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Abstract
Oxygen deprivation affects human health by modulating system as well as cellular physiology. Hypoxia generates reactive 
oxygen species (ROS), causes oxidative stress and affects female reproductive health by altering ovarian as well as oocyte 
physiology in mammals. Hypoxic conditions lead to several degenerative changes by inducing various cell death pathways 
like autophagy, apoptosis and necrosis in the follicle of mammalian ovary. The encircling somatic cell death interrupts supply 
of nutrients to the oocyte and nutrient deprivation may result in the generation of ROS. Increased level of ROS could induce 
granulosa cells as well as oocyte autophagy. Although autophagy removes damaged proteins and subcellular organelles to 
maintain the cell survival, irreparable damages could induce cell death within intra-follicular microenvironment. Hypoxia-
induced autophagy is operated through 5′ AMP activated protein kinase–mammalian target of rapamycin, endoplasmic 
reticulum stress/unfolded protein response and protein kinase C delta–c-junN terminal kinase 1 pathways in a wide variety of 
somatic cell types. Similar to somatic cells, we propose that hypoxia may induce granulosa cell as well as oocyte autophagy 
and it could be responsible at least in part for germ cell elimination from mammalian ovary. Hypoxia-mediated germ cell 
depletion may cause several reproductive impairments including early menopause in mammals.
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Introduction

The reduced level of  pO2 generates hypoxic condition, which 
is characterized by insufficient supply of oxygen to meet the 
physiological requirement of tissue/cells in the body. The 
increase of harmful gases and particulate matters in air due 
to rapid industrialisation, deforestation and motor vehicles 
affects oxygen delivery through blood and utilization capac-
ity of a cell causing cellular/physiological hypoxia [1–4]. 
Further, the presence of these pollutants in air may gener-
ate inflammation in pulmonary and vascular systems [4, 4] 
thereby decreasing blood oxygen saturation level [4, 5, 6]. 
For instance, hypoxia has been observed in the placenta of 

women who used firewood/kerosene for cooking purpose 
[7].

Hypoxia affects various aspects of cell functions includ-
ing metabolism, growth, cell division and cell death [8, 
9]. The hypoxia-mediated changes in cellular physiol-
ogy modulate cardiovascular, neuronal and reproductive 
physiology [10–13]. Ovary is a primary female reproduc-
tive organ responsible for generation of competent oocyte 
required for successful fertilization and early embryonic 
development (Fig. 1a). Mammalian ovary contains almost 
5–6 million germ cells during 20th week of embryonic 
development. Majority of these germ cells are eliminated 
by follicular atresia, while only 1 million germ cells 
remain available for selective recruitment during entire 
life span after birth [14]. These germ cells form oogonia 
and migrate to gonadal ridges, enter into 1st meiotic divi-
sion and remains arrested at diplotene stage of prophase I 
for a long period of time [15]. Those primordial follicles in 
response to pituitary gonadotropins may enter into process 
of folliculogenesis to form graffian follicle just prior to 
ovulation of competent oocyte [16]. The primary oocytes 
in mammalian ovary possess zona pellucida (ZP) encircled 
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Fig. 1  a Schematic diagram of mammalian ovary showing follicles 
at different stages of development. b, c Magnified schematic dia-
gram showing proposed mechanism of hypoxia-induced autophagy 
in follicular cells of mammalian ovary. b In Granulosa cells,  reduc-
tion of  pO2 level causes cellular hypoxia. Hypoxia may induce ER 
stress, ROS generation, PKDδ activation and decreases PHD activity 
as well as ATP production in a cell. Increase of ROS level decreases 
PHD activity that stabilizes HIF-1α and its accumulation. HIF-1α 
is then translocated to nucleus, where it forms a heterodimer with 
HIF-1β and binds to HRE inducing transcription of BNIP3 gene. 
Bnip3 protein binds with Bcl-2 and disrupts its interaction with Bec-
lin 1 making Beclin 1 free. The Beclin 1–Bcl-2 interaction can also 
be disrupted through phosphorylation of Bcl-2 by Jnk-1 activated 
in response to PKCδ. Free Beclin 1 increases catalytic efficiency of 
Vps-34 which then coverts PI3 into PIP3 required for phagophore 
formation. ATP depletion in response to hypoxia triggers phospho-
rylation of AMPK. The phosphorylated AMPK activates TSC2 
which binds with TSC1 leading to its phosphorylation by Rheb-
GTP. The phosphorylated TSC2-TSC1 inhibits mTOR and induces 

autophagy. ER stress induces UPR which is sensed by three differ-
ent UPR sensors, EIF2AK3/PERK, ERN1/IRE1 and ATF 6. ATF 6 
enters into nucleus, promotes transcription of chaperone CHOP and 
XBP1 and induces autophagy induction. CHOP is also upregulated 
in response to EIF2AK3/PERK that activates Atg 4 to cleave LCB 
and generates LCB-I. LC3B-I is then activated by binding of Atg7 
in a ATP-dependent manner and then transferred to Atg3. Atg3 pro-
motes conjugation of PE to LC3B-I to generate processed LC3B-
II. Activated LCB-II is recruited to growing phagophore and plays 
important role in fusion of its edges and cargo selection in a cell. c 
In follicular oocyte, hypoxia may trigger all four major pathways to 
induce autophagy as described in b. In addition, granulosa cell death 
may deprive oocyte from nutrients, growth factors and survival fac-
tors that result in the activation of starvation-induced AMPK–mTOR-
mediated pathway and promote phagophore formation. Once the 
phagophore is formed, all these pathways promote its elongation 
and autophagolysosome formation, which finally engulfs most of the 
cytoplasmic machinery that probably results in autophagic cell death

Fig. 1  (continued)

◂
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by layers of two major somatic cell types namely theca and 
granulosa cells. Theca cells are steriodogenic in nature 
and responsible for synthesis of estradiol-17β required for 
follicular growth and development. Theca cells are further 
differentiated into theca interna and theca externa; while 
granulosa cells are differentiated into mural and cumu-
lus granulosa cells. The cumulus granulosa cells are the 
immediate somatic cells encircling primary oocyte that 
is morphologically characterized by germinal vesicle and 
nucleolus in center.

Growing body of evidences suggests the adverse impact 
of hypoxia on ovarian function in several ways. For instance, 
it triggers the depletion of follicular reserve in spiny mouse 
[17], reduces luteal growth in sheep ovary [13], decreases 
follicular development in hamster [18], promotes reac-
tive oxygen species (ROS) generation and follicular aging 
in human granulosa cells [19, 20]. Although hypoxic cell 
employs survival strategy during mild and initial phase, 
sustained hypoxia may trigger various cell death pathways 
including autophagy, apoptosis, necrosis and necroptosis 
depending on duration and severity of hypoxia [21–23].

Autophagy is a highly regulated process of self-deg-
radation that eliminates damaged, unwanted or surplus 
subcellular proteins and organelles with the help of lyso-
somal activity [24]. Various factors including starvation, 
hormones, stress and other pathological conditions may 
induce autophagy to maintain homeostasis and longevity 
of a cell [25] through the turnover of damaged proteins 
and organelles [24, 26]. Mammalian target of rapamycin 
(mTOR) is a central stress sensor and master regulator of 
the autophagy [27]. However, hypoxia could also trigger 
autophagy through various mTOR-independent pathways 
including protein kinase C delta–c-jun-N terminal kinase 
1 (PKCδ–JNK-1) [28], endoplasmic reticulum (ER) stress 
or unfolded proteins response (UPR) [29] and generation of 
ROS [30]. Although autophagy is a protective mechanism to 
maintain cellular homeostasis [31, 32], excessive accumula-
tion of indigestible materials due to autophagic degradation 
of damaged proteins and organelles like mitochondria, ER 
and ribosome could lead to autophagic cell death [33, 34]. 
Recent studies suggest the involvement of autophagy in the 
regulation of follicular development, granulosa cell as well 
as oocyte death leading to follicular atresia [35, 36], corpus 
luteum regression [37] and oocyte aging [38] and pathogen-
esis of metabolic disorder like Polycystic ovarian syndrome 
(PCOS) [39, 40].

Although hypoxia-mediated cell death has been studied 
in greater detail in various cell types, hypoxia-mediated 
autophagy remains poorly understood in the follicular cells 
of mammalian ovary. This review article updates the infor-
mation on the involvement of autophagy in granulosa cell 
as well as oocyte and proposes the possible mechanism of 

hypoxia-mediated autophagy in the follicular cells of mam-
malian ovary.

Hypoxia‑mediated physiological changes 
in ovary

The presence of certain harmful gases in air may compro-
mise the oxygen delivery capacity of blood or alter the abil-
ity of a cell to utilize the available oxygen [1, 2]. Several 
pathological conditions of pulmonary as well as cardio-vas-
cular systems may also cause reduced  pO2 level in blood [41, 
42]. The specialized chemoreceptor cells in arterial circula-
tion and neuroepithelial bodies present in the airway sense 
hypoxic conditions and accordingly modulate pulmonary 
ventilation as well as perfusion to optimize the supply of  O2 
to the metabolizing cells/tissue. Under hypoxic conditions, 
peripheral blood vessels are dilated, whereas pulmonary 
vasculatures are constricted to shunt the blood away from 
poorly ventilated region for optimizing the oxygen supply 
to tissues [43, 44]. Most of the nucleated cells sense changes 
in  O2 concentration and respond quickly through the activa-
tion of pre-existing proteins and in long term through the 
regulation of gene transcription [45]. One of the most impor-
tant transcription factors induced in response to hypoxia is 
hypoxia-inducible factor (HIF) [46]. It regulates gene tran-
scription to maintain oxygen homeostasis for adaption to low 
oxygen tension [47].

The HIF is a heterodimeric protein consisting of an oxy-
gen-dependent α-subunit (HIF-1α, HIF-2α, or HIF-3α) and 
a constitutively expressed aryl hydrocarbon receptor nuclear 
translocator/β (ARNT/β) subunit located in the nucleus. On 
the other hand, HIF-1α mRNA level does not alter in nor-
moxia as well as hypoxia [46]. However, protein is poly-
ubiquitinylated and rapidly degraded in normoxia but gets 
accumulated in hypoxia [46]. In normoxia, prolyl hydroxy-
lases (PHD1-3) hydroxylate two proline residue of HIF-1α 
[48–50]. The hydroxylated HIF-1α is then recognized by von 
Hippel–Lindau (VHL) protein that ubiquitinates HIF-1α and 
helps in proteasomal degradation [51]. In hypoxic condition, 
PHD activity decreases and HIF-1α proline residues are not 
hydroxylated, resulting in the accumulation of stabilized 
protein [52]. Once stabilized, HIF-1α enters into the nucleus, 
joins with HIF-1β to generate heterodimer transcription 
factor and by binding to hypoxia response elements (HRE) 
present in their regulatory region promotes the expression 
of target genes like luteinizing hormone receptor, inhibin-α 
VEGF, Endothelin 2, BNIP3, PDE4D, NRF2F2, disintegrin 
and metalloproteinase with thrombospondin-like motifs-1, 
etc. [53–59]. HIF-1α target genes affect almost all aspect 
of the cellular functions including metabolism [8], growth, 
proliferation, secretion of cytokines as well as mitogen, [60] 
and cell death [9]. Hypoxia-mediated changes in cellular 
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functions affect cardio-vascular, central nervous system and 
reproductive physiology [10–13].

Mammalian ovary is a metabolically active organ and 
generates ROS at an extraordinary scale. Due to large size of 
follicle, follicular oocyte is more susceptible toward hypoxia 
[61, 62]. The chronic hypoxia may result in ovarian dysfunc-
tion and altered hormonal profile [63, 64]. Development of 
ovarian follicle is a dynamic process that involves prolifera-
tion, differentiation and death of somatic cells encircling 
oocyte [65, 66]. Follicles are recruited and selected dominant 
follicle ruptures to release meiotically competent oocyte, 
while non-selected follicle undergoes atresia [67]. Within 
the follicle, a bidirectional talk is important for survival and 
several functions of both encircling granulosa cells as well 
as oocyte [68]. The encircling cumulus granulosa cells nour-
ish the oocyte by transferring nutrients, growth factors and 
survival factors [69]. In turn, oocyte modulates cumulus cell 
functions by secreting paracrine factors that include growth 
differentiation factor 9 (GDF9) and bone morphogenetic pro-
tein 15 (BMP15) [70]. The GDF9 and BMP15 modulate cell 
proliferation [71], metabolism [72], expansion [73], luteini-
sation [74] and apoptosis [75] of encircling granulosa cells 
within the follicular microenvironment.

The follicular oocyte is encircled by several layers of 
granulosa cells and thecal cells, and between both lies 
a tight barrier of basement membrane that blocks the 
infiltration of blood vessels to region of granulosa cells 
and oocyte separating them from blood supply. The  O2 
as well as nutrients have to pass through these layers of 
somatic cell before it becomes available to oocyte; hence, 
 pO2 is compromised within the follicular microenviron-
ment in mammals as the size of follicle grows larger [76]. 
Hypoxia induces polycystic ovaries, estradiol biosynthe-
sis, alters estrous cycle and decreases fertility in female 
rat suggesting its negative impact on folliculogenesis 
in ovary [64]. A brief exposure of hypoxia (7–8 min) 
resulted in decreased number as well as diameter of pri-
mordial and primary follicle, reduced follicular reserve 
and ovarian volume in spiny mouse fetuses [17]. Hypoxia 
caused at high altitude changes the morphology and func-
tion of antral follicle and corpora lutea in sheep [13]. 
Further, it also increases HIF-1α and vascular endothe-
lial growth factor (VEGF) expression level in luteal cells 
of sheep. These sheep also had reduced number of pre-
ovulatory follicles as well as growth of corpora lutea 
[13]. Reduced blood flow causes hypoxic condition in 
follicular microenvironment, induces generation of ROS 
and activation of HIF-1α [77]. The active HIF-1α binds 
to hypoxia response elements region of VEGF gene pro-
moter in ovarian cells and induces upregulation of VEGF 
[56, 57]. Increased level of ROS due to pathological con-
ditions or drug treatment induce granulosa cell death [57, 
78–82] inhibit follicular growth, development and induces 

meiotic arrest [83, 84] as well as apoptosis in rat oocytes 
[78, 83]. The elevated level of ROS has been reported in 
patients of Primary ovarian insufficiency (POI) [85], and 
could be used as a promising indicator for risk of POI 
[86]. The increased level of ROS may also be attributed 
to increase mutation in ATPase6 gene [85] and mitochon-
drial cytochrome c oxidase 1 gene in POI patients [87]. 
Further, high level of ROS is associated with pathogen-
esis of polycystic ovarian syndrome (PCOS) [88, 89]. 
However, the exact role of ROS in pathogenesis of PCOS 
is ill-understood.

The hypoxia-specific genes are upregulated in granu-
losa cells of aged women suggesting hypoxia as main 
mechanism underlying ovarian senescence and deterio-
ration of oocyte quality [58]. Further, hypoxia induces 
HIF-1α and its downstream targets like phosphodiesterase 
4D (PDE4D), neuron-derived orphan receptor-1 (NOR-1 
or NR4A3), nuclear receptor subfamily-1 (NR2F2), neo-
vascularization by VEGF and ATP synthesis through gly-
colysis [58].

The presence of air pollutant 7, 12-dimethylbenz (a) 
anthracene (DMBA), a polycyclic aromatic hydrocarbon 
affects follicular growth and development and deteriorates 
oocyte quality [90]. It destroys follicles, reduces ovarian 
volume and alters mRNA expression of number of genes 
involved in the cell survival, proliferation and primor-
dial follicle activation in mouse as well as rat ovary [90, 
91] resulting in the decrease of ovarian volume [92, 93]. 
Studies suggest the involvement of phosphatidylinositol-3 
kinase (PI3K) pathway that converts phosphatidylinosi-
tol 4,5-bisphosphate (PIP2) into phosphatidylinositol 
(3,4,5)-trisphosphate (PIP3), leading to phosphoryla-
tion of protein kinase B (PKB/Akt) [94]. Increased Akt 
phosphorylation with a decrease of forkhead box O3 A 
(FOXO3A) phosphorylation and activation of mTOR 
have been observed in DMBA-treated primordial follicle 
as well as in oocyte of mice [95] suggesting the role of 
PI3K signaling and PI3K/Akt/mTOR-mediated autophagy 
in ovary.

Hypoxia‑induced autophagy

Low  pO2 is one of the major causes for the induction of 
autophagy [96, 97]. Depending upon the degree of severity 
and duration of oxygen deprivation, hypoxia triggers differ-
ent pathways of autophagy. For instance, chronic and mod-
erate hypoxia triggers HIF-1α [98] as well as PKCδ–JNK1-
mediated pathways to induce autophagy [28]. On the 
other hand, a rapid and severe oxygen fluctuation induce 
autophagy via HIF-1α independent as mTOR-mediated 
pathway [99] and UPR [29]. Autophagy may also promote 
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survival by removing damaged mitochondria and hypoxia-
mediated ROS production [26].

HIF‑1α‑dependent autophagy

The BCL2/adenovirus E1B 19 kDa protein-interacting pro-
tein 3 (BNIP3) gene is a specific target of HIF-1α that gets 
fully expressed during moderate hypoxia [100]. BNIP3 and 
its homologue BNIP3L are prosurvival proteins, [101] that 
are involved in hypoxia-induced autophagy. In moderate 
hypoxia, HIF induces BNIP3 and disrupts the interaction 
between Beclin 1 and Bcl-2 [59]. The free Beclin1 induces 
autophagy [96] and mitophagy [59] instead of apoptosis 
[102] (Fig. 1b).

During hypoxia, cell is capable of supporting oxidative 
production of ATP through tricarboxylic acid (TCA) cycle 
and electron transport chain (ETC) up to some extent [103]. 
Leakage of electron from ETC generates ROS. On the other 
hand, reoxygenation following hypoxia leads to uncon-
trolled superoxide generation that causes increased oxidative 
stress [103]. The reduced  pO2 as well as nitric oxide levels 
result in the generation of ROS and decreased PHD activity 
[104, 105]. The decreased PHD activity stabilizes HIF-1α 
and induces autophagy through BNIP/BNIP3L-mediated 
disruption of Beclin1 and Bcl-2 interaction [48]. Studies 
suggest that stabilization and/or synthesis of HIF-1α under 
hypoxia is dependent on the PI3K/Akt pathway [106]. In 
cases of severe hypoxia or anoxia, additional pathways such 
as platelet-derived growth factor receptor (PDGFR), which 
is HIF-1α dependent [107], and protein deglycase or Par-
kinson disease protein 7 (DJ-1/PARK7) may also regulate 
autophagy [29].

HIF‑1α‑independent autophagy

The serine/threonine kinase (mTOR) is a principal inhibi-
tory regulator of autophagy [108, 109]. It induces autophagy 
during severe hypoxia (Fig. 1b). The long-term hypoxia and 
ATP depletion could result in the phosphorylation of 5′ AMP 
activated protein kinase (AMPK) that activates Tuberous 
sclerosis complex 2 (TSC2) proteins [110]. The activated 
TSC2 forms a complex with TSC1 through a combination 
of GTP-binding protein Rheb and inhibits mTOR function 
[111]. The inhibition of mTOR activity also occurs through 
two independent pathways, the DNA damage response 1 
(REDD1) protein [111, 112] and activation of stress sensor 
protein, ataxia telangiectasia mutated (ATM) [113].

Under severe hypoxic conditions, autophagy is induced 
through UPR pathway [114]. It has been reported that UPR 
activates stress sensors [115] and these sensors could activate 
autophagy [29, 116–118]. During initial stage of hypoxia, 

PKCδ activates autophagy by promoting JNK1-mediated 
Bcl-2 phosphorylation that dissociates Beclin 1 from Bcl-2 
proteins [119]. As the hypoxia prolongs, PKCδ and Beclin 
1 proteins are cleaved by caspase-3 protein, which is asso-
ciated with the apoptosis [120, 121]. On the other hand, 
carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]—fluoro-
methylketone (Z-VAD-fmk), a caspase inhibitor, induces 
autophagy [122]. Indeed, PKCδ–JNK1 signaling plays an 
important role to protect cells from hypoxic stress by induc-
ing autophagy.

Players and pathways involved in hypoxia-mediated 
autophagy have been well studied in a wide variety of 
somatic cell types [28, 101, 114]; however, involvement of 
hypoxia-mediated autophagy in mammalian ovary remains 
poorly understood. Few studies suggest that hypoxia induces 
HIF-1α and VEGF expression in luteal cells, reduces num-
ber of antral follicle and the growth of corpora lutea in sheep 
ovary [13]. HIF-1α-mediated mTOR signaling pathway has 
been reported to induce mouse granulosa cells autophagy in 
response to follicle-stimulating hormone (FSH) [123]. The 
increased expression of HIF-1α is associated with mouse 
granulosa cells autophagy [124]. The Cobalt chloride 
 (CoCl2)-induced hypoxia increases expression of autophagy-
related genes like LC3, Atg5, Beclin 1, Atg7 and BNIP3 in 
mouse granulosa cells [123, 124]. Based on these studies, we 
propose that granulosa cell proliferation may compromise 
the  pO2 in follicular microenvironment that may trigger HIF-
1α-mediated autophagy. Autophagy has also been reported 
in follicle loss from the ovarian of rat and murine exposed 
to cigarette smoke [125, 126] probably by inducing hypoxia.

Autophagy in mammalian ovary

Involvement of autophagy has been reported in mouse [127], 
rat [35, 128, 129], porcine [130] goose and quail ovary [131, 
132]. Autophagy plays an important role in the maintenance 
and regulation of ovarian primordial follicle reserve; knock-
out of autophagy-related genes result in the decrease of pri-
mordial follicle pool leading to the POI [133, 134]. Germ 
cell-specific knock-out of ATG7 gene leads to POI with the 
decrease of follicle as well as oocyte number in the ovary 
[134]. In addition, the presence of loss of function variant 
of ATG7 and ATG9A genes results in the impairment of 
autophagy which suggests the important role of defective 
autophagic machinery in POI patients [135]. The POI is also 
associated with mutation in autophagy regulatory Tsc1 or 
Tsc2 genes and elevated mTOR activity that leads to prema-
ture activation and early depletion of primordial follicle pool 
in the ovary [136, 137]. However, rapamycin (an inhibitor 
of mTOR) limits the conversion of primordial follicle into 
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developing follicle and inhibits follicular atresia, thus pre-
venting depletion of ovarian reserve [138]. Autophagy in 
ovary prevents granulosa cell apoptosis in younger women, 
while in aged women, a decline of autophagy augments the 
expression of apoptotic marker, ROS and higher percentage 
cell death [139]. Inhibition of autophagy leads to massive 
accumulation of age-related catabolic waste during follicu-
logenesis in IL-33(−/−) mice [140]. Another protective role 
of autophagy can be seen in pig ovaries subjected to heat 
stress [141]. Heat stress increases abundance of autophago-
some and expressions of beclin 1 and LC3B-II in intersti-
tial as well as follicular cells. Abundance of BCL2L1 and 
phosphorylated BCL2 was also increased with no caspase 3 
cleavages, suggesting the suppression of apoptotic signaling 
in the ovary [141]. Milk deprivation in female neonates for 
12–36 h induces autophagy-mediated differentiation or the 
formation of primordial follicles from naked oocytes that 
prevents depletion of germ cells from ovarian pool. Further, 
starvation resulted in higher number of primordial follicle. 
Oocyte cytoplasm showed abundance of autophagy-related 
proteins and suppressed expression of apoptotic proteins 
such as caspase 9 and caspase 3 [142].

Autophagy has also been reported in granulosa cells 
of obese women due to high level of oxidized low-den-
sity lipoprotein (oxLDL) and oxidative stress [143, 144]. 
 H2O2-induced oxidative stress also causes granulosa cell 
death in mouse ovary via autophagy [145, 146]. Mela-
tonin and FSH suppress autophagy-mediated granulosa 
cells deaths by inhibiting JNK-mediated dissociation of 
BCL2/BECN1 complex [147] and activating PI3K-Akt-
mTOR signaling cascade with suppressing FOXO1 tran-
scriptional activity, respectively [146]. Autophagy, with or 
without apoptosis is also involved in oocyte and granulosa 
cell death during follicular atresia in rat [139, 143, 148]. 
The autophagy is mainly induced in granulosa cells during 
various phases of ovarian cycle in rat [35, 149], and both 
autophagy and apoptosis have been reported in granulosa 
cells of mouse ovary [150]. The primordial follicle and theca 
cells show weak LC3-II expression, while granulosa cells at 
all the stage of folliculogenesis showed high level of LC3-II 
expression [35]. On the other hand, LC3-II expression was 
not reported in follicular oocyte [35]. The granulosa cells of 
atretic follicle also showed intense expression of caspase-3 
and LC3 immunoreactivity as compared to that of healthy 
follicle [35]. Gonadotropin treatment suppresses autophagy 
by activating PI3K-Akt-dependent or independent mTOR 
signaling in granulosa cells of rat [35, 151–154].

Studies suggest that autophagy is actively involved in 
the depletion of oocyte from rat ovary [37]. Follicular cells 
show simultaneous presence of both autophagic and apop-
totic markers in same cell at the same time during all phases 
of estrous cycle in rat [37, 155]. A large number of oocytes 
are removed by a process sharing features of apoptosis and 

autophagy [156]. Most of the oocyte in early stage of death 
are simultaneously positive to active caspase-3, DNA breaks 
(apoptosis), increase of lamp1 and acid phosphatase a char-
acteristic of autophagy [156]. A similar mechanism of cell 
death has been reported in oocytes of pre-pubertal rat cul-
tured in vitro [156]. Thus, process of cell death in oocyte 
probably begins with the degradation of cytoplasmic com-
ponents including mitochondria. During initial phase, cas-
pase-3 is activated and oocyte undergoes apoptotic cell death 
[156]. Autophagy cell death accounts for massive depletion 
of germ cells from the ovary of Lim homeobox 8 (Lhx8) (a 
protein involved in patterning and differentiation) ablated 
mouse probably due to disrupted DNA repair mechanism. 
It leads to dramatic reduction of ovarian reserve and genera-
tion of sterile fibrotic ovaries [157]. Age-dependent changes 
in the type of cell death have been reported in oocyte where 
it uses different combinations of apoptosis and autophagy. 
For instance, oocytes are mostly eliminated by apoptosis, 
autophagy and even mixed events of both death pathways 
during prepubertal age [129]. However, autophagy can be 
observed at all the age group of rat [129]. The estrous cycle-
dependent cell death events have also been reported in rat 
oocyte [37]. Apoptosis is predominant during estrous phase 
and autophagy is more common during proestrous stage. 
Both apoptosis and autophagy are observed during diestrous 
and metaestrous phase in rat ovary [37].

Autophagy plays a preventive role in post-matura-
tion aging of mouse oocyte. The p62 protein expression 
decreased, while LC3-II puncta, autophagosome con-
tent are increased after 12 h of oocyte aging [38]. Induc-
tion of autophagy either by rapamycin or LiCl corrected 
the aging parameters by decreasing cytoplasmic calcium, 
ROS, caspase level and cytoplasmic fragmentation along 
with reduction in proportion of oocyte with barrel shaped 
spindle and congressed Autophagy was induced as natu-
ral stress response during vitrification-warming of mouse 
oocyte [158], but enhancing autophagy by rapamycin had 
negative effects on fertilization and development of oocyte 
[159] and inhibition activated apoptosis via caspase-9 and 
12 activation [160]. Inhibition of autophagy during in vitro 
maturation of porcine oocyte also induced DNA damage, 
apoptosis and disrupted mitochondrial membrane poten-
tial exerting detrimental effects on polar body extrusion 
and oocyte competency [161]. These studies suggest that 
the increase of autophagy prevents caspases activation and 
apoptosis. Autophagy is reported during luteal cell death in 
rat [128], marmoset monkey [162] and human [163, 164]. 
Studies suggest that the autophagy promotes luteal cell death 
by regulating apoptotic cell death in non-primates species 
[128, 165] chromosome [38]. On the other hand, decreased 
autophagy accelerates the aging in mouse [38].

Recent studies suggest the role of autophagy in pathogen-
esis of metabolic disorder like PCOS. Autophagy-related 
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ultra-structural changes, consistent with increased expres-
sion of LC3B and decreased SQSTM1/p62 are observed in 
cortex of PCOS ovary in rat [40]. Increased autophagy was 
also evidenced in ovarian tissue of PCOS patients along with 
differential expression of autophagy-related genes [40]. The 
granulosa cells of PCOS patients show high level of LC3-II 
proteins and mRNA expression with increased autophago-
some formation. The increased expression of SUMO-spe-
cific protease (SENP3) induces GC autophagy in the ovary 
of PCOS patients [166]. Further, the elevated level of mTOR 
and P-mTOR has been observed in of DHEA induced PCOS 
mice ovary [167]. In addition, autophagy-inducing gene 
and transcription factor FOXO1 are reduced in endome-
trial tissue of PCOS patients [39]. These studies suggest the 
involvement of autophagy in pathogenesis of PCOS.

Conclusion

The presence of apoptosis and autophagy markers in same 
cells of ovary suggests the onset of autophagy and apoptosis 
from the beginning and only one of these processes may 
induce final disposal of oocyte in rat [129]. Autophagy may 
also be initiated when the process of apoptosis cannot be 
achieved [168]. Another possibility is that both processes of 
cell death are activated at the same time from the beginning 
itself and both actively participate in the disposal of oocyte. 
Since volume of the oocytes is significantly larger than 
somatic cells, it is possible that the combined degradation 
process may be sufficient in the elimination of a large cyto-
plasmic content of only one cell [129]. The role of hypoxia 
in modulating ovarian physiology and the role of autophagy 
in various physiological processes have separately been stud-
ied. However hypoxia-mediated autophagy and its impact 
on physiological/pathological changes in mammalian ovary 
remains ill-understood. From existing literature, we propose 
that hypoxia could be involved in the induction of autophagy 
within the follicular microenvironment of ovary. However, 
further studies are required to find out the pathways gov-
erning hypoxia-induced autophagy and the possible role of 
autophagy during hypoxic stress in mammalian ovary. Once 
the players and pathways of hypoxia-mediated autophagy are 
known, the therapeutic strategies could be developed to pre-
vent the hypoxia-mediated loss of germ cell from the ovary. 
Studies on hypoxia-mediated autophagy in mammalian 
ovary could also be helpful in the management of problems 
like PCOS and POI in patients staying in hypoxic conditions.
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