitamin E deficiency or impairment of its uptake 
resulted in neural tube defects [240, 241].

In addition to affecting cell survival, vitamin E was also 
reported to affect differentiation of stem cells as a free radi-
cal scavenger. Reactive oxygen species (ROS) were pro-
posed to participate in cellular signaling and regulate embry-
onic stem cell (ESC) differentiation, and vitamin E typically 
antagonizes the ROS effects. Arachidonic acid, the precursor 
of prostaglandins and leukotrienes, was reported to promote 
the generation of vascular progenitor cells from mouse ESC 
embryoid bodies. ROS was elevated in the process, and 
trolox treatment from day 3 to day 10 abolished the effect of 
arachidonic acid on differentiation [242]. In another study, 
electrical field treatment stimulated endothelial differentia-
tion of mouse ESCs through a mechanism involving ROS, 
and trolox treatment inhibited its effect [243]. In cardiac 
differentiation from mouse ESCs, treatment with valproic 
acid from day 3 to 7 was reported to inhibit embryoid body 
growth and suppress cardiomyocyte differentiation while 
increasing ROS. Co-administration of trolox antagonized the 
inhibitory effect and restored cardiomyocyte differentiation 
[244]. In contrast, icariin treatment from day 5 to 16 of car-
diac differentiation, which elevated ROS and induced ERK/
p38 phosphorylation, significantly enhanced cardiac differ-
entiation, and vitamin E treatment decreased the promoting 
effect by half [245]. Similarly, elevated intracellular ROS 
by cardiotrophin-1 (CT-1, from day 7 on) is associated with 
improved cardiomyocyte differentiation and increased Ki-67 
expression, suggesting better cardiomyocyte proliferation. 
Vitamin E abolished these effects as well through a mecha-
nism involving Jak/Stat and ERK pathways [246]. Taken 

together, vitamin E can play regulatory roles during ESC 
differentiation toward multiple lineages, potentially through 
a mechanism involving ROS generation and activation of 
relevant signaling pathways. The exact effect may depend 
on the setting of differentiation and the timing of treatment.

The functions of vitamin E are summarized in Fig. 5.

Coordinated vitamin actions in stem cell 
regulation

Each vitamin has its distinctive role in biochemical pro-
cesses, and many of them work together to carry out critical 
cellular functions. For example, the generation of acetyl-
CoA requires  B1,  B2,  B3 and  B5, which is essential for both 
somatic and stem cells. Many other biological processes also 
demand collaborative actions of multiple vitamins, and some 
of them are especially important to stem cells.

Epigenetic regulation is essential for self-renewal and cell 
fate determination [247]. DNA and histone methylation are a 
key modification, and it is responsive to nutrition and meta-
bolic changes. Appropriate epigenetic regulation is essential 
for pregnancy and embryonic development. Vitamin  B12,  B9, 
and  B6 are key coenzymes in one carbon metabolism and 
can synergistically influence DNA and histone methylation 
[248, 249]. One carbon metabolism involves the donation 
of carbon units from amino acids for utilization in various 
biochemical reaction. In the folate  (B9) cycle, a carbon unit 
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Radiation Damage
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Fig. 5  Vitamin E in stem cell culture. Vitamin E is a potent lipid-
soluble antioxidant, and is capable of protecting stem cells and pro-
genitor cells against oxidative damage. In addition, vitamin E can 
modulate signaling pathways, including the PI3K/AKT pathway, to 
promote survival and proliferation of cells in culture. The impact of 
vitamin E on ESC differentiation is mainly mediated through ROS 
levels. Whether vitamin E can directly modulate signal transduction 
events involved in cell fate determination has not been reported
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produced from the conversion of serine to glycine is trans-
ferred to tetrahydrofolate (THF) by serine hydroxymethyl-
transferase (SHMT), a vitamin  B6-dependent enzyme. The 
resulting 5,10-methylene-THF is important for nucleotide 
synthesis. In the methionine cycle, vitamin  B12 serves as a 
coenzyme in the conversion of homocysteine to methionine 
by accepting a carbon unit from the folate cycle. Methionine 
is further converted to S-adenosylmethionine (SAM) [250, 
251], which is the main methyl group donor for the methyla-
tion of proteins, DNA, RNA and lipids [185].

The combined actions of vitamins are also reflected in 
multiple stem cell media containing vitamin combinations 
(Table 2), and are utilized in some stem cell protocols [252].

Concluding remarks

Vitamins are deeply involved in various basic metabolic 
and signaling processes, and many of them are required for 
normal functions in specific stem cells. Besides the con-
ventional approach of stem cell modulation through growth 
factor signaling pathways, vitamin modulation could become 
a critical approach to improve stem cell maintenance and 
downstream differentiation. Studies on vitamins such as A, 
 B3 and C have shown that vitamin-dependent pathways are 
effective targets in stem cell manipulation. However, most 
vitamins have not been systematically explored in different 
stem cell studies. Considering that specific cell types rely 
on distinctive combinations of vitamins, it is possible that 
more stem cell applications could be developed using differ-
ent vitamin formulations in media. At the same time, stem 
cell culture also provides a unique platform to study vita-
min function in human embryogenesis. Following the recent 
discoveries of vitamin-related molecular mechanisms, more 
novel mechanisms could be identified in stem cell models. 
We believe that vitamin study in stem cell research will 
lead to new modulations to improve stem cell applications, 
and help realize their great potentials in basic research and 
regenerative medicine.
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