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Abstract
The long non-coding RNAs (lncRNAs) are the crucial regulators of human chronic diseases. Therefore, approaches such as 
antisense oligonucleotides, RNAi technology, and small molecule inhibitors have been used for the therapeutic targeting of 
lncRNAs. During the last decade, phytochemicals and nutraceuticals have been explored for their potential against lncRNAs. 
The common lncRNAs known to be modulated by phytochemicals include ROR, PVT1, HOTAIR, MALAT1, H19, MEG3, 
PCAT29, PANDAR, NEAT1, and GAS5. The phytochemicals such as curcumin, resveratrol, sulforaphane, berberine, EGCG, 
and gambogic acid have been examined against lncRNAs. In some cases, formulation of phytochemicals has also been 
used. The disease models where phytochemicals have been demonstrated to modulate lncRNAs expression include cancer, 
rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty liver disease. The regulation of lncRNAs by phytochemicals can 
affect multi-steps of tumor development. When administered in combination with the conventional drugs, phytochemicals 
can also produce synergistic effects on lncRNAs leading to the sensitization of cancer cells. Phytochemicals target lncRNAs 
either directly or indirectly by affecting a wide variety of upstream molecules. However, the potential of phytochemicals 
against lncRNAs has been demonstrated mostly by preclinical studies in cancer models. How the modulation of lncRNAs 
by phytochemicals produce therapeutic effects on cancer and other chronic diseases is discussed in this review.
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Abbreviations
3′UTR   Three prime untranslated region
AIDS  Acquired immunodeficiency syndrome

AKT  AKT8 virus oncogene cellular homolog
ALL  Acute lymphoblastic leukemia
ANRIL  Antisense non-coding RNA in the INK4 

locus
ASOs  Antisense oligonucleotides
BCRP  Breast cancer resistance protein
BIK  Bcl-2-interacting killer
CAS9  CRISPR-associated protein 9
CASC2  Cancer susceptibility candidate 2
CDK6  Cyclin-dependent kinase 6
CRISPR  Clustered regularly interspaced short 

palindromic repeats
CTR1  Copper transporter 1
DNA  Deoxyribo nucleic acid
dsDNA  Double-stranded deoxyribonucleic acid
EGCG   Epigallocatechin gallate
EIF4A3  Eukaryotic translation initiation factor 

4A3
EMT  Epithelial-to-mesenchymal transition
ERα  Estrogen receptor α
FLS  Fibroblast-like synoviocytes
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GAPDH  Glyceraldehyde 3-phosphate 
dehydrogenase

GAS5  Growth arrest-specific 5
GUCY2GP  Guanylate cyclase 2G homolog 

pseudogene
H2AFY  H2A histone family member Y
H2BFXP  H2B histone family member X 

pseudogene
H3K4  Histone H3 lysine 4
HFD  High-fat diet
HMGCR   3-Hydroxy-3-methylglutaryl-coenzyme A 

reductase
HOTAIR  HOX transcript antisense intergenic RNA
IL-6  Interleukin 6
INSIG1  Insulin-induced gene 1
JAK  Janus kinase
LINC  Long intergenic non-protein-coding RNA
linc-PINT  Long intergenic non-protein-coding RNA 

p53 induced transcript
LncRNA  Long non-coding RNA
MAP1LC3B2  Microtubule-associated proteins 1A/1B 

light chain 3B
MCP-1  Monocyte chemoattractant protein-1
MDR1/P-gp  Multidrug resistance protein 1/P-glyco-

protein 1
MEG3  Human maternally expressed gene 3
MIR155HG  MicroRNA155 host gene
miRNA  MicroRNA
mRNA  Messenger RNA
MRP  Multidrug resistance-associated protein
mTOR  Mammalian target of rapamycin
NAFLD  Nonalcoholic fatty liver disease
NEAT1  Nuclear paraspeckle assembly transcript 1
NF-κB  Nuclear factor kappa-light-chain-enhancer 

of activated B cells
Nrf2  Nuclear factor erythroid 2-related factor 2
NSCLC  Non-small-cell lung carcinoma
PANDAR  Promoter of CDKN1A antisense DNA 

damage-activated RNA
PDK4  Pyruvate dehydrogenase kinase 4
PI3K  Phosphoinositide 3-kinase
PUMA  p53 up-regulated modulator of apoptosis
PVT1  Plasmacytoma variant translocation gene
RA  Rheumatoid arthritis
RNA pol II  RNA polymerase II
RNA  Ribo nucleic acid
RNAi  RNA interference
ROR  Regulator of reprogramming
ST7OT1  ST7 antisense RNA 1
STAT   Signal transducer and activator of 

transcription
TGM2  Transglutaminase 2
TMEM25  Transmembrane protein 25

TNF-α  Tumor necrosis factor alpha
TNM  Tumor nodes and metastasis
TUG1  Taurine-up-regulated gene 1
TUSC7  Tumor suppressor candidate 7
Zbtb20  Zinc finger and BTB domain-containing 

protein 20
ZEB1  Zinc-finger E-box-binding homeobox 1
ZFAS1  ZNFX1 antisense RNA 1

Introduction

The long non-coding RNAs (lncRNAs) are highly conserved 
and potentially functional molecules with an ability to regu-
late gene expression in a cis- or trans-manner [1–4]. During 
the past decade, lncRNAs have emerged as the key player 
for normal and pathological conditions. The lncRNAs play 
a crucial role in cell-cycle regulation, innate immunity, and 
pluripotency [5]. The lncRNAs, transcribed by RNA pol 
II, are ≥ 200 nucleotides in length [6]. Normally located 
in the cytosol and the nucleus, the lncRNAs undergo post-
transcriptional modifications such as polyadenylation, cap-
ping, and splicing [7–10]. The lncRNAs play a crucial role 
in diverse biological processes such as epigenetic regulation 
[11, 12], transcriptional regulation of gene expression [13, 
14], organization of protein complexes, cell–cell commu-
nications, and the formation of nuclear sub-structures [15]. 
The lncRNAs also play a role during development [16, 17], 
somatic cell reprogramming, and stem cell pluripotency [17, 
18]. Although the mechanism of lncRNAs function varies 
under different conditions, studies suggest that lncRNAs and 
miRNAs can display potential cross-talk especially during 
carcinogenesis [19–22].

Often expressed in a development-, tissue-, or disease-
specific manner, lncRNAs can be targeted therapeutically 
[23–28]. Indeed, strategies such as antisense oligonucleo-
tides (ASOs), RNAi technology, and small molecule inhibi-
tors have been used for lncRNAs’ targeting [29, 30]. The 
lncRNAs have also been used for the selective killing of 
cancer cells [31]. During recent years, phytochemicals 
derived from natural sources have demonstrated potential 
against lncRNAs. The phytochemicals are reported to be 
cost-effective with an ability to modulate multiple cell sign-
aling pathways [32, 33]. Moreover, these agents have been 
consumed for ages and, thus, are known to be safe. The 
sources of phytochemicals include fruits, vegetables, spices, 
cereals, etc. The consumption of fruits and vegetables is 
associated with reduced risk of chronic diseases [34–38]. 
Phytochemicals can affect lncRNA expression either directly 
or indirectly through the involvement of miRNAs, protein 
kinases, enzymes, and transcription factors (Table 1). In the 
cancer model, phytochemicals can suppress the expression 
of oncogenic lncRNAs or can restore the functions of tumor 
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suppressor lncRNAs. The modulation of lncRNAs by phy-
tochemicals can produce therapeutic effects in some cancer 
types (Table 2). The disease models where phytochemicals 
have been demonstrated to modulate lncRNAs include can-
cer, rheumatoid arthritis, osteoarthritis, and nonalcoholic 
fatty liver disease (Fig. 1). In disease models, phytochemi-
cals can both up-regulate and down-regulate lncRNAs 
(Fig. 2). The most common phytochemicals known to have 
potential to target lncRNAs include curcumin, resveratrol, 
sulforaphane, berberine, EGCG, gambogic acid, genistein, 
paclitaxel (taxol), quercetin, sanguinarine, silibinin, anac-
ardic acid, and calycosin (Fig. 3). Moreover, the modulation 
of lncRNAs by phytochemicals can lead to the inhibition of 
survival, proliferation, migration, invasion, metastasis, and 
epithelial-to-mesenchymal transition (Fig. 4). The modula-
tion of lncRNAs expression by phytochemicals can also lead 
to chemosensitization and radiosensitization of cancer cells 

(Fig. 4). How phytochemicals affect lncRNA expression in 
diverse diseases is discussed in the following section. The 
positives and negatives associated with the targeting of lncR-
NAs by phytochemicals are also discussed.

Effects of phytochemicals on lncRNA 
expression

Phytochemicals can modulate multiple cell signaling mole-
cules including kinases, adhesion molecules, cell-cycle regu-
lators, receptors, miRNAs, etc. [32, 39–56]. During the last 
5 years, phytochemicals have also been reported to modulate 
lncRNA expression. The common phytochemicals known to 
have potential to target lncRNAs include curcumin, resvera-
trol, sulforaphane, berberine, EGCG, gambogic acid, gen-
istein, paclitaxel (taxol), quercetin, sanguinarine, silibinin, 

Table 1  Molecular targets 
affected during modulation of 
lncRNAs by phytochemicals

AKT AKT8 virus oncogene cellular homolog, BIK BCL2 interacting killer, CPEB2 cytoplasmic poly-
adenylation element-binding protein 2, CTR 1 copper transporter 1, DNMTs DNA methyltransferases, 
EzH2 enhancer of zeste homologue 2, HMGCR  3-hydroxy-3-methylglutaryl coenzyme A reductase, 
MAP1LC3B2 microtubule associated protein 1 light chain 3 beta 2, miRNA microRNA, mTOR mammalian 
target of rapamycin, NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells, Nrf2 nuclear 
factor erythroid 2-related factor 2, PI3K phosphatidylinositol-3-kinase, ZEB1 zinc-finger E-box-binding 
homeobox 1

Molecular targets Phytochemicals

miRNAs
 hsa-mir-98-5p Epigallocatechin gallate
 miR-101 Gambogic acid
 miR-34a, miR-141 Genistein
 miR-181a, miR-194 Paclitaxel
 miR-29a, miR-185, miR-214 Curcumin

Enzymes
 DNMT1, DNMT3A, DNMT3B Curcumin
 EzH2 Curcumin, paclitaxel, gambogic acid
 HMGCR Epigallocatechin gallate
 mTOR Sanguinarine
 PI3K Silibinin, quercetin, sanguinarine

Protein kinases
 AKT Silibinin, genistein, quercetin, sanguinarine, anacardic acid
 BIK Paclitaxel

Transcription factors
 EIF4A3 Sanguinarine
 NF-κB Emodin, anacardic acid, sanguinarine, bharangin
 Notch Emodin
 Nrf2, ZBTB20 Berberine
 ZEB1 Paclitaxel, silibinin
 β-Catenin Resveratrol, silibinin, paclitaxel

Others
 CPEB2, NOXA Paclitaxel
 CTR1 Epigallocatechin gallate
 H2AFY, MAP1LC3B2 Sulforaphane
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anacardic acid, and calycosin. In the following section, we 
have discussed the effects of phytochemicals on lncRNA 
expression in human disease models.

Curcumin

Curcumin (diferuloylmethane) is a yellow-color polyphenol 
derived from the yellow spice turmeric (Curcuma longa) 
[57]. The biological activities of this polyphenol have been 
reported against various human diseases including cancer, 
diabetes, cardiovascular disorders, obesity, and neurodegen-
erative diseases. This pleiotropic molecule can affect several 
signaling molecules such as adhesion molecules, enzymes, 
growth factors, inflammatory molecules, kinases, reductases, 
receptors, transcription factors, chemokines, DNA, RNA, 
and proteins involved in cell-cycle regulation, survival, 

and drug resistance [58]. Recent studies suggest that cur-
cumin can also modulate lncRNAs in human disease mod-
els. The common lncRNAs modulated by curcumin include 
AF086415, AK056098, AK095147, AK294004, FLJ36000, 
GUCY2GP, H19, H2BFXP, HOTAIR, LINC00623, 
LOC100506835, MEG3, MUDENG, PANDAR, PVT1, 
RP1-179N16.3, and ZRANB2-AS2.

The oncogenic H19 is constitutively present in multiple 
myeloma [59] and in breast [60], gallbladder [61], esoph-
ageal [62], ovarian [63], and lung [62, 64] cancers. The 
expression of H19 also correlates with NF-κB activation [59, 
65]. Curcumin suppressed the expression of oncogenic H19 
in tumor cell lines such as Cal-27, Detroit-562, HCT-116, 
HeLa, Hep-2, and SW-620 without exerting any effect on 
normal cells [66]. Curcumin was also found to suppress H19 
and c-Myc, and to enhance p53 expression in gastric cancer 
cells [67]. The polyphenol exhibited anti-proliferative activi-
ties and induced apoptosis in gastric cancer cells. Curcumin-
induced p53 up-regulation and anti-proliferative effects were 
reversed by the ectopic expression of H19. When c-Myc was 
overexpressed, curcumin-induced down-regulation of H19 
was reversed. It can be concluded that curcumin inhibits the 
proliferation of gastric cancer cells by negatively regulating 
the c-Myc/H19 pathway. The regulator of reprogramming 
(ROR) is an lncRNA that functions to regulate the activity 
and reprogramming of pluripotent stem cells. The activity of 
ROR is tightly regulated by stem cell related molecules such 
as SOX2, OCT4, and NANOG [68]. ROR is an oncogene 
with constitutive expression in multiple cancer types such as 
breast cancer [69], gallbladder cancer [70], nasopharyngeal 
carcinoma [71], pancreatic cancer [68], and prostate cancer 
[72]. Curcumin is reported to produce inhibitory effects on 

Table 2  Modulation of 
lncRNAs by phytochemicals 
affect pathogenesis of several 
cancer types

Cancer types Phytochemicals

Acute lymphoblastic leukemia Curcumin
Bladder cancer Curcumin, silibinin, gambogic acid
Breast cancer Curcumin, anacardic acid, sanguinar-

ine, bharangin, genistein, calycosin, 
paclitaxel

Cervical cancer Paclitaxel
Colorectal cancer Resveratrol, curcumin
Gastric cancer Sanguinarine, curcumin, paclitaxel
Glioma Resveratrol
Hepatocellular cancer Curcumin
Laryngeal squamous cell carcinoma Paclitaxel
Lung cancer Sanguinarine, silibinin, resveratrol
Nasopharyngeal carcinoma Curcumin, paclitaxel
Non-small cell lung cancer Paclitaxel, sanguinarine, silibinin
Ovarian cancer Curcumin, paclitaxel, sanguinarine
Pancreatic cancer Sanguinarine
Renal cell carcinoma Curcumin, silibinin, genistein

LncRNAs 

Phytochemicals 

Cancer 

NAFLD 
Osteo-

arthri�s 

Rheumatoid 
arthri�s 

Fig. 1  A list of human diseases affected by phytochemicals through 
modulation of lncRNAs. NAFLD: nonalcoholic fatty liver disease
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prostate cancer stem cells by suppressing ROR expression 
[73]. Curcumin can also up-regulate linc-PINT, which is 
frequently down-regulated in acute lymphoblastic leukemia 
(ALL) [74] and suppresses the migration capacity of most 

cancer cells [75]. Growth arrest specific 5 (GAS5) is a tumor 
suppressor lncRNA with potential to induce apoptosis and 
suppress the proliferation of tumor cells [76]. The expression 
of this lncRNA is significantly enhanced during the growth 

LncRNAs 

Upregulated 

CASC2 

GAS5 

GUCY2GP 

MRAK052686 
H2BFXP 

LINC00623 

ST7OT1 

linc-PINT 

MIR155HG 

MEG3 

TUG1 

PANDAR 

NEAT1 PCAT29 

Downregulated ZFAS1 

ZRANB2-AS2 

ROR 

MALAT1 

PVT1 LOC100506835 

LINC01116 

HOTAIR 

H19 

FLJ36000 CDKN2B-AS1 

AK001796 

Fig. 2  A list of lncRNAs modulated by phytochemicals. CASC2 can-
cer susceptibility 2, CDKN2B-AS1 CDKN2B antisense RNA 1, GAS5 
growth arrest-specific 5, GUCY2GP guanylate cyclase 2G pseudo-
gene, H2BFXP H2B histone family member X pseudogene, HOTAIR 
HOX transcript antisense RNA, LINC00623 long intergenic non-
protein-coding RNA 623, LINC01116 long intergenic non-protein-
coding RNA 1116, linc-PINT long intergenic non-protein-coding 
RNA-p53 induced transcript, MALAT1 metastasis-associated lung 

adenocarcinoma transcript-1, MEG3 maternally expressed gene 3, 
MIR155HG MIR155 host gene, NEAT1 nuclear-enriched abundant 
transcript 1, PANDAR promoter of CDKN1A antisense DNA dam-
age-activated RNA, PCAT29 prostate cancer-associated transcript 29, 
PVT1 plasmacytoma variant translocation 1, ROR regulator of repro-
gramming, ST7OT1 ST7 overlapping transcript 1, TUG1 taurine up-
regulated gene 1, ZFAS1 zinc finger antisense 1

Fig. 3  A list of phytochemicals 
known to have the potential to 
target lncRNAs. EGCG: epigal-
locatechin gallate
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arrest of the tumor cells [77]. Curcumin can also modulate 
GAS5 expression in breast cancer cells [78].

The promoter of CDKN1A antisense DNA damage-acti-
vated RNA (PANDAR) is an lncRNA with 1506 nucleotides 
in length [79]. With a function to promote proliferation and 
migration, this lncRNA is up-regulated in several cancer 
types including bladder, gastric, and colorectal cancers 
[80–84]. Whether PANDAR contributes to the efficacy of 
curcumin against colorectal cancer was investigated [85]. 
An identical expression pattern of PANDAR was observed 
in CRC tissues and in normal tissues. The proliferation of 
CRC DLD-1 cells was not affected by the knockdown of 
PANDAR. Curcumin at lower doses induced senescence and 
up-regulated PANDAR without any effect on apoptosis in 
DLD-1 cells. Curcumin’s effect on apoptosis under the ele-
vated level of PANDAR was investigated. The silencing of 
PANDAR enhanced apoptosis and attenuated senescence in 
curcumin-treated DLD-1 cells. Overall these results suggest 
that low-dose curcumin can induce PANDAR. Furthermore, 
PANDAR silencing can also switch cells from senescence 
to apoptosis partly by stimulating the expression of the 
p53-up-regulated modulator of apoptosis (PUMA). Further 
experiments will demonstrate the involvement of PUMA 
in PANDAR mediated apoptosis in CRC cells under cur-
cumin treatment. HOX transcript antisense intergenic RNA 
(HOTAIR) is located at mammalian HOXC gene locus, 
and is associated with tumor progression and metastasis by 
binding and targeting polycomb repressive complex 2 [86]. 
Curcumin can suppress HOTAIR-induced migration of renal 
cell carcinoma (RCC) cells [87].

In certain cases, nanocurcumin has also been tested for 
its efficacy against lncRNA. For example, dendrosomal cur-
cumin (DNC) with improved bioavailability [88, 89] can 
induce the tumor suppressor maternally expressed gene 3 
(MEG3) in hepatocellular cancer (HCC) [90]. Under normal 
conditions, MEG3 is expressed at low level partly due to 
methylation of its promoter region. Although expressed at 

low level, MEG3 is known to stimulate p53, and can sup-
press proliferation, invasion, and migration of cancer cells 
[91]. The up-regulation in MEG3 expression by DNC was 
mediated through enhanced expression of miR-29a and 
miR-185 that down-regulated the expression of DNA meth-
yltransferases (DNMTs) such as DNMT1, DNMT3A, and 
3B. It was concluded that induction of DNA hypomethyla-
tion and MEG3 by DNC could be an effective choice for 
epigenetic therapy of HCC.

Curcumin is also known to sensitize cancer cells to chem-
otherapy and radiotherapy through modulation of lncRNA 
expression. Polycomb Repressive Complex 2 (PRC2) con-
sisting of the Enhancer of Zeste Homolog-2 (EZH2) is 
reported to maintain the cancer stem cell population by 
regulating stemness-associated genes [92, 93]. EZH2 can 
interact with lncRNAs leading to resistance-associated phe-
nomenon such as epithelial–mesenchymal transition and 
cancer stemness [94–98]. An interesting study was aimed 
to delineate the underlying mechanism of gemcitabine resist-
ance in pancreatic ductal adenocarcinoma (PDAC) cell line 
[99]. The plasmacytoma variant translocation 1 (PVT1) is 
an oncogenic lncRNA that stabilizes the MYC protein [100]. 
Curcumin-sensitized chemoresistant PDAC cells were linked 
with the inhibition of EZH2 and lncRNA PVT1 [99]. Con-
sistent with these observations, PVT1 is known to play a 
role in the sensitization of human pancreatic cancer cells 
to gemcitabine [98]. Curcumin also suppressed the sphe-
roid formation by resistant cells and down-regulated sev-
eral self-renewal driving genes, indicating the potential of 
this polyphenol against cancer stem cells (CSCs). Curcumin 
also attenuated gemcitabine-resistant tumor growth in vivo. 
Because CSCs contribute to chemoresistance [92, 101–105], 
the combination of curcumin and chemotherapy appears 
promising. However, further validation is required before 
these observations can be translated to the clinic. The extra-
cellular vesicles (EVs) containing lncRNA and miRNAs are 
known to induce drug resistance in cancer cells [106–108]. 

Fig. 4  The steps of tumorigen-
esis affected by phytochemi-
cals through modulation of 
lncRNAs. EMT: epithelial-to-
mesenchymal transition
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Whether curcumin can overcome the cisplatin resistance in 
ovarian cancer was investigated [109]. The EVs from cispl-
atin-resistant ovarian cancer cells without or with curcumin 
treatment were analyzed. The EVs were found to induce 
drug resistance in ovarian cancer cells that were weakened 
by curcumin treatment. Furthermore, curcumin up-regulated 
MEG3 expression and induced demethylation in its promoter 
region. Curcumin also significantly reduced miR-214 in cells 
and in EVs that were associated with weakened chemoresist-
ance. It was concluded that MEG3 could reduce drug resist-
ance in ovarian cancer cells by suppressing EVs mediated 
transfer of miR-214. However, further studies using multiple 
cell lines and other preclinical models are required before 
these observations can be validated in the clinic.

Curcumin can radiosensitize nasopharyngeal CNE-2 
carcinoma cells [110]. Furthermore, curcumin significantly 
up-regulated the expression of lncRNAs such as GUCY2GP, 
H2BFXP, and LINC00623, while the expression of 
ZRANB2-AS2, LOC100506835, and FLJ36000 IncRNA 
was down-regulated [110]. In another study, curcumin-
induced radiosensitization of nasopharyngeal carcinoma 
cells was mediated partly through modulation of lncRNAs 
such as AF086415, AK056098, AK095147, AK294004, 
MUDENG, and RP1-179N16.3 [110].

In summary, curcumin’s ability to modulate lncRNA 
expression has provided a new molecular basis for its 
biological activities. However, the studies have been per-
formed mostly in the cancer models. Curcumin’s potential 
to modulate lncRNAs in the other disease models remains 
to be explored. Future studies should also elucidate if cur-
cumin can effectively regulate lncRNA expression in human 
subjects.

Resveratrol

Resveratrol is a polyphenolic phytoalexin derived from ber-
ries, grapes, peanuts, pistachio, plums, and white hellebore 
[111]. Although resveratrol exists in both cis- and trans-
isomeric forms, the latter is of considerable interest [112]. 
The pleiotropic activities of this polyphenol originate from 
its ability to modulate several oncogenic signaling cascades 
[113–115].

The prostate cancer-associated transcript 29 (PCAT29) 
is a tumor suppressor lncRNA that is frequently down-reg-
ulated in prostate cancer tumors possibly through androgen 
signaling [116]. The lower levels of PCAT29 have also been 
observed in DU145 and LNCaP cells as compared to nor-
mal prostate cells [116]. This lncRNA is reported to inhibit 
proliferation and migration of prostate cancer cells [117, 
118]. Whether resveratrol exhibits its anti-cancer activi-
ties against prostate cancer through modulation of PCAT29 
was examined [116]. IL-6 was found to activate STAT3 and 
reduce the level of PCAT29 in both DU145 and LNCaP 

cells. The PCAT29 expression was enhanced by the inhibi-
tion of miR-21, which is downstream to STAT3. Resveratrol 
treatment stimulated the basal level of PCAT29 expression. 
Furthermore, the IL-6-induced suppression of PCAT29 was 
also reversed by resveratrol. Concomitantly, the viability of 
DU145 and LNCaP cells was also suppressed by resvera-
trol. Thus, the IL-6/STAT3/miR-21 pathway could regulate 
both the expression and function of PCAT29 and resveratrol 
induces expression and the functions of PCAT29 through 
the inhibition of this signaling pathway [116]. In another 
study, resveratrol modulated the expression of lncRNAs in 
lung cancer A549 cells [119]. Among various lncRNAs, 
AK001796 was overexpressed in lung cancer tissues and cell 
lines. However, resveratrol treatment reduced the expres-
sion of AK001796 in lung cancer cells. Furthermore, the 
knockdown of AK001796 was associated with a significant 
reduction in the viability of lung cancer cells and reduced 
tumor growth. The lncRNA metastasis-associated lung ade-
nocarcinoma transcript 1 (MALAT1) is reported crucial for 
the progression of several cancer types including those of 
liver, renal, cervical, colorectal, bladder, and osteosarcoma 
[120]. Originally discovered as a prognostic marker for lung 
cancer patients, MALAT1 is now reported to be evolutionary 
conserved [121]. However, mice deficient in MALAT1 lack 
any obvious phenotype under normal physiological condi-
tions [122, 123]. In CRC cell lines, resveratrol inhibited the 
invasion and metastasis of CRC cells through MALAT1-
mediated Wnt/β-catenin signaling and its downstream tar-
gets [124]. Some other lncRNAs known to be up-regulated 
in response to resveratrol include MEG3, ST7OT1, NEAT1, 
and MIR155HG in glioma cell lines [125].

Paclitaxel (Taxol)

Paclitaxel (brand name Taxol) is an anti-cancer agent that 
was first isolated from the bark of the Pacific yew tree in 
1971 [126]. Approved in 1993 for its anti-cancer activities, 
taxol is an antimitotic agent that blocks tumor growth by 
stopping cell division. Taxol has been found effective against 
several cancer types such as breast, ovarian, pancreatic, non-
small cell lung cancer, and AIDS-related Kaposi sarcoma 
[127, 128]. During recent years, this antimitotic agent was 
also demonstrated to modulate lncRNAs expression.

The tumor suppressor GAS5 is significantly lower in 
breast cancer tissues than in the adjacent non-tumor tis-
sues [129]. The decreased expression of GAS5 correlates 
with TNM stage and lymph-node metastasis of breast can-
cer. GAS5 expression was also significantly low in pacli-
taxel-resistant breast cancer cells. Furthermore, GAS5 was 
positively correlated with p21 but in a negative manner 
with CDK6. The overexpression of GAS5 in paclitaxel-
resistant breast cancer cells suppressed the migration and 
invasion, and enhanced susceptibility to paclitaxel. In the 
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tumor-bearing nude mouse models, GAS5 overexpression 
enhanced the inhibitory effect of paclitaxel on tumor growth 
and lung metastasis by reversing the EMT. It was concluded 
that a decreased expression of GAS5 promotes lung metasta-
sis of breast cancer by inducing EMT, thereby suggesting the 
therapeutic potential of this lncRNA against breast cancer 
[129]. In ERα-positive breast cancer cells, the high expres-
sion of H19 was correlated with paclitaxel (PTX) resistance 
[130]. H19 attenuated paclitaxel-induced apoptosis by inhib-
iting the transcription of BIK and NOXA (pro-apoptotic 
genes). Furthermore, H19 suppressed the promoter activity 
of BIK by recruiting EZH2 and by trimethylating the histone 
H3 at lysine 27. H19 was found to be one of the downstream 
target molecules of ERα. Overall, these observations sug-
gest that the ERα–H19–BIK axis is crucial for the develop-
ment of paclitaxel chemoresistance in ERα-positive breast 
cancer cells. One study was aimed to investigate the effects 
of lncRNA RP11-770J1.3 and transmembrane protein 25 
(TMEM25) on paclitaxel-resistant human breast cancer 
(MCF-7/PR) cell line [131]. The parental MCF-7 cells 
(paclitaxel sensitive) were also used for the comparison. 
A higher expression of RP11-770J1.3 and TMEM25 was 
observed in MCF-7/PR cells. The MCF-7/PR cells were sen-
sitized to paclitaxel after the gene silencing of RP11-770J1.3 
and TMEM25. In agreement with these observations, the 
expression of MDR1/P-gp, MRP, and BCRP was also sup-
pressed. Thus, RP11-770J1.3 and TMEM25 represent a 
novel target for enhancing the sensitivity of resistant breast 
cancer cells to paclitaxel. Similarly, MAPT-AS1 lncRNA 
can correlate with the growth, invasion, and paclitaxel resist-
ance in ER-negative breast cancer cells [132]. The genetic 
polymorphisms of GAS5 can also predict the response of 
nasopharyngeal carcinoma patients to paclitaxel [133]. The 
inhibition of MA-linc1 enhances cell death in cancer cells 
induced by paclitaxel [134].

The RNA-sequencing in the A2780 ovarian cancer cell 
line and the A2780/PTX paclitaxel-resistant cell line was 
carried out [135]. Results indicated that five lncRNAs were 
up-regulated, while four lncRNAs were down-regulated in 
both multidrug-resistant ovarian and colon cancer cell lines. 
Furthermore, the lncRNA CTD-2589M5.4 was co-expressed 
with the multidrug-resistant genes (ABCB1, ABCB4, 
ABCC3, and ABCG2). Nuclear-enriched abundant transcript 
1 (NEAT1) can act as both oncogene and tumor suppressor 
depending upon the cancer type [136, 137]. NEAT1 can also 
contribute to paclitaxel resistance of ovarian cancer cells 
partly by up-regulating ZEB1 expression and sponging miR-
194 [138]. Some lncRNAs are dysregulated in paclitaxel-
resistant lung adenocarcinoma cells as compared to parental 
A549 cells [139].

ZNFX1 antisense RNA 1 (ZFAS1) is known to act both 
as an oncogene and as a tumor suppressor in multiple can-
cer types [140–143]. ZFAS1 can modulate notch signaling 

and various other tumor-associated genes, and induce epi-
thelial-to-mesenchymal transition in multiple cancer types 
[144–147]. The elevated expression of the lncRNA, ZFAS1, 
is observed in gastric cancer specimens as compared to the 
para-carcinoma tissues [135]. The knockdown of ZFAS1 
can suppress the growth, proliferation, cell-cycle progres-
sion, migration, and invasion. Furthermore, the ZFAS1 gene 
silencing suppressed Wnt/β-catenin signaling and enhanced 
the sensitivity of SGC7901 gastric cancer cells to paclitaxel. 
Similarly, PVT1 is expressed at a higher level in human gas-
tric cancer tissues than in adjacent non-cancerous tissues 
[148]. The expression level of PVT1 was also reported to be 
high in SGC7901 paclitaxel-resistant cells compared with 
that observed in SGC7901 cells [148].

The tumor suppressor TUSC7 can enhance the sensitivity 
of endometrial carcinoma to paclitaxel by targeting miR-23b 
[149]. Paclitaxel is also known to reduce the expression of 
CDKN2B-AS1, HOTAIR, and MALAT1 laryngeal squa-
mous cell carcinoma [150]. PVT1 can affect the response 
of cervical cancer cells to paclitaxel by regulating EMT 
[151]. CCAT1 controls the sensitivity of nasopharyngeal 
carcinoma (NPC) cells to paclitaxel via miR-181a/CPEB2 
axis [152]. Some other lncRNAs associated with paclitaxel 
resistance include H19 in breast cancer [153]; SNHG12 
in NSCLC [152]; XR_938728, XR_947831, XR_938392, 
XR_948297, NR_036503, NR_073113, and NR_103801 
in ovarian cancer [152]; LINC00672 in endometrial cancer 
[154]; n375709 in nasopharyngeal carcinoma [155]; HIF1A-
AS2 and AK124454 in triple-negative breast cancer [156]; 
linc-ROR in breast cancer [157]; KCNQ1OT1 and ANRIL 
in lung adenocarcinoma [158]; and RP11-381N20.2 in cervi-
cal cancer [159].

Overall, these results suggest that lncRNAs contribute to 
paclitaxel resistance and, thus, could be targeted to enhance 
the sensitivity of cancer cells.

Epigallocatechin gallate

Epigallocatechin gallate (EGCG) is a type of catechin chiefly 
present in green tea. This catechin has been extensively 
studied for its potential health benefits by both preclinical 
and clinical studies [160–167]. The tea catechins have been 
closely linked with the maintenance of normal LDL-choles-
terol level [168]. EGCG can modulate multiple cell signaling 
pathways in tumor cells [169, 170].

One study was aimed to elucidate the possible role of 
lncRNAs in the cholesterol modulatory effects of EGCG 
in hepatocytes [171]. When HepG2 cells were treated with 
EGCG, 15 genes related to cholesterol metabolism and 
285 lncRNAs were dysregulated. Bioinformatic analyses 
revealed five matched lncRNA–mRNA pairs for five differ-
entially expressed lncRNAs and four differentially expressed 
mRNA. The identification of lncRNA AT102202 and its 
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potential mRNA target, 3-hydroxy-3-methylglutaryl coen-
zyme A reductase (HMGCR) was of particular importance. 
The quantitative PCR analyses revealed a down-regulation 
in the mRNA level of HMGCR and an up-regulation in 
AT102202. Furthermore, silencing of AT102202 was asso-
ciated with an increased expression of HMGCR. The authors 
of this study concluded that AT102202 is involved in the 
improvement of cholesterol metabolism by EGCG. However, 
further studies using the animal models are required before 
these claims can be translated to the clinic.

Platinum-based chemotherapy, such as cisplatin (cDDP), 
has been used for non-small cell lung cancer (NSCLC) 
patients [172]. Copper transporter 1 (CTR1) facilitates 
cDDP internalization in tumor cells [173–175]. The associa-
tion of cDDP uptake with CTR1 levels has been confirmed 
by some studies [175, 176]. Interestingly, whereas CTR1 
up-regulation can sensitize tumor cells to platinum drugs, 
its down-regulation contributes to resistance [175]. EGCG 
has been reported to induce CTR1 expression in ovarian 
cancer cells and mouse xenografts [177]. EGCG can also 
enhance the sensitivity of ovarian cancer cells to cDDP 
[177]. In another study, EGCG was found to up-regulate 
CTR1 expression and to increase platinum accumulation in 
NSCLC cells (H460, H1299, and A549), cDDP-resistant 
A549 cells and in a nude mouse xenograft model [156]. 
EGCG also enhanced the cell growth inhibitory effects of 
cisplatin both in vitro and in vivo. While miRNA hsa-mir-
98-5p suppressed CTR1 expression, the lncRNA NEAT1 
positively regulated CTR1 expression. The hsa-mir-98-5p 
harbors specific complementary binding sites for NEAT1. 
NEAT1 was found to compete with hsa-mir-98-5p and 
enhanced EGCG-induced CTR1 in NSCLC. Overall, these 
results suggest that NEAT1 plays a crucial role in sensitizing 
NSCLC cells to cisplatin. Thus, EGCG could be used as an 
effective adjuvant for lung cancer chemotherapy.

Genistein

Genistein is a dietary isoflavone known to modulate cell 
signaling pathways such as JAK/STAT, AKT, and Wnt 
pathway [178–181]. Genistein also acts as protein tyrosine 
kinase inhibitor and exhibits activities against multiple can-
cer types [182–187]. One study was aimed to investigate 
the mechanism by which the isoflavones such as calycosin 
and genistein exhibit activities against breast cancer [188]. 
Both genistein and calycosin inhibited proliferation and 
induced apoptosis in MCF-7 cells. However, calycosin was 
more effective as compared to genistein. Furthermore, both 
isoflavones decreased AKT phosphorylation and HOTAIR 
expression. Calycosin was concluded to be superior in inhib-
iting breast cancer growth in comparison to genistein. It was 
also concluded that the suppression of AKT phosphoryla-
tion and HOTAIR expression contribute to the anti-cancer 

activities of these isoflavones. However, more experiments 
are required to support these claims.

In renal cell carcinoma, genistein can suppress HOTAIR 
expression while up-regulating miR-141 expression [189]. 
MiR-141 has been inversely correlated with the tumo-
rigenicity and invasiveness of several cancer types [190]. 
Conversely, the oncogenic role of HOTAIR has been dem-
onstrated by some studies [191–193]. The observations that 
genistein down-regulates HOTAIR and up-regulates miR-
141 further support the anti-cancer property of this soy 
isoflavone. In prostate cancer PC3 and DU145 cell lines, 
genistein down-regulated HOTAIR expression [194]. Fur-
thermore, the gene silencing of HOTAIR was associated 
with a decrease in the proliferation, migration and inva-
sion, while an induction in cell-cycle arrest and apoptosis 
was observed. The tumor suppressor miR-34a was also 
up-regulated by genistein in prostate cancer cells. Overall, 
up-regulation in miR-34a and suppression in HOTAIR may 
contribute to the anti-cancer activities of genistein against 
prostate cancer.

Silibinin

Silibinin is an active constituent of silymarin, which is 
derived from the seeds of milk thistle (Silybum marianum). 
Chemically, silibinin is a polyphenolic flavonolignan with 
potential against a variety of cancer types such as bladder 
[195, 196], brain [197], breast [198, 199], colon [200, 201], 
kidney [202, 203], lung [204, 205], pancreas [206], prostate 
[198, 207, 208], and skin [209, 210] cancers. The potential 
of silibinin against human bladder cancer cells was exam-
ined [211]. Silibinin significantly suppressed multi-steps 
of tumor development such as proliferation, migration, and 
invasion. Furthermore, this molecule also induced apop-
tosis in UM-UC-3 and T24 human bladder cancer cells. 
Silibinin also suppressed the actin cytoskeleton and PI3K/
AKT signaling pathways, both of which cross-talk via RAS 
oncogene. Silibinin also reduced histone H3 lysine 4 (H3K4) 
trimethylation and H3 acetylation at the KRAS promoter sug-
gesting the role of this agent in histone modifications. Fur-
thermore, silibinin significantly attenuated the expression 
of oncogenic lncRNAs, HOTAIR, and ZFAS1 without any 
effect on MALAT1, MEG3, and GAS5. The use of wort-
mannin (PI3K inhibitor) suppressed HOTAIR expression 
in human bladder cancer cells [211]. Consistent with these 
observations, HOTAIR is linked with the recurrence of blad-
der cancer [212]. HOTAIR is also up-regulated by KRAS 
[213] and PI3K pathways [15]. Thus, silibinin may exert its 
effects through the modulation of oncogenic lncRNAs. It is 
also likely that multiple signaling pathways modulated by 
silibinin contribute to its activities against bladder cancer. 
Whether silibinin exhibits anti-cancer activities through 
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modulation of HOTAIR in other cancer types remains to 
be explored.

Emodin

Emodin, an active anthraquinone isolated especially from 
Rhamnus frangula, is known to exhibit anti-cancer activities 
by some preclinical studies [214]. Furthermore, emodin can 
sensitize resistant cancer cells to chemotherapeutic agents. 
This anthraquinone has also demonstrated potential against 
osteoarthritis (OA), which is a chronic disease involving 
adipose tissues, articular cartilage, ligaments, subchon-
dral bone, synovium, and tendons [215]. Characterized by 
pain, joint dysfunction and deformity, OA constitutes the 
leading cause of disability and compromises patients’ life 
quality [215–217]. The potential of emodin against OA was 
examined in vitro [218]. The murine chondrogenic ATDC5 
cells were treated with lipopolysaccharide to mimic the OA 
model. The effects of emodin on viability, apoptosis, and 
release of cytokines (TNF-α, IL-6, and MCP-1) in LPS-
treated ATDC5 cells were examined. The expression of 
taurine-up-regulated gene 1 (TUG1) lncRNA, and Notch 
and NF-κB signaling pathways were also examined in 
emodin-treated ATDC5 cells. The LPS stimulation induced 
a decrease in cell viability, an increase in apoptosis and 
pro-inflammatory cytokines expression, and alterations in 
the expression of apoptosis-related proteins. LPS-induced 
changes in these parameters were all mitigated by emodin 
in ATDC5 cells. While TUG1 was up-regulated, the NF-κB 
and Notch pathways were inhibited by emodin treatment. An 
up-regulation in TUG1 expression by emodin was found to 
inactivate Notch and NF-κB pathways. These observations 
provide a new mechanism for the therapeutic potential of 
emodin against OA. The previous studies have demonstrated 
that TUG1 functions as an oncogene in multiple cancer types 
[219–221]. For example, TUG1 modulates cancer cell prolif-
eration and invasion by targeting miR-219, miR-145/ZEB1, 
and Wnt/β-catenin signaling pathways [222–224]. Whether 
emodin modulates the functions of TUG1 in cancer models 
remains to be elucidated.

Gambogic acid

Gambogic acid (GA) is a xanthonoid derived from the resin 
of Garcinia. This xanthonoid exhibits anti-inflammatory, 
antioxidant, antiviral, and parasiticidal activities [225]. GA 
also exhibit anti-cancer activities with minimal toxicity to 
normal cells [226–228]. Exposure of bladder cancer cells to 
GA induces apoptosis in bladder cancer cells by inhibiting 
EZH2 methyltransferase expression [229].

The lncRNA GAS5 negatively correlates with the clinical 
stage of bladder cancer [230]. Furthermore, GAS5 overex-
pression reduces viability and induces apoptosis in EJ and 

T24 bladder cancer cells. Mechanistically, GAS5 represses 
EZH2 transcription by direct interaction and recruitment 
of E2F4 to the EZH2 promoter. Moreover, GAS5-induced 
down-regulation in EZH2 was associated with overexpres-
sion of miR-101. Furthermore, GA induces GAS5 expres-
sion and produces pro-apoptotic effects in bladder cancer 
cells. Interestingly, GA-induced apoptosis in bladder cancer 
cells was suppressed by knockdown of GAS5. Overall these 
results suggest that GAS5 functions as a tumor suppressor 
by inhibiting EZH2 expression. In addition, induction of 
GAS5 by gambogic acid may contribute to its anti-cancer 
activities against bladder cancer.

Anacardic acid

Anacardic acid is a phenolic lipid chiefly present in cashew 
nuts. Chemically, anacardic acid is a mixture of saturated 
and unsaturated organic molecules [231]. This polyphe-
nol has demonstrated potential against some cancer types 
including breast cancer [232–234]. The potential regulators 
involved in the activities of anacardic acid against ER-pos-
itive MCF-7 and triple-negative MDA-MB-231 cells was 
examined by next generation transcriptomic sequencing 
(RNA-Seq) and network analysis [233]. While 80 genes 
were dysregulated including lncRNA MIR22HG in MCF7 
cells, 886 genes were identified in MDA-MB-231 cells in 
response to anacardic acid. The genes down-regulated by 
anacardic acid in both cell lines included SCD, INSIG1, and 
TGM2, while the up-regulated genes were PDK4, GPR176, 
and ZBT20. The molecular modeling indicated that anac-
ardic acid could inhibit monounsaturated fatty acid biosyn-
thesis in both cell lines and enhance endoplasmic reticulum 
stress in MDA-MB-231 cells. Furthermore, anacardic acid 
inhibited TNFα-induced NF-κB reporter activity in MCF-7 
cells. Overall, this study uncovered new targets of anacardic 
acid that may contribute to its anti-proliferative and pro-
apoptotic activities against breast cancer.

Berberine

Berberine is an alkaloid derived chiefly from herbs [235]. 
It has demonstrated potential against various conditions 
including cancer, diabetes, cardiovascular diseases, infec-
tious diseases, and depression [236–240]. One study exam-
ined the therapeutic effects of berberine against nonalcoholic 
fatty liver disease (NAFLD), which is a common liver disor-
der [241]. Whether berberine can modulate the expression 
of mRNAs and lncRNAs in a high-fat diet (HFD)-induced 
steatotic animal model was examined. Berberine was found 
to reverse the expression pattern of a list of steatotic liver 
associated genes including 881 mRNAs and 538 lncRNAs. 
These observations suggest that berberine may produce a 
global effect on hepatic gene expression. Berberine was 
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found to regulate a list of genes related to liver metabolism 
and NAFLD. More specifically, Nrf2 was strongly corre-
lated with the lncRNA MRAK052686 and both of these 
were down-regulated in the steatotic liver. Furthermore, 
berberine completely reversed the reduced expression of 
MRAK052686 and Nrf2. The protein-coding gene Zbtb20, 
which regulates glucose homeostasis harbor MRAK052686 
in its 3′UTR region. Berberine prevented oleic acid-induced 
steatosis in human Huh7 cells by reversing ZBTB20 expres-
sion. Overall, these observations provide new mechanistic 
insights into the therapeutic effects of berberine against 
NAFLD.

Quercetin

Quercetin is a dietary flavonoid with potential anti-cancer 
activities [242, 243]. This flavonoid can also prevent and 
protect the oxidative stress and β-cell damage induced by 
streptozotocin in the rat pancreas [244]. The flavonoid has 
demonstrated potential in the management of arthritis [245], 
and can inhibit the release of macrophage-derived cytokines 
and nitric oxide [246].

Rheumatoid arthritis (RA), a chronic disease of the 
joint, is characterized by the proliferation of cytokines and 
chemokines producing synoviocytes [247]. RA compromises 
the expectancy and quality of life and is also a cause of ath-
erosclerosis [248]. The hallmarks of RA are the expansion 
of fibroblast-like synoviocytes (FLS) and leukocytic infil-
tration of the synovium [249, 250]. In one study, quercetin 
decreased the viability and induced apoptosis in RAFLS 
[251]. Consistent with these observations, an increase in 
MALAT1 expression was observed after quercetin treat-
ment. The knockdown of MALAT1 enhanced the activation 
of PI3K/AKT pathway and reduced apoptosis. It is likely 
that the induction of MALAT1 contributes to quercetin-
induced apoptosis in RAFLS. However, more studies are 
required to support this claim.

Sanguinarine

Sanguinarine is an alkaloid with anti-microbial, anti-fun-
gal, anti-inflammatory, and anti-tumor activities [252]. This 
alkaloid has demonstrated significant anti-cancer activities 
against non-small cell lung cancer [253], pancreatic cancer 
[254], gastric cancer [255], and breast cancer [256]. Con-
versely, the alkaloid can also produce carcinogenic effects 
[257]. One study investigated the possible anti-tumor activi-
ties and the underlying mechanism of sanguinarine’s action 
against epithelial ovarian cancer [258]. Sanguinarine sup-
pressed the viability, migration, and invasion, and induced 
apoptosis in SKOV3 cells. The alkaloid also induced the 
expression of cancer susceptibility candidate 2 (CASC2) 
lncRNA, the silencing of which reversed the effects of 

sanguinarine. While ovarian cancer tissues and cells 
expressed low levels of CASC2, an increased expression of 
eukaryotic translation initiation factor 4A3 (EIF4A3) was 
observed. EIF4A3 could bind to CASC2; the knockdown of 
EIF4A3 reversed the effects of sanguinarine plus CASC2 
silencing. Sanguinarine also markedly reduced the activation 
of PI3K/AKT/mTOR or NF-κB activation cascades; both 
these effects were reversed by CASC2 silencing. Further-
more, the effects of sanguinarine plus CASC2 silencing on 
the modulation of NF-κB and PI3K/AKT/mTOR pathways 
were reversed by the EIF4A3 knockdown. Overall, these 
results suggest the anti-tumor activities of sanguinarine 
against epithelial ovarian cancer cells may be mediated 
through CASC2–EIF4A3 axis and/or PI3K/AKT/mTOR and 
NF-κB signaling pathways. Because CASC2 is well-known 
tumor suppressor with reduced expression in multiple cancer 
types [259–266], up-regulation of this lncRNA provides a 
potential avenue for anti-cancer drug development. That san-
guinarine can up-regulate CASC2 further support its anti-
cancer activities. Whether sanguinarine modulates CASC2 
expression in cancer patients remains to be elucidated.

Sulforaphane

Sulforaphane (SFN) is an isothiocyanate group of organo-
sulfur compounds obtained from the cruciferous vegeta-
bles [267]. In one study, normal human prostate epithelial 
cells and SFN-treated prostate cancer cells were subjected 
to whole-genome RNA-sequencing [268]. SFN modulated 
the expression of lncRNAs associated with cell-cycle regu-
lation, signal transduction, and metabolism. Notably, the 
expression of LINC01116, which is an oncogene and over-
expressed in several cancer types [268, 269], was signifi-
cantly suppressed by SFN. The knockdown of LINC01116 
significantly decreased the proliferation of prostate cancer 
cells and up-regulated the expression of genes involved in 
glycolysis (GAPDH), chromatin structure (H2AFY), and 
autophagy (MAP1LC3B2). The disruption of LINC01116 
using CRISPR/CAS9 method suppressed the colony-forming 
ability of PC-3 cells by fourfold. The computational analyses 
indicated that LINC01116 could potentially interact with 
target genes through ssRNA:dsDNA triplexes. Overall, these 
results suggest that the modulation of lncRNAs by SFN may 
contribute to its activities against prostate cancer.

Bharangin

Bharangin is a diterpenoid quinonemethide derived from 
the roots of a medicinal plant, Pygmacopremna herbacea 
[270–272]. The parts of the plant are known to exhibit a 
range of biological activities [273–275]. The plant extract 
has also been shown to exhibit activities against breast can-
cer, leukemia, lymphoma, and multiple myeloma [276–279]. 
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Recently, our group demonstrated that the diterpenoid can 
modulate the expression of long non-coding RNAs in breast 
cancer cells [60]. While the expression of tumor suppres-
sor lncRNAs such as growth arrest specific-5 (GAS-5) 
and maternally expressed-3 (MEG-3) was induced, the 
expression of H19 (oncogenic lncRNA) was suppressed 
by the diterpenoid. We also observed that the diterpenoid 
suppresses the NF-κB activation induced by okadaic acid 
in breast cancer cells. It is likely that bharangin exhibits 
anti-cancer activities by modulating lncRNA expression and 
abrogating NF-κB activation. We are further exploring the 
in-depth mechanism for the activities of bharangin against 
breast cancer.

Conclusions and future prospects

Despite enormous expenses in the health sector, chronic dis-
eases continue to affect millions of people worldwide. As 
most chronic diseases are caused by chronic inflammation, 
long-term treatment is required. The US-FDA has approved 
multiple drugs against chronic diseases such as steroids, 
statins, and metformin. However, the long-term use of these 
drugs is associated with numerous side effects. Moreover, 
these drugs are highly expensive and cannot be afforded by 
low-income and middle-income people. The phytochemicals 
derived from spices, fruits, vegetables, cereals, and medici-
nal plants have been consumed since ancient time. Thus, the 
safety of these agents is well proven. Moreover, these agents 
are readily available and produce minimum toxicity. Modern 
science has provided a molecular basis for the efficacy of 
these phytochemicals.

As discussed in this review, lncRNAs have emerged as 
a crucial player in the pathogenesis of chronic diseases 
with over 18,000 publications listed on PubMed database, 
most of which appeared during the last decade. The fact 
that lncRNAs exhibit cell/tissue/tumor-specific expression 
makes them potential target for the therapeutic development. 
However, lncRNAs are not very specific in the context of 
human diseases. For example, MALTA1 is dysregulated 
during multiple disease conditions such as cancer, cardio-
vascular diseases, and neurological disorders. During the last 
5 years, phytochemicals have been shown to target lncRNAs. 
In most of the studies, the phytochemicals were found to up-
regulate or down-regulate the expression of specific lncR-
NAs. Although most of the studies have been performed in 
cancer models, phytochemicals have also been demonstrated 
to modulate lncRNAs in the other disease models such as 
rheumatoid arthritis, osteoarthritis, and nonalcoholic fatty 
liver. In some cases, modifications have been performed to 
enhance phytochemicals bioavailability and efficacy against 
lncRNAs. Whether phytochemicals modulate lncRNAs in 
human subjects remains to be explored. The phytochemicals 

discussed in this review have been shown to hit several other 
disease-associated molecular targets. Because most chronic 
diseases are caused by dysregulation of multiple genes, phy-
tochemicals possess promise against these diseases.

In summary, the discovery of lncRNAs has opened new 
avenue for the treatment of chronic human diseases. This 
has also provided a new molecular basis for the pleiotropic 
activities of phytochemicals. However, the in-depth mecha-
nism by which phytochemicals modulate lncRNAs is lack-
ing. Whether phytochemicals regulate copy number, subcel-
lular localization, and protein-binding capacity of lncRNAs 
remains to be elucidated. Future studies in this direction 
would lead to a more deeper understanding of the beneficial 
effects of phytochemicals against chronic diseases. Future 
studies should also examine if phytochemicals target lncR-
NAs in normal cells. Eventually, this would lead to a more 
effective approach for the disease treatment.
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