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Abstract
The ability of cells to repair DNA double-strand breaks (DSBs) is important for maintaining genome stability and eliminating 
oncogenic DNA lesions. Two distinct and complementary pathways, non-homologous end joining (NHEJ) and homologous 
recombination (HR), are employed by mammalian cells to repair DNA DSBs. Each pathway is tightly controlled in response 
to increased DSBs. The Ku heterodimer has been shown to play a regulatory role in NHEJ repair. Ku80 ubiquitination 
contributes to the selection of a DSB repair pathway by causing the removal of Ku heterodimers from DSB sites. However, 
whether Ku80 deubiquitination also plays a role in regulating DSB repair is unknown. To address this question, we per-
formed a comprehensive study of the deubiquitinase specific for Ku80, and our study showed that the deubiquitinase OTUD5 
serves as an important regulator of NHEJ repair by increasing the stability of Ku80. Further studies revealed that OTUD5 
depletion impaired NHEJ repair, and hence reduced overall DSB repair. Furthermore, OTUD5-depleted cells displayed 
excess end resection; as a result, HR repair was facilitated by OTUD5 depletion during the S/G2 phase. In summary, our 
study demonstrates that OTUD5 is a specific deubiquitinase for Ku80 and establishes OTUD5 as an important and positive 
regulator of NHEJ repair.
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Introduction

DNA double-strand breaks (DSBs) are one of the most del-
eterious types of DNA damage resulting from exogenous 
agents, such as ionizing radiation (IR) and certain chemo-
therapeutic drugs, as well as from endogenous mechanical 
stress on chromosomes, such as chromosomal rearrange-
ments during V(D)J recombination and immunoglobulin 
class-switch recombination [1]. DSB repair deficient cells 
often exhibit genomic instability, which is one of the key 
events that leads up to cancer, because the mammalian 
genome is at constant risk from genotoxic factors and accu-
mulation of various mutations [2, 3]. Due to intrinsic cel-
lular activities, two distinct and complementary pathways, 
non-homologous end joining (NHEJ) and homologous 
recombination (HR), are responsible for DNA DSB repair 
in mammalian cells [4]. NHEJ leaves “information scars” at 
most repair sites because resection of a few nucleotides and 
a random addition are necessary to bring the two DNA ends 
into a ligatable configuration [3]. In contrast, HR ensures 
error-free repair of a broken chromatid aided by the intact 
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sister chromatid and is initiated by 5′–3′ nucleolytic degra-
dation that generates single-stranded DNA (ssDNA) [5, 6].

The Ku heterodimer (Ku70/Ku80) forms a ring-shaped 
toroidal structure. Its abundance and high affinity for DNA 
ends are fundamental factors regulating the repair of DNA 
DSBs. During NHEJ, the Ku heterodimer is recruited to 
maintain the integrity of DSB end sites for blunt end liga-
tion, independent sequence homology and the recruitment 
of the DNA-dependent protein kinase catalytic subunit 
(DNA–PKcs) [7, 8]. In contrast, during HR, the removal of 
the Ku heterodimer from DNA ends promotes the genera-
tion of ssDNA overhangs by the CtIP/Mre11-Rad50-Nbs1 
(MRN) complex, which is critical for initiating HR [9].

Studies have shown that ubiquitination of Ku80 dislodges 
the Ku heterodimer from DNA by causing removal of Ku80 
[10, 11]. In addition, ubiquitination-mediated degradation 
of Ku80 has been shown to be RNF8 dependent [12, 13]. 
RNF138 ubiquitinates Ku80 to displace Ku from DSB sites 
in the S and G2 phases of the cell cycle [12]. Furthermore, 
RNF126 has also been reported as a ubiquitin E3 ligase for 
Ku80 [14]. Recently, it was reported that ubiquitin carboxyl-
terminal hydrolase L3 (UCHL3) deubiquitinated Ku80, and 
depleting UCHL3 resulted in reduced formation of Ku80 
foci, moderately sensitizing cells to IR and decreasing NHEJ 
efficiency [15]. Extensive evidence has shown that Ku80 
ubiquitination plays an important role in DSB repair through 
regulating the accumulation of Ku70/Ku80 at the DSB sites.

Although much of the study of Ku ubiquitination has been 
focused on the ubiquitinase of Ku80, little is known about 
the deubiquitinase of Ku80. The human genome encodes 
approximately 100 putative DUBs, which are divided into 
six DUB subfamilies based on their structures, including 
the ubiquitin-specific protease (USP) subfamily, ubiquitin 
C-terminal hydrolase (UCH) subfamily, Machado–Joseph 
disease (MJD) protein domain protease subfamily, ovarian 
tumor (OTU) protease subfamily, JAB1/MPN/Mov34 met-
alloenzyme (JAMM) motif protease subfamily and motif 
interacting with ub-containing novel DUB (MINDY) sub-
family [16, 17]. In this study, we identified OTUD5 as a spe-
cific deubiquitinase for Ku80 by screening a deubiquitinase 
library, and we also demonstrated that OTUD5 served as an 
essential component in the regulation of DSB repair pathway 
selection through maintaining the stability of Ku80.

Results

Ku80 is ubiquitinated in response to DNA damage

To identify significant ubiquitinated factors in response 
to DNA damage, we designed a novel approach to distin-
guish DNA damage-dependent ubiquitinated lysine using 
heavy lysine  (lys6) labeled H1299 cells, and SILAC-mass 

spectrometry (Fig. 1a). The results of the mass spectrometry 
experiments identified five lysine residues as ubiquitination 
sites in Ku80, and K481 experienced the largest increase 
in ubiquitination in response to IR (10 Gy) (Fig. 1b, Sup-
plementary Table 1). To confirm that Ku80 is indeed ubiq-
uitinated after DNA damage, we performed an immunopre-
cipitation (IP) assay with an antibody specific for ubiquitin 
without or with IR, and ubiquitinated Ku80 levels were sig-
nificantly higher with IR than without IR (Fig. 1c). Addi-
tionally, co-expression of Ku80 with the ubiquitin E3 ligase 
RNF138 or RNF8 in 293T cells also increased the levels of 
ubiquitinated Ku80, consistent with previous studies (Sup-
plementary Fig. 1A, B) [12, 13, 18].

OTUD5 deubiquitinates Ku80 in vitro and in cells

To identify a deubiquitinase specific for Ku80, we designed 
an in vitro assay using purified proteins (Fig. 2a). We puri-
fied poly-ubiquitinated Ku80 (Ku80-ubs) from 293T cells to 
use as the substrate for the in vitro deubiquitination assay. 
Ku80-ubs was then incubated with the 77 purified DUBs 
individually, followed by western blot analysis to reveal 
the levels of the remaining ubiquitin moiety on Ku80-ubs 
(Fig. 2b). We screened 16 DUBs that could reduce Ku80-
ubs levels by at least 50% in vitro (Supplementary Table 2).

To confirm whether these DUBs indeed regulate Ku80 
ubiquitination in vivo, we then used short hairpin RNAs 
(shRNAs) against 27 individual DUB candidates for Ku80 
deubiquitination, which included 11 DUBs that were una-
ble to be cloned previously and 16 DUBs identified by the 
in vitro deubiquitination assay. We performed IP assays 
using an anti-ubiquitin antibody and extracts from indi-
vidual DUB-depleted H1299 cells. Knockdown of 4 of 
these 27 DUBs resulted in a significant increase in ubiq-
uitinated Ku80 (Fig. 2c). Furthermore, the level of Ku80 
was reduced significantly only when OTUD5 was depleted, 
suggesting that OTUD5 is the specific deubiquitinase for 
Ku80 (Fig. 2d). Supporting this finding, transfection with 
OTUD5 increased the levels of Ku80 in 293T cells (Fig. 2e). 
Taken together, these results demonstrated that OTUD5 is 
the specific deubiquitinase for Ku80.

OTUD5 is a unique deubiquitinase for Ku80

To further verify the role of OTUD5 in deubiquitination 
of Ku80, we performed an immunoprecipitation assay with 
H1299 cells in which OTUD5 was depleted by one of two 
different shRNAs against OTUD5 or one of two different 
siRNA sequences against OTUD5. Both types of RNAi-
mediated OTUD5-depleted H1299 cells displayed increased 
levels of Ku80 ubiquitination (Fig. 3a, b). When we com-
plemented OTUD5 levels by overexpression, ubiquitinated 
Ku80 was reduced. The protein level of Ku80 was rescued 
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by wild-type OTUD5, but over-expression of catalytically 
inactive OTUD5 failed to rescue protein level of Ku80 
(Fig. 3c). In addition, regardless of whether the cells in G1 
or S/G2 phase, OTUD5 knockdown increased the level of 
Ku80-ubs (Supplementary Fig. 3E).

To firmly establish the role of OTUD5 in Ku80 deubiq-
uitination, a catalytically inactive OTUD5 mutant protein 
(OTUD5/C224S) was purified, and its deubiquitination 
activity for Ku80 was determined. In addition, OTUD5 
was shown to be activated by phosphorylation [19], and we 
also generated DNA to produce a mutant OTUD5 protein 
(OTUD5/S177A) to disable activation by phosphorylation. 
The results of the in vitro assay revealed that phosphorylated 
OTUD5 was more efficient than unphosphorylated OTUD5 
in cleaving the ubiquitin chain of Ku80 (Fig. 3d, e, lane 
2 vs lane 3), whereas the phosphorylation mutant OTUD5 
(OTUD5/S177A) could only slightly cleave the ubiquitin 
chain (Fig. 3d, e, lane 4). Notably, the catalytically inactive 
mutant OTUD5 (OTUD5/C224S) lost its deubiquitination 
activity for Ku80, as indicated by unchanged levels of ubiq-
uitinated Ku80 in the presence of OTUD5/C224S (Fig. 3d, 
e, lane 5).

To study the importance of Ku80 regulation by OTUD5 
in vivo, we developed an assay using 293T cells co-trans-
fected with plasmids expressing MYC-Ku80, His-ub and one 
of three types of OTUD5, OTUD5/WT, OTUD5/C224S and 
OTUD5/S177A. These cells were then treated with IR as 
indicated (Fig. 3f). The His-ub tagged proteins were purified 
from whole cell extracts using Ni-NTA bead purification. In 
the absence of OTUD5, Ku80 was ubiquitinated, and ubiqui-
tinated Ku80 could be pulled down from whole cell extracts. 
In contrast, in the presence of OTUD5, ubiquitinated Ku80 
was completely eliminated. This effect was dependent on 
OTUD5 activation by phosphorylation and OTUD5 activity, 
as co-expressing either OTUD5/S177A or OTUD5/C224S 
had little effect on the level of ubiquitinated Ku80 (Fig. 3f). 
In addition, the levels of Ku80 ubiquitination increased dra-
matically in OTUD5-knockdown cells after IR (Fig. 3g).

We then confirmed the interaction between endogenous 
OTUD5 and Ku80 in H1299 cells by an IP assay using either 
OTUD5 or a Ku80 antibody (Fig. 3h, i). Overall, these data 
suggest that OTUD5 was a specific deubiquitinase for Ku80 
and played an important role in regulating the level of Ku80 
ubiquitination in vivo.
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Fig. 1  Ku80 is ubiquitinated in response to DNA damage. a Strat-
egy for identifying ubiquitinated factors in response to IR (10 Gy) by 
SILAC-MS/MS in H1299 cells. b Ku80 is ubiquitinated at lysine 481. 
c The levels of ubiquitinated Ku80 increased in response to DNA 

damage. H1299 cells were untreated or treated with ionizing radia-
tion (10 Gy) and collected after 1 h. Ubiquitinated Ku80 was purified 
by immunoprecipitation using anti-ubiquitin antibodies and was ana-
lyzed by western blotting using an anti-Ku80 antibody
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OTUD5 stabilizes Ku80 and increases its 
accumulation at DSB sites

OTUD5 has been previously reported to be responsible 
for cleavage of ubiquitin chains formed through linkages 
at  lysine48, and this linkage normally targets proteins for 
degradation by proteasome-mediated proteolytic destruc-
tion [20]. Ku80 was previously reported to be degraded by 
RNF8-mediated ubiquitination [13]. To study the role of 
OTUD5 in antagonizing the ubiquitination-mediated deg-
radation of Ku80, H1299 cells were treated with MG132 
or not, and Ku80 levels were analyzed by western blotting 
and immunofluorescence staining. We found that the pro-
tein level of Ku80 increased, accompanied by lengthen-
ing of the MG132 treatment (Supplementary Fig. 2B–D). 
We then co-expressed Ku80 with one of three types of 
OTUD5, OTUD5/WT, OTUD5/C224S or OTUD5/S177A, 
and MG132 treatment was added as a positive control. 
Indeed, the expression of OTUD5 markedly increased the 
protein levels of MYC-tagged Ku80, whereas OTUD5/
S177A was not as potent as OTUD5/WT, and the expres-
sion of OTUD5/C224S had no effect on Ku80 protein 
levels (Fig. 4a). Furthermore, depletion of endogenous 

OTUD5 decreased the protein concentration of Ku80 
(Fig. 4b), establishing the role of OTUD5 in maintaining 
Ku80 stability.

Ku80 has been shown to regulate NHEJ repair through 
binding to DNA damage sites, and through recruiting fac-
tors involved in the DSB repair pathway. Recent studies also 
showed that Ku80 was ubiquitinated at DSB sites and that 
the initiation of HR depended on ubiquitination-mediated 
Ku80 removal from DNA [12–14]. These findings prompted 
us to investigate the physiological role of OTUD5 in regulat-
ing the accumulation of Ku80 at DSB sites and the recruit-
ment of downstream NHEJ core factors. We utilized immu-
nofluorescence staining in which the cells were extracted 
with CSK buffer combined with RNase A to obtain high-
resolution images of Ku80 foci [21]. We introduced DSBs 
into the cells by IR to induce Ku80 accumulation at DSB 
sites. The Ku80 foci were visualized and increased dramati-
cally during various cell cycle stages compared to the cells 
without IR treatment, suggesting that the binding of Ku80 
to sites of DNA damage is not dependent on the cell cycle 
stage (Supplementary Fig. 3A, B). However, the forma-
tion of Ku80 foci was markedly reduced after depletion of 
OTUD5 by an OTUD5 siRNA (Fig. 4c, d).
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These results were further supported by the I-SceI-
induced DSB assay. The pCIN4-SceGFP-iGFP plasmid, 
which contains one recognition site for the I-SceI endonu-
clease [22], was integrated into the chromosomal DNA of 
H1299 cells as a substrate for I-SceI and HR repair. Cells 
harboring the recognition site for I-SceI induced DSB sites 
by transient transfection with the I-SceI expression vector 
pCDNA3.0–3 × NLS-I-SceI. After expression of I-SceI, the 
cells were fixed with formaldehyde and the chromatin was 
solubilized by sonication and purified. Immunoprecipitation 
was conducted with antibodies against Ku80. A significant 
portion of Ku80 recruitment was affected by Ku80 Ab, com-
pared to the IgG control. This recruitment was reduced by 
80% following OTUD5 depletion (Fig. 4e). These results 
demonstrated that Ku80 binding to DSB sites was regulated 

by OTUD5, as OTUD5-depleted cells displayed reduced 
Ku80 enrichment on DNA.

We then investigated the recruitment of downstream 
NHEJ core factors, using XRCC4 as an example. No 
XRCC4 foci were observed without IR, whereas XRCC4 
foci increased dramatically after IR. Notably, XRCC4 foci 
decreased significantly after OTUD5 depletion. OTUD5 
depletion indeed decreased the accumulation of the down-
stream NHEJ core factors (Fig. 4f, g).

Depletion of OTUD5 impairs NHEJ and overall DNA 
damage repair

Because of the central role of the Ku heterodimer in the 
recruitment of the nuclease, polymerases and ligases of 
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NHEJ, we then explored the effect of OTUD5 on the effi-
ciency of NHEJ through increasing the stability of Ku80.

To examine the specific impact of OTUD5 on NHEJ, the 
pCIN4-TK-EGFP plasmid, which contains two recognition 
sites for the I-SceI endonuclease in the reverse direction, 
was integrated into the chromosomal DNA of H1299 cells. 
Transient expression of I-SceI would introduce DNA DSB 
sites and increase the expression of EGFP resulting from 
NHEJ. Thus, the efficiency of NHEJ could be gauged by 
measuring the expression of GFP, and we confirmed the 
expression of I-SceI by co-transfecting dsRed plasmids 
[23]. OTUD5 depletion reduced the efficiency of NHEJ 
by approximately 50%, as measured by an I-SceI-mediated 
EGFP expression assay (Fig. 5a). We also studied 53BP1 
focus formation in response to IR (5 Gy). After IR, 53BP1 
foci increased dramatically. However, comparing the number 
of 53BP1 foci in cells synchronized in G1 phase with that 
in cells synchronized in S/G2 phases, we found no obvious 

changes following IR (Supplementary Fig. 3C, D). In con-
trast, ionizing radiation induced focus formation of 53BP1 
decreased significantly due to the depletion of endogenous 
OTUD5 (Fig. 5c, d). Depletion of Ku80 had no effect on the 
formation of 53BP1 foci (Supplementary Fig. 5D). We then 
analyzed the cell extract and found that depletion of OTUD5 
moderately reduced the protein level of 53BP1 (Supplemen-
tary Fig. 5C). These data further supported OTUD5 as a 
positive regulator of NHEJ.

Reduced NHEJ repair increases cellular sensitivity 
to DNA DSBs and hence impairs cellular survival after 
DSB-inducing treatment. Indeed, OTUD5-depleted cells 
displayed reduced colony formation after IR (Fig. 5e). To 
determine the impact of OTUD5 on the overall repair of 
DSBs, γH2AX foci were used as a measure of overall DSB 
repair in the OTUD5-depleted cells after IR treatment. The 
results showed that depletion of OTUD5 delayed the disap-
pearance of γH2AX foci in cells exposed to IR compared to 
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with control siRNA or OTUD5 siRNA were exposed (or unexposed, 
top) to IR (5 Gy, 5 min). The Ku80 foci were visualized by immuno-
fluorescence microscopy. d Quantitation of the numbers of foci in (c). 

Data are shown as the mean ± s. d.; n = 50 cells, data were obtained 
from three biological replicates. ***p < 0.0001. e ChIP assays to 
determine the recruitment of Ku80. The recruitment of Ku80 was 
reduced after OTUD5 knockdown. f Depletion of OTUD5 reduced 
the formation of XRCC4 foci after IR. H1299 cells transfected with 
control siRNA or OTUD5 siRNA were exposed (or unexposed, top) 
to IR (5 Gy, 30 min). The XRCC4 foci were visualized by immuno-
fluorescence microscopy. g Quantitation of the numbers of foci in (f). 
Average XRCC4 foci per cell were counted and plotted as indicated. 
Data are shown as the mean ± s. d.; n = 50 cells, data were obtained 
from three biological replicates. ***p < 0.0001
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the control cells (Fig. 5f, g), suggesting that OTUD5 plays a 
significant role in regulating overall DSB repair.

OTUD5 depletion promotes DNA end resection 
and HR repair during S/G2 phase

The switching of different DSB repair pathways involves 
direct competition between Ku70/Ku80 and MRN/CtIP 
for binding at DSBs, which affects the extent of DNA end 
resection and the balance between HR and NHEJ [24, 25]. 
The generation of short ssDNA overhangs by the Mre11 
nuclease requires the removal of bound Ku at the DSB ends, 
thereby priming the ends for CtIP/Exo1-dependent DNA end 
resection. It is reasonable to believe that Ku plays a role in 
dictating the switching of DNA repair pathways by protect-
ing DNA ends from end processing, which promoted us to 

examine the impact of OTUD5 on end resection and the 
extent of HR.

To obtain cells synchronized in different phases in cul-
ture, we used the thymidine double block system, which is 
based on inhibition of DNA synthesis by thymidine. A high 
concentration of thymidine interrupts the deoxynucleotide 
metabolism pathway, thereby arresting cells throughout 
early S phase [26]. After the thymidine double block proce-
dure, the cells are synchronized at the G1/S boundary. The 
cells were synchronized in G1 phase during the initial 2 h, 
and S/G2 phase cells were obtained after 4–6 h of release 
(Supplementary Fig. 4A).

DNA ends that have already undergone resection will 
be coated by the RPA complex, composed of the subunits 
RPA1, RPA2 and RPA3. The complex is widely used as a 
proxy for end resection [25, 27]. For visualization of the 
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Fig. 5  OTUD5 promotes NHEJ repair. a OTUD5 depletion impairs 
the efficiency of NHEJ. Quantitation of the efficiency of NHEJ by 
counting EGFP positive cells using flow-cytometry. The H1299 cells 
were transfected with OTUD5, Ku80 or control siRNA, and plasmids 
expressing OTUD5/WT or OTUD5/C224S as indicated. Quantitative 
data represent the mean ± SEM from three independent experiments. 
***p < 0.005. b Western blot analysis of the protein extracts from the 
cells used in (a). c OTUD5-depleted cells exhibited reduced 53BP1 
foci. H1299 cells were transfected with different siRNAs as indicated. 
The cells were irradiated with ionizing radiation (5 Gy, 30 min), and 
the cells were fixed and stained. Images of 53BP1 foci were obtained 
by immunofluorescence microscopy. d Average numbers of 53BP1 
foci per cell were counted from three independent experiments and 
plotted as indicated. Data are expressed as the mean ± S.D.; n = 50 
cells, data were pooled across three experiments. ***p < 0.0001. e 

OTUD5 depletion reduced the viability of cells treated with increas-
ing doses of IR. H1299 cells were transfected with control siRNA or 
siRNA against OTUD5 (OTUD5 #1, OTUD5 #2) before exposure to 
IR at the indicated dosages. Then, the cells were stained with meth-
ylene blue after 14 days of incubation. Error bars represent the s.e.m. 
from n = 3 biological experiments. f OTUD5 depletion delayed the 
clearance of γH2AX foci after IR. H1299 cells transfected with con-
trol siRNA or 2 different OTUD5 siRNAs were untreated or treated 
with IR (2  Gy) and subjected to immunofluorescence analysis of 
γH2AX at 0.5–12 h after irradiation. Nuclei were stained with DAPI. 
g The average numbers of γH2AX foci per cell were counted at 0.5, 
1, 3, 6 and 12 h after irradiation from three independent experiments 
and plotted as indicated. Data represent the mean ± S.D.; n = 50 cells, 
data were pooled across three experiments. *p < 0.05, ***p < 0.0001
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RPA complex, H1299 cells expressing GFP-tagged RPA2 
were extracted with CSK buffer combined with RNase A, 
before IR treatment. We hardly found any GFP-RPA2 foci 
in cells without synchronization because HR occurred dur-
ing S/G2 phase (Supplementary Fig. 5A, B). Once the cells 
were arrested in the S/G2 phase, RPA2 focus-positive cells 
could be visualized easily. We found that the accumulation 
of RPA2 foci increased in OTUD5-depleted cells compared 
to that in control cells (Fig. 6a, b). There was no overlap 
between RPA2 foci and 53BP1 foci. In wild-type cells, the 
average number of 53BP1 foci was nearly fourfold higher 

than that of the RPA2 foci. In OTUD5-depleted cells, the 
ratio between the number of 53BP1 foci and the number of 
RPA2 foci decreased by twofold, indicating that NHEJ was 
suppressed and HR was stimulated by OTUD5 depletion 
during the S/G2 phase. As a complementary test for end 
resection, we compared 5-bromo-2-deoxyuridine (BrdU) 
focus formation in wild-type cells and OTUD5-depleted 
cells under non-denaturing conditions. As expected, there 
was no overlap between ssDNA (BrdU) foci and 53BP1 foci 
(Fig. 6c). The OTUD5-depleted cells exhibited increased 
formation of ssDNA (BrdU) foci in S/G2 phase (Fig. 6c, d). 
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ing model illustrating OTUD5 as a positive regulator of NHEJ
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All of these results demonstrated that depletion of OTUD5 
was required to prime DNA ends for HR repair. Unsched-
uled end resection would make the DNA ends unsuitable 
for NHEJ.

Rad51 is a key regulator of HR that helps to form a fila-
ment for strand exchange with a homologous DNA template. 
We examined the effect of OTUD5 depletion on Rad51 foci 
using immunofluorescence. RAD51 foci formed within two 
OTUD5-depleted cell lines were significantly more than the 
foci formed within the control cell line in response to IR 
(Fig. 6e, f). To further confirm these findings, we tested the 
accumulation of Mre11, RAD51 and Nbs1 at I-SceI-induced 
DSB sites. Cleavage of the I-SceI site resulted in enrichment 
of Mre11, RAD51 and NBS1 at the DSB sites in the S/G2 
phase; however, depletion of OTUD5 significantly enhanced 
the enrichment of these core factors of HR, while recruit-
ment of Ku80 was decreased (Fig. 6g). Consistent with this 
finding, OTUD5 depletion increased the efficiency of HR by 
approximately 70%, as measured by a chromosomal I-SceI-
mediated gene conversion assay [28] (Fig. 6h).

We also checked whether OTUD5 knockdown had any 
effect on the cell cycle, and we found that there was no sig-
nificant change in the population of cells in the S/G2 phase 
after OTUD5 knockdown (Supplementary Fig. 4B). In sum-
mary, these results suggest that OTUD5 is a negative regula-
tor of HR repair (Fig. 6i).

Discussion

The Ku heterodimer, as a primary DNA end-binding fac-
tor that marks DNA ends for rejoining via NHEJ, has been 
studied extensively in past decades and is well understood 
[29]. The prevalent concept for DSB repair pathway switch-
ing holds that Ku should be removed from the DSB ends 
to initiate HR repair, as Ku trapped on DNA ends would 
preclude end resection [30, 31]. In addition, Ku80 is ubiq-
uitinated at DNA damage sites, and ubiquitination regulates 
the removal of Ku80 from DSB sites [12–14, 32]. However, 
deubiquitination of Ku80 remains an active area of investiga-
tion. We studied the deubiquitination of Ku80 by multiple 
strategies (Fig. 2a) and demonstrated that OTUD5 was the 
specific deubiquitinase of Ku80. OTUD5 mutant proteins 
lost their Ku80 deubiquitination activity after we introduced 
C224S mutation. OTUD5 was previously reported to be 
responsible for cleaving ubiquitin chains formed through 
linkages at  lysine48, and these modifications often lead to 
proteasome-mediated proteolytic destruction [20]. Consist-
ent with this notion, we found that OTUD5 antagonized 
the ubiquitination-induced degradation of Ku80. We then 
explored the physiological roles of the Ku80 deubiquitina-
tion catalyzed by OTUD5. We studied the effects of OTUD5 
depletion on the recruitment of Ku80 to DNA damage sites 

and demonstrated that depletion of OTUD5 impaired the 
accumulation of Ku80 at DNA damage sites. We verified 
this finding by testing the formation of foci of XRCC4, the 
downstream core factor of NHEJ. Additionally, knockdown 
of OTUD5 delayed the overall repair of DSBs. In the S/G2 
phase, OTUD5 depletion results in excess end resection and 
increases the formation of foci of RAD51, the downstream 
core factor of HR, in response to DNA damage. These 
results demonstrate that OTUD5 regulates DSB repair path-
way switching through promoting Ku80 deubiquitination. 
Given that recruitment of Ku80 is the initial step of NHEJ 
repair, our study reveals the unknown roles of OTUD5 in 
promoting NHEJ repair (Fig. 6i).

OTUD5 plays an important role in promoting genomic 
stability under conditions in which the dysfunction of NHEJ 
activates mutagenic alternative repair pathways. However, 
targeting Ku80 may not be the only mechanism whereby 
OTUD5 regulates the protein level of 53BP1. De et  al. 
recently reported that OTUD5 localized to DNA double-
strand breaks and regulated the accumulation of RPA com-
plex at the DSB site [33], which is consistent with our results 
and further provides the possibility of OTUD5 playing an 
undiscovered role in DSB repair. OTUD5 may play a multi-
ple role in DNA damage response. Some ubiquitin E3 ligases 
have been found being responsible for ubiquitination of K80, 
such as RNF8, RNF138 and RNF126. It is not surprising 
that Ku80-ubs is regulated by multiple DUBs to insure tight 
control of the levels of Ku80-ubs in cells, whereby ubiqui-
tin carboxyl-terminal hydrolase L3 (UCHL3) was recently 
identified deubiquitinating Ku80 and participating in DNA 
damage response.

The Ku heterodimer is considered a caretaker because 
it regulates the processing of DNA DSB repair, other-
wise leading to gross chromosomal rearrangements [34]. 
 Ku80−/− mice with a loss of p53 or PARP-1 succumb to 
tumorigenesis, such that all  ku80−/−  p53−/− mice develop 
pro-B-cell lymphoma by 16 weeks [34, 35]. In addition, 
overexpression of Ku80 suppresses cellular proliferation and 
xenograft tumor growth in nude mice [36]. Ubiquitination-
mediated removal of Ku80 from damage sites would be a 
reasonable mechanism to regulate the Ku heterodimer, and 
this regulation needs further investigation.

RNAi libraries were previously screened for the DUBs 
responsible for specific substrates, but this approach has 
limitations. It is usually difficult to achieve a high efficiency 
of uniform depletion for each DUB protein through screen-
ing because many DUBs are stable proteins in vivo with long 
half-lives. Additionally, DUB depletion may induce indirect 
effects, thus impacting the phenotypes obtained from RNAi 
screening [37]. To complement these results, we used an 
approach in which screening was performed using deubiq-
uitinases and a defined substrate purified from mammalian 
cells in vitro, and the same approach could facilitate the 
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identification of specific DUBs for many important cellular 
factors, similar to Ku80.

Materials and methods

Cell culture

HEK-293T, HeLa, and H1299 cells (obtained from the 
American Type Culture Collection) were maintained in 
DMEM, supplemented with 10% fetal bovine serum and 
penicillin/streptomycin in a humidified atmosphere with 
5%  CO2 at 37 °C.

Constructs

Each of the DUBs was cloned into the pCIN4-Flag expres-
sion vector, and its sequence was confirmed by DNA 
sequencing [37, 38]. Plasmids containing human OTUD5/
C224S or OTUD5/S177A were obtained by mutagenesis 
according to the manufacturer’s protocol (Transgene). Ku80 
was generated by PCR and cloned into the pRK5-MYC-
Flag vector; RNF138 was generated by PCR and cloned into 
the pCIN4-HA vector. The RPA2 gene was cloned into the 
pcDNA3.1-GFP vector.

Immunoblots and antibodies

Western blotting was performed by the standard method. 
The primary antibodies used were specific for Ku80 (#2753; 
Cell Signaling Technology), OTUD5 (D8Y2U, Cat. No. 
20087; Cell Signaling Technology), USP7 (SC-133204, 
Santa Cruz), USP11 (SC-365528, Santa Cruz), OTUD6A 
(HPA053304, Sigma) RAD51 (ab133534, Abcam), NBS1 
(ab32074, Abcam), Mre11 (ab214, Abcam), RPA1 (2267S, 
Cell Signaling Technology), 53BP1 (4937S, Cell Signaling 
Technology), XRCC4 (ab97351, Abcam), c-MYC (9E10) 
(sc-40; Santa Cruz), HA (H9658, Sigma), Flag (F3165, 
sigma), ubiquitin (SC-8017, Santa Cruz), and β-actin 
(Sigma).

SILAC‑MS/MS to identify significant ubiquitinated 
proteins in H1299 cells

H1299 cells were labeled with either “heavy” or “light” 
isotopic lysine using a SILAC Protein Quantitation Kit 
(Invitrogen, Carlsbad, CA) according to the manufacturer’s 
instructions. Briefly, two cell lines were grown in Dul-
becco’s modified Eagle’s medium supplemented with 10% 
dialyzed fetal bovine serum and with either the “heavy” 
(H) form of  Lys6Arg10 or “light” (L)  Lys0Arg0 for more 
than six passages before being used in the assay. Cells, 

either without or with IR treatment (10 Gy, 2 h), were 
harvested and washed twice with cold phosphate-buffered 
saline. The cells were lysed in RIPA buffer (40 mm Tris, 
pH 8.0, 200 mm NaCl, 2 mm EDTA, 1% Nonidet P-40, 
and 1% SDS) on ice for 20 min. Equal amounts of protein 
from cells in the no-IR group and IR group were mixed. 
The proteins were digested with trypsin. To enrich di-GG-
ubiquitinated peptides, the tryptic peptides were incubated 
with anti-di-GG agarose beads (PTM Biolabs Inc., Chi-
cago, IL, USA) at 4 °C for 4 h with gentle shaking. The 
beads were washed four times and the bound peptides were 
eluted from the beads with 1% trifluoroacetic acid. HPLC/
MS/MS analysis was performed. The ratio of H/L peptides 
was normalized by eliminating the impact of protein level 
change. The results are shown in Supplementary Table 1.

Transfection of cells

For the knockdown assay, cells were transfected with 
appropriate siRNAs against OTUD5 using Lipofectamine 
3000, and scrambled siRNA was used as a control. After 
48  h, the cells were harvested, and the efficiency of 
OTUD5 knockdown was verified by immunoblotting. For 
the overexpression assay, cells were transfected with the 
appropriate plasmid using Neofect DNA transfection rea-
gent (Neofect Biotech) and harvested after 24–48 h.

Ni‑NTA affinity purification and in vivo Ku80 
ubiquitination

293T cells were transfected with plasmids expressing 
MYC-Ku80, His-ubiquitin and ubiquitin E3 ligase (HA-
RNF138). Thirty-six hours post-transfection, one-tenth of 
the cells were lysed with RIPA buffer, and the extracts 
were used as input. The remaining cell extracts were 
mixed with Ni-NTA beads (Qiagen) in phosphate/guani-
dine buffer (6 M guanidine-HCl, 0.1 M  Na2HPO4, 6.8 mM 
 Na2H2PO4, 10 mM Tris–HCl pH 8.0, 0.2% Triton X-100, 
and freshly added 10 mM β-mercaptoethanol and 5 mM 
imidazole) to pull down his-tagged proteins overnight at 
4 °C after sonication. The Ni-NTA resin-bound proteins 
were then washed once with wash buffer 1 (8 M urea, 
0.1 M  Na2HPO4, 6.8 mM  Na2H2PO4, 10 mM Tris–HCl 
pH 8.0, 0.2% Triton X-100, and freshly added 10 mM 
β-mercaptoethanol and 5 mM imidazole) and washed three 
times with wash buffer 2 (8 M urea, 18 mM  Na2HPO4, 
80 mM  Na2H2PO4, 10 mM Tris–HCl pH 6.3, 0.2% Triton 
X-100, and freshly added 10 mM β-mercaptoethanol and 
5 mM imidazole). The bound proteins were eluted with 
loading buffer and resolved by SDS-PAGE.
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Purification of DUBs and Ku80‑ubs

The DUBs were purified from 293T cell lysates by immu-
noprecipitation using anti-Flag M2 beads [37, 38]. 293T 
cells were transfected with plasmids expressing each of 
the DUBs and harvested after 48 h. The cells were lysed 
in BC500 buffer (20 mM Tris–HCl pH 7.3, 500 mM NaCl, 
20% glycerol, and 0.5% Triton X-100) with sonication before 
incubation with M2 beads overnight at 4 °C. After washing 
the beads three times with BC100 buffer (20 mM Tris–HCl 
pH 7.3, 100 mM NaCl, 20% glycerol, 0.1% Triton X-100), 
the DUBs were eluted with Flag peptide (Sigma). To purify 
ubiquitinated Ku80 (Ku80-ubs), 293T cells were transfected 
with plasmids expressing Flag-Ku80. After 48 h, the cells 
were treated with IR (10 Gy, recovery 1 h). The proteins 
were purified as described above.

In vitro deubiquitination

Ku80-ubs was incubated with each of the purified DUBs in 
deubiquitination buffer (50 mM Tris–HCl pH 8.0, 50 mM 
NaCl, 1 mM EDTA, 10 mM DTT, and 5% glycerol) for 2 h at 
37 °C. The reactions were stopped by adding loading buffer. 
The mixtures were resolved on SDS-PAGE for western blot 
analysis using an anti-ubiquitin antibody. The quantitative 
data of in vitro deubiquitination assay is shown in Supple-
mentary Table 2.

Immunoprecipitation with the chromatin fraction

Cells were collected in PBS, and chromatin fractions were 
isolated in CSK buffer (20 mM HEPES pH 7.9, 50 mM 
NaCl, 300 mM sucrose, 3 mM  MgCl2, and 0.5% Triton 
X-100). After sonication, the salt concentration was adjusted 
to 500 mM and the sample was further incubated for 30 min 
on ice. Lysates were clarified by centrifugation (20,800g, 
15 min, 4 °C) and at least 1 mg of proteins was used per 
immunoprecipitation assay in IP buffer (50 mM Tris–HCl 
pH 7.3, 137 mM NaCl, 1 mM EDTA, 10% glycerol, 1% 
Triton X, 0.2% sarkosyl, 1 mM NaF, 1 mM  Na3VO4, and 
0.5 mM DTT). Target proteins were captured with an anti-
ubiquitin antibody coupled to protein G magnetic Dynal 
beads. The complexes were extensively washed in IP buffer 
with the salt concentration adjusted to 500 mM NaCl. All 
extracts were pre-cleared using beads alone.

Immunofluorescence staining

For monitoring the formation of γH2AX, 53BP1 and 
RAD51 foci, the cells were fixed with 4% paraformalde-
hyde for 15 min and permeabilized by PBS containing 0.25% 
Triton X-100 for 10 min. After incubation with 5% bovine 
serum albumin (BSA) for 1 h at room temperature, the cells 

were incubated with the indicated primary antibodies over-
night at 4 °C or for 2 h at room temperature. The cells were 
then washed with PBS and incubated with a fluorophore-
conjugated secondary antibody. Finally, the cells were 
counterstained with 4′,6-diamidino-2-phenylindole (DAPI) 
to visualize nuclei. The cells were imaged by a Zeiss 880 
confocal laser-scanning microscope at 63 × magnification.

For visualization of Ku80 foci, RPA2 foci and XRCC4 
foci, the cells were extracted with RNase A-containing CSK 
buffer before staining [21].

For non-denatured BrdU immunodetection, the cells were 
incubated with 20 mM BrdU for 24 h before DSB-induced 
treatment. The cells were extracted twice with CSK buffer 
for 5 min before being fixed, permeabilized and stained as 
described above.

RNA interference

The shRNA plasmids targeting the indicated DUBs were 
constructed in the pLVX-shRNA2 vector (Clontech). Lenti-
viral gene transduction was carried out using 293T packag-
ing cells with the Lenti-X HTX Packaging System (Clon-
tech). Medium containing virus was collected, supplemented 
with 8 μg/ml polybrene (Sigma) and incubated with target 
H1299 cells at 37 °C for 12 h. Infected H1299 cells were 
selected with 3 μg/ml puromycin for 3 days. Control cells 
were generated by lentivirus expressing scrambled shRNA. 
Sequences of all shRNAs used in this study are listed in 
Supplementary Table 3.

A stable OTUD5-depleted H1299 stable line was gener-
ated by shRNA. (Sequences of two shRNA against OTUD5: 
#1: 5′-tGGG CTG GGC CTG CCA TCA TTCttcaagagaGAA 
TGA T GGC AGG CCC AGC CCttttttc-3′, #2: 5′-tGGG CCC 
TCA TTC AGC AGA TGTttcaagagaACA TCT GCT GAA TGA 
GGG CCCttttttc-3′).

H1299 cells were transfected with siRNAs (Gene 
Pharma) for OTUD5 knockdown. The sequences of the 
siRNA against OTUD5 are as follows: #1: 5′-GGG CUG 
GGC CUG CCA UCA UUC-3′, #2: 5′-GGG CCC UCA UUC 
AGC AGA UGU-3′. The sequences of the siRNAs against 
Ku80 are as follows: #1: 5′-AAU AUC CAG CUG ACU UUU 
GCU-3′, #2: 5′-UCA AAU GGG GAU UCU AUA CCA-3′.

ChIP assay

The effect of OTUD5 depletion on DNA repair protein 
recruitment to the defined DSB was determined by ChIP 
and PCR. Induction of a site-specific DSB was performed 
as described previously [39]. The forward primer was CCG 
ACA ACC ACT ACC T; the reverse primer was GCT GAA 
CTT GTG GCC GTT TAC.
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NHEJ assay

The pCIN4-TK-EGFP DNA was transfected into H1299 
cells using the Lipofectamine 2000 reagent (Invitrogen), 
and the cells were subjected to puromycin screening. The 
retention of TK-EGFP DNA was confirmed by PCR. H1299 
cells harboring two I-SceI sites were transiently transfected 
with the pCDNA3.0–3 × NLS-I-SceI plasmid after the deple-
tion of OTUD5. Then the cells were subjected to trypsiniza-
tion, washed with PBS, and analyzed with a flow cytometer 
(FACSCalibur, BD bioscience). The proportion of EGFP-
positive cells was determined in 1 × 104 with the use of 
FACADiva software [23].

Tumor cell colony formation assays

Cells with OTUD5 depleted or not were seeded in triplicate 
onto 35 mm dishes, and incubated for 14 days after IR treat-
ment. The resulting colonies were stained with 2% meth-
ylene blue/50% ethanol for 15 min. The stained cells were 
extracted with 1% SDS. To quantify relative cell number, 
the results were analyzed by a spectrophotometer, and the 
absorbance was detected at 600 nm. The results were nor-
malized to the plating efficiency. The results are presented 
as the averages of data obtained from three independent 
experiments.

Synchronization of cells

Cells were synchronized by double thymidine block at the 
early S phase of the cell cycle. The cells grew to ~ 40% 
confluence, and were incubated with 2 mM thymidine for 
14 h. The cells were released from thymidine block by wash-
ing with PBS five times and incubated with fresh medium 
for 6–8 h. After the second round of thymidine block and 
release, the cells were synchronized and allowed to progress 
into different phases in cell culture (Supplementary Fig. 4A).

Assay with synchronized cells

In the morning of the first day, the transfection assay was 
performed, and 8 h later the process of thymidine double 
block was started. On the third day, the synchronized cells 
were harvested at different time points for the subsequent 
analysis.

Statistical analysis

All results represent the average of experiments at least in 
triplicate, and all results are expressed as the mean ± stand-
ard derivation. The associations between categorical vari-
ables were assessed using the Chi-square test and Fisher’s 
exact test. Analysis of variance was performed to determine 

the statistical significance among groups. A value of 
p < 0.05 was considered statistically significant (*p < 0.05, 
**p < 0.01, ***p < 0.001).
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