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Abstract
Alzheimer’s disease (AD) is a multifactorial age-related brain disease. Numerous pathological events run forth in the brain 
leading to AD. There is an initial long, dormant phase before the clinical symptoms become evident. There is a need to 
diagnose the disease at the preclinical stage since therapeutic interventions are most likely to be effective if initiated early. 
Undoubtedly, the core cerebrospinal fluid (CSF) biomarkers have a good diagnostic accuracy and have been used in clini-
cal trials as end point measures. However, looking into the multifactorial nature of AD and the overlapping pathology with 
other forms of dementia, it is important to integrate the core CSF biomarkers with a broader panel of other biomarkers 
reflecting different aspects of pathology. The review is focused upon a panel of biomarkers that relate to different aspects 
of AD pathology, as well as various studies that have evaluated their diagnostic potential. The panel includes markers of 
neurodegeneration: neurofilament light chain and visinin-like protein (VILIP-1); markers of amyloidogenesis and brain amy-
loidosis: apolipoproteins; markers of inflammation: YKL-40 and monocyte chemoattractant protein 1; marker of synaptic 
dysfunction: neurogranin. These markers can highlight on the state and stage-associated changes that occur in AD brain with 
disease progression. A combination of these biomarkers would not only aid in preclinical diagnosis, but would also help in 
identifying early brain changes during the onset of disease. Successful treatment strategies can be devised by understanding 
the contribution of these markers in different aspects of disease pathogenesis.

Keywords Diagnosis · Neurofilament light · Neurodegeneration · Synaptic dysfunction · Neurogranin · Fatty acid-binding 
proteins · Neuroinflammation

Introduction

Alzheimer’s disease (AD) is a neurodegenerative dis-
ease whose pathology starts decades before the clinical 
symptoms appear [1]. The preclinical stage represents a 

dormant phase where neuropathological changes are accu-
mulating but the person has normal cognition [2]. Numer-
ous biochemical pathways have been described to explain 
the pathogenesis of AD. Starting with the identification 
of amyloid beta (Aβ) in 1985, as the main component of 
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amyloid plaques [3], our understanding of Aβ and amyloid 
precursor protein (APP) metabolism, and tau pathology 
(neurofibrillary tangles and neuropil threads) has improved 
with time. Thorough research has been carried out to 
understand other aspects of AD pathogenesis and there-
after, numerous hypotheses have been put forth. AD may, 
therefore, be considered a result of a number of pathologi-
cal changes in the brain, such as amyloidosis, neurode-
generation, inflammation, synaptic dysfunction, disruption 
of neuronal signaling and neuronal membranes, oxidative 
stress and mitochondrial dysfunction [4]. These changes 
direct the trajectory of preclinical AD to AD dementia and 
make AD a multifaceted disease.

Several AD drug trials have failed, probably because the 
treatments are initiated at an advanced stage where dam-
age is too severe, and the drug is not able to demonstrate 
a clinical benefit because the brain is too compromised to 
benefit from a treatment [5–7]. It is imperative to initiate 
an early treatment and ensure that the correct patient popu-
lation is included in the clinical trials. Therefore, there 
is an urgent need to diagnose AD and initiate treatment 
at the preclinical stage, so as to obtain a clinical benefit. 
The first step in devising successful treatment strategies is 
to identify biomarkers for accurate diagnosis of AD, and 
thereafter develop therapeutic strategies. It is essential to 
find an ideal biomarker that should also help in monitoring 
the mechanism of action and the biochemical effects of 
the treatment drug [8]. As per the regulatory bodies such 
as Food and Drug Administration (FDA) and European 
Medicine Agency (EMA), exploration and validation of a 
biomarker should be integrated with drug development to 
accelerate the journey towards development of an effec-
tive therapeutic intervention [9]. Clinical trials that aim 
at evaluating the effectiveness of therapeutic strategies 
can come up with reliable results when the therapeutic 
effect of these agents is monitored using markers that 
reflect over the molecular changes of the disease. As far 
as AD is concerned the promising markers in this context 
are the cerebrospinal fluid (CSF) markers [8]. The CSF 
biomarkers are the potential candidates to facilitate early 
diagnosis of AD because the AD pathological hallmarks 
start decades before the appearance of cognitive symp-
toms [10]. The core CSF biomarkers [CSF Aβ-42, total tau 
(T-tau) and phosphorylated tau (P-tau)] have been exten-
sively studied and validated in relation to AD pathology, 
conversion and progression. There is a further need to 
explore and evaluate additional CSF biomarkers, which 
can aid in early and accurate diagnosis of AD, as well 
as in monitoring the downstream effects of a therapeutic 
intervention. As seen from the high failure rate of AD 
drug trials, it is extremely essential to explore additional 
CSF biomarkers which reflect on individual pathologies, 

meet the regulatory qualification and can help to enrich the 
clinical trial populations.

The CSF biomarkers as a part of AD 
diagnostic criteria

The biomarkers of AD have been divided into three main 
categories: the biomarkers of amyloid deposition (A), tau 
pathology (T) and neurodegeneration (N) (A/T/N) [11]. 
The biomarkers of amyloid accumulation include abnormal 
tracer retention on amyloid positron emission tomography 
(PET) imaging and CSF Aβ-42. The biomarkers of tau 
pathology include CSF P-tau or tau PET. The biomarkers 
of neurodegeneration include CSF T-tau and 18F-2-fluoro-2-
deoxy-d-glucose positron emission tomography (FDG-PET) 
and brain atrophy via magnetic resonance imaging (MRI). 
The brain imaging techniques have been used as end points 
in clinical trials [12]. However, the limited accessibility, lack 
of molecular specificity, exposure to radioactivity and cost 
factor involved in neuroimaging markers particularly Aβ 
imaging, restricts their use in routine analysis [13]. There-
fore, the CSF is being extensively studied worldwide, in AD 
biomarker research. The CSF is in direct contact with the 
brain and the biochemical changes occurring in the brain 
are reflected in it [14]. The CSF biomarkers have a causal 
relation to AD pathology and may provide an insight into 
the different aspects of AD pathogenesis. The core CSF 
biomarkers (decreased CSF Aβ-42 and elevated T-tau and 
P-tau) have shown a high specificity and sensitivity for 
AD diagnosis [15]. CSF Aβ-42 correlates well with Aβ 
pathology [16], whilst the correlation of the tau markers 
with pathology is less clear; recent data indicate that CSF 
T-tau and P-tau may be markers of a neuronal reaction to 
Aβ pathology, which with time will translate into full-blown 
pathology (neurodegeneration and tangle pathology) [17]. In 
any case, these markers are quite specific for identifying an 
individual with preclinical AD [18].

In the recent years, with the advances in our understand-
ing of AD pathophysiology, it has become evident that the 
relation between clinical symptoms and disease pathology 
varies, and the cognitive impairment evolves gradually. As 
a result, in 2011 the National Institute on Aging (NIA) and 
the Alzheimer’s Association (AA) revised the diagnostic and 
research criteria for AD and included the CSF biomarkers 
in addition to the imaging markers [19]. In 2014, the Inter-
national Working Group (IWG) reanalysed the pathological 
and topographical biomarkers of AD. Diagnostic changes 
were proposed for typical, atypical, mixed and preclinical 
AD. According to this, the pathological markers such as 
decreased CSF Aβ-42 and elevated T-tau and P-tau were 
considered as specific makers of disease pathology [18].



1835Cerebrospinal fluid biomarkers for understanding multiple aspects of Alzheimer’s disease…

1 3

The need of additional CSF biomarkers

The research on core CSF biomarkers (CSF Aβ-42, T-tau 
and P-tau) began nearly 2 decades ago. Reduced CSF Aβ 
and elevated T-tau and P-tau were found in the CSF of 
AD patients. [20, 21]. This created a pathway for further 
research to look over into the diagnostic potential of these 
biomarkers, which reflect upon brain amyloidosis and neu-
rodegeneration. Today, these biomarkers are extensively 
used in diagnosis and clinical trials. They have a high 
enough diagnostic accuracy and reflect upon the neuro-
pathological hallmarks of AD: the neurofibrillary tangles 
and amyloid plaques [22]. Additional biomarkers are still 
needed to complement the core biomarkers for early diag-
nosis and prognosis of AD and get a better insight into 
the different pathogenic pathways associated with the AD.

The core CSF biomarkers are relatively stable in clini-
cal AD and, therefore, do not serve as good markers in 
studying disease progression [23, 24]. The CSF Aβ-42 is 
sharply reduced in the preclinical phase of AD while the 
levels are found to be constant in the subsequent phases 
[25]. The altered levels of these core markers do not pre-
dict the rate of cognition decline as they do not correlate 
with the Mini Mental Status Examination (MMSE) [26]. In 
another multi-center longitudinal study, it was found that 
there was lack of association between the changes in CSF 
biomarkers and the rate of change or decline in cognition 
over a period of 4 years [27]. In addition, these markers do 
not perform well enough in differentiating AD from other 
forms of dementia due to partially coinciding pathologies 
[28]. The therapeutic strategies that aim at reducing amy-
loid load have failed to show a clinical benefit in spite of 
clearing Aβ [29]. Studies have shown that the reduced 
levels of CSF Aβ negatively correlate with the brain amy-
loid load [30]. However, this association does not match 
with the clinical diagnosis of AD. The discordance has 
been found mainly in the cognitively normal participants, 
which have reduced CSF Aβ but are amyloid negative as 
seen by PET. Therefore, CSF Aβ levels are altered in the 
preclinical stage [31–34]. This has led to the contamina-
tion of cohort groups due to the inclusion of CSF Aβ posi-
tives in the control group. This necessitates the need for 
exploration and evaluation of additional or novel biomark-
ers that aid in accurate diagnosis, correlate with cognitive 
function, but also help in better understanding the disease 
progression and different aspects of AD pathology.

AD is a multifaceted disease, and AD dementia is a 
result of a number of pathological changes in the brain 
(Fig. 1). Numerous proteins or other biomolecules play 
significant roles in these pathological pathways. A reduc-
tion or elevation of their levels in the CSF is associated 
with a pathological change, which can directly highlight 

upon the extent of damage, or can occur as a protective 
response against the damage. A detailed understanding 
of disease pathogenesis at molecular level through CSF 
biomarkers can help in designing new efficacious chemi-
cal entities for treatment. In addition, biomarkers can 
serve as targets for therapeutic agents aimed to combat 
the associated pathological change. In context of a clinical 
trial, a biomarker can serve as a surrogate end point. The 
time consuming end points associated with the ongoing 
trails in AD can be reduced with the application of addi-
tional makers [35, 36]. An early diagnosis aided through 
CSF biomarkers would ensure cohort uniformity through 
recruitment of correct patient population. This would help 
in improving clinical trial design and interpretation [37]. 
The clinical stages of AD are well defined and understood, 
but it is important to identify and understand the differ-
ent pathophysiological stages of AD. CSF biomarkers 
would help in understanding and identifying these stages. 
To bring advancement in the field of AD biomarker and 
therapeutic research, it is of utmost important that new 
biomarkers in relation to AD pathogenesis be explored in 
the CSF and their potential to diagnose AD at preclinical 
stage be evaluated in well-established cohorts.

This review highlights upon the various CSF biomarkers 
that reflect upon different aspects of multifaceted AD, and 
also highlights upon the different studies conducted on these 
biomarkers in the past. Each biomarker helps to track differ-
ent pathological events. An assessment of the levels of these 
markers in CSF might reveal an independent information or 
might unfold the association between individual pathologies. 
Altogether, the CSF measure of the biomarkers that relate to 
individual AD pathologies such as brain amyloidosis, neuro-
degeneration, synaptic dysfunction and neuroinflammation 
can help in better understanding the disease pathogenesis, 
accurate diagnosis and prognosis and thereby help in devis-
ing effective treatment strategies (Fig. 2).

Fig. 1  Alzheimer’s disease: a multifaceted disease
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The biomarkers of amyloidogenesis 
and brain amyloidosis

Apolipoprotein E (ApoE)

Role in AD pathogenesis

ApoE is a glycoprotein, which is highly expressed in 

the liver and the Central Nervous System (CNS) [38]. 
In the CNS, it is mainly expressed by astrocytes and to 
some extent by the microglia [39, 40]. It is a constituent 
of lipoproteins, and in the CNS it is mainly confined to 
the HDL (high-density lipoproteins) [41]. In the brain, 
apoE plays a vital role in regulating cholesterol metabo-
lism and transport [42]. ApoE plays a significant role in 
AD pathogenesis by affecting amyloid and tau pathology, 
and the isoforms have a differential role in pathogenesis 

Fig. 2  CSF biomarkers for Alz-
heimer’s disease (AD) diagnosis 
and understanding different 
aspects of pathology

Fig. 3  Role of apoE in the 
pathophysiology of AD (AD 
Alzheimer’s disease, ApoE 
apolipoprotein E, Aβ amyloid 
beta)
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(Fig. 3). Genome wide association studies (GWAS) have 
revealed that APOE locus, on chromosome 19, with ε4 
variant as the major genetic risk for late onset Alzhei-
mer’s disease (LOAD) [43, 44]. In response to neuronal 
injury, the expression of apoE is upregulated [45]. The 
three isoforms of apoE (E2, E3, E4) differentially affect 
cholesterol transport, metabolism and synaptic plasticity, 
repair and neurite growth. The E4 isoform is least effec-
tive in regulating cholesterol transport, efflux and synaptic 
plasticity [46, 47].

ApoE mediates clearance of Aβ in an isoform-depend-
ent manner, through endocytosis of Aβ lipoprotein com-
plexes, by affecting proteolytic degradation of Aβ and 
its transport across BBB. Lipidated apoE binds to Aβ to 
form Aβ lipoprotein complexes [48] and facilitates endo-
cytosis of these complexes. ApoE binds with its recep-
tors, low-density lipoprotein receptor (LDLR) and lipo-
protein receptor-related protein (LRP1), and mediates the 
endocytosis of lipoproteins [49]. The three isoforms bind 
differentially with Aβ (Ε2 > Ε3 > Ε4), and differentially 
influence the lipidation of Aβ and hence the endocytosis 
[50]. ApoE also regulates proteolytic degradation of Aβ, 
and among the isoforms E4 isoform is the least efficient 
in promoting the degradation [51]. ApoE also influences 
Aβ clearance by regulating its transport across BBB, in 
an isoform-dependent manner. The E2 and E3 isoforms 
mediate faster clearance of Aβ through the BBB as com-
pared to E4 [52]. This could be attributed to the effect of 
apoE on the integrity of tight junctions in BBB, which is 
impaired in the apoE4-BBB model and apoE4 knock-in 
mice [53]. ApoE also affects accumulation of Aβ by pro-
moting formation of Aβ filaments [54]. The presence of 
apoE is essential for Aβ accumulation, which is isoform 
dependent. The E4 isoform promotes much higher accu-
mulation than E2 and E3 [55, 56]. No amyloid deposits 
were found in APOE(−/−) transgenic mice  (APPV717F+/−), 
that overexpresses the amyloid precursor protein, as com-
pared to APOE (−/+) and APOE (+/+) [55]. Significant dif-
ferences in Aβ deposition have been found in PDAPP mice 
(which develop age-dependent Aβ accumulation), accord-
ing to the apoE isoform expressed. The amyloid load in 
hippocampus was two times higher in E4 mice compared 
to E3 and 4.6 times higher than E2 mice [56].

Neurodegeneration in AD is also influenced by apoE. 
ApoE affects neuroinflammation, and tau-mediated neuro-
degeneration. ApoE4 exacerbates neuronal death and modu-
lates microglial activation [57], and overexpression of apoE4 
results in tau hyperphosphorylation [58]. Higher tau levels 
have been found in P301S/E4 tau transgenic mice compared 
with P301S/E2 and P301S/E3 mice. The brain atrophy and 
neuroinflammation were much more in E4 mice as com-
pared to E2 and E3 [57]. Recent data also suggest intriguing 
interactions between apoE isoforms and the activation state 

of disease-associated microglia, which may be part of the 
disease-promoting effect of apoE4 [59].

CSF biomarker studies pertaining to ApoE

ApoE is a major apolipoprotein found in the CSF [60]. 
Numerous studies have evaluated the levels of apoE in the 
CSF, so as to establish it as a potential marker (Table 1). To 
evaluate the CSF levels, researches have used methods such 
as enzyme-linked immuno sorbent assay (ELISA), mass 
spectrometry, multiplex assays and flow cytometry. Stud-
ies on CSF levels of apoE in AD show inconsistent results, 
with either decreased [61–64] or elevated [65–67] levels as 
compared to controls. As per some studies APOE genotype 
may influence CSF ApoE levels. Higher CSF levels of apoE 
have been reported in individuals having APOE ε4 alleles 
[68]. Strong positive correlations have been found between 
CSF apoE levels and CSF tau in AD patients as compared to 
controls [65]. The correlation between CSF apoE levels and 
CSF tau are also APOE genotype dependent [69]. The cor-
relation between the two markers suggests that altered apoE 
levels in CSF could be attributed to the neurodegeneration in 
AD or vice versa. ApoE binds to protein tau in an isoform-
dependent manner [70]. The association of apoE CSF levels 
with genotype, and genotype-dependent correlation between 
ApoE and CSF Tau, suggests that neurodegeneration is iso-
form influenced.

Thus, quantification of apoE levels can highlight upon 
state of amyloid and tau pathology in AD brains. Owing 
to the significant role of apoE in AD pathogenesis, further 
studies should be conducted in well-established cohorts to 
establish apoE as a potential CSF diagnostic and theragnos-
tic biomarker. There have been inconsistencies with regard 
to CSF apoE levels. However, these inconsistencies could be 
attributed to a number of factors such as sample variability, 
variability in method or technique of analysis or unequal 
gender distribution in study groups.

Clusterin

Role in AD pathogenesis

Clusterin also called apolipoprotein J is a stress-induced 
chaperone glycoprotein which can stabilize stressed pro-
tein structures. It does so by binding to the hydrophobic 
surfaces of the partially unfolded proteins [77, 78]. In the 
brain, it is highly expressed by astrocytes [79]. It plays 
varied roles in AD pathology. Genome wide association 
studies (GWAS) have revealed that single nucleotide 
polymorphisms (SNP’s) associated with clusterin (CLU) 
gene are associated with AD [80]. Genetic variations have 
been located by resequencing of CLU-coding exons. These 
variations can lead to non-synonymous substitutions, 
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insertions or deletion in β chain of clusterin affecting its 
further processing and functioning [81].

Clusterin affects amyloid pathology in multiple ways. 
It interacts with the Aβ peptides to form complexes. The 
antibodies specific to clusterin strongly stain the amyloid 
deposits in AD brain [82]. This interaction keeps Aβ solu-
bilized and prevents its fibrillation, and also regulates its 
transport across the BBB [83–85]. The binding of clusterin 
with Aβ increases its clearance through BBB. A study on 
mice models has shown that Aβ clearance is increased by 
83%, when bound to clusterin [85]. Another study con-
ducted on Tg6799 mouse has found reduction in amyloid 
plaques and severity of cerebral amyloid angiopathy, upon 
intravenous administration of clusterin [86]. Clusterin lev-
els are increased in response to Aβ accumulation. Higher 
intracellular clusterin levels were found upon exposure of 
Aβ in APP/PSEN1 mice and hippocampal neurons [87]. 
The levels are significantly increased in frontal cortex and 
in the hippocampus in AD [88]. The elevated levels are 
localized to the regions abundant in Aβ [89]. This could be 
attributed as a protective response to combat the excessive 
Aβ deposition within the brain tissue. It likely suppresses 
Aβ deposition in conjunction with ApoE. This is evident 
through the results obtained from a study conducted on 
PDAPP transgenic mice, to look at the influence of apoE 
and clusterin on Aβ accumulation. Aβ accumulation was 
higher and early in  apoE(−/−) and  clusterin(−/−) mice. In 
addition, the Aβ levels were elevated in CSF and brain 
interstitial fluid, in such mice [90].

It acts as a neuroprotectant by combating oxidative 
stress and apoptosis [91]. It prevents the mitochondrial 
transfer of activated Bcl-2-associated X (Bax) protein, 
a member of Bcl-2 protein family, which is known to 
accelerate apoptosis. Clusterin is also involved in double-
stranded DNA break repair [92–94]. Clusterin also influ-
ences inflammation and immune response. The expression 
of clusterin by astrocytes is increased on treatment with 
Interleukin 2 [95]. It inhibits the membrane binding of 
membrane attack complex and regulates the nuclear fac-
tor kappa light chain enhancer of activated B cell (NF-κB) 
pathway [96, 97]. NF-κB is a transcription factor, whose 
activation causes reactivation of astrocytes, increases the 
expression of inflammatory mediators such as cytokines 
and free radicals [97]. Therefore, NF-κB is an inducer of 
neuroinflammation. Clusterin inhibits the NF-κB activity 
by stabilizing inhibitors of NF-κB (IκBs) [98].Therefore, 
clusterin plays varied roles in AD pathology and serves 
as neuroprotectant by combating apoptosis, regulating 
inflammation and immune response and preventing aggre-
gation of Aβ (Fig. 4). It can certainly serve a potential 
stage and state AD biomarker.
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CSF biomarker studies pertaining to clusterin

Numerous studies have evaluated the diagnostic potential 
of clusterin in CSF using different methods such as ELISA, 
mass spectrometry and multiplex assays. Most of the stud-
ies have reported that clusterin is significantly increased 
in CSF of AD patients (Table 2). The increased levels of 
clusterin could be attributed as a defence against neurode-
generation. CSF clusterin levels correlate well with the core 
CSF biomarkers (T-tau and P-tau, and Aβ-42), and are also 
significantly associated with CSF tau/Aβ ratio [99–101]. 
CSF clusterin levels were found to be associated with the 
entorhinal cortex atrophy rate among CSF Aβ-42-positive 
individuals. [102]. These correlations very likely suggest 
that CSF clusterin levels are elevated in relation to the patho-
logical changes in the brain. Elevation in CSF levels of clus-
terin and the correlation with core biomarkers suggest that 
elevated levels of clusterin could be attributed as a protective 
response to the amyloidosis and increased neurodegenera-
tion in the AD brain. Looking at the role of clusterin in AD 
pathogenesis, a further exploration of its role as an AD bio-
marker is needed in the CSF.

Aβ oligomers (AβOs)

Role in AD pathogenesis and biomarker studies

Neurodegeneration is a result of self-association of Aβ mole-
cules and not just caused by the presence of Aβ. The oligom-
ers of Aβ can be even more toxic than fibrillar Aβ aggregates 
[107]. They affect synapse composition, shape and density, 

thereby play a significant role in synaptic degeneration in 
AD [108]. Administration of cell-derived AβOs inhibit 
long-term potentiation of synaptic transmission, induced 
in rats [109]. The CSF levels of AβOs have been quanti-
fied in AD. Using a sensitive assay, it has been found that 
CSF levels of AβOs significantly increase in AD patients as 
compared to aged controls [110]. Lower levels of CSF AβOs 
have been reported in AD patients as compared to those with 
other forms of dementia [111]. In another study the ratio of 
AβOs/Aβ-42 was found to be significantly elevated in AD 
as compared to the non-AD group [112]. The diagnostic 
potential of AβOs in AD should be further explored using 
well-established cohorts.

Biomarkers of neuroinflammation

YKL‑40/chitinase‑3‑like protein 1 (CHI3L1)

Role in AD pathogenesis

YKL-40 is a glycoprotein belonging to the family of 18 
glycosyl hydrolases. It is also called human cartilage 
glycoprotein-39 (HC gp-39) or chitinase-3-like-1 pro-
tein (CHI3L1). It binds with chitin but does not have a 
chitinase activity [113]. It is secreted by the chondro-
cytes, synovial cells, vascular smooth muscle cells, mac-
rophages and neutrophils [114, 115]. It is named based on 
the first three terminal amino acids: tyrosine (Y), lysine 
(K), and leucine (L) [115, 116]. YKL-40 plays a key role 
in inflammation, therefore, influences AD pathology. In 

Fig. 4  Varied roles of clusterin 
in AD pathology (Bax protein 
Bcl-2-associated X protein, 
BBB blood brain barrier, DNA 
deoxyribonucleic acid, NF-κB 
nuclear factor kappa light chain 
enhancer of activated B cells, 
IκBs inhibitors of NF-κB). 
Yellow circle in the figure 
represents clusterin
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response to neuroinflammation, the expression of YKL-
40 is increased and is localized to astrocytes in the region 
of inflammation [117]. It is expressed by the microglia, 
and the expression of YKL-40 messenger ribonucleic acid 
(mRNA) is increased in AD [118]. Microglia and astro-
cytes are associated with senile plaques in AD and play a 
key role in immune response in the brain [119]. The micro-
glia are activated in response to neurodegeneration. The 
plaque-associated activated microglia are large and mostly 
phagocytic [120]. They constantly scavenge the plaques, 
damaged neurons, infectious agents and promote inflam-
mation in damaged tissue [121, 122]. Aβ, either alone or 
together with inflammatory mediators, sets up an activa-
tion cycle to activate the microglia and thereby generate an 
immune response in the brain [123]. Microglial activation 
thereby plays an important role in AD [124]. Therefore, 
microglial-expressed protein YKL-40 is a potential marker 
of neuroinflammation and plays a significant role in AD 
pathogenesis.

CSF biomarker studies pertaining to YKL‑40

The CSF levels of YKL-40 are elevated in AD. Through 
numerous studies, it has been have found that increased 
levels of YKL-40 in CSF have prognostic and diagnostic 
utility as a biomarker for AD. YKL-40 aids in preclini-
cal AD diagnosis and discriminating cognitively normal 
individuals from mild cognitive impairment (MCI) or AD 
patients (Table 3). The role of YKL-40 is also seen in dif-
ferential diagnosis of dementia [125]. The levels of YKL-
40 have been found to significantly correlate with MMSE 
scores [126]. Studies suggest YKL-40 is elevated early in 
the AD continuum and can serve as a valuable neuroin-
flammatory marker to detect early pathological changes 
and can even be used to study disease progression. The 
association of CSF YKL-40 with CSF T-tau and P-tau 
(Table 3) indicates that YKL-40 can help in tracking the 
neuroinflammation associated to neurodegeneration. Being 
a potential diagnostic and prognostic marker, it can serve 
as a target to combat AD-associated neuroinflammation. 
YKL-40 levels are consistently increased with age. This 
suggests that neuroinflammation occurs normally with 
aging. However, the still higher increase in ε4 carriers 
suggest that neuroinflammation is exacerbated with amy-
loidosis and neurodegeneration [127]. On the contrary, 
a recent study also indicates that inflammation could 
be driven by amyloidosis but, independent of the APOE 
ε4 status. In this study, the CSF levels were elevated in 
Aβ-positive individuals (low CSF Aβ), who were APOE 
ε4 non-carriers [128]. Therefore, YKL-40 can be used as 
a potential marker to stage the neuroinflammation associ-
ated with AD.

Monocyte chemoattractant protein 1 (MCP‑1)

Role in AD pathogenesis

Chemokines are low-molecular weight cytokines. They are 
secondary inflammatory mediators induced by the primary 
mediators such as interleukin-1. These act as chemoattract-
ants and direct leucocytes to the site of inflammation. They 
express their action through guanine nucleotide-associated 
protein (G protein)-coupled receptors. There are approxi-
mately 50 cytokines which are classified into four families; 
CC cytokines (have 2 adjacent cysteine residues at the 
N terminal), CXC cytokines (have two terminal cysteine 
residues separated by one amino acid), C cytokines (have 
2 cysteine residues in total, one at N terminal and other 
at the downstream) and  CX3C cytokines (have 2 cysteine 
residues separated by 3 amino acids at the N terminal) 
[134, 135]. Inflammation plays a significant role in AD 
pathogenesis. The cytokines and chemokines, being 
inflammatory mediators, are involved in AD pathogenesis. 
They are released by the astrocytes, which play a role in 
Aβ generation and degeneration [136]. The production of 
chemokines is increased in response to Aβ and plays an 
important role in migration of astrocytes. The treatment 
of neonatal astrocytes with Aβ significantly increased the 
production of MCP-1. In the same study, it was found that 
astrocytes from adult mice migrate in response to MCP-1, 
indicating the role of MCP-1 in astrogliosis and degrada-
tion of Aβ [137]. Deficiency of chemokine receptors in 
transgenic mice models has shown to promote early Aβ 
accumulation [138]. The astrocytes proliferate in response 
to neurodegeneration and increase the deposition of toxic 
Aβ [139]. Aβ itself increases the expression of chemokines 
and cytokines by astrocytes, by reactivating them. There 
is a continuous cycle of activation and reactivation of 
astrocytes leading to inflammation and neuronal injury. 
[140, 141]. Therefore, the chemokines being mediators of 
inflammation play a significant role in AD pathogenesis.

CSF biomarker studies pertaining to MCP‑1

Many studies have demonstrated the role of CC chemokine, 
MCP-1 or CCL2 in AD diagnosis. Studies have reported 
elevated CSF levels of MCP-1 in AD (Table 4). MCP-1 
levels in CSF are positively correlated with the decrease 
in MMSE scores and higher baseline levels predict a faster 
rate of cognitive decline in AD [142–144]. Therefore, 
MCP-1 could serve as a marker of cognitive decline along 
the AD continuum. MCP-1 plays an important role in AD-
associated neuroinflammation and can serve a potential 
biomarker to track the same.
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1 3

Biomarker of synaptic dysfunction

Neurogranin

Role in AD pathogenesis

Neurogranin is a calmodulin-binding, postsynaptic pro-
tein found in the dendrites [149]. It plays an important 
role in memory potentiation. It binds with calmodulin and 
releases the same when intracellular concentration of cal-
cium increases. The released calmodulin binds with the 
calcium ions and activates a signal transduction pathway 
[150]. Synaptic dysfunction is linked to decline in cogni-
tion and occurs prior to neuronal degeneration [151, 152]. 
The brain levels of synaptic proteins including neurogra-
nin are reduced in AD at an early stage. The synaptic dys-
function in terms of reduction in synapses is also seen in 
MCI which is higher in mild AD. Thus, synaptic dysfunc-
tion occurs early in AD and indicates disease progression 
[153–157]. Neurogranin regulates the calcium-dependent 
postsynaptic signaling triggered by calmodulin [158]. It 
has been found that neurogranin  [Ng(+/+)] mice exhibit 
greater intracellular calcium concentration as compared 
to  Ng(−/−) mice upon tetanic stimulation [159]. Expres-
sion of neurogranin reduces with aging [160]. Reduced 
brain levels of neurogranin can cause a dysregulation of 
post-synaptic signaling. Reduced neurogranin mRNA 
expression has been reported in hippocampal and retros-
plenial regions of the brain in aged mice [160]. Therefore, 
a reduction of synaptic proteins such as neurogranin in the 
brain relates to synaptic dysfunction and the CSF levels of 
such proteins can be used for disease diagnosis and moni-
tor the progression.

CSF biomarker studies pertaining to neurogranin

In the past few years, a number of researchers have evalu-
ated the diagnostic and prognostic potential of the bio-
marker neurogranin. A number of assay methods have 
been developed to quantify neurogranin in the CSF and 
have reported elevated neurogranin levels in AD (Table 5). 
In a study conducted on various synaptic proteins includ-
ing neurogranin in post-mortem brain samples, it was 
found that synaptic proteins discriminated dementia cases 
from controls with over 90% sensitivity and specificity 
[161]. The CSF neurogranin levels correlate with brain 
atrophy and amyloid load and also help in predicting 
decline in cognition. The CSF levels differ significantly 
between stable MCI (sMCI) and MCI to AD converters 
and between sMCI and AD [162–165]. Increased CSF lev-
els of neurogranin are specific to AD and not seen in other 

neurodegenerative diseases [166, 167]. Therefore, it is a 
promising biomarker for early AD diagnosis, predicting 
progression and distinguishing AD from other forms of 
dementia. It can act as a theragnostic marker, which can 
help in monitoring biochemical effects of drugs used to 
improve synaptic function. Since, synaptic dysfunction is 
associated to cognitive decline, neurogranin can help in 
staging the rate of cognitive decline along the AD con-
tinuum. However, large longitudinal studies are needed to 
further validate the role of neurogranin in AD diagnosis 
and prognosis.

Biomarker of altered microglial activity

Soluble ectodomain of triggering receptor 
expressed on myeloid cells (sTREM2)

Role in AD pathogenesis

Ectodomain of triggering receptor expressed on myeloid cells 
(TREM2) is a transmembrane glycoprotein immune receptor 
expressed in a number of cells such as dendritic cells, osteo-
clasts, tissue macrophages and the microglia. It contains an 
ectodomain with three N-glycosylation residues, a transmem-
brane sequence and a short intracellular tail. Its functions are 
mediated via DNAX-activating protein of 12 kDa (DAP12) 
signaling [172, 173]. In the brain, it is expressed by the micro-
glial cells and regulates microglial-mediated phagocytosis and 
clearance of apoptotic neurons [174, 175]. It plays an impor-
tant role in regulating immune responses in the brain and the 
production of inflammatory cytokines [176, 177]. TREM2 is 
upregulated in mice with mutant APP and amyloid deposi-
tion [178]. The mutations associated with the TREM2 gene 
are associated with an increased risk for AD. GWAS, next 
generation sequencing, Sanger sequencing and genotyping 
have revealed that R47H TREM2 variant is a risk factor for 
AD, which can increase the risk of developing AD by two- to 
fourfold [179–182]. This can be associated to tau pathology, 
since carriers of the risk variant were found to possess higher 
levels of T-tau [183]. It has also been found that mutations in 
TREM2 reduce Aβ clearance [184]. TREM2 undergoes regu-
lated membrane proteolytic processing by ADAM 10 (A dis-
integrin and metalloproteinase domain-containing protein 10) 
and γ secretase, and releases the soluble ectodomain sTREM2 
into the extracellular space [185]. The sTREM2 is detectable 
in the CSF and the levels have been quantified in different 
neurological disorders such as AD, frontotemporal demen-
tia (FTD) and multiple sclerosis [186, 187]. Since, TREM2 
regulates microgliosis, the soluble fragment of the protein, 
sTREM2, could play a role in regulating TREM2-mediated 
microgliosis. The exact biological role of the soluble fragment 
is unclear. However, using in vitro and in vivo models, Zhong 
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et al. have shown that sTREM2 promotes microglial survival 
and induces production of inflammatory cytokines [188]. 
In this study, it was found that administration of sTREM2-
fc fusion protein increased the microglial viability, in both 
TREM2 knockout mice as well as wild type. Administration 
of sTREM2 reduced the microglial apoptosis induced by 
removal of granulocyte macrophage colony-stimulating fac-
tor (GM-CSF), in both knock out and wild mice. In addition, 
it was found that sTREM2 treatment activates the microglia 
by increased expression of inflammatory cytokines [188]. A 
significant reduction in microgliosis as well as microglial clus-
tering around Aβ plaques has been found in  Trem2−/−5XFAD 
mice as compared to the controls [189]. Therefore, sTREM2 
likely plays a role in microgliosis, but further studies are 
needed to affirmatively elucidate the exact role of sTREM2.

CSF biomarker studies pertaining to sTREM2

Numerous studies have revealed that CSF levels of sTREM2 
are altered in AD (Table 6). The levels are elevated in domi-
nantly inherited AD cases years before the onset of symp-
toms [190], which highlights that microgliosis occurs prior 
to the onset of symptoms and later to brain amyloidosis. The 
Nasu–Hakola disease (NHD) TREM2 mutation carriers have 
lower CSF levels of sTREM2 [187]. This signifies that there 
is altered protein production in mutation carriers. Studied have 
found the CSF levels of TREM2 are increased in AD at early 
stage and correlate well with the markers of neurodegeneration 
and tau pathology. Therefore, microgliosis is most likely an 
early event that occurs along the AD and occurs in response 
to neurodegeneration. The CSF levels are lesser in AD as 
compared to MCI who later developed AD (MCI-AD). Thus, 
microgliosis increases from the preclinical AD to MCI-AD 
and there after reduces in AD, probably due to reduction in 
immune response [191]. Higher CSF levels in MCI patients 
are associated to increased gray matter volume. This reflects 
upon the protective response of microglia in response to neu-
rodegeneration [192]. The role of TREM2 in regulating brain 
immune response, microgliosis and inflammation needs to be 
further explored. The CSF levels of sTREM2 can help in track-
ing the altered microgliosis along the disease trajectory and 
can serve as a potential stage biomarker for identifying early 
stages of AD and as theragnostic marker to monitor therapeu-
tic effects of drugs administered at an early stage.

Biomarkers reflecting neuronal membrane 
disruption (neurodegeneration)

Fatty acid‑binding protein 3 (FABP3) or heart‑type 
fatty acid‑binding protein (HFABP)

Role in AD pathogenesis

The fatty acid-binding proteins (FABPs) are transport 
proteins for fatty acids and other lipophilic biomolecules. 
FABP3 is mainly expressed in the heart and skeletal mus-
cles but has also been isolated from the brain [196]. In 
the brain, FABPs bind to long-chain polyunsaturated fatty 
acids (PUFA), such as docosahexaenoic acid (DHA) and 
arachidonic acid (ARA) and is involved in the transport of 
these fatty acids. These fatty acids are indispensable for 
maintaining neuronal membrane integrity, neurite growth 
and synapse formation. The DHA and ARA modulate 
neural membrane fluidity and permeability [197, 198]. 
The dietary supplementation of DHA has been found to 
improve spatial memory and reduce Aβ deposition in mice 
[199]. DHA also prevents Aβ-induced neuronal damage 
in vivo and in vitro [200]. Since HFABP or FABP3 regu-
lates the transport of DHA and other fatty acids, it is likely 
to be associated with AD pathogenesis. The brain levels 
of FABP3 are reduced in such neurodegenerative diseases, 
which could be associated to altered signal transduction 
and membrane integrity [201]. FABPs are released fol-
lowing a cellular injury [202, 203]. Therefore, like other 
FABP’s, HFABP is likely to be associated with cellular 
dysfunction associated with AD. FABP3 is also associated 
with dopaminergic system and changes in dopaminergic 
system are likely to be associated with AD. It binds and 
regulates the dopaminergic  D2 receptors, and overexpres-
sion of FABP3 promotes α-synuclein oligomerization 
[204–206]. Catalepsy behavior induced by haloperidol 
administration was found to be significantly increased in 
FABP3 knockout mice as compared to the wild type, indi-
cating that FABP3 regulates  D2 receptors [204]. In the 
same study, it was found that over expression of FABP3 
increased  D2 receptor sensitivity [204]. The association of 
FABP3 with dopaminergic system also signifies the role 
of FABP3 in AD pathogenesis.

CSF biomarker studies pertaining to FABP3

The CSF levels of FABP3 are elevated in AD and is a 
potential diagnostic marker for differential diagnosis of 
neurodegenerative diseases (Table 7). The elevated levels 
are significantly associated with brain atrophy in cases 
with low Aβ-42 and reflect on lipid dyshomeostasis in 



1848 K. Dhiman et al.

1 3

Ta
bl

e 
6 

 S
tu

di
es

 c
on

du
ct

ed
 to

 e
va

lu
at

e 
th

e 
ro

le
 o

f s
TR

EM
2 

as
 a

 p
ot

en
tia

l C
SF

 b
io

m
ar

ke
r

St
ud

y
St

ud
y 

gr
ou

ps
C

SF
 le

ve
ls

 in
 A

D
/st

ud
y 

gr
ou

ps
A

ss
oc

ia
tio

n 
w

ith
 c

or
e 

bi
om

ar
ke

rs
/A

PO
E 

ge
no

ty
pe

A
na

ly
si

s m
et

ho
d

G
is

pe
rt 

et
 a

l. 
[1

29
]

C
on

tro
ls

 (n
 =

 49
), 

pr
ec

lin
ic

al
 A

D
 (n

 =
 19

), 
M

C
I d

ue
 to

 A
D

 (n
 =

 27
), 

m
ild

 A
D

 d
em

en
-

tia
 (n

 =
 15

)

El
ev

at
ed

 in
 A

D
 a

nd
 M

C
I (

ho
w

ev
er

, n
o 

si
g-

ni
fic

an
t d

iff
er

en
ce

 u
po

n 
ag

e 
co

rr
ec

tio
n)

Po
si

tiv
el

y 
as

so
ci

at
ed

 w
ith

 C
SF

 P
-ta

u,
 n

o 
si

g-
ni

fic
an

t d
iff

er
en

ce
 b

et
w

ee
n 

AP
O

E 
ε4

 c
ar

ri-
er

s a
nd

 n
on

-c
ar

rie
rs

 in
 a

ny
 st

ud
y 

gr
ou

p

EL
IS

A

H
es

le
gr

av
e 

et
 a

l. 
[1

93
]

A
D

 (n
 =

 37
) a

nd
 c

og
ni

tiv
el

y 
no

rm
al

 c
on

tro
ls

 
(n

 =
 22

)
Si

gn
ifi

ca
nt

ly
 e

le
va

te
d 

in
 A

D
Si

gn
ifi

ca
nt

 p
os

iti
ve

 c
or

re
la

tio
n 

w
ith

 C
SF

 
T-

ta
u 

an
d 

P-
ta

u 
bu

t n
ot

 w
ith

 C
SF

 A
β-

42
M

as
s s

pe
ct

ro
m

et
ry

Su
ar

ez
-C

al
ve

t e
t a

l. 
[1

94
]

C
on

tro
ls

 (n
 =

 15
0)

, p
re

cl
in

ic
al

 A
D

 (n
 =

 63
), 

M
C

I d
ue

 to
 A

D
 (n

 =
 11

1)
 a

nd
 A

D
 d

em
en

tia
 

(n
 =

 20
0)

Si
gn

ifi
ca

nt
ly

 e
le

va
te

d 
in

 M
C

I-A
D

 c
om

pa
re

d 
to

 c
on

tro
ls

 a
nd

 A
D

 d
em

en
tia

Po
si

tiv
el

y 
co

rr
el

at
ed

 w
ith

 C
SF

 T
-ta

u 
an

d 
P-

ta
u 

(s
tro

ng
er

 in
 p

re
cl

in
ic

al
 A

D
, M

C
I d

ue
 

to
 A

D
 a

nd
 A

D
); 

no
t a

ffe
ct

ed
 b

y 
A

PO
E 

ε4
 

st
at

us

EL
IS

A
 (M

SD
 p

la
tfo

rm
)

H
en

ju
m

 e
t a

l. 
[1

95
]

C
oh

or
t 1

: c
on

tro
ls

 (n
 =

 50
), 

M
C

I (
n =

 21
) a

nd
 

A
D

 (n
 =

 29
); 

co
ho

rt 
2:

 c
on

tro
ls

 (n
 =

 25
) a

nd
 

A
D

 (n
 =

 25
)

N
o 

st
at

ist
ic

al
 d

iff
er

en
ce

 a
m

on
g 

th
e 

di
ag

no
s-

tic
 g

ro
up

s
Po

si
tiv

el
y 

co
rr

el
at

ed
 w

ith
 C

SF
 A

β-
42

, T
-ta

u 
an

d 
P-

ta
u 

am
on

g 
co

nt
ro

ls
EL

IS
A

Pi
cc

io
 e

t a
l. 

[1
87

]
C

og
ni

tiv
e 

no
rm

al
 (n

 =
 10

7)
, A

D
 (n

 =
 73

), 
FT

D
 a

nd
 T

RE
M

2 
ris

k 
va

ria
nt

 c
ar

rie
rs

 
(n

 =
 40

)

Si
gn

ifi
ca

nt
ly

 e
le

va
te

d 
in

 A
D

 c
om

pa
re

d 
to

 
co

nt
ro

ls
 (a

ll 
no

n 
TR

EM
2 

ris
k 

va
ria

nt
 c

ar
-

rie
rs

)

H
ig

hl
y 

co
rr

el
at

ed
 w

ith
 C

SF
 T

-ta
u 

an
d 

P-
ta

u 
le

ve
ls

 b
ut

 n
ot

 w
ith

 C
SF

 A
β-

42
EL

IS
A

G
is

pe
rt 

et
 a

l. 
[1

92
]

C
og

ni
tiv

el
y 

no
rm

al
 c

on
tro

ls
 (n

 =
 45

), 
pr

ec
lin

ic
al

 A
D

 (n
 =

 19
), 

M
C

I d
ue

 to
 A

D
 

(n
 =

 27
), 

an
d 

m
ild

 A
D

 (n
 =

 23
)

H
ig

he
st 

le
ve

ls
 in

 M
C

I-A
D

; s
ig

ni
fic

an
tly

 
hi

gh
er

 th
an

 th
e 

co
nt

ro
ls

 a
nd

 p
re

cl
in

ic
al

 A
D

Po
si

tiv
el

y 
co

rr
el

at
ed

 w
ith

 C
SF

 T
-ta

u 
an

d 
P-

ta
u 

in
 a

ll 
di

ag
no

sti
c 

gr
ou

ps
EL

IS
A

 (M
SD

 p
la

tfo
rm

)



1849Cerebrospinal fluid biomarkers for understanding multiple aspects of Alzheimer’s disease…

1 3

Ta
bl

e 
7 

 S
tu

di
es

 c
on

du
ct

ed
 to

 e
va

lu
at

e 
th

e 
ro

le
 o

f F
A

B
P3

 a
s a

 p
ot

en
tia

l C
SF

 b
io

m
ar

ke
r

St
ud

y
St

ud
y 

gr
ou

ps
C

SF
 le

ve
ls

 in
 A

D
/st

ud
y 

gr
ou

ps
A

ss
oc

ia
tio

n 
w

ith
 c

or
e 

bi
o-

m
ar

ke
rs

/A
PO

E 
ge

no
ty

pe
A

na
ly

si
s m

et
ho

d

H
og

lu
nd

 e
t a

l. 
[1

28
]

H
ea

lth
y 

ol
de

r i
nd

iv
id

ua
ls

, n
 =

 12
9 

(d
iv

id
ed

 in
to

 h
ig

h 
C

SF
 A

β,
 

n =
 86

 a
nd

 lo
w

 C
SF

 A
β,

 n
 =

 43
)

Si
gn

ifi
ca

nt
ly

 e
le

va
te

d 
in

 
A

β-
po

si
tiv

e 
gr

ou
p

El
ev

at
ed

 si
gn

ifi
ca

nt
ly

 in
 

AP
O

E 
ε4

 n
on

-c
ar

rie
rs

 w
ho

 
w

er
e 

A
β 

po
si

tiv
e

El
ec

tro
ch

em
ilu

m
in

es
ce

nc
e 

im
m

un
oa

ss
ay

 (M
SD

)

B
je

rk
e 

et
 a

l. 
[2

10
]

N
on

-d
em

en
te

d 
w

om
en

 (n
 =

 86
)

El
ev

at
ed

 in
 th

os
e 

w
ho

 d
ev

el
-

op
ed

 d
em

en
tia

 a
nd

 A
D

 a
t 

fo
llo

w
-u

p;
 h

ig
he

r b
as

el
in

e 
le

ve
ls

 a
ss

oc
ia

te
d 

to
 d

ev
el

op
-

m
en

t o
f d

em
en

tia

St
ro

ng
 c

or
re

la
tio

n 
w

ith
 C

SF
 

T-
ta

u 
an

d 
P-

ta
u 

at
 b

as
el

in
e

El
ec

tro
ch

em
ilu

m
in

es
ce

nc
e 

im
m

un
oa

ss
ay

 (M
SD

)

B
is

ce
tti

 e
t a

l. 
[2

11
]

A
D

 (n
 =

 48
), 

PD
 (n

 =
 54

), 
D

LB
 (n

 =
 40

), 
PD

D
 (n

 =
 21

), 
ot

he
r 

ne
ur

ol
og

ic
al

 d
is

or
de

rs
 (O

N
D

) a
s c

on
tro

ls
 (n

 =
 47

)
Si

gn
ifi

ca
nt

ly
 e

le
va

te
d 

in
 A

D
, 

D
LB

 c
om

pa
re

d 
to

 P
D

 a
nd

 
O

N
D

Si
gn

ifi
ca

nt
ly

 c
or

re
la

te
d 

w
ith

 
C

SF
 T

-ta
u 

le
ve

ls
 C

SF
EL

IS
A

C
hi

as
se

rin
i e

t a
l. 

[2
12

]
A

D
 (n

 =
 40

), 
PD

 (n
 =

 58
), 

O
N

D
Si

gn
ifi

ca
nt

ly
 e

le
va

te
d 

in
 A

D
 

co
m

pa
re

d 
to

 P
D

 a
nd

 O
N

D
Po

si
tiv

el
y 

co
rr

el
at

ed
 w

ith
 

C
SF

 T
-ta

u,
 P

-ta
u 

bu
t n

ot
 

w
ith

 A
β

Im
m

un
oa

ss
ay

G
uo

 e
t a

l. 
[2

08
]

H
ea

lth
y 

co
nt

ro
ls

 (n
 =

 92
), 

M
C

I (
n =

 14
9)

, A
D

 (n
 =

 60
)

Si
gn

ifi
ca

nt
ly

 e
le

va
te

d 
in

 A
D

 
co

m
pa

re
d 

to
 c

on
tro

ls
M

ul
tip

le
x 

im
m

un
oa

ss
ay

 
(L

um
in

ex
 x

M
A

P 
te

ch
no

lo
gy

)
D

es
ik

an
 e

t a
l. 

[2
07

]
C

og
ni

tiv
el

y 
no

rm
al

 (n
 =

 90
), 

am
ne

sti
c 

M
C

I (
n =

 13
9)

 a
nd

 
pr

ob
ab

le
 A

D
 (n

 =
 66

)
El

ev
at

ed
 in

 A
D

 a
nd

 M
C

I 
co

m
pa

re
d 

to
 c

on
tro

ls
Si

gn
ifi

ca
nt

ly
 a

ss
oc

ia
te

d 
w

ith
 

C
SF

 P
-ta

u
M

ul
tip

le
x 

im
m

un
oa

ss
ay

 
(L

um
in

ex
 x

M
A

P 
te

ch
no

lo
gy

)



1850 K. Dhiman et al.

1 3

the CNS [207]. Therefore, elevated FABP3 levels in CSF 
might be associated to brain amyloidosis. The diagnostic 
accuracy of the core CSF biomarkers has been found to be 
increased in conjunction with FABP3. In addition, FABP3 
and the ratio of FABP3/Aβ-42 are useful in predicting the 
progression of MCI subjects to AD. [208, 209]. In a recent 
study involving healthy aged individuals, the CSF levels 
of FABP3 were significantly elevated in Aβ-positive indi-
viduals (low CSF Aβ), compared to negative individuals 
(high CSF Aβ) [128]. Therefore, it is a good biomarker for 
predicting disease progression in early stages of disease 
and can help in identifying healthy aged individuals at 
risk of developing AD. The elevated CSF levels correlate 
with core markers of neuro degeneration (Table 7). The 
elevated levels in AD could likely be associated to the 
destruction of neurons.

Biomarkers of neuronal structure 
and signaling disruption (markers 
of neurodegeneration)

Neurofilament light chain protein (NFL): marker 
of axonal degeneration

Role in AD pathogenesis

Neurofilaments are the proteins particularly found in neu-
ronal axons. They are 10 nm in diameter and are essential 
for the axonal growth and the transmission of impulses 
along the axons [213]. These are heteropolymers composed 
of four subunits, namely neurofilament heavy, medium and 
light polypeptides and α-internexin [214]. Being elastic and 
fibrous, they maintain the shape of neurons and act as neu-
roskeletal supports [215]. NFL plays a role in protecting 
neurites from dystrophy and regulates pathways generating 
Aβ [216]. Significantly higher neocortical Aβ deposition was 
found in APP/PS1  NFL(−/−) mice as compared to APP/PS1 
 NFL(+/+) mice. The dystrophic neurites were also signifi-
cantly higher in  NFL(−/−) mice, in regions surrounding the 
plaques. In addition, higher microgliosis was found in such 
regions, in  NFL(−/−) mice as compared to  NFL(+/+) mice 
[216]. Neurofilaments are likely to be released from neu-
ronal axons in response to neuronal damage in neurodegen-
erative diseases. NFL is mainly located in myelinated axons 
and white matter changes are associated with increased NFL 
levels in the CSF. Therefore, elevated levels of NFL in the 
CSF reflect on axonal degeneration [217] (Fig. 5). NFL is 
a specific biomarker of axonal degeneration, whose levels 
have been found to be elevated in a wide range of neurode-
generative diseases including AD. It is not a disease-specific 
biomarker but can aid in differential diagnosis of neurode-
generative disorders since its levels are elevated in FTD as 

compared to AD [218]. High CSF NFL levels predict high 
hippocampal atrophy rate in cognitively healthy older adults 
as well those at risk of AD [219]. In case of AD, it can help 
in tracking the different dynamic changes along the disease 
continuum.

CSF biomarker studies pertaining to NFL

The CSF levels of NFL are elevated in a wide range of neu-
rodegenerative diseases including AD as compared to nor-
mal controls (Table 8). NFL levels are significantly elevated 
in AD compared to sMCI, and higher CSF levels in AD 
are associated with cognitive decline, white matter change, 
brain atrophy, and lower FDG-PET. The change in CSF lev-
els and these associations are independent of Aβ positivity 
[168, 220]. Therefore, NFL reflects upon neuronal or axonal 
degeneration independent of Aβ pathology. Since the CSF 
levels of NFL are significantly elevated in AD compared to 
sMCI and associated to brain atrophy and cognitive decline, 
it can be used as potential biomarker to study disease pro-
gression and severity along the AD continuum. In addi-
tion, the diagnostic performance of core CSF biomarkers 
in differential diagnosis of early onset Alzheimer’s disease 
(EOAD) and FTD is improved in conjunction with the CSF 
levels of NFL [221]. Hence, it also has a potential to dif-
ferentially diagnose a range of neurodegenerative diseases. 
But, the potential of NFL to identify individuals at risk of 
developing AD or its potential to identify preclinical AD 
needs to be further explored.

Visinin‑like protein 1 (VILIP‑1): marker of neuronal 
injury

Role in AD pathogenesis

VILIP-1 belongs to a large family of calcium-binding pro-
teins called neuronal calcium sensors (NCSs) [224]. The 
VIPIL-1 protein is encoded by the visinin-like 1 (VSNL1) 
gene and contains 191 amino acids and weighs 22 kDa [225]. 
VILPI-1 is distributed in different regions of the brain [226]. 

Fig. 5  Role of NFL in AD pathogenesis (NFL neurofilament light 
chain, CSF cerebrospinal fluid)
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The calcium ions  (Ca2+) are involved in neuronal signaling 
and the NCSs mediate the action of these ions. In response 
to a high intracellular concentration of  Ca2+, VILIP-1 gets 
reversibly translocated to the membrane components of 
the cell. This reversible interaction of VILIP-1 modulates 
signaling cascade in the neurons via activation of specific 
membrane-bound targets [227, 228]. Therefore, VILIP-1 
plays an important role in neuronal signaling. The VILIP-1 
regulates neuron ion channels, neuronal growth, survival, 
synaptic plasticity and activates cyclic adenosine monophos-
phate (cAMP) and cyclic guanine monophosphate (cGMP) 
signaling pathways [225]. Neurodegenerative disorders such 
as AD are associated with disturbed  Ca2+ homeostasis in the 
neurons, which affect neuronal signaling by causing exces-
sive activation of receptors, weakening the  Ca2+ buffering 
capacity of neurons and deregulating the  Ca2+ channels 
[229]. Aβ modulates this disturbed  Ca2+ homeostasis by 
increasing the influx of  Ca2+ by forming channels [230]. The 
NCSs such as VILIP-1 play a significant role in AD patho-
genesis. The intracellular expression of VILIP-1 is reduced 
in AD brains as compared to controls. VILIP-1 has been 
found to be associated with extracellular plaques and NFTs 
in the brains of AD patients and its expression is associated 
with enhanced hyper phosphorylation of tau protein and cell 
death [231, 232]. In mild AD, there is a considerable loss 
of neurons in the entorhinal cortex [233, 234]. The levels of 
VILIP-1 are reduced in the entorhinal cortex of AD patients 
[235]. Therefore, it is a marker of neuronal injury. Figure 6 
depicts the role of VILIP-1 in AD pathogenesis.

This signifies that VILIP-1 is neurotoxic under a dis-
turbed  Ca2+ homeostasis. In AD, its intracellular expression 
is reduced. Increased expression promotes hyperphospho-
rylation and cell death which is reduced by calcium buffer 
protein. A disturbed  Ca2+ balance causes the loss of vulner-
able neurons and thereby the release of VILIP-1 extracel-
lularly [225, 231, 232, 236].

CSF biomarker studies pertaining to VILIP‑1

Numerous studies have been conducted to illustrate its role 
as a potential CSF diagnostic, prognostic and a differential 
biomarker. CSF levels of VILIP-1 aid in the early diagno-
sis of AD, distinguish AD from MCI, helps in identifying 
the patients with MCI likely to progress to AD, and in dif-
ferentiating AD from other forms of dementia (Table 9). 
When used in combination with the core CSF markers, the 
diagnostic performance is improved [237]. VILIP-1 and 
VILIP-1/Aβ-42 ratio negatively correlates with MMSE 
[237, 238]. Baseline CSF levels of VILIP-1 are associated 
with rate of whole brain and regional brain atrophy in AD. 
VILIP-1 and the ratio of VILIP-1/Aβ-42 correlate signifi-
cantly with the brain amyloid load. Therefore, VILIP-1 and 
the ratio of VILIP-1/Aβ-42 help in predicting the future 
cognitive decline. [239–243]. VILIP-1 can be used as a sur-
rogate marker of neurodegeneration but, larger longitudi-
nal studies are needed to validate the same. It can help in 
tracking the protective effects of neuroprotective therapeutic 
interventions.

Fig. 6  The role of VILIP-1 in 
AD pathogenesis (Aβ amyloid 
beta, AD Alzheimer’s disease)
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Conclusion

The multifaceted AD dementia is an amalgam of different 
pathological changes in the brain. The different patho-
logical changes may represent a hierarchy of events that 
occur one after another or may follow their own trajec-
tory, which ultimately leads to dementia due to AD. To 
get a deeper insight into different aspects of disease patho-
genesis biomolecules/proteins involved in the associated 
biochemical pathways need to be explored and evaluated 
as disease biomarkers for disease diagnosis, prognosis 
and therapy. The CSF biomarkers would serve as reliable 
measures, to assess the time course of AD and the asso-
ciated pathological changes along the continuum of the 
disease. A number of biomarkers in relation to different 
AD-associated pathological changes have been discussed 
in the current manuscript. They together or alone can aid 
in an accurate AD diagnosis starting from the preclinical 
phase and thereby can give a clear picture of the patho-
logical changes that occur across the disease continuum. 
The use of multiple biomarkers can help in understand-
ing the association of individual pathologies [244], and 
may provide an understanding about how one pathologi-
cal change influences the other. Hence, these biomarkers 
in conjunction can improve the accuracy of diagnosis. It 
has been found that a biomarker model consisting of the 
biomarkers T-tau, NFL, neurogranin reflecting upon neu-
rodegeneration, axonal damage and synaptic dysfunction, 
respectively, has a higher diagnostic accuracy (area under 
the receiver-operating curve (AUC) 85.5%) in classify-
ing AD and controls [168]. The combination of CSF bio-
markers, including YKL-40 could distinguish cognitively 
normal participants with clinical dementia rating (CDR) 
score of 0 from those with CDR > 0 with AUC 0.896 [76].

The CSF levels of these biomarkers change likely with 
the pathological change or event in the AD brain. The ele-
vated CSF levels of clusterin can highlight upon the role 
of clusterin in binding with Aβ and preventing its fibrilli-
zation or its role in promoting the formation of soluble 
toxic Aβ oligomers. An elevated CSF levels of biomarkers 
YKL-40 and MCP-1 highlight upon neuroinflammation 
as a protective response to brain damage. These proteins 
are expressed by the astrocytes, which are activated in 
response to neurodegeneration and thereafter release 
inflammatory mediators. Elevated levels of sTREM2 high-
light upon brain microgliosis as a response to phagocytise-
accumulated Aβ. Therefore, these novel biomarkers can 
help in tracking inflammatory processes related to AD 
neurodegeneration. They can help in tracking stage and 
state-associated neuroinflammation in AD and combat-
ing the same with the therapeutic agents. Inflammation is 
associated with a number of psychiatric disorders [245]. 

These biomarkers can help in understanding the associa-
tion of psychiatric disorders such as depression with AD. 
The dynamic changes in levels of VILIP-1, a biomarker 
of neuronal injury and NFL, a biomarker of axonal dam-
age can alone or in conjunction provide an insight into the 
longitudinal cognitive changes associated with neurode-
generation. The cognitive decline associated with synaptic 
degeneration can be well accounted via CSF measure of 
neurogranin.

Hence, it can be concluded that the CSF biomarkers will 
certainly benefit in diagnosing AD at an early stage with 
much higher diagnostic accuracy either alone, together or 
in conjunction with the core CSF biomarkers. This would 
also aid in understanding the disease pathogenesis and 
progression. They can account for the lag between preclin-
ical and clinical AD, and can act as indices of pathological 
change. They can serve as end point measures in clinical 
trials and accelerate the drug development process through 
the design of new drug molecules that can be targeted 
on the right individuals at the right stage. The complex 
nature of AD definitely directs us toward a strong ration-
ale to use multiple biomarkers for understanding disease 
pathogenesis, and for a successful and accurate preclinical 
diagnosis, prognosis and treatment.
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