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Abstract
The circadian clock regulates rhythms in gene transcription that have a profound impact on cellular function, behavior, and 
disease. Circadian dysfunction is a symptom of aging and neurodegenerative diseases, and recent studies suggest a bidirec-
tional relationship between impaired clock function and neurodegeneration. Glial cells possess functional circadian clocks 
which may serve to control glial responses to daily oscillations in brain activity, cellular stress, and metabolism. Astrocytes 
directly support brain function through synaptic interactions, neuronal metabolic support, neuroinflammatory regulation, 
and control of neurovascular coupling at blood and CSF barriers. Emerging evidence suggests that the astrocyte circadian 
clock may be involved in many of these processes, and that clock disruption could influence neurodegeneration by disrupt-
ing several aspects of astrocyte function. Here we review the literature surrounding circadian control of astrocyte function 
in health and disease, and discuss the potential implications of astrocyte clocks for neurodegeneration.
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Introduction

Michael von Lenhossék first coined the term “astrocyte” 
in 1895 as he described a “star-shaped” cell with a mul-
titude of long, fine processes in the spinal cord. Santiago 
Ramon y Cajal subsequently characterized astrocytes and 
hypothesized that there are complex interactions between 
astrocytes and neurons [1]. Since then, the list of astrocyte 
functions in the brain has steadily grown, as has apprecia-
tion for their critical role in brain homeostasis and disease 
[2]. Astrocytes form a “tripartite” synapse with neurons and 
secrete factors that are essential for the development of func-
tional and mature synapses [3–5]. Astrocytic processes at 
the synapse are also integral to the uptake and recycling of 
neurotransmitters, especially glutamate [6, 7]. Astrocytes are 
also crucial for brain glucose metabolism and supply neu-
rons with energy via the lactate shuttle system [8, 9] and are 
capable of generating complex, microdomain-specific cal-
cium transients, both spontaneous and evoked by neuronal 

signaling [10] or neurovascular coupling [11]. Astrocytes 
can also shape neuronal circuits by directly phagocytosing 
synapses [12] and regulating microglial phagocytosis [13]. 
Finally, astrocytes contribute to neuronal redox homeostasis 
by facilitating neuronal glutathione synthesis [14].

Aside from their roles in neuronal support and neuro-
transmission, astrocytes are also critically involved in the 
regulation of neuroinflammation. Astrocytes exhibit mor-
phologic and transcriptional changes in response to stress, 
inflammation, and injury in a response termed astrogliosis 
[15]. Typically characterized by the upregulation and accu-
mulation of the intermediate filament glial fibrillary acidic 
protein (GFAP), astrogliosis is now known to be a com-
plex phenomenon with a spectrum of transcriptional and 
functional changes [15]. Exposure of astrocytes to differ-
ent stimuli can induce distinct activation states that can be 
distinguished by specific gene expression patterns, and can 
be supportive or toxic to neurons [16, 17]. In the setting of 
injury, astrocytes can also form scars which influence the 
regeneration of damaged nerves [18].

A third branch of astrocyte function is to regulate the 
blood–brain barrier and glymphatic system. Astrocytic end-
feet contact cerebral blood vessels and can modulate vasodi-
lation in response to neuronal activity, thus mediating neu-
rovascular coupling [19]. The “glymphatic system” refers to 
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the lymphatic-like functions of astrocytes in mediating bulk 
fluid flow and allowing the exchange of solutes between the 
cerebrospinal fluid and brain parenchyma. This system pro-
vides a route for waste efflux into the periphery, and may be 
critical to regulating brain fluid volume and protein buildup 
in the context of injury and disease [20, 21]. Expression of 
the astrocyte water channel aquaporin-4 is required for effi-
cient influx and efflux through the glymphatic system [22], 
confirming a role for astrocytes in brain waste clearance.

Thus, it is clear that astrocytes perform a number of key 
functions in the brain and are critical to brain health. There-
fore, it is important to understand factors which influence 
astrocyte activation and function, as these may directly 
impact brain homeostatic mechanisms. As we will discuss, 
the circadian clock has recently emerged as a major regulator 
of astrocyte function.

The circadian system serves to synchronize internal 
physiology with the external environment and to allow tis-
sues to anticipate time-of-day-related events, particularly 
the 24-h light:dark cycle of earth. The master clock of the 
body resides in the suprachiasmatic nucleus (SCN) of the 
hypothalamus and receives direct input from the retina, 
thereby sensing changes in light. This light input synchro-
nizes a network of cellular clocks in the SCN, which in turn 
synchronizes cellular clocks throughout the body. At the 
molecular level, the core circadian clock found in each cell 
consists of a transcriptional-translational feedback loop con-
trolled by the BHLH-PAS transcription factor BMAL1 (aka 
ARNTL), which heterodimerizes with CLOCK or NPAS2 
proteins to bind E-Box motifs throughout the genome and 
drive transcription [23–25]. BMAL1/CLOCK drives the 
expression of several of its own negative feedback regula-
tors, including PERIOD 1–3, CRYPTOCHROME 1 and 2, 
and REV-ERBα and β, which ultimately suppress BMAL1/
CLOCK-mediated transcription. This cycle is tuned to a near 
24-h rhythm by several layers of post-translation regulation 
[25]. Core clock machinery is present in nearly all cells in 
the body and is self-sustaining, as cells can maintain near 
24-h oscillations without any external input. The circadian 
clock influences the expression of many genes: 3–14% of 
all transcripts exhibit circadian oscillation in a given tissue, 
and nearly 50% of all protein-coding genes are rhythmic 
in at least one tissue in mice. Indeed, more than 80% of 
protein-coding genes show rhythmicity in at least one tissue 
in primates [26–28]. The circadian clock modulates diverse 
processes including cellular metabolism, inflammation, cell 
cycle, and redox homeostasis, and circadian dysfunction has 
been implicated in dozens of disease states ranging from 
cancer to neurodegeneration [23, 29, 30].

In the brain, neurons and glia both inside and outside the 
SCN possess functioning circadian clocks, though the func-
tions of glial clocks are less well understood [31]. Astrocytes 
in particular express clock genes and exhibit robust circadian 

clock function in cell culture and in the SCN [31–33]. We 
will discuss the functions of the astrocyte circadian clock as 
they relate to brain health, and will explore potential links 
between astrocyte clock function and neurodegenerative 
diseases.

Astrocyte circadian clocks

Time-of-day variations in GFAP distribution were first 
reported in the SCN of hamsters and rats [34, 35]. Subse-
quently, cultured mouse cortical astrocytes were noted to 
exhibit robust circadian oscillations in Per2 gene expression 
in culture, which could be entrained by co-culture with an 
SCN explant [31]. Circadian gene expression rhythms in 
cultured astrocytes could be abrogated by deletion of Bmal1, 
Clock, or Per1 and Per2, demonstrating reliance on the core 
astrocyte clock [36].

Since then, researchers have defined the role of the clock 
cycle in controlling glial responses to daily oscillations in 
neuronal activity and environmental cues. Astrocyte func-
tions contribute to the synchrony of clock neurons and 
may ultimately control rhythms in a wide variety of brain 
functions including thermoregulation, hormonal secretion, 
and sleep. Work in D. melanogaster has helped define the 
need for astrocyte regulation of clock neurons and circadian 
behavior [37–39]. In addition, astrocyte-specific deletion of 
Bmal1, which disrupts circadian gene expression rhythms in 
SCN astrocytes, clearly impacts behavioral rhythms in mice 
[32, 33, 40]. Moreover, altering the period of the astrocyte 
clock via manipulation of the casein kinase 1 epsilon gene 
(Csnk1e) specifically in astrocytes alters overall SCN rhyth-
micity and wheel running activity in mice, further illustrat-
ing the critical role for the astrocyte clock in the control of 
SCN function and circadian behavior [32, 41].

The mechanism by which SCN astrocytes regulate cir-
cadian rhythms is still a matter of investigation. In general, 
astrocytes participate in neuromodulation by regulating 
extracellular glutamate, ATP, and potentially other gli-
otransmitters. In culture, astrocytes depend on their expres-
sion of Clock and Per2 to regulate the proper expression 
of transporters for glutamate uptake [42]. However, while 
glutamate uptake does not appear to show significant time 
of day variation in astrocytes, glutamine synthetase, a non-
neuronal enzyme necessary to replenish neurons with glu-
tamate precursor, shows significantly reduced activity in 
the mouse SCN during circadian night. This suggests that 
astrocytes may control glutamate metabolism at different 
times of day [43], thus potentially regulating the avail-
ability of glutamate to neurons. Astrocyte glutamatergic 
regulation of SCN rhythms seems to be mediated through 
astrocytic glutamate release during circadian night, which 
signals to neurons via NMDA NR2C subunits [41]. As SCN 
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neurons are GABAergic, astrocyte glutamatergic stimula-
tion of SCN neurons during circadian night may result in 
an overall inhibition of SCN activity, which may potenti-
ate synchrony. Indeed, disruption of GABA signaling in 
the context of astrocyte-specific Bmal1 knockout has been 
reported to lead to poor neuronal entrainment and behav-
ioral arrhythmicity [40]. A recent study suggests that SCN 
astrocyte rhythms can drive circadian behavioral rhythms in 
mice in the absence of a functional neuronal clock [33]. The 
authors found that locomotor activity rhythms are restored 
in arrhythmic Cry1/2 null mice with astrocyte-specific Cry1 
supplementation alone. In the SCN, Per2 oscillations depend 
on synchronous rhythms of astrocyte glutamate release. This 
synchrony is accomplished across the astrocyte network by 
the function of connexin 43 hemichannels, which mediate 
paracrine release of ATP and glutamate. Thus, the astrocyte 
clock significantly contributes to overall SCN activity and 
daily behavior by regulating glutamate availability.

Importantly, dysregulation of glutamate uptake by astro-
cytes can lead to excitotoxic neuronal death through hyper-
activation of NMDA channels. Glutamate toxicity plays a 
critical role in ischemic brain injury, but has also been impli-
cated in ALS, AD, and other diseases. As astrocyte clock 
proteins regulate glutamate metabolism, clock disruption 
could potentially contribute to excitotoxicity. Indeed, neu-
ronal susceptibility to excitotoxic death as well as the sever-
ity of ischemic stroke appear to follow circadian rhythms 
[44–46]. Thus, dysregulated astrocytic glutamate handling 
could exacerbate stroke-related and other types of injury at 
different times of day, though the role of astrocyte clocks in 
this phenomenon has not been addressed.

Astrocytes in the SCN may also utilize ATP as a gli-
otransmitter to help regulate circadian rhythms [36]. Cul-
tured SCN cells, astrocytes, and the intact rat SCN all dis-
play circadian rhythms in ATP accumulation [47]. Clock 
gene mutations in cultured astrocytes result in blunted 
ATP rhythms, which appear to be dependent on intact IP3-
dependent intracellular calcium signaling [36]. The variation 
in extracellular ATP in SCN astrocytes is antiphase with 
intracellular cytosolic calcium, but in phase with mitochon-
drial calcium [48]. However, another work has suggested 
calcium-independent mechanisms of circadian astrocyte 
ATP release through purinergic receptors [49]. Thus, the 
processes by which astrocytes rhythmically release ATP 
remain to be fully defined, but evidence is already emerging 
that astrocytic ATP rhythms have functional consequences. 
For example, astrocyte sensitivity to daily glucocorticoid 
oscillations allows them to contribute to pain signaling 
through rhythmic release of ATP onto microglial puriner-
gic receptors [50]. Thus, daily oscillations in pain may be 
controlled through a rhythmic crosstalk between adrenal glu-
cocorticoids, astrocyte ATP release, and purinergic stimula-
tion of microglia.

Further roles for astrocyte rhythms in brain health may 
involve neuromodulation through mechanisms other than 
gliotransmission. It has been reported that glia (primarily 
astrocytes) show daily oscillations in structural contacts with 
dendrites in the SCN, in which glia tend to enwrap VIPer-
gic dendrites during circadian day more so than night. This 
observation is dependent on neuronal subtype and BDNF/
TrkB signaling, implying some specificity for astrocyte 
structural changes rather than a general feature of daily pro-
cess extension and retraction [51, 52]. Thus, physical cover-
age of SCN synapses by astrocytic processes is plastic and 
may be under clock control. Considering their involvement 
in synaptic maintenance and pruning [12], daily interactions 
of astrocytes with synapses may be crucial to development 
and disease.

In addition, global, brain-specific, and even astrocyte-
specific Bmal1 knockout induces brain-wide astrogliosis. 
This glial activation seems to be under the control of the 
positive limb of the clock as it can be phenocopied by dual 
deletion of the BMAL1 binding partners Clock and Npas2, 
while Per1/2 mutant mice do not exhibit gliosis [53]. Inter-
estingly, clock control of astrocyte activation appears to be 
cell autonomous and regulates the ability of astrocytes to 
support neuronal survival in vitro [54]. BMAL1 in astro-
cytes appears to mediate astrocyte activation through an 
alteration in protein glutathionylation, though the specific 
pathways which are controlled by this mechanism are still 
unknown. The control of astrocyte activation by clock genes 
has not yet been evaluated in the setting of aging and neuro-
degenerative diseases, though it is tempting to speculate that 
loss of astrocytic circadian function in these settings could 
promote dysfunctional astrocyte activation, which could 
have important implications for brain health. Identification 
of downstream pathways mediated by the astrocyte clock, 
such as the aforementioned regulation of protein glutathio-
nylation, could provide new therapeutic targets for the treat-
ment of age-related neurodegenerative disorders.

Potential role of astrocyte circadian rhythms 
in neurodegenerative disease

As mentioned above, research into astrocyte circadian rhythms 
has almost exclusively explored their interactions with neurons 
in the SCN. While these studies have built a foundation for 
circadian regulation of brain health, they have not yet exam-
ined pathology-directed functions of glia in disease. An emerg-
ing theme in glial research has focused on the mechanisms 
by which these cells sense and respond to the damaged brain 
environment in early and chronic disease. Investigating how 
the clock influences astrocyte interactions with other cells and 
the brain parenchyma can provide clues into how the daily 
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time scale of cellular processes links lifestyle and environment 
to chronic neurodegeneration.

Inflammation and oxidative stress

It is clear that immune responses in astrocytes are under clock 
regulation, and in turn can regulate clock gene expression. 
Cytokine expression oscillates in astrocytes [55], and targeting 
the clock can increase astrocyte pro-inflammatory cytokine 
responses: Per1 knockdown induces Il6 and Ccl2 in spinal 
astrocytes, [56], while Bmal1 knockdown induces Il6 and 
Il33 in cortical astrocytes [54]. Conversely, cytokines may 
also modulate the astrocyte clock, as TNFα shifts the phase of 
Per2 expression rhythms in SCN astrocytes in vitro as well as 
mouse behavioral rhythms in vivo [57].

Considerable evidence also implicates the circadian clock 
in the regulation of oxidative stress, a process critical to neu-
rodegeneration [53, 58]. Astrocytes in general are key to miti-
gating neuronal oxidative stress, as they regulate neuronal 
glutathione levels and express redox-protective enzymes, in 
part via astrocytic activation of the cytoprotective Nrf2 path-
way [59]. Deletion of Bmal1 disrupts expression of antioxi-
dant enzyme expression and increases brain oxidative dam-
age [53]. Bmal1 deletion also suppresses levels of protective 
glutathione-s-transferase enzymes in astrocytes [54]. It has 
been proposed that circadian oscillations in astrocytic expres-
sion of the neurotrophin receptor  p75NTR may regulate Nrf2 
signaling and antioxidant enzyme expression [60]. Clocks can 
also regulate mitochondria [61], a major source of oxidative 
stress, though this has not been demonstrated in astrocytes.

In addition, functions relevant to astrocytes, such as 
phagocytic capacity and cytotoxicity, have been shown to 
oscillate in other cell types, though circadian regulation of 
these functions has not been specifically tested in astrocytes 
[62–67]. These daily oscillations in immune and redox func-
tions may help cells anticipate daily risk at times of maxi-
mum probability for exposure to damaging stimuli. In turn, 
periodic downregulation of inflammatory programs may 
prevent the excessive accumulation of toxic inflammatory 
signals such as cytokines, chemokines, ROS, and damage-
associated molecular patterns. Given that Bmal1 deletion in 
astrocytes significantly shifts their transcriptional and func-
tional phenotypes, clock disruption in astrocytes could exac-
erbate neuroinflammation in the context of disease. Thus, 
circadian clock control of astrocyte inflammatory function 
is likely crucial in maintaining brain health and responding 
to neurological disease.

Protein aggregation and clearance in Alzheimer’s 
disease

A prominent feature across neurodegenerative diseases is 
the accumulation of toxic protein aggregates in the brain 

over the course of aging. For example, Alzheimer’s disease 
(AD) involves the synaptic release of amyloid beta (Aβ) 
monomers that oligomerize and eventually aggregate into 
extracellular plaques. The generation of plaques is thought 
to drive other pathologies in AD, including the hyperphos-
phorylation and intracellular accumulation of tau protein, 
synaptic loss, and eventually neurodegeneration and cogni-
tive decline. A key feature of early AD symptoms is cir-
cadian disruption in the form of sleep fragmentation and 
arrhythmic activity [68–71]. Sleep/wake cycles clearly have 
a bidirectional relationship with Alzheimer’s pathogenesis, 
as sleep deprivation can increase both amyloid plaque and 
tau pathology in transgenic mice [72–76]. AD pathology 
may directly influence circadian rhythms through its regu-
lation of clock gene methylation in humans [77] as well as 
inducing degradation of clock proteins, resulting in a shift 
in body temperature and activity rhythms in AD mice [73].

A growing literature supports the notion that Aβ clear-
ance is impaired in AD and may significantly contribute to 
the extracellular accumulation of plaques [78, 79]. Mecha-
nisms for clearance of Aβ involve extracellular degradation 
by released enzymes, transport across the blood–brain bar-
rier through perivascular efflux, and cellular degradation by 
glia [78]. Astrocytes express surface receptors, including the 
lipid-binding proteins LDLR and LRP1, which bind Aβ and 
mediate its internalization and degradation [80]. Peri-plaque 
astrocyte activation occurs in AD patients and animal mod-
els in conjunction with the development of Aβ pathology 
[81–84], likely influencing astrocyte interactions with Aβ 
aggregates which are critical to plaque removal [80, 85–89]. 
While the role of astrocyte activation in AD pathogenesis 
is complex, manipulating pathways of astrocyte activation 
and detection of Aβ alters the formation of plaques in APP/
PS1 models [80, 90–93]. In addition, enhancing astrocytic 
Aβ uptake and degradation capacity by inducing lysosome 
biogenesis or expression of low-density lipoprotein receptors 
mitigates plaque formation [88, 89]. Furthermore, recipro-
cal cross talk of astrocytes and microglia can influence the 
phagocytic capacity of both cell types [16, 94]. While it is 
unknown if the circadian clock regulates expression of astro-
cytic proteins involved in Aβ uptake and degradation (such 
as LDLR, LRP1, TFEB, and APOE), circadian influences 
on astrocytic endocytosis and lysosomal function could 
impact Aβ plaque formation. Furthermore, loss of Bmal1 
drives astrogliosis and impairs the support function of astro-
cytes, which could impart damage to surrounding neurons 
[54]. While the effect of astrocyte clock disruption on Aβ 
clearance is unknown, circadian regulation of astrocytic Aβ 
metabolic proteins and reactive gliosis could influence the 
clearance functions of astrocytes and modulate Aβ and tau 
accumulation in the AD brain.

Another intriguing possibility is that the astrocyte clock 
influences AD pathogenesis through modulation of sleep. 
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Sleep deprivation is known to increase levels of Aβ in the 
interstitial fluid of mice [72] and cerebrospinal fluid of 
humans [95], and to accelerate amyloid plaque accumulation 
in mice [72]. Sleep loss can also increase brain tau levels and 
accelerate tau pathology in mice [76]. Astrocytes have been 
strongly implicated in the regulation of sleep [96], though 
their circadian role in sleep regulation is not well under-
stood. One potential link between astrocyte clocks and sleep 
is the astrocytic gene Fabp7, which encodes brain-type fatty 
acid binding protein. Fabp7 exhibits strong circadian oscil-
lation in the brain and its expression is directly controlled by 
the core clock in astrocytes [97, 98]. Fabp7 is also required 
for normal sleep in mice and humans, as mutations in Fabp7 
in both species induce sleep fragmentation [99]. Thus, one 
hypothesis is that disruption of astrocyte clocks in aging or 
early AD could presumably lead to loss of normal circadian 
Fabp7 regulation, causing fragmented sleep and increasing 
Aβ and tau pathology. Similar connections between genes 
under astrocyte clock control and AD are therefore likely to 
emerge with increasing interest and technological advances 
in glial and circadian research.

Blood–brain barrier function

Disruption in the blood–brain barrier (BBB) has been impli-
cated in the pathogenesis of many neurologic disease states, 
including Alzheimer’s disease [100]. Loss of BBB integrity 
is thought to facilitate entry of inflammatory mediators, met-
als, and even bacteria into the brain, leading to damage [100, 
101]. Rhythms in blood–brain barrier function and the cell-
type specific clocks involved have been demonstrated in D. 
melanogaster, as BBB permeability oscillates and promotes 
more efflux during the day [102]. This rhythmic permea-
bility is determined by circadian communication between 
perineural and subperineural glia of the fly BBB, and is sig-
nificant enough to promote enhanced retention and efficacy 
of seizure drugs at night compared to daytime treatment. 
It is unclear how well this translates to mammalian clocks 
as the fly BBB is different in cell type and structure, but 
clock regulation of the BBB in mammals has been proposed: 
brain-specific deletion of Bmal1 causes alterations in activity 
and astrogliosis similar to other models of Bmal1 knockout 
[53], but also causes higher brain weight, higher BBB per-
meability, and reduced markers of BBB integrity [103]. As 
BBB permeability determines CNS inflammatory status and 
interactions with the periphery, it will be critical to elucidate 
the clock-controlled functions of glia at the BBB.

Glymphatic function

An emerging player in the field of circadian astrocyte func-
tions is the glymphatic system. Early research on the glym-
phatic system first reported that tracers injected into the CSF 

cycle through the brain parenchyma in a size-dependent 
manner [21]. The exchange of CSF contents with brain inter-
stitial fluid requires the astrocytic water channel aquaporin-4 
(AQP4) [22] and is proposed to utilize arterial pulsation to 
drive bulk flow for influx and clearance of brain solutes. 
Importantly, AQP4-dependent glymphatic clearance has 
been shown to contribute to the distribution of neurodegen-
erative disease-related proteins in the brain, such as amyloid 
beta [21, 104], tau [105], and ApoE [106]. Additionally, in 
AD patients global AQP4 expression is increased but its spe-
cific localization around astrocyte endfeet is decreased and 
inversely correlated with Braak stage [107]. Thus, while the 
actual mechanism of this pressure-directed fluid flow into 
and out of the brain remains unclear, the glymphatic system 
seems to have a potential role in neurodegenerative disease.

Interestingly, accumulating evidence points to a role for 
sleep and vigilance state in the efficiency of glymphatic flow. 
During natural or anesthetic-induced sleep, higher influx 
and efflux of CSF tracers into the brain can be achieved, 
possibly through an increase in the volume of interstitial 
space [108]. This work suggests that more efficient waste 
clearance may occur during sleep. Evidence for this theory 
has been somewhat contradictory, but appears to depend on 
how various experimental paradigms influence sleep state 
and autonomic tone. Recent work utilizing different types 
of anesthetics has shown that higher glymphatic influx 
seems to correlate with elevated delta slow-wave oscilla-
tions and lowered heart rate [109]. In addition, the choroid 
plexus exhibits robust rhythms in clock gene expression and 
may synchronize CSF production to the time of day [110]. 
Thus, several of the critical factors controlling glymphatic 
flow, including sleep, autonomic tone, and CSF production 
are regulated by the circadian clock [110, 111]. Moreover, 
AQP4 transcript appears to exhibit circadian oscillation in 
several tissues [112], and is increased in astrocytes following 
Bmal1 deletion [54], though direct oscillation in astrocytes 
has not been reported to our knowledge. Circadian regula-
tion of AQP4 expression and localization by the astrocyte 
clock could mediate diurnal fluxes in glymphatic flow. A 
loss of normal astrocytic clock function could disrupt influx/
efflux rhythms, potentially leading to accumulation of toxic 
proteins aggregates as seen in neurodegenerative diseases. 
Therefore, while the role of the circadian clock in glym-
phatic regulation is not yet defined, it is tempting to specu-
late that circadian systems in the SCN or in astrocytes may 
influence glymphatic clearance.

Other circadian links to Aβ regulation

Astrocytes may also influence neurodegenerative dis-
ease through effects on brain metabolism. There is a clear 
link between neuronal activity and the development of 
AD [113–116]. Release of Aβ from neurons occurs in an 
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activity-dependent manner, and brain regions with high 
neuronal activity (such as the default-mode network of the 
brain) have higher amyloid plaque deposition in AD [114, 
115]. Increased neuronal activity due to sleep disruption 
is also associated with amyloid plaque deposition [72]. As 
discussed above, astrocytes regulate neuronal activity and 
metabolism via multiple mechanisms, including the lactate 
shuttle. Thus, circadian astrocyte functions may regulate 
neuronal activity and metabolism and thus influence Aβ lev-
els and deposition, though this has not been demonstrated.

In addition, intracellular components of astrocyte degra-
dation machinery may also be under circadian regulation. 
Microglial cathepsin S expression oscillates on a circadian 

timescale, suggesting that the availability of lysosomal 
cysteine proteases is under clock control [117]. Lysosomal 
biogenesis by astrocytes has been shown to improve uptake 
and degradation of Aβ and limit plaque formation [88]. 
Daily rhythms in autophagy have also been observed in the 
mouse liver, which are disrupted in the context of inflam-
mation altering clock gene expression [118]. Time of day 
analysis has revealed that autophagy substrates peaking dur-
ing the day localize to the cytosol and nucleus, whereas sub-
strates peaking during the night localize to mitochondria, the 
ER, and the peroxisome. Thus, the localization of autophagy 
machinery within a cell may itself exhibit a daily rhythm 
and could contribute to astrocyte degradation of Aβ or other 

Fig. 1  Proposed influences of 
the astrocyte circadian clock 
in brain health and disease. 
The astrocyte circadian clock 
is known to control a number 
of important functions that 
oscillate with time of day, as 
indicated here by the oscillation 
symbol. Astrocytes extend their 
endfeet to the blood–brain bar-
rier and regulate its permeabil-
ity as well as glymphatic flow. 
Rhythmic AQP4 expression 
could influence these processes. 
Astrocytes modulate oscillations 
in extracellular levels of GABA 
and glutamate through modula-
tion of transmitter uptake and 
metabolism, thus participating 
in neuronal synchrony and cel-
lular crosstalk. Astrocyte ATP 
rhythms may also serve to inter-
act with other cells in the brain 
such as microglia. The astrocyte 
clock is crucial to determin-
ing astrocyte activation state 
as well as rhythms in cytokine 
release. Finally, oscillations in 
the level of extracellular protein 
aggregates may be determined 
by rhythmic astrocyte uptake 
and degradation through clock-
controlled pathways, such as 
autophagy
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protein aggregates [119–121]. Future studies are needed to 
examine the control of protein degradation machinery by 
the astrocyte clock.

Conclusions

The role of astrocyte function in AD and other neurode-
generative diseases is gaining increasing attention, and the 
diversity of astrocytic functions in the brain provides many 
potential mechanisms of disease contribution. Astrocytes 
have robust circadian clock function, and disrupting the 
clock in these cells reveals striking phenotypes. We suggest 
a model by which the astrocyte circadian clock could influ-
ence multiple aspects of AD pathophysiology (see Fig. 1). 
Astrocyte clock disruption, which might occur as an effect 
of aging, inflammation, environment, or toxic protein aggre-
gation, may promote plaque-related astrocyte activation and 
inflammatory responses, damaging neurons. Astrocyte clock 
dysfunction in AD may also promote Aβ and tau aggregation 
by disrupting the rhythmic expression of AQP4 and impair-
ing glymphatic flow, or by decreasing the expression of pro-
teins involved in Aβ uptake and degradation. Normal regula-
tion of astrocytic glutamate and ATP buffering, as well as 
other neuronal support functions, may also be disturbed in 
the setting of astrocyte clock dysfunction, sensitizing neu-
rons to other insults. Finally, loss of normal astrocyte clock 
influence on sleep, perhaps mediated by rhythmic Fabp7 
expression, could indirectly exacerbate inflammation, Aβ, 
and tau accumulation. Thus, a more detailed understanding 
of the many potential influences of the circadian clock on 
astrocyte function in both health and disease may provide 
new opportunities for intervention.
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