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Abstract
In the past two decades, transmembrane channel-like (TMC) proteins have attracted a significant amount of research interest, 
because mutations of Tmc1 lead to hereditary deafness. As evolutionarily conserved membrane proteins, TMC proteins are 
widely involved in diverse sensorimotor functions of many species, such as hearing, chemosensation, egg laying, and food 
texture detection. Interestingly, recent structural and physiological studies suggest that TMC channels may share a similar 
membrane topology with the Ca2+-activated Cl− channel TMEM16 and the mechanically activated OSCA1.2/TMEM63 chan-
nel. Namely, these channels form dimers and each subunit consists of ten transmembrane segments. Despite this important 
structural insight, a key question remains: what is the gating mechanism of TMC channels? The major technical hurdle to 
answer this question is that the reconstitution of TMC proteins as functional ion channels has been challenging in mammalian 
heterologous systems. Since TMC channels are conserved across taxa, genetic studies of TMC channels in model organisms 
such as C. elegans, Drosophila, and zebrafish may provide us critical information on the physiological function and regu-
lation of TMCs. Here, we present a comparative overview on the diverse functions of TMC channels in different species.
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Introduction

Transmembrane channel-like (TMC) proteins are a novel 
family of ion channel-like proteins that are conserved from 
C. elegans to humans [1, 2]. The discovery of TMC1, the 
founding member of TMC family proteins, benefited tre-
mendously from genetic studies of deafness in mice and 
humans. In 1958, Deol and Kocher first reported a deaf-
ness (dn) mouse strain with a recessive inheritance [3]. 

More than 20 years later, Steel and Bock examined these 
deafness mice and found that they lacked cochlear micro-
phonics [4]. Within a few years, human siblings with reces-
sive deafness were identified and its locus was linked to 
9qll–q21 (DFNB7) region [5, 6]. Remarkably, this region 
of the human genome is syntenic to the mouse deafness 
(dn) locus, implying that mutations of a common gene are 
likely responsible for the deafness in both humans and mice. 
In 2002, using positional cloning, Kurima et al. identified 
eight mutations of a novel gene, Tmc1, in a dominant deaf-
ness locus DFNA36 which maps to the human chromosome 
9q13–21 in a region overlapping the DFNB7/B11 locus 
for recessive deafness [7]. They also showed that a 1.6 kb 
deletion in Tmc1 was causative disruption in the deafness 
(dn) mouse [7]. Coincidently, an independent study from 
Vreugde et al. reported that the Beethoven (Bth) mutant 
mouse, which carried a methionine to lysine substitution 
of residue 412 in TMC1, is a new mouse model for domi-
nant, progressive hearing loss DFNA36 [8]. Collectively, 
these exciting studies have paved the way for the discovery 
of TMC family proteins.

Through sequence homology search, seven additional 
TMC channels (TMC2–TMC8) were identified in humans 
and mice (Fig. 1a) [2, 7]. These TMC channels were strongly 
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predicted to encode proteins with 6–10 transmembrane 
domains and they all contain a novel conserved 120-amino-
acid sequence termed TMC domain (Fig. 1b). Based on 
their amino-acid sequence similarities, TMC channels can 
be further grouped into three subfamilies that include TMCs 
1–3, TMCs 5 and 6, and TMCs 4, 7 and 8 [2]. In addition to 
mammals, homologues of TMC channels were identified in 
other species such as C. elegans, Drosophila, and zebrafish, 
indicating that TMC proteins might have evolutionarily 
conserved functions. Here, we present an overview of the 
diverse functions of TMC channels in different species.

TMC channels in C. elegans

Chemosensation

The C. elegans genome encodes two TMC proteins, TMC-1 
and TMC-2, which are most similar to mammalian TMC3 
[9]. The C. elegans TMC-1 is widely expressed in multiple 
types of neurons (e.g., ASH, ADF, ASE, ADL, AQR, PQR, 
URX, and PHA), body wall muscle, and vulval muscle, 
while TMC-2 is mainly expressed in the body wall muscle 
and vulval muscle [9–11]. TMC-1 was originally reported as 
a sodium-sensitive ion channel and it seemed to be required 
for the ASH neuron-mediated high salt chemosensation 
[10]. However, Wang et al. later reported that, acting in 

the ASH neuron, TMC-1 actually mediated the nociceptive 
response to high pH, but not sodium, allowing worms to 
avoid strongly alkaline environments, where most animals 
cannot survive [12].

The C. elegans ASH neuron is a polymodal sensory neu-
ron that is sensitive to multiple nociceptive stimuli such as 
high osmolarity, alkaline pH, and aversive odorants [13]. 
Intriguingly, although acid sensation has been well charac-
terized before, we know little about how animals sense alkali 
in the environment. By screening a collection of ion channel 
(e.g., TRP, ENaC/DEG, TMC, and CNG channels) mutants 
for defects in the alkali-induced avoidance behavior, Wang 
et al. found that both osm-9 (a TRPV channel) and tmc-1 
mutants were severely defective in this avoidance behavior 
[12]. Furthermore, transgenic expression of tmc-1 or osm-9 
cDNA in ASH was sufficient to rescue the behavioral pheno-
type, suggesting that they act in ASH to mediate the alkaline 
pH-induced avoidance behavior.

Using whole-cell patch clamp recordings, Wang et al. 
next recorded from the tmc-1;osm-9 double mutant and 
found that the double mutant abolished the alkali-evoked 
current in ASH. Moreover, the tmc-1 single mutant has a 
significantly stronger defect in the alkali-evoked current 
than does the osm-9 mutant, indicating that TMC-1, but 
not OSM-9, might be the major contributor of alkali sens-
ing in ASH [12]. Interestingly, while OSM-9 is sensitive 
to both acidic and basic pH, TMC-1 exhibits a specificity 
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Fig. 1   TMC channels and their predicted membrane topology. a Pro-
tein sequences of TMC channels from C. elegans (in blue), Dros-
ophila (in green), zebrafish (in magenta), and human (in black), 
OSCA1.2 channel from Arabidopsis (in purple), and TMEM16A 
channel from human (in black) are aligned up using ClustalW (https​
://www.genom​e.jp/tools​-bin/clust​alw). All these ion channels are 
predicted to share a similar membrane topology. Based on sequence 
homology, TMC channels form three subfamilies: TMCs1–3 (sub-
family 1), TMCs5–6 (subfamily 2), and TMCs4, 7 and 8 (subfamily 

3). b Predicted membrane topology of TMC1 channel. In general, 
TMC1 protein contains ten transmembrane segments (S1–S10) and 
distinct mutations of TMC1 can cause both dominant and recessive 
deafness in mammals. Shown is the beethoven missense mutation of 
TMC1 (M412K) in the fourth transmembrane segment, which causes 
dominant deafness in mice. The most conserved region among all 
TMC proteins is the TMC domain which is formed by the S6–S8 seg-
ments

https://www.genome.jp/tools-bin/clustalw
https://www.genome.jp/tools-bin/clustalw


4223Distinct functions of TMC channels: a comparative overview﻿	

1 3

toward alkali, as it is required for the alkali- but not acid-
triggered behavioral response and electrical current in ASH 
[12]. Based on these findings, a working model has been 

established on how the nociceptive ASH neuron transduces 
environmental stimuli (Fig. 2a) [14].
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Fig. 2   Functions of TMC channels in C. elegans. a TMC-1 acts in 
the nociceptive ASH neuron to mediate the alkaline sensation. Both 
TMC-1 and TPRV (OSM-9, OCR-2) channels are expressed in the 
ASH neuron. TMC-1 is a major player in sensing noxious alkaline 
environment independent of G protein signaling. By contrast, high 
sodium, high osmolarity seem to activate the C. elegans TRPV chan-
nels through G protein signaling and unknown G protein-coupled 
receptors (GPCRs) [14]. b TMC channels promote C. elegans egg 
laying by modulating membrane excitability. TMC channels are 

expressed in the egg-laying circuit of C. elegans (HSN neurons and 
vulval muscle), where they modulate membrane excitability through 
a background Na+-leak conductance [9]. The HSN motor neuron 
secretes serotonin (5HT) to innervate vulval muscle cells. c Synthetic 
CeMM suppresses larval development and male sexual behaviors in 
C. elegans, which is mediated by TMC-1 in the pharyngeal MC neu-
rons and body wall muscle cells through cholinergic signaling and 
insulin/insulin-like growth factor signaling (IIS) [11]
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Promoting membrane excitability

Membrane excitability is a fundamental feature for all excit-
able cells (e.g., neurons, muscle cells, and certain neuroen-
docrine cells) by determining the responsiveness of these 
cells. The resting membrane potential is tightly controlled 
by the counteractions between hyperpolarizing leak con-
ductances (K+ and Cl−) and depolarizing leak conductances 
(Na+). While the two-pore-domain potassium channels are 
well established to function as background K+-leak chan-
nels and hyperpolarize the plasma membrane [15], much 
less is known about the depolarizing background leak 
channels. NCA/NALCN channels mediate a depolarizing 
Na+-leak conductance in certain types of neurons to modu-
late many physiological processes including basal locomo-
tion, response to volatile anesthetics, and normal respiratory 
rhythms [16–20]. However, extra neuronal Na+-leak currents 
are still present in the absence of NCA/NALCN proteins and 
the channels mediating muscular background depolarizing 
leak conductance are unknown [19, 20].

Recently, we identified an unexpected role of TMC chan-
nels: both TMC-1 and TMC-2 are required for normal egg 
laying in C. elegans (Fig. 2b) [9]. The disruption of TMC 
proteins hyperpolarizes membrane potential and reduces 
the rhythmic calcium activities of neurons and muscle cells 
involved in egg laying. Through electrophysiological record-
ings, we demonstrated that TMC channels can function as 
another type of background leak channel to modulate mem-
brane excitability in both neurons and muscle cells [9]. Fur-
thermore, we found that TMC channels were non-selective 
cation channels, though they displayed the highest perme-
ability to Na+. Finally, unlike NCA/NALCN channels that 
are known to be inhibited by Ca2+, TMC channels appeared 
to be insensitive to the extracellular Ca2+, supporting the 
idea that TMC channels and NCA/NALCN channels are 
distinct types of background leak channels [9].

Since TMC-1 mediates alkaline sensation in the ASH 
neuron [12], we studied whether the membrane excitability 
of ASH is affected in the tmc-1 mutant background. Con-
sistent with the result obtained in the C. elegans egg-laying 
circuit, the resting membrane potential of ASH neurons 
in the tmc-1 mutant is hyperpolarized and the background 
Na+-leak current is also significantly reduced [9]. Thus, 
TMC-1 mediates a background Na+-leak conductance in 
ASH. However, whether the Na+-leak conductance role of 
TMC-1 is involved in alkaline sensation remains unclear, 
as TMC-1 may be directly activated by alkaline pH. On the 
other hand, since both TMC-1 and TMC-2 are expressed 
in the body wall muscle [9, 11], it would be interesting 
to examine whether muscle cells are chemosensitive by 
responding to alkaline pH or high salt.

A major technical hurdle to study the function and regu-
lation of TMC proteins is that it has been challenging to 
express them as functional ion channels in mammalian heter-
ologous expression systems. When expressed in mammalian 
cell lines, most TMC proteins are trapped in the endoplasmic 
reticulum (ER) component. Intriguingly, ectopic expression 
of mammalian TMC proteins (TMC1, TMC2, and TMC3) in 
either neurons or muscle cells can rescue the defective egg 
laying and resting membrane potential observed in the C. 
elegans tmc mutants, suggesting that these TMC channels 
might have an evolutionarily conserved role in modulating 
membrane excitability.

Regulating development and sexual behavior

In the chemically defined synthetic C. elegans Maintenance 
Medium (CeMM) which is a suboptimal food source com-
pared to the standard diet E. coli OP50, signaling from the 
pharyngeal MC neurons and body wall muscles can signifi-
cantly slow larval development [11]. Interestingly, the tmc-1 
mutant exhibited an accelerated development rate in CeMM 
by promoting the cellular metabolism of MC neurons and 
body wall muscle (Fig. 2c) [11]. In addition to develop-
ment, CeMM suppresses male sexual behaviors and tmc-
1 mutation attenuated the diet-induced inhibition of male 
sexual behaviors [11]. Thus, TMC-1 mediates the overall 
inhibitory effect of CeMM on larval development and male 
sexual behaviors. Notably, the synthetic CeMM contains 
no sodium. As TMC-1 promotes membrane excitability by 
acting as a background Na+-leak channel in the egg-laying 
circuit [9], could the low extracellular sodium concentration 
of CeMM trigger the inhibitory effect on development and 
sexual behaviors? Three lines of evidence argue against this 
notion. First, adding sodium salt into CeMM had no effect 
on development for both CeMM-fed wild type and tmc-1 
mutant worms [11]. Second, although both TMC-1 and 
TMC-2 channels mediate the background Na+-leak conduct-
ance in egg laying, the tmc-2 mutant worm did not exhibit 
fast development in CeMM [11], suggesting that TMC-1 
and TMC-2 must have different roles in development and 
male sexual behaviors. Third, TMC proteins enhance mem-
brane excitability in the egg-laying circuit, while TMC-1 
suppresses cellular respiration in the CeMM-fed worms [9, 
11]. Collectively, TMC-1, but not TMC-2, appears to have 
Na+-independent functions in suppressing cellular metabo-
lism and delaying development in the nutrient-poor CeMM.

The proper trafficking of TMC channels onto the plasma 
membrane requires auxiliary subunits as heterologous mam-
malian TMC proteins are typically retained in intracellular 
compartments [21]. Notably, although a large portion of C. 
elegans TMC proteins are expressed on the plasma mem-
brane, intracellular TMCs can also be detected [9]. Since 
the Na+ conductance function of TMC-1 is not required for 
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CeMM to delay development and suppress sexual behaviors, 
intracellular TMC-1 or TMC-1-specific auxiliary subunit(s) 
might mediate TMC-1’s roles in development and male sex-
ual behaviors. Taken together, the C. elegans TMCs appear 
to be multifunctional depending on which cells they are 
expressed in. Whether a unifying mechanism could explain 
the diverse functions of TMCs in C. elegans requires further 
investigation.

TMC channels in Drosophila

Detecting food texture

The Drosophila genome encodes a single TMC protein 
which is required for flies to sense food texture in the 
tongue. Drosophila can discriminate distinct food based on 
their hardness and viscosity. Zhang et al. found that the food 
texture discrimination depends upon a previously unknown 
multidendritic (md-L) neuron which extends elaborate den-
dritic arbors innervating the bases of taste hairs [22]. TMC 
channel is expressed in md-L neurons, where it is required 
for sensing the hardness and viscosity of food. Specifically, 
loss of tmc greatly reduced the ability to behaviorally dis-
criminate the preferred softness (1% agarose) and smooth-
ness (sucrose solution only) from harder and stickier food 
options [22]. Furthermore, mechanical deflection of taste 
sensilla can induce action potentials in md-L neurons and 
these mechanically activated action potentials were abol-
ished in tmc mutant flies [22]. Collectively, this nice study 
revealed the cellular and molecular components that enable 
external sensory bristles on the fly tongue to communicate 
textural features to the brain through a pre-ingestive mecha-
nism [22]. Although TMC seems to mediate food texture-
triggered mechanical responses in flies, current evidence still 
cannot provide definitive answer to whether the Drosophila 
TMC protein is a mechanically gated ion channel as other 
TMC auxiliary subunits might be the real mechanosensor.

Proprioception

Proprioception, the sense of position, orientation, and 
movement of body parts, provides important sensory feed-
back information for animals to maintain proper gestures 
and coordinate their body movements [23, 24]. It has been 
known for centuries that proprioception is mediated by 
mechanosensitive proprioceptors [25]. Similarly, Drosophila 
larval locomotion, which entails rhythmic body contractions, 
is controlled by sensory feedback from proprioceptors. How-
ever, the molecular mechanism mediating this feedback is 
little understood. The Drosophila tmc gene is expressed in 
larval peripheral sensory neurons as well as the larval class 
I and class II dendritic arborization (da) neurons and bipolar 

dendrite (bd) neurons [26, 27]. Genetic disruption of tmc led 
to reduced crawling speed, increased head cast frequency, 
and enhanced backward locomotion. Importantly, express-
ing Drosophila TMC or mammalian TMC1 and/or TMC2 in 
the tmc-positive neurons rescued these mutant phenotypes 
[26], suggesting the functional conservation of TMC chan-
nels in mechanosensation. Interestingly, mechanical stimuli 
did not trigger any current in the Drosophila tmc-transfected 
S2 cells, while nompC (encoding a mechanosensitive TRPN 
channel)-transfected S2 cells exhibited mechanically acti-
vated currents [26]. Thus, the Drosophila TMC protein by 
itself might not be mechanosensitive and other auxiliary sub-
units may be required for its mechanosensitivity. An alterna-
tive explanation is that TMC proteins might not traffic to the 
plasma membrane in the Drosophila S2 expression system.

TMC channels in zebrafish

Auditory sensation

The zebrafish genome encodes three TMC channels: TMC1, 
TMC2a, and TMC2b of which the two TMC2 proteins 
are more closely related to mammalian TMC2. Similar to 
their mammalian counterparts, both zebrafish TMC1 and 
TMC2a channels can physically interact with protocadherin 
15 (PCDH15), a key component of the mechanotransduc-
tion complex in auditory and vestibular hair cells [28]. In 
zebrafish, TMC channels seem to be restricted to hair cells 
of the inner ear and lateral line organ, suggesting their roles 
in hearing and mechanotransduction. In line with this notion, 
overexpression of a truncated TMC2a channel resulted in 
mislocalization of PCDH15 within hair bundles and dis-
rupted mechanosensitivity of ear hair cells [28].

Several auxiliary proteins physically interact with 
zebrafish TMCs and regulate their proper trafficking into 
hair bundles. For example, TMIE is a two transmembrane 
domain protein expressed in the stereocilia of hair cells and 
mutations in TMIE cause deafness in zebrafish, mice, and 
humans [29–32]. In Tmie mutant zebrafish, TMC proteins 
fail to target to hair bundles, whereas TMIE overexpres-
sion promotes bundle localization of TMC proteins [33]. 
Mechanistically, the second transmembrane domain and 
adjacent regions of TMIE seem to be particularly impor-
tant for targeting TMCs into hair bundles [33]. In addition, 
the Golgi apparatus-enriched TOMT protein interacts with 
TMCs within the secretory pathway, which allows TMCs to 
integrate into the mechanotransduction complex in zebrafish 
hair cells [34]. Notably, the regulation of TMCs by TOMT 
is also conserved in mammals as mouse TOMT and TMC1 
directly interact with each other through the His183 residue 
of TOMT [34, 35].
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Water motion detection

Fish rely on mechanosensitive hair cells located in neu-
romasts of the lateral line system on the animal’s surface 
to detect water motion. In zebrafish, TMC2b is robustly 
expressed in hair cells of the lateral line and Tmc2b null 
mutant displayed defective mechanotransduction [36]. Inter-
estingly, neuromasts may contribute differentially to motor 
behaviors and distinct neuromasts with different orienta-
tions appear to express different levels of TMC2b, which 
may allow fish to detect water flow from different direc-
tions [36, 37]. For example, although M2 and MI1 neuro-
masts display high reliance on TMC2b, IO4 hair cells are 
largely independent of TMC2b [36]. Therefore, neuromasts 
may use different molecular mechanisms to encode water 
motion. Intriguingly, TOMT is highly expressed in both ear 
hair cells and lateral line neuromasts [34]. If TOMT plays 
a common role in targeting TMCs into stereocilia tips, it 
would be interesting to examine whether Tomt mutant fish 
are also defective in detecting water motion.

TMC channels in mammals

TMC1 and TMC2 in auditory transduction

To date, more than 40 different Tmc1 mutations (both domi-
nant and recessive) have been found to cause deafness in 
humans and mice [21]. A summary table of mutations in 
TMCs and their associated diseases in humans and rodents 
is shown in Table 1. Surprisingly, there are no known spon-
taneous mutations of Tmc2 that cause a genetic disease, even 
though deletion mutations of Tmc2 in mice cause deafness 
if Tmc1 is absent. In rodents and humans, both Tmc1 and 
Tmc2 are expressed in inner ear hair cells, where they play 
an essential role in hearing transduction [38]. In addition, 
Tmc1 can be detected in other organs such as the brain, eye, 
colon and testis [1]. In the inner ear, the temporal expression 
pattern differs for the two Tmc genes [38]. Namely, in the 
cochlea, Tmc2 messenger RNA (mRNA) expression begins 
to rise at the base around birth and at the apex around post-
natal day 2 (P2). After peak expression during the first post-
natal week, Tmc2 expression begins to decline to near zero 
by postnatal day 10. As the expression of Tmc2 declines, 
Tmc1 expression begins to rise and is maintained into adult-
hood [38]. In the vestibular organs, although Tmc2 mRNA 
expression also precedes Tmc1, both Tmc1 and Tmc2 are 
expressed in mature vestibular hair cells. It should be noted 
that, in both auditory and vestibular organs, the spatiotem-
poral expression pattern of Tmc2 is well correlated with the 
onset of mechanosensitivity of hair cells [38–40]. Interest-
ingly, deletion of either Tmc1 or Tmc2 does not eliminate 

mechanotransduction in early postnatal mice, while double 
knockouts display no conventional mechanotransduction in 
hair cells [38, 41, 42], indicating the potential functional 
redundancy between TMC1 and TMC2 channels.

Both TMC1 and TMC2 channels are located at the tips 
of hair cell stereocilia [43–45], where the mechanotransduc-
tion channels are located [46–48]. Very interestingly, hair 
cells that express Tmc1 but not Tmc2 exhibit smaller single-
channel conductance, lower calcium permeability, and faster 
adaptation. By contrast, hair cells with Tmc2 but not Tmc1 
displayed the opposite biophysical features and those with 
both Tmc1 and Tmc2 expression contain at least four distinct 
conductances, suggesting the formation of heteromultimers 
[42]. Furthermore, the Beethoven (Bth) mutation (M412K) 
of TMC1 altered ionic selectivity and biophysical properties 
[42, 49, 50], whereas two other TMC1 mutations (M412C, 
D569C) alter the binding affinity to the pore blocker dihy-
drostreptomycin [49, 51]. Collectively, these results sug-
gest that TMC1 is a key component of hearing transduction 
pathway.

The proper targeting of TMC1 and TMC2 proteins to the 
tips of hair cell stereocilia and their functional integrity in 
hearing transduction depend on several accessory binding 
partners, including PCDH15, TMIE, LHFPL5, and CIB2 
(Fig. 3) [52]. For example, the tip link protein PCDH15 may 
transduce tip link tension into opening of the mechanically 
activated hearing transduction channel by directly interact-
ing with LHFPL5 and TMC proteins [28, 53, 54]. Mean-
while, TMIE binds to both LHFPL5 and PCDH15 (through 
the intracellular CD2 domain) in the hair cell mechanotrans-
duction machinery [55]. Intriguingly, mutations of these 
TMC binding partners also cause deafness and defective 
mechanotransduction [56]. Therefore, the mechanosensitiv-
ity of hair cell transduction channels might involve multiple 
functional modules.

Very recently, structural studies of TMC1 suggest that 
TMC channels may have a similar membrane topology to the 
Ca2+-activated Cl− channel TMEM16 and the mechanically 
activated OSCA1.2/TMEM63 channel [51, 57–60]. Namely, 
TMC1 channels appear to be assembled as dimers and each 
subunit contains ten transmembrane segments. Importantly, 
the transmembrane helices S4–S7 which contain the Bee-
thoven (Bth) mutation form a lipid-facing groove that may 
act as a pore, raising the possibility that TMC1 in hair cells 
forms the ion conduction pathway for auditory transduc-
tion. In support of this view, Pan et al. performed scanning 
cysteine mutagenesis of TMC1 and found that at least 12 
amino-acid residues within the S4–S7 segment influence the 
mechanically activated current in hair cells [51]. Given the 
large body of genetic and physiological evidence, TMC1 
may function as part of the ion channel pore during hair cell 
auditory transduction.



4227Distinct functions of TMC channels: a comparative overview﻿	

1 3

Table 1   TMC mutations in diseases of humans and rodents

Gene Mutations Predicted effect Ex/in number Phenotype References

Human
 TMC1 c.16 + 1G > T, Splice disruption Intron 5 Hearing impairment [7, 68–95]

c.100C > T, p.R34X nonsense Exon 7
c.1543T > C, p.C515R missense Exon 17
c.2004T > G, p.S668R missense Exon 21
c.64 + 2T  > A, Splice disruption Intron 6
c.1330G > A, p.G444R missense Exon 16
c.1333C > T, p.R445C missense Exon 16
c.2030T > C, p.I677T missense Exon 21
c.1696_2283del, 431 kb deletion Exon 19
c.195_16del, 27 kb deletion Exon 5
c.295delA, p.K99KfsX4 Exon 8
c.536-8T > A, Splice disruption Intron 10
c.884 + 1G > A, Splice disruption Intron 13
c.1534C > T, p.R512X nonsense Exon 17
c.1960A  > G, p.M654V missense Exon 20
c.776 + 1G > A, Splice disruption Exon 7
c.767delT, p.F255FfsX14 Exon 13
c.1166G > A, p.R389Q missense Exon 15
c.1810C > T, p.R604X nonsense Exon 20
c.1165C > T, p.R389X nonsense Exon 15
c.1764G > A, p.W588X nonsense Exon 20
c.237-6T > G, Splice disruption Intron 7
c.453 + 2T > C, Splice disruption Intron 9
c.628_630delATC, p.I210del Exon 11
c.800G > A, p.G267E missense Exon 13
c.1114G > A, p.V372M missense Exon 15
c.1566 + 1G > A, Splice disruption Intron 17
c.596A > T, p.N199I missense Exon 11
c.1404 + 1G > T, Splice disruption Intron 16
c.1788C > A, p.S596R missense Exon 20
c.150delT, p.N50KfsX25 Exon 7
c.362 + 18A > G, p.Glu122Tyrfs*10 Exon 8
c.1714G > C, p.D572N missense Exon 9
c.1714G > A, p.D572H missense Exon 9
c.236 + 1G > C, Splice disruption Intron 7
c.458G > A, p.W153X nonsense Exon 10
c.582G > A, p.W194X nonsense Exon 11
c.589G > A, p.G197R missense Exon 11
c.776A > G, p.Y259C missense Exon 13
c.797T > C, p.I266T missense Exon 13
c.821C > T, p.P274Lmissense Exon 13
c.830A > G, p.Y277C missense Exon 13
c.1083_1087del, p.R362PfsX6 Exon 15
c.1107C > A, p.N369K missense Exon 15
c.1171C > T, p.Q391X nonsense Exon 15
c.1209G > C, p.W403C missense Exon 15
c.1334G > A, p.R445H missense Exon 16
c.1396_1398AAC, p.N466del Exon 16
c.1312G > A, p.A438T missense Exon 16
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Notably, despite the strong structural and physiologi-
cal evidence on TMC1 channel in auditory transduction, it 
remains unclear whether the transduction pore is completely 

Table 1   (continued)

Gene Mutations Predicted effect Ex/in number Phenotype References

c.1253T > A, p.M418K missense Exon 16
c.1249G > A, p.G417R missense Exon 16
c.1247T > G, p.L416R missense Exon 16
c.1589_1590delCT, p.S530X frameshift Exon 18
c.1718T > A, p.I573N missense Exon 19
c.1714G > A, p.D572N missense Exon 19
c.1714G > C, p.D572H missense Exon 19
c.1763 + 3A > G, p.W588WfsX81 Intron 19
c.IVS19 + 5G > A, splice disruption Intron 19
c.1939T > C, p.S647P missense Exon 20
c.1959C > G, p.Y653X missense Exon 20
c.1979C > T, p.P660L missense Exon 20
c.2035G > A, p.E679K missense Exon 21
c.2050G > A, p.D684N missense Exon 21
c.2130_1delG, splice disruption Exon 22
c.2210_2211insCT, p.E737HfsX2 Exon 23
c.2260 + 2T > A splice disruption Intron 23

 TMC2 Unknown Unknown Unknown Unknown
 TMC3 Unknown Unknown Unknown Unknown
 TMC4 Unknown Unknown Unknown Unknown
 TMC5 Up-regulated Unknown Unknown Intrahepatic cholangiocarcinoma 

(ICC)
[96]

 TMC6 (EVER1) c.280C → T, p.R94X nonsense Exon 5 Epidermodysplasia verruci-
formis (EV)

[97, 98]
c.1726G → T p.G576X nonsense Exon 14

 TMC7 Unknown Unknown Unknown Unknown
 TMC8 (EVER2) c.754/755delT, p.F252fs X283 Exon 7 Epidermodysplasia verruci-

formis (EV)
[97, 98]

c.1084G → T p.E362X nonsense Exon 9
Rodents
 TMC1 c.1235T > A (Beethoven muta-

tion),
p.M412K missense Exon 13 Deafness [7, 8, 38, 99, 100]

c.1387_1557del (deafness muta-
tion),

p.I463_Q519del Exon 14

c.545A > G (baringo mutation), p.Y182C missense Exon 8
c.1345T > C (nice mutation), p.Y449H missense Exon 13
c.1661G > T (stitch mutation), p.W554L missense Exon 15
Tmc1Δ/Δ Targeted deletion

 TMC2 Unknown Unknown Unknown Unknown
 TMC3 Unknown Unknown Unknown Unknown
 TMC4 Unknown Unknown Unknown Unknown
 TMC5 Unknown Unknown Unknown Unknown
 TMC6 Unknown Unknown Unknown Unknown
 TMC7 Unknown Unknown Unknown Unknown
 TMC8 Unknown Unknown Unknown Unknown

All annotations are based on cDNAs (c.) of TMC proteins
p protein, del deletion, fs frame shift, ex exon, in intron

bounded by S4–S7 helices or bounded in part by other 
accessory proteins like TMIE. Alternatively, the pore could 
be exposed to the lipid membrane. Further studies from 
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cryo-EM or X-ray crystallography may help clarify addi-
tional structural details of TMC1 channel, including the 
pore region, location of the gate, and force-dependent trans-
formation that occurs as TMC1 channels’ transition from 
closed to open states. In addition, to firmly establish TMC1 
as a mechanosensitive hearing transduction ion channel, an 
important experiment remains unfulfilled: reconstitution 
of TMC1 channels and mechanosensitivity in a heterolo-
gous expression system. As TMC1 does not traffic to the 
plasma membrane in heterologous cells, if reconstitution of 
hair cell-like mechanosensitivity in a heterologous system 
eventually proves successful, it will likely require expression 
of TMC1 in the correct lipid environment, co-expression 
with correct binding partners, scaffold proteins, and chap-
erones. On the other hand, since mammalian TMC1 and 
TMC2 channels have been ectopically expressed as func-
tional proteins in C. elegans and Drosophila [9, 12, 26], it 
would be very interesting to examine whether the ectopically 
expressed mammalian TMC1 channel exhibits mechanosen-
sitivity in worms and flies. If not, could the co-expression 
of TMC1 with its binding partners (i.e., PCDH15, TMIE, 
LHFPL5, and CIB2) reconstitute the mechanosensitivity? In 
this regard, C. elegans and Drosophila might provide useful 
expression systems to conduct structure–function studies of 
mammalian TMC channels.

Other mammalian TMC channels

In addition to TMC1 and TMC2, six other TMC channels 
are present in mammals. However, very little is known about 
the function and regulation of these TMC proteins. Tmc3 
mRNA can be detected in most neuronal organs as well as 
some non-neuronal organs. The mRNAs of Tmc4, Tmc5, 
Tmc6, and Tmc7 are expressed in most murine organs tested, 

while Tmc8 mRNA is detectable in thymus, lung, and spleen 
[1]. Mutations in Tmc6 (EVER1) and Tmc8 (EVER2) are 
implicated in epidermodysplasia verruciformis, a recessive 
disorder comprising susceptibility to cutaneous human pap-
illoma virus infections and associated nonmelanoma skin 
cancers [2]. Mechanistically, mutations in Tmc8 appears to 
be linked to up-regulated Zn2+/Ca2+ signaling and anoc-
tamin 1 (TMEM16A) activation [61, 62]. More investiga-
tions are clearly required to reveal the physiological roles of 
these understudied TMC channels.

Discussion

Among eight TMC channels in mammals, TMC1 and TMC2 
are best studied because of their essential role in hearing 
transduction. Similarly, homologues of TMC1 and TMC2 
have been implicated in mechanotransduction of Drosophila 
and zebrafish. This raises an intriguing question: are TMC1 
and/or TMC2 channels gated by mechanic force? Mechano-
sensitive ion channels are ubiquitously present in nearly all 
organisms [63]. In general, mechanosensitive channels can 
be divided into two categories depending on whether they 
require other auxiliary components for the mechanosensitiv-
ity [64]. The bacterial Msc channels and mammalian PIEZO 
channels are inherently mechanosensitive and they can be 
functionally reconstituted in lipid bilayers [65, 66]. By con-
trast, TMC channels require multiple auxiliary factors for 
proper membrane trafficking and mechanosensitivity. In fact, 
at this stage, we still do not know whether TMC channels are 
intrinsically mechanosensitive, because many essential bind-
ing partners of TMC channels could act as the real mecha-
nosensor. Functional reconstitution of TMC1/2 channels in 
a heterologous system may help bridge this knowledge gap. 

Fig. 3   Potential arrangement of 
proteins within the vertebrate 
auditory transduction complex. 
By interacting with multiple 
auxiliary proteins (TMIE, 
LHFPL5, PCDH15, and CIB2), 
TMC1 channel may form the 
pore of auditory transduction 
complex (modified from Corey 
et al. [67]). For simplicity, a 
TMC monomer is depicted in 
the model figure (according to 
recent structural studies, TMC 
channels form dimers)

TMIE CIB2

TMC1/2 channel

PCDH15

LHFPL5

extracellular

intracellular
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In addition, the recent development of cryo-EM microscopy 
may provide more structural insights into the gating mecha-
nism of TMC channels.

C. elegans TMC channels display the most similar-
ity to Drosophila TMC and vertebrate TMCs1-3 proteins 
(Fig. 1a) [9]. However, defective mechanosensation has not 
been reported for the tmc mutant worms. Very interestingly, 
ectopic expression of mammalian TMC1, TMC2, and TMC3 
in the egg-laying circuit of C. elegans can functionally res-
cue the egg-laying defect and membrane excitability of tmc 
mutants. This finding has two implications: first, mammalian 
TMC1–3 channels might also modulate membrane excitabil-
ity by acting as background Na+-leak channels, and second, 
we may use C. elegans as a heterologous expression system 
to study the biophysical and pharmacological features of 
mammalian TMC channels. Notably, unlike their mamma-
lian counterparts, little is known about the binding partners 
of TMC channels in C. elegans. As tmc mutant worms dis-
play various defects in chemosensation, development, and 
egg laying, genetic screens using these defective behaviors 
might reveal novel binding proteins of TMC channels.

In summary, pioneering genetic and physiological stud-
ies of TMC proteins have revealed a novel family of ion 
channels involved in many important cellular processes. 
Although mammalian TMC1 and TMC2 channels clearly 
have an essential role in hearing, more studies are needed 
to define their precise action during auditory transduction. 
Meanwhile, further investigations are required to under-
stand the physiology of other understudied TMC channels 
(TMC3–8).
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