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Abstract
Endocrine therapy represents a mainstay adjuvant treatment of estrogen receptor-positive (ER+) breast cancer in clinical 
practice with an overall survival (OS) benefit. However, the emergence of resistance is inevitable over time and is present in 
one-third of the ER+ breast tumors. Several mechanisms of endocrine resistance in ER+/HER2− advanced breast cancers, 
through ERα itself, receptor tyrosine signaling, or cell cycle pathway, have been identified to be pivotal in endocrine therapy. 
The epigenetic alterations also contribute to ensuring tumor cells’ escape from endocrine therapies. The strategy of com-
bined hormone therapy with targeted pharmaceutical compounds has shown an improvement of progression-free survival 
or OS in clinical practice, including three different classes of drugs: CDK4/6 inhibitors, selective inhibitor of PI3Kα and 
mTOR inhibitors. Many therapeutic targets of cell cycle pathway and cell signaling and their combination strategies have 
recently entered clinical trials. This review focuses on Cyclin D–CDK4/6–RB axis, PI3K pathway and HDACs. Addition-
ally, genomic evolution is complex in tumors exposed to hormonal therapy. We highlight the genomic alterations present in 
ESR1 and PIK3CA genes to elucidate adaptive mechanisms of endocrine resistance, and discuss how these mutations may 
inform novel combinations to improve clinical outcomes in the future.
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Abbreviations
AIs	� Aromatase inhibitors
CDK4	� Cyclin-dependent kinase 4
CDK6	� Cyclin-dependent kinase 6
DNMT	� DNA methyltransferase
ER	� Estrogen receptor
ETs	� Endocrine therapies
HAT	� Histone acetyltransferase
HDAC	� Histone deacetylase
HR	� Hormone receptor-positive
KDM	� Histone demethylase
MAPK	� Mitogen-activated protein kinase
NCoR	� Nuclear corepressor
OS	� Overall survival
PFS	� Progression-free survival
PI3K	� Phosphoinositide 3 kinase
RB	� Retinoblastoma protein

RTKs	� Receptor tyrosine kinases
SMRT	� Silencing mediator for retinoid or thyroid hor-

mone receptors
TET	� Ten–eleven translocation

Introduction

The ER signaling is a well-established addictive onco-
genic pathway in breast cancer cells. Approximately, 70% 
of breast cancers are classed as ER-positive breast cancers 
[1–3]. Endocrine therapies (ETs) targeting estrogen action 
have dramatically decreased mortality from breast cancer. 
Typical ETs that are currently used worldwide include selec-
tive estrogen receptor down-regulators (e.g., fulvestrant); 
selective estrogen receptor modulators (e.g., tamoxifen); 
and aromatase inhibitors (AIs, e.g., letrozole). However, 
their efficacy is limited by intrinsic and acquired endocrine 
resistance [4]. For example, one-third of patients exposed 
to tamoxifen will eventually relapse with endocrine-resist-
ant advanced tumors within 15 years [1]. After 5 years of 
scheduled endocrine therapy, the breast cancer recurrences 
emerged at a stable rate throughout the study period from 

Cellular and Molecular Life Sciences

 *	 Zhengmao Zhu 
	 zhuzhengmao@nankai.edu.cn

1	 Tianjin Key Laboratory of Protein Science, Department 
of Genetics and Cell Biology, College of Life Sciences, 
Nankai University, Tianjin 300071, China

http://orcid.org/0000-0002-8734-8020
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-019-03281-4&domain=pdf


560	 J. Zhang et al.

1 3

5 to 20 years [5]. In a meta-analysis of outcomes of ran-
domized trials of AIs compared with tamoxifen in breast 
tumors, the 5-year recurrence rate of tamoxifen was 12.6% 
and that of AIs was 9.6% [6]. Recently, in 692 cases of hor-
mone receptor-positive (HR+) post-endocrine therapy breast 
cancers, clinical genomic analysis results provided perspi-
cacity in the genomic aberrations present in advanced HR+/
HER2− breast cancers [7]. Endocrine-resistant breast tumors 
were divided into four groups according to the genomic 
alterations, 18% of the tumors bearing ESR1 alterations, 13% 
of tumors harboring lesions in the mitogen-activated protein 
kinase (MAPK) pathway, 9% of the tumors with mutations 
in the transcriptional factors, and 60% of the endocrine-
resistant cases with undiscovered mechanisms [7].

Several well-described mechanisms of ET resistance are 
focused on the dysregulation of the ER pathway itself. The 
major form of estrogen receptor in breast cancer is ERα. 
ERα contains a central DNA-binding domain flanked by two 
activation domains [8]. The AF-2 domain is located in the 
ligand-binding domain and its activity is estrogen depend-
ent; moreover, the AF-2 domain interacts with co-activators 
which promote ERα transcriptional activity [8, 9], whereas 
AF-1 is activated by phosphorylation of ER [10]. ERα, a 
transcription factor-dominating gene correlated with cell 
proliferation, plays key regulatory roles during mammary 
gland development and in breast carcinogenesis. Blockade 
of ER signaling function is the mainstay therapeutics for 
ER+/HER2− breast cancer. But the occurrence of endocrine 
resistance is inevitable with advanced breast cancer. Given 
that endocrine therapy can be well tolerated with durations 
of response extending into years, the clinical benefit rate 
declines to around 30% for second- or third-line ETs for 
patients who benefited from the first-line treatment [11]. 
Therefore, the challenge is to improve our understanding of 
the mechanisms of ET resistance and to develop therapeutic 
strategies to extend the duration of effective therapy while 
minimizing toxicity. In this review, we discuss both the 
genetic and epigenetic rationale of ET resistance in HR+/
HER2− advanced breast cancer, and highlight the striking 
success of the treatment developed to overcome the specific 
resistance mechanism.

ESR1 mutations

Dysregulation of various components of the ER signaling 
associated with endocrine resistance includes dysregulation 
of ESR1 expression [12, 13], ESR1 mutations, expression 
of truncated isoforms of ERα [14–16], post-translational 
modification of ERα [17–22], abnormality of differential 
recruitment of ER co-regulators [23, 24] and downstream 
regulations of ER target genes via receptor tyrosine signal-
ing and other signaling pathways [25–28]. Much literature 

exist detailing these mechanisms [29, 30]. The primary 
mechanism of endocrine  resistance in breast cancer is lack 
of expression of ER, however, two studies showed that 
less than 10% of the cases appeared to show loss of the 
ER expression [31, 32], therefore, the ER pathway func-
tions in the majority of cases of ETs resistance. Moreo-
ver, several sequencing analysis studies revealed that up to 
20% of endocrine-resistant breast cancers harbored ESR1 
mutations, while mutations of ESR1 appeared to be rarely 
happen in primary tumors [33–36]. The study of genomic 
landscape of ETs-resistant breast cancer showed that 18% of 
the tumors harbored mutations of ESR1 [7]. Taken together, 
the mutation rate in ESR1 in ET resistance breast cancer is 
20% approximately. Yates et al. found that the driver coding 
mutations in ESR1 gene change significantly between pri-
mary and metastatic luminal breast cancer [37]. The driver 
coding mutations in the ESR1 gene confer allele-specific 
neomorphic properties [33, 38, 39], especially the ER 
Y537S and D538G mutants have unique transcriptomes and 
cistromes which drive endocrine resistance and metastases 
[40]. Spoerke et al. found that multiple different ESR1 muta-
tions coexist in distinct drug-resistant subclonal tumor cells 
in patients who suffered a failure of endocrine therapy [41]. 
Moreover, distinct ESR1 mutations differentially affect the 
efficacy of ER antagonists [42–45]. Therefore, biopsy and 
sequencing of advanced ER+ breast cancer may be helpful in 
some cases, because most ET resistance acquire additional 
driver mutations not seen in the primary. Razavi et al. identi-
fied that ESR1 mutations and lesions in the MAPK pathway, 
representing different categories of endocrine resistance 
breast cancer [7]. Although the mutations in the multiple 
effectors of MAPK signaling or in MYC or other transcrip-
tion factors were mutually exclusive with hotspot mutations 
in ESR1 at the level of individual cases in the prospective 
sequencing cohort, these distinct mutations were observed 
to coexist in a patient whose multiple tumors were avail-
able for analysis [7]. Hence, multiple biologically distinct 
mechanisms of ET resistance are likely to coexist in sub-
clone cancer cells in individual patients.

Cyclin D–CDK4/6–RB pathway and CDK4/6 
inhibitors

Role of cyclin D–CDK4/6–RB axis in G1–S phase 
transition

Genetic and biochemical characterization of D-type cyc-
lins and their partner cyclin-dependent kinases (CDK4 and 
CDK6) have been extensively investigated and revealed 
how mammalian cells regulate G1–S phase transition in a 
retinoblastoma protein (RB)-dependent manner [46, 47]. 
RB, which undergoes periodic phosphorylation during 
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cell division cycle, is a well-known master-regulator of the 
G1/S-checkpoint. RB is dephosphorylated in the mitosis 
phase and progressively re-phosphorylated first by cyclin 
D/CDK4/6 complex and later by cyclin E/CDK2 complex 
in the G1 phase [48]. Hypophosphorylated RB inhibits the 
transcriptional activation of E2F target genes as cells rested 
in the G0 or early G1 phase [49, 50]. RB becomes hyper-
phosphorylated (inactivated) in the late G1 phase, result-
ing in the loss of its proliferation-suppressive function and 
promoting the G1–S phase transition [51]. The enzymatic 
activities of CDK4/6 in the G1 phase are governed by cyc-
lin D expressed in response to various extracellular signals 
[52, 53]. Therefore, the cyclin D–CDK4/6–RB axis is down-
stream of multiple mitogenic cascades, making it a valuable 
target for drug development [54].

The cyclin D–CDK4/6–RB axis deranged 
in ER+ breast cancer

The RB tumor suppressor gene is functionally inactivated 
in approximately 20–30% of breast cancers [55], and loss of 
RB expression is more commonly observed in triple-nega-
tive breast cancer [56, 57]. Therefore, RB is proficient in the 
majority of HR+ breast cancer [58]. Protein p16INK4, which 
acts as a brake on the activation of CDK4/6 in RB-proficient 
cells [59], is found to be inactivated in half of invasive breast 
cancers [60].While the activated cyclin D–CDK4/6 complex 
plays a central role in the G1/S phase transition in response 
to oncogenic pathways and cyclin D1 acts as mitogen sen-
sor to govern G1 phase progression, activating mutations in 
cyclin D and CDK4/6 rarely existed. Many studies reported 
that overexpression of cyclin D occurred in over half of all 
breast cancers with or without cyclin D1 gene amplification 
[61–67]. Moreover, amplification of cyclin D1 is especially 
high in ER+ breast cancers (58% in luminal B subtype and 
29% in luminal A subtype, respectively) [68]. Amplification 
of CDK4 is identified in 25% of luminal B cancers and 14% 
of luminal A cancers [68]. Additionally, amplification of 
both cyclin D1 and CDK4 is high in HER2-enriched subtype 
(38% and 24%, respectively) [68]. While ER and HER2 sign-
aling seems to be drivers in the biology of about 70% and 
20% of breast cancers, respectively [23, 69], the two path-
ways share the same downstream or end points on the cyclin 
D–CDK4/6–Rb axis. That is, the receptor tyrosine kinases 
(RTKs) signaling can potentiate cyclin D–CDK4/6–Rb axis 
in an ER-independent fashion.

CDK4/6 inhibitors’ clinical development in patients 
with breast cancer

Over the past 4  years, three orally available approved 
CDK4/6 inhibitors (palbociclib, ribociclib and abemaci-
clib) have been demonstrated to result in significant clinical 

benefit when combined with ETs in HR+/HER2− advanced 
breast cancers in the clinical settings [70–75]. Palbociclib 
was the first CDK4/6 inhibitor approved. The clinical trial 
NCT01684215 (Phase I/II PALOMA-1 study) evaluated 
the safety and tolerability of the combination of letro-
zole plus palbociclib in the first-line treatment of HR+/
HER2− advanced breast cancer in postmenopausal women 
(Table 1). The clinical trial NCT00721409 (Phase II PAL-
OMA-1/TRIO 18 study) revealed an impressive improve-
ment in progression-free survival (PFS) in the palbociclib 
plus letrozole arm (20.2 versus 10.2 months, p = 0.0004) 
[72]. The OS for NCT00721409 has not been reported. Con-
sistent with findings from the clinical trial NCT00721409, 
in the clinical trial NCT01942135 (Phase III PALOMA-3 
study), the median PFS showed significant improvement 
in patients treated for 9.5 months in the palbociclib plus 
fulvestrant group compared with 4.6 months in the pla-
cebo plus fulvestrant group. Moreover, the median OS was 
34.9 months (28.8–40.0) in the palbociclib plus fulvestrant 
arm and 28.0 months (23.6–34.6) in the placebo plus fulves-
trant arm (HR = 0.81; p = 0.09) [76]. However, all the three 
drugs inhibit the proliferation of RB-positive tumor cells to 
induce cell cycle exit and are inactive in RB-negative tumor 
cells. Currently, CDK4/6 inhibitors are being increasingly 
employed in clinical trials combined with signaling pathway 
inhibitors against epidermal growth factor, phosphoinositide 
3 kinase (PI3K), or others that upregulated the expression of 
cyclin D1 or CDK4/6 (Table 2) [77–81]. These combination 
therapy strategies designed to increase therapeutic efficiency 
have been extensively and comprehensively reviewed [74, 
82]; moreover, the outcomes of some recent investigations 
showed that the CDK4/6 inhibitors strengthened the cyto-
static effect induced by several signaling pathway inhibitors 
[83]. Further, CDK4/6 inhibition can also affect the tumor 
microenvironment. For example, CDK4/6 inhibition trig-
gered antitumor immunity in patient-derived breast cancer 
cell xenografts model and an MMTV-HER2 mouse [84]. 
Cdk4/6 inhibitor plus an AI or fulvestrant was listed as the 
preferred treatment option in HR+/HER2− metastatic breast 
cancer. Therefore, an applied understanding of the outcomes 
of CDK4/6 inhibitors and practice patterns may generate a 
hypothesis for subsequent treatments to deal with the coming 
challenges. Given palbociclib in combination with hormone 
therapy led to mPFS of 20.7, 12.8, and 4.0 months when 
administered in the first-line, second-line and third-line in 
the real-world palbociclib practice pattern [85, 86], one 
challenge in the treatment of HR+/HER2− advanced breast 
cancer is deciding the optimal time to introduce a CDK4/6 
inhibitor. Moreover, the cytostatic effects of CDK4/6 inhibi-
tors are limited by primary and acquired resistance. Several 
studies in preclinical settings have demonstrated primary 
and acquired resistance to CDK4/6 inhibitors mediated by 
amplification of CDK6 or CCNE1 or FGFR1 gene, and loss 
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Table 1   CDK4/6 inhibitor clinical trials in women with HR+ advanced breast cancer

Identifier Disease N Treatment Outcomes

NCT01684215 HR+/HER2− 61 Palbociclib versus letrozole + palbociclib Evaluation the safety, tolerability, preliminary 
efficacy

Palbociclib (at 125 mg orally each day on the 3/1 
schedule) with letrozole 2.5 mg daily

NCT00721409 HR+/HER2− 177 Letrozole versus letrozole + palbociclib PFS: 10.2 months(5.7–12.6) versus 20.2 months 
(13.8–27.5)

HR = 0.49; p = 0.0004
NCT01942135 HR+/HER2− 521 Placebo + fulvestrant versus palbociclib + fulves-

trant
PFS: 4.6 months (3.5 to 5.6) versus 9.5 months 

(9.2 to 11.0)
HR = 0.42; p < 0.000001
OS: 34.9 months (28.8 to 40.0) versus 28.0 months 

(23.6 to 34.6)
HR = 0.81; p = 0.09

NCT02441946 HR+/HER2− 224 Abemaciclib + anastrozole versus abemaciclib 
versus anastrozole

Ki67 expression Percent change: − 92.86 
(− 94.82 to − 90.16)

versus − 90.52 (− 93.12 to − 86.93)
versus − 62.78 (− 72.99 to − 48.71); p < 0.001

NCT02102490 HR+/HER2− 132 Abemaciclib OS: 22.32 months (17.72 to NA)
Duration of response (DOR): 8.6 months 

(5.8 to 10.2)
PFS: 6.0 months (4.2 to 7.5)

Table 2   Summary of ongoing clinical trials involving CDK4/6 inhibitors in HR+ breast cancer

Compound combination Disease Phase Identifier

Palbociclib with GDC-0810 ER+/HER2− I/II NCT01823835
Palbociclib with gedatolisib and faslodex ER+/HER2− I NCT02626507
Palbociclib with bazedoxifene HR+ I/II NCT02448771
Palbociclib with SAR439859 ER+ I/II NCT03284957
Palbociclib with trastuzumab + pertuzumab + anastrozole HR+/HER2− I/II NCT03304080
Palbociclib with tucatinib + letrozole HR+/HER2− Ib/II NCT03054363
Palbociclib with copanlisib + letrozole HR+/HER2− Ib/II NCT03128619
Palbociclib with GDC-0077 + fulvestrant + letrozole + metformin PIK3A mutant, HR+/HER2− I/II NCT03006172
Palbociclib with AZD2014 + fulvestrant ER+ I/II NCT02599714
Palbociclib with everolimus + exemestane ER+/HER2− I/II NCT02871791
Palbociclib with fulvestrant + erdafitinib ER+/HER2−/FGFR-amplified I NCT03238196
Palbociclib with tamoxifen HR+/HER2− II NCT02668666
Palbociclib with fulvestrant + avelumab ER+/HER2− II NCT03147287
Palbociclib with pembrolizumab + letrozole ER+/HER2− II NCT02778685
Ribociclib with LSZ102 + BYL719 ER+ I NCT02734615
Ribociclib with everolimus + exemestane ER+/HER2− I/II NCT02732119
Ribociclib with trastuzumab or T-Dm1 Advanced/Metastatic Her2+ Ib/II NCT02657343
Ribociclib with everolimus + exemestane HR+/HER2− I NCT01857193
Ribociclib with BYL719 + letrozole ER+ I NCT01872260
Ribociclib with fulvestrant + BYL719 + BKM120 ER+/HER2− I NCT02088684
Ribociclib with tamoxifen ER+/HER2− I NCT02586675
Abemaciclib with xentuzumab HR+ I NCT03099174
Abemaciclib with anastrozole or letrozole HR+/HER2− III NCT02246621
Abemaciclib with tamoxifen HR+/HER2− II NCT02246621
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of RB1 or FAT1 gene [87–90]. In the PALOMA-3 clini-
cal trial, evolution of driver gene mutations (such as RB1 
mutations, p = 0.041; PIK3CA mutations, p = 0.00069; and 
ESR1 Y537S mutation, p = 0.003) was common in patients 
progressing later on palbociclib combined with fulvestrant 
treatment [91, 92]. The other challenge is to discover how 
complex the outcomes would be in patients treated with 
additional CDK4/6 inhibitor therapy after progression. 
Recently, the treatment with CDK4/6 inhibitors after disease 
progression is under active investigation in prospective clini-
cal trials, such as the ongoing PACE trial (NCT03147287), 
a randomized phase II study comparing the median PFS for 
fulvestrant alone versus fulvestrant + palbociclib versus ful-
vestrant + palbociclib + avelumab, and the TRINITI-1 trial 
(NCT01857193), a single-arm phase II trial assessing the 
antitumor activity of ribociclib + exemestane + everolimus. 

PI3K pathway inhibitors’ clinical 
development

PI3K pathway is frequently hyperactivated in HR+/
HER2− advanced breast cancer and has been implicated 
in resistance to ETs [93–95]. Furthermore, genomic altera-
tions in PIK3CA are common in ER+/HER2− metastatic 
breast cancer [7, 91, 96–99]. Thus, the PI3K pathway has 
emerged as an important therapeutic window for interven-
tion in endocrine-resistant breast cancer. Several PI3K 
inhibitors combined with various endocrine therapies have 
been tested in the clinical trial in HR+/HER2− metastatic 
breast cancer. Pan-Class I PI3K inhibitors (such as bupar-
lisib and pictilisib) have shown modest efficacy in clini-
cal trials [100]. Several clinical trials evaluated the safety 
and efficacy of buparlisib plus fulvestrant in patients with 
HR+/HER2− metastatic breast cancer who were pre-
treated with everolimus plus exemestane (NCT01610284, 
NCT01633060) [101, 102]. Although the median PFS was 
significantly improved in the buparlisib versus placebo group 
(3.9 months vs 1.8 months; HR = 0.67, p = 0.0003), the seri-
ous adverse events generated from the off-target effects of 
the pan-PI3K inhibitors limited the clinical practice of these 
drug compounds [101, 102]. PI3Kα, which has the most fre-
quent genomic alterations among the class I PI3K isoforms 
in breast tumors [7, 91, 96–99], has a prominent role in the 
PI3K pathway. Selective inhibitors targeting the PI3Kα iso-
form have been implicated to provide a therapeutic window 
and to reduce adverse events greatly compared to the Pan-
Class I PI3K inhibitors [103]. Alpelisib, an oral selective 
inhibitor of PI3Kα, was proved to block tumor growth in 
xenograft models harboring PIK3CA mutations in the pre-
clinical studies [104]. Moreover, alpelisib showed a toler-
able clinical safety profile in phase I studies in cohorts of 
both Western and Japanese patients with PI3KCA-mutated 

advanced solid cancer (NCT01219699, NCT01387321) 
[105, 106]. On May 24, 2019, Alpelisib received FDA 
approval for the treatment of postmenopausal women, and 
men, with HR+/HER2− , PIK3CA-mutated metastatic breast 
cancer following progression on or after an endocrine-based 
regimen. The median OS was 11 months (7.5–14.5) in the 
alpelisib plus fulvestrant arm and 5.7 months (3.7–7.4) in 
the placebo plus fulvestrant arm (HR = 0.0.65; p < 0.001) 
in the cohort of patients with PI3KCA-mutated cancer, and 
no significant clinical benefit was observed with alpelisib 
on median PFS in the cohort of patients without a PI3KCA 
mutation [107, 108].

Histone deacetylases as a therapeutic target 
in HR+ breast cancer

Preclinical activity of the HDAC inhibitors

In addition to genetic alterations, epigenetic alteration 
including histone hypoacetylation is a putative mechanism 
by which tumor cells can develop drug resistance [109–112]. 
Aberrant histone deacetylase (HDAC) activity has been 
demonstrated in breast cancer. In breast cancer core biopsy 
specimens from 200 patients, HDAC1 expression was asso-
ciated with estrogen receptor and progesterone receptor 
expression, and HDAC1 expression predicted significantly 
better disease-free survival [113]. Muller et al. presented the 
results of HDACs expression in a large cohort of primary 
breast cancer cases (n = 238) [114]. HDAC1 was increased 
in HR+ tumors, while HDAC2 and HDAC3 were strongly 
expressed in hormone receptor-negative subgroups of tumors 
with features of a high grade and more aggressiveness [114]. 
Four ERα corepressors (nuclear corepressor (NCoR), silenc-
ing mediator for retinoid or thyroid hormone receptors 
(SMRT), COUP-TF II and SPEN) have been shown to poten-
tiate endocrine sensitivity in breast cancers [115]. NCoR 
and SMRT both repress the ERα transcriptional activation 
depending on HDAC3 activity [116]. COUP-TF II and SPEN 
attenuate hormonal responses by recruiting HDAC1 to the 
ERα complex at the genomic sites recognized by ERα [117, 
118]. The loss of any of the four corepressors leads to abnor-
mal recruitment of HDACs to ERα-target genes and results 
in endocrine resistance in breast cancer [115]. These studies 
have prompted the clinical testing of HDAC inhibitors as 
anticancer therapeutics in breast cancer [119]. A vast array 
of both natural and synthetic chemical compounds function-
ing as HDAC inhibitors were initially discovered based on 
drug screens for differentiation inducers in leukemias [120, 
121]. The HDAC inhibitors have been investigated as ther-
apeutic agents in cancers; for example, romidepsin, vori-
nostat and belinostat have been approved by the US FDA 
for treatment of cutaneous or peripheral T cell lymphoma. 
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Panobinostat combined with bortezomib has been approved 
for the treatment of drug-resistant multiple myeloma. Tuci-
dinostat has been approved in China for relapsed or refrac-
tory peripheral T cell lymphoma.

Laboratory research to date supports the investigation 
of HDAC inhibitors for the treatment of HR+ breast can-
cer. Several HDAC inhibitors could induce G1 and G2/M 
cell cycle arrest and subsequent apoptosis or differentia-
tion of both ER-positive and ER-negative breast cancer cell 
lines [122–125]. HDAC inhibitors are thought to be able 
to relieve transcriptional repression in preclinical breast 
cancer models. Reactivation of silenced ER was observed 
with vorinostat treatment in preclinical models in hormone 
receptor-negative tumors [126]. The significance of re-
expression of silenced ERα and restoration of sensitivity to 
endocrine therapy such as AIs were demonstrated in triple-
negative breast cancer xenografts following treatment with 
both HDAC and DNMT inhibitors [127–129]. Moreover, 
entinostat sensitized triple-negative breast cancer xenografts 
to letrozole [130]. In addition, a significant growth inhibi-
tion was also observed in HER2-positive xenograft mouse 
models following treatment with entinostat plus lapatinib. 
Mechanistic studies revealed that these effects resulted 
from downregulation of HER2 and phosphorylated AKT 
[131, 132]. These experiments provided a strong rationale 
for combining HADC inhibitors with hormone therapy in 
advanced HR+ breast cancer clinical trials.

HDAC inhibitors’ clinical development in patients 
with breast cancer

Several HDAC inhibitors have been evaluated or being 
evaluated in a number of Phase I/II/III trials in patients 
with breast cancer. Vorinostat, which targets classes 1 
and 2 HDACs, was the first HDAC inhibitor available for 
investigator-initiated trails. In a Phase II trial of single-agent 
vorinostat in patients with advanced breast cancer [133], 14 
patients received vorinostat at a dose of 200 mg oral twice 
daily for 14 days of each 21-day cycle. The clinical trial 
revealed no complete or partial responses, and the study was 
terminated after the first stage. Although the study did not 
meet its primary end point, stable disease was observed in 
almost 30% (4 of 14) of the patients. The therapy was well 
tolerated with the most common adverse events. Given vori-
nostat was found to enhance the anti-proliferative actions of 
tamoxifen on breast cancer cells [134], a Phase II clinical 
trial (NCT00365599) of vorinostat plus tamoxifen treat-
ment was designed in the hormone therapy-resistant breast 
cancer setting. 43 women with hormone-resistant breast 
cancer received oral vorinostat 400 mg daily (21 days of a 
28 day cycle) and tamoxifen 20 mg daily [135]. The results 
showed that the objective response rate was 19% and the 
clinical benefit rate was 40%. In addition, the combination 

of these two agents was well tolerated [135]. Entinostat is 
a synthetic benzamide derivative HDAC inhibitor, which 
potently inhibits class 1 and class 4 HDAC enzymes. Sev-
eral clinical trials revealed that oral entinostat was well tol-
erated in patients with both solid tumors and hematologic 
malignancies [136–138]. ENCORE 301 (NCT00676663) 
was a Phase II randomized, double-blind, placebo-con-
trolled study of the addition of entinostat to exemestane 
in patients with HR+ advanced breast cancer with disease 
progression after prior non-steroidal aromatase inhibitor 
[139]. The study demonstrated a significant improvement 
in PFS in the entinostat arm versus placebo (median 4.3 
versus 2.3 months, p = 0.055), and an impressive improve-
ment in OS was also observed in the entinostat arm versus 
placebo (28.1 versus 19.8 months, p = 0.036) [139, 140]. The 
follow-up randomized Phase III confirmatory study (E2112, 
NCT02115282) is ongoing [140]. On October 25, 2018, a 
press release by the Syndax Pharmaceuticals stated that the 
Phase III breast cancer trial E2112 failed to achieve its sta-
tistical hurdle for the co-primary end point of improvement 
in PFS [141]. However, the final data of the findings from 
the PFS analysis will not be available until report of the final 
OS results. Tucidinostat, an oral benzamide class of HDAC 
inhibitor, selectively inhibits HDAC1, HDAC2, HDAC3 
and HDAC10 enzymes. The ACE study (NCT02482753) 
was a randomized, double-blind, placebo-controlled Phase 
III clinical trial of tucidinostat plus exemestane [142]. The 
clinical study revealed a significant improvement in PFS 
in the tucidinostat arm versus placebo (median 7.4 versus 
3.8 months, p = 0.033). The following up for investigation 
of overall survival is ongoing. Serious adverse events were 
observed more common in the tucidinostat plus exemestane 
group (21%, 51 of 244 patients) than in the placebo plus 
exemestane group (6%, 7 of 121 patients).

Why are the PFS results from E2112 study seemingly 
divergent to the PFS results from both the ENCORE 301 
study and the ACE study? In view of differences among 
the three clinical trials, the practice pattern, especially the 
exposure to previous systemic regimens, could be the major 
factor affecting the clinical outcomes. Patients enrolled in 
the E2112 study are more likely to have received previous 
CDK4/6 inhibitors. In China, neither CDK4/6 inhibitors nor 
everolimus was approved during the enrollment period (July 
20, 2015 to June 26, 2017), thus only seven patients in the 
ACE study had previously received palbociclib and none 
of the 130 patients in the ENCORE 301 study had taken 
CDK4/6 inhibitors. The molecular mechanisms governing 
resistance to CDK4/6 inhibitor combination with endocrine 
therapy could be distinct from those facilitating resistance 
to anti-estrogen monotherapy [143]. Therefore, previous 
exposure to CDK4/6 inhibitors could modulate the thera-
peutic benefit with subsequent HDAC inhibitor treatment. 
Similarly, a Phase I/II clinical trial (NCT00258349) was 
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developed to evaluate the response rate after treatment with 
vorinostat and trastuzumab in patients with HER2-overex-
pressing metastatic breast cancer with trastuzumab-resistant 
progressive disease. The results revealed that none of the 
patients in the primary analysis set responded to combina-
tion vorinostat and trastuzumab treatment [144]. Moreover, 
Kim et al. reported that pretreatment of various tumor cell 
lines with trichostatin A or vorinostat increased the cytotox-
icity of chemotherapy, while administering the HDAC inhib-
itors after chemotherapy did not achieve the same results 
[145]. Hence, additional research is needed to determine 
the optimal treatment sequencing of HDAC inhibitors and 
the schedule of administration should ideally be modeled 
preclinically prior to the initiation of clinical trials. Over-
all, although both entinostat and tucidinostat have not been 
approved for clinical use by any regulatory agency for the 
management of HR+ advanced breast cancer, the results 
of the clinical trials (NCT00676663, NCT02115282 and 
NCT02482753) represented an important step forward in the 
development of epigenetic therapy for endocrine-resistant 
breast cancer.

Conclusions and future directions

Intrinsic and acquired resistance to hormonal therapy results 
in cancer recurrence and limits clinical benefit on HR+/
HER2− advanced breast cancer. Recently, genomic muta-
tions in the ESR1 gene were found in approximately 18% of 
endocrine-resistant HR+ breast cancers [7, 33–36]. Impor-
tantly, ESR1 mutations differentially affect the efficacy of 
ER antagonists [42–45]. Therefore, the ER signaling path-
way for tumor progression remains to be elucidated further. 
While the ESR1 alterations offer beneficial advantageous 
insights into the genomic evolution of HR+ breast cancers 
under the selective pressure of drugs, pan-wild-type tumors 
with unknown mechanisms of ETs accounted for around 60% 
of patients. Therefore, more research data are required to 
provide evidence informing optimal sequencing of available 
therapies for the guidance to develop therapeutic approaches 
to overcome resistance. Although ESR1 mutations, MAPK 
alterations and PI3KCA aberrations were mutually exclusive 
at the level of individual cases in the prospective sequenc-
ing cohort according to the taxonomy, they could coexist 
in the metastatic tumors from one patient. Thus, multiple 
biologically distinct mechanism of ET resistance probably 
coexist in distinct tumor subclones in individual patients. 
Thereby, the effective overcome of ET resistance will be 
achieved by combination therapies that affect the cell cycle 
regulation, ER signaling and other compensatory mecha-
nisms and alternative pathways. However, the phenocopy of 
coexistent mutations in individual cases makes it challeng-
ing to develop combination therapies which could uproot 

all ET resistance clones; hence, cross talk between these 
signaling pathways is required to be further investigated. 
Now, the complex mutational genomic landscape and the 
extensive genomic heterogeneity changes in ETs-resistant 
breast cancer have been revealed by large-scale genom-
ics analyses [7, 91, 97, 146–148]. Novel essential factors 
contributing to endocrine resistance are being discovered 
at the preclinical level: for example, the nuclear envelope 
anchored protein LEM4, transcriptional factor FOXA, and 
non-coding RNA genes RMRP and NEAT1 [61, 149]. In 
parallel, genome sequencing efforts of thousands of uncul-
tured tumors have revealed that more than 50% of human 
cancers harbor mutations in enzymes (HDACs and HATs, 
TETs and DNMTs, KDMs and KMTs) that are involved in 
chromatin organization [150–152]. The frequent existence 
of fascinating interplay between the genetic alterations and 
epigenetic abnormalities promote tumorigenesis and metas-
tasis; for example, PI3K pathway regulates ER-dependent 
transcription in breast cancer through the epigenetic regula-
tor KMT2D [28]. All these findings would influence clinical 
practice to personalize therapeutic regimens for individual 
patients or inform potential approaches to outcome resist-
ance. Moreover, advances in genomic sequencing and other 
technologies that allow deeper understanding of the genetic 
alterations and epigenetic abnormalities of individual tumors 
and further investigation into the cross-talk between these 
signaling pathways have yielded a superabundance data both 
in the preclinical and clinical setting. And it is clear that 
these data require continued systematic mining to reveal 
many exciting discoveries to personalize therapeutic strate-
gies for each patient with ER positive breast cancer.
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