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Abstract
Testicular tumors are the most common tumors in adolescent and young men and germ cell tumors (TGCTs) account for most 
of all testicular cancers. Increasing incidence of TGCTs among males provides strong motivation to understand its biologi-
cal and genetic basis. Gains of chromosome arm 12p and aneuploidy are nearly universal in TGCTs, but TGCTs have low 
point mutation rate. It is thought that TGCTs develop from premalignant intratubular germ cell neoplasia that is believed to 
arise from the failure of normal maturation of gonocytes during fetal or postnatal development. Progression toward invasive 
TGCTs (seminoma and nonseminoma) then occurs after puberty. Both inherited genetic factors and environmental risk fac-
tors emerge as important contributors to TGCT susceptibility. Genome-wide association studies have so far identified more 
than 30 risk loci for TGCTs, suggesting that a polygenic model fits better with the genetic landscape of the disease. Despite 
high cure rates because of its particular sensitivity to platinum-based chemotherapy, exploration of mechanisms underly-
ing the occurrence, progression, metastasis, recurrence, chemotherapeutic resistance, early diagnosis and optional clinical 
therapeutics without long-term side effects are urgently needed to reduce the cancer burden in this underserved age group. 
Herein, we present an up-to-date review on clinical challenges, origin and progression, risk factors, TGCT mouse models, 
serum diagnostic markers, resistance mechanisms, miRNA regulation, and database resources of TGCTs. We appeal that 
more attention should be paid to the basic research and clinical diagnosis and treatment of TGCTs.
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Introduction

TGCTs are rare tumors in the general population, but are 
the most commonly occurring malignancy among males 
between ages 15 and 44 years [1]. The diagnosis of TGCTs 
primarily depends on physical examination, ultrasonogra-
phy, magnetic resonance imaging, measurement of serum 
tumor markers and pathological examination. Standard treat-
ment for TGCTs is radical orchiectomy and/or combination 

with chemotherapy or radiotherapy or retroperitoneal lymph 
node dissection. Furthermore, small interfering RNA ther-
apy [2, 3], microRNA therapy [4, 5] and immunotherapy 
[6] are suggested to be potential therapeutic strategies; 
however, there is a long road ahead for such treatments to 
prove their clinical value. Significant parameters, such as 
angiolymphatic invasion, degree of extra testicular invasion, 
rete testis invasion and serum tumor marker levels [7], onco-
genes [8], promoter methylation [9], polymorphism [10] and 
tumor-infiltrating immunocytes [11] are suggested as poten-
tial prognostic factors for TGCT patients.

TGCTs are characterized by frequent chromosomal anom-
alies and low rates of somatic mutations. Chromosome arm 
12p amplification, such as isochromosome 12p and chromo-
some 12p overrepresentation, is the most common genetic 
hallmark that accounts for many types of TGCTs [12, 13]. 
The exact mechanisms of 12p gain in TGCTs are unclear, 
but the ubiquitous gain of 12p-derived sequences implies 
a significant role for some genes on 12p, such as CCND2, 
KRAS, TNFRSF1A, GLUT3, REA, NANOG, DPPA3, and 
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GDF3 [14–17], in the development, pluripotency mainte-
nance and/or progression of TGCTs.

It is not accurate to say that TGCTs are completely cur-
able malignancies. According to the European Association 
of Urology (EAU) testis cancer guidelines, approximately 
15–30% of TGCT patients will relapse after first-line chemo-
therapy and will require additional salvage therapies [18, 
19]. Primary TGCTs have been reported to metastasize to 
the retroperitoneal lymph nodes [20], brain [21, 22], neck 
[23, 24], heart [25, 26], pulmonary arteries [27], inferior 
vena cava and aorta [28], lung [29], liver [30], stomach [31, 
32] and cartilage [33]. Long-term relative survival after 
diagnosis of TGCTs generally continued to decline with 
increasing follow-up time, particularly beyond 15–30 years 
[34]. The side effect of TGCT therapy on other organs also 
offers insight into the long-term risks of TGCT survivorship. 
Kidney disease [35], cerebrovascular accidents, secondary 
leukemia, internal carotid artery occlusion and stroke associ-
ated with chemotherapy in TGCT patients have been occa-
sionally described in the literature [36–42].

More recently, focus has expanded beyond survival to 
emphasize the quality of life issues when optimizing treat-
ment algorithms. Attention should be paid toward persisting 
physical symptoms and psychosocial needs. Patients with 
TGCTs and azoospermia, submitted to onco-testicular sperm 
extraction and sperm cryopreservation, had the delivery of a 
healthy baby after intracytoplasmic sperm injection, which 
emphasizes the importance of fertility preservation in oncol-
ogy patients [43, 44]. For patients with bilateral TGCTs, 

testis-sparing surgery provides a better quality of life (e.g., 
sufficient endogenous testosterone production) and may be 
considered a safe, feasible alternative treatment [45, 46]. 
Testicular self-examination (TSE) practices are found to be 
inadequate and efforts should be made to develop programs 
that can increase knowledge related to testicular cancer as 
well as the practice of TSE [47].

Herein, we present a comprehensive review on origin, 
progression, histological types, risk factors, TGCT mouse 
models, serum diagnostic markers, resistance mechanisms, 
miRNA regulation and database resources of TGCTs.

Origin, progression and histological types 
of TGCTs

Spermatogenesis is fundamental to the establishment and 
maintenance of male fertility. Given that TGCTs are believed 
to arise from failure of normal maturation of gonocytes, 
understanding the process and regulatory controls of sper-
matogenesis will provide valuable insights into the occur-
rence and features of TGCTs. It is generally considered that 
mammalian spermatogenesis is a complex sequential pro-
cess of germ cell differentiation from primordial germ cells 
(PGCs) or spermatogonial stem cells (SSCs) to functional 
haploid sperm [48, 49] (Fig. 1, left). Spermatogenesis fur-
ther requires intricate interaction between germ cells (sper-
matogonia, spermatocytes, round/elongating spermatids) 
and supporting somatic cells (Sertoli cells, Leydig cells, 

Fig. 1  Model of normal spermatogenesis and occurrence of TGCTs. 
Spermatogenesis is a tightly regulated process of the continuous sup-
ply of spermatozoa. Differentiation of primordial germ cells (PGCs) 
into gonocytes, self-renewal and differentiation of spermatogonial 
stem cells, and subsequent commitment to meiotic spermatocytes and 
haploid round/elongating spermatids are the key events of spermato-
genesis. Under pathological conditions, gonocytes that fail to undergo 

correct spermatogenic differentiation, but develop into intratubular 
germ cell neoplasia (IGCN) or carcinoma in situ (CIS) represent the 
precursor cells for TGCTs during early stage of germline develop-
ment. CIS can further progress into invasive seminoma (S) and (or 
then) nonseminoma, including undifferentiated EC, as well as dif-
ferentiated teratoma (TE), choriocarcinoma (CH) and yolk sac tumor 
(YST)
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peritubular myoid cells, endothelial cells, macrophage and 
newly discovered innate lymphoid and mesenchymal cells) 
[50–54]. Recent single-cell RNA sequencing of murine or 
human spermatogenesis reveals a continuous developmental 
trajectory of germ cells from spermatogonia to spermatids 
(12 or 14 germ cell states) and identifies cell type-specific 
markers and candidate transcription regulators in each cell 
component [55, 56], representing a community resource and 
foundation to in-depth study of spermatogenesis.

The histogenesis of TGCTs is complex.  It is thought 
that TGCTs develop from premalignant intratubular germ 
cell neoplasia (IGCN), also known as carcinoma in situ 
(CIS), that are believed to arise from failure of normal mat-
uration of fetal germ cells from PGCs into pre-spermato-
gonia [57]. Expression profiling studies reveal that IGCN 
cells closely parallel PGCs and maintain their genome in 
a demethylated and undifferentiated state [58, 59]. IGCN 
progresses toward invasive TGCTs then after puberty, when 
IGCN cells begin to proliferate, likely involving the influ-
ences of hormones. TGCTs are classified broadly into two 
major histologic groups: seminoma and non-seminoma 
germ cell tumors. Non-seminoma can be further subdi-
vided into undifferentiated embryonal carcinoma (EC), as 
well as differentiated teratoma, choriocarcinoma and yolk 
sac tumor [60] (Fig. 1, right). Both IGCN and TGCT cells 
are typically aneuploid, but premalignant IGCN does not 
gain chromosomal material from 12p, which are pathogno-
monic for malignant IGCN and TGCTs [61, 62]. Transition 
from IGCN to invasive TGCTs is associated with the loss 
of PTEN and P21 as well as gain of MDM2 expression [63, 
64]. KRAS mutations are exclusive to the primary TGCT 
tumors and not in the patient-matched pre-invasive IGCN 
[65]. Seminoma and EC present significant differences in 
clinical features, therapy and prognosis, and they show char-
acteristics of the PGCs and embryonic stem cells (ESCs), 
respectively [66]. For proper diagnosis of the different his-
tological subgroups of TGCTs, immunological staining is 
required using distinctive molecular markers. POU class 5 
homeobox 1 (POU5F1, also known as OCT3/4), is positive 
in IGCN, seminoma and EC, but not in any choriocarci-
noma, teratoma or YST [67]. KIT proto-oncogene receptor 
tyrosine kinase (KIT, also known as CD117), is positive in 
IGCN and seminoma and negative in EC [68]. TNF receptor 
superfamily member 8 (TNFRSF8, also known as CD30) 
expression helps pathologists to identify sites of EC in the 
tumors [69]. Furthermore, Glypican 3 (GPC3) is useful as 
an immunohistochemical marker for TGCTs differentiated 
to extraembryonic tissue, especially YST [70, 71]. Moreo-
ver, Sal-like protein 4 (SALL4) is a more sensitive marker 
than α-fetoprotein (AFP) and GPC3 for YST [72]. Integra-
tion of tumor characteristics and high-dimensional assays of 
genomic, epigenomic, transcriptomic and proteomic features 
[73] recently reveals novel distinctive molecular landscapes 

of TGCT histologic types and identifies previously unappre-
ciated diversity within each component, including a separate 
subset of seminoma defined by KIT mutations.

The precise mechanism of the progression from premalig-
nant IGCN to subtypes of invasive tumors is not completely 
understood. IGCN gives rise to seminoma and EC separately 
or seminoma is the intermediate stage between IGCN and 
EC remains a matter of debate. The first hypothesis is sup-
ported by the observation that IGCN is a phenotypically 
heterogeneous lesion containing cells in different stages of 
progression [74, 75], and KIT mutations are observed in a 
subset of seminoma, but not in EC [73]. The latter model is 
set up mainly on the basis of the phenotypic resemblance of 
seminoma to IGCN, learning from the studies of ploidy [76], 
cytogenetics [77] and pathomorphology [78]. Several stud-
ies support the common clonal origin of metastatic mature 
teratoma with other components of a mixed germ cell tumor 
[79, 80]. Intriguingly, transplantation of seminoma-like 
cell line TCam-2 into the seminiferous tubules results in 
the formation of an IGCN/seminoma, while transplantation 
into the flank or corpus striatum will trigger TCam-2 cells 
to adopt an EC-like fate. This model suggests that transi-
tion of seminoma to ECs relies on signals from the tumor 
microenvironment [81]. During this reprogramming, the 
microenvironment inhibition of bone morphogenetic protein 
(BMP) signaling is the initial event, resulting in activation 
of NODAL signaling, upregulation of pluripotency factors 
(e.g., SOX2) and downregulation of seminoma markers 
(e.g., SOX17) [82, 83]. It will be interesting to further inves-
tigate whether EC can transit into seminoma upon interfer-
ence with microenvironment factors.

Risk factors of TGCTs

The increased (4- to 10-fold) risk of TGCTs among broth-
ers and sons of affected men together with findings in twin 
studies supports a strong genetic component contributing 
to TGCT susceptibility [84–88]. Genome-wide association 
studies (GWAS) have been particularly effective in identify-
ing multiple common variants with strong contribution to 
TGCT risk. Initial GWAS studies identified allele variation 
within the c-KIT ligand (KITLG) on 12q22 as the strong-
est genetic risk factor for TGCTs (per-allele OR > 2.6) [89, 
90]. Approximately, 40 identified allele variations on chro-
mosomes conferring TGCT susceptibility [91–101] are 
summarized in Fig. 2. Pathway-based analysis of GWAS 
data reveals the association of PGC formation, sex deter-
mination/differentiation, spermatogonial maintenance genes 
(e.g., KITLG [102], PRDM14 [103], DMRT1 [104], GATA4 
[50] and DAZL [105]) with susceptibility to TGCTs. TGCT 
GWAS to date have been fairly small compared with those 
seen for other diseases, and multiple additional TGCT 
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susceptibility loci and their functional characteristics remain 
to be identified.

In addition to genetic susceptibility loci, significate risk 
factors for the development of TGCTs include cryptorchid-
ism [106], disorders of sex development [107], hypo/infertil-
ity [108], contralateral germ cell tumors [109] and endog-
enous and exogenous hormones [110]. Although the sample 
size is insufficient and reliable correlation should be estab-
lished, environmental risk factors are currently estimated to 
account for half of TGCT predisposing reasons. If necessary, 
patients with high risks of TGCT occurrence such as family 
history of TGCTs, infertility and environmental risk explora-
tion may be notified to take physical and genetic screening 
for the genetic susceptibility loci, credible prognosis markers 
or premalignant IGCN lesion.

Mouse models for TGCT study

Animal models, such as mouse models, provide novel 
insights into the molecular mechanisms underlying the 
origin, progression and development of TGCTs. Mouse 
strains with low versus high teratoma incidence (129 ver-
sus 129.MOLF-Chr 19 (M19)) provide original in-depth 
research of TGCTs in mice. M19 carries chromosome 
(Chr) 19 from the MOLF, whereas all other chromosomes 
are from the 129 strain. Approximately, 70% of M19 males 
develop TGCTs in contrast to approximately 5% in the 129 
strain, suggesting that Chr 19 contains susceptibility loci 
of TGCTs [111, 112]. However, potential loci on Chr 19 
have not been identified by GWAS yet.

Fig. 2  The current known TGCT susceptibility loci that have been identified through GWAS. Single nucleotide polymorphisms, locus on chro-
mosome (Chr) and candidate gene or genes are listed
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The origin of TGCT cells predicts that developmental 
pathways that control germ cell pluripotency or differen-
tiation may be involved in the malignant transformation 
of these cells. Using mouse strains of 129, M19 and FVB 
(resistant to teratoma formation), a previous study suggests 
that ectopic germ cell proliferation and dysexpression of 
germ cell pluripotency and differentiation-associated factors 
at a specific developmental time point, E15.5, are directly 
correlated with increased teratoma risk [113]. Nodal-knock-
out mice show premature differentiation and reduced pluri-
potency marker expression, and NODAL signaling compo-
nents are overexpressed in human TGCT samples [114]. In 
contrast, germ cell expression of male sex determination 
gene Nanos2 is relatively low in teratoma-susceptible mouse 
strains and deficiency for Nanos2 increases teratoma inci-
dence in 129 mice  [115]. Furthermore, DMRT1 controls 
the mitosis–meiosis switch in mice and humans and loss 
of Dmrt1 in 129 strain mice results in a > 90% incidence 
of testicular teratomas [104, 116]. These genetic studies 
in mouse models further advance our understanding that 
delayed male germ cell specification and retained pluripo-
tency may cause gonocytes to form IGCN, EC foci and tera-
toma on a susceptible genetic background.

An increase in tumor incidence in mice has proven to be 
relevant to understanding genetic risk factors for TGCTs in 
humans. One good example is that loss of the transmem-
brane Kit ligand (kitl) increases TGCT susceptibility in 129 
mice [117]. GWAS have identified KITLG as a solid TGCT 
risk gene in humans accordingly [89]. TGCT occurrence 
is observed at higher incidence in mice mutant for Dnd1  
[118] or Pten [119] or A1cf/Ago2 [120] in 129 inbred 
strains. Furthermore, spindle-associated Rhamm acts as a 
gatekeeper preventing IGCN initiation, because seminoma 
occurred in 3.7% of Rhamm mutant male mice [121]. Pier-
pont et al. recently developed a novel mouse TGCT model 
by germ cell-specific Kras activation and Pten inactivation 
in 129 backgrounds that developed malignant and metastatic 
TGCTs composed of teratoma and EC [122]. Mouse models 
provide biological insight into TGCT development, but their 
relevance to human tumorigenesis is limited, as no muta-
tions of genes such as RHAMM and ALCF/AGO2 have been 
shown in human TGCTs. Whether mouse TGCT models 
precisely reflect the biology of human TGCTs requires to 
be determined.

Serum diagnostic tests for TGCTs

Compared to other solid organ malignancies, the role of 
serum tumor markers in TGCTs is unprecedented; these 
markers are fully used in the diagnosis, staging, risk stratifi-
cation and surveillance of patients with TGCTs [123]. The 
most common serum tumor markers for TGCTs include 

α-fetoprotein (AFP) and human chorionic gonadotropin 
(hCG) [123]. They are relatively sensitive, specific and clini-
cally useful tumor markers for TGCTs, providing value on 
diagnosis, classification, staging and prediction. Some pro-
gresses have been achieved to find novel serum biomarkers 
with good sensitivity and accuracy. MicroRNAs (miRNAs) 
are short non-coding RNAs that show exciting promise as 
a new-style biomarker of TGCTs [124]. The sensitivity and 
specificity of miR-371a-3p alone is ~ 90% for the diagnosis 
of malignant TGCTs [125], but that value can be increased 
further by using a combination of other miRNAs, includ-
ing miR-372-3p, miR-373-3p and miR-367-3p [126–128]. 
Furthermore, miR-371a-3p serum level is increased in recur-
rence of TGCT patients, indicating its additional value as a 
biomarker for detecting disease relapse in TGCT patients 
[129]. The value of miRNA serum markers needs to be 
validated in more studies or a prospective clinical trial. 
Moreover, patients in the yolk sac seminoma subgroup have 
the poorest clinical outcome, tending to undergo somatic 
transformation and chemoresistance [130]; however, iden-
tification of subtype-specific serum biomarkers is still a big 
challenge.

Resistance of TGCTs

TGCTs are highly curable tumors in most cases, because 
of the exquisite sensitivity of seminoma and EC to DNA 
damaging agents; however, teratomas are mostly resistant to 
chemotherapeutic drugs [131]. Given that TGCTs are unique 
in their responsiveness to platinum-based chemotherapy, 
they are considered as a model for exploring the molecu-
lar mechanisms behind the exceptional sensitivity of TGCT 
cells to DNA damaging chemotherapeutics. At present, vari-
ous hypotheses on the platinum hypersensitivity of TGCT 
cells have been reported. An easily activated apoptotic 
response and the deficiency of the DNA damage response/
repair activation may account for this behavior [132, 133]. 
The tumor-suppressor gene TP53 commonly mutated in 
solid tumors is rarely mutated in TGCTs (~ 1.29%) [134] 
and silencing of TP53 is sufficient to abrogate the hypersen-
sitivity of TGCT cells to cisplatin [135]. A recent clinical 
whole-exome and transcriptome sequencing study proposes 
that the basis of chemosensitivity in TGCTs with a wild-
type TP53 genomic background is a result of a fundamen-
tal apoptotic propensity caused by increased mitochondrial 
priming [65]. HMGB4, a protein preferentially expressed 
in testes, uniquely blocks excision repair of cisplatin–DNA 
adducts, 1,2-intrastrand cross-links, to potentiate the sen-
sitivity of TGCT cells to cisplatin therapy [136]. Further-
more, chemoresistant teratomas or transformed carcinomas 
are associated with continued progression of reciprocal loss 
of heterozygosity (RLOH) copy number and reduction of 
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pluripotency markers (NANOG and OCT3/4) [65]; however, 
it is uncertain whether the loss of pluripotency markers is a 
driver of chemoresistance.

Although the majority of TGCTs will respond with excel-
lent cure rates, some (more than 10%) patients will relapse 
or demonstrate refractory disease after operation and chem-
otherapy. Limited options exist for patients with platinum 
refractory disease [137]. Exploring the mechanisms under-
lying platinum resistance and identifying novel treatment 
options that are effective in the platinum-refractory patients 
require an urgent priority. Both activation of the PDGFRβ-
AKT pathway [138] and overexpression of MAD2γ [139] or 
cytoplasmic p21 [140] are explored to contribute to cispl-
atin-acquired resistance in TGCT cells. In contrast, disrupt-
ing MDM2-TP53 interaction [141] or stimulating expression 
of miR-302a [142] or miR-383 [143] increases the sensibil-
ity of TGCT cells to cisplatin exposure. Notably, compound 
HP-14 and poly(ADP-ribose) polymerase (PARP) inhibitor 
restrain the growth of cisplatin-resistant TGCT cells [144, 
145].

The mutation rate is uniformly low in TGCTs [73] and 
no significant difference is observed in the mutational rate 
between seminoma and non-seminoma cases [146]. Intrigu-
ingly, several clinical studies of TGCT patients with dif-
ferent response to chemotherapy indicate that some gene 
mutations exhibit discrepancy between resistance and sen-
sitivity. There is a significantly higher incidence of BRAF  
[147] and XRCC2 [146] mutation in chemotherapy-resist-
ant TGCTs compared with sensitive controls. Furthermore, 
mutations in AKT1 and PIK3CA are observed exclusively in 
cisplatin-resistant tumors [148]. Polymorphisms of BLMH 
[149], PAI-1 [150], GSTP1 [151], ARVCF [152], TPMT 
and COMT [153] are associated with reduced survival, 
higher prevalence of early relapses, platinum refractory and 
chemotherapy-related organ toxicity after chemotherapy 
for TGCT patients. Although TP53 mutations rarely occur 
in TGCTs, a recent study of whole-exome and targeted 
sequencing of cisplatin-sensitive and -resistant TGCTs sug-
gests that TP53 alterations (16.3% vs. 0%) and combined 
MDM2/TP53 alterations (24.0% vs. 2.6%) are more common 
among cisplatin-resistant TGCTs than sensitive ones [154]. 
Unlike testicular primary tumors, mediastinal primary non-
seminoma has frequent TP53 alterations (72.2% vs. 2.5%) 
and an increased rate of platinum-based therapy resistance, 
resulting in survival of only ~ 50% [154]. It is noteworthy 
that several studies support the common clonal origin of 
metastatic mature teratoma with other components of a 
mixed germ cell tumor [79, 80]. It’s still an open question 
why different subtypes of a mixed TGCT show the diversity 
of the above identified mutations and how genetics deter-
mine cisplatin resistance. In phase II studies, the combi-
nation of gemcitabine, oxaliplatin and paclitaxel achieves 
long-term overall survival (> 2 years) in ~ 20% of patients 

with cisplatin-refractory or multiply relapsed TGCTs [137, 
155]. By contrast, limited effects are reported in patients 
treated with sunitunib [156], oxaliplatin plus bevacizumab 
[157] or everolimus [158].

Emerging role of miRNAs

MiRNAs recently emerge as an important regulator of 
TGCT cells. MiRNA expression profiles of TGCTs and nor-
mal testis tissues using small RNA sequencing reveal numer-
ous dysregulated miRNAs in TGCTs [159, 160]. Compared 
with normal testes, the expression of some miRNAs (e.g., 
miR-199a-5p/3p, miR-514a-3p) is downregulated, while oth-
ers, such as miR-223-3p, is overexpressed in TGCT tissues. 
Recent research has confirmed the role of miRNAs as either 
tumor suppressors or activators (oncomiRs) in TGCT cells. 
Subsequent identification of functional miRNAs–mRNAs 
interactions in TGCT cells helps delineate post-regulatory 
mechanisms and may lead to new therapies.

Forced expression of miR-199a-5p/3p in TGCT cells 
leads to suppression of cell growth, cancer migration, inva-
sion and metastasis [161], indicating that miR-199a-5p/3p 
may act as a tumor-suppressor miRNA. Tumor cell suppres-
sion activity of the miR-199a-5p is mediated by its target 
PODXL [161] and MAFB [4], while miR-199a-3p inhibits 
tumor cell growth and migration via targeting transcrip-
tion factor SP1 and glucose metabolism [5]. Furthermore, 
miR-199a-5p/3p and miR-214 can form a self-regulatory 
network via PSMD10-TP53-DNMT1 in TGCT cells [162]. 
MiR-514a-3p induces apoptosis through direct regulation 
of PEG3 and PEG3-mediated activation of the NF-kappa B 
pathway [159]. High miR-223-3p expression in TGCT cells 
targets FBXW7 to promote cell growth and inhibit apopto-
sis in TGCT cell lines [163]. OncomiR miR-1297 promotes 
growth of TGCT cells via targeting tumor-suppressor gene 
PTEN [164] and long-noncoding RNA MEG3 contradicts 
the inhibitory effects of miR-1297 on PTEN [165]. In vivo 
evidence should be included in miRNA studies to validate 
the involvement of miRNAs in TGCT progression in future.

Database to stimulate TGCT study

Gene Expression Omnibus (GEO) is an international pub-
lic repository that archives and freely distributes micro-
array, next-generation sequencing and other forms of 
high-throughput functional genomics data submitted by 
researchers. The GEO database can be searched using many 
different attributes including keywords (e.g., testicular germ 
cell tumor) and GEO accession (e.g., GSE1818). Further-
more, the GEO2R in GEO website allows us to compare 
two or more groups of samples in a GEO series to identify 
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differentially expressed items and thus provides a simple 
interface that allows users to perform analysis without R 
statistical expertise. Taking the advantage of the GEO data-
base, we can obtain informative knowledge about TGCTs. 
For example, GSE1818 provides RNA profiling of normal 
testis (n = 3), IGCN (n = 3), seminoma (n = 3), EC (n = 5), 
yolk sac (n = 4), teratoma (n = 4) and choriocarcinoma 
(n = 1). Using GEO2R to perform multiple comparisons, a 
series of predominant genes are observed for normal testis 
(e.g., KIF2A, DDEF2, and TBPL1), IGCN (e.g., CYP17A1 

and ACE2), seminoma (e.g., CAPNS1, ZKSCAN3, and 
EIF3F), EC (e.g., GAL, BCAT1, and CALB1), yolk sac (e.g., 
APOA2 and CYP26A1), teratoma (e.g., COL1A1, COL61, 
and MFAP4) and choriocarcinoma (e.g., INSL4, CRH, and 
HTRA4) (Fig. 3a). It will be interesting to identify specific 
marker genes that mark the formation of IGCN and transi-
tion from IGCN to invasive TGCTs, because measures can 
be taken before IGCN progression toward malignant and 
invasive TGCTs or their relapse. Furthermore, RNA profil-
ing of relapsed seminoma (n = 15), non-relapsed seminoma 

Fig. 3  GEO datasets representing a community resource to study 
TGCTs. a The dataset GSE1818 is particularly useful for compari-
sons between various histological subtypes of TGCTs versus each 
other or versus normal testis. b DEGs between relapsed and non-

relapsed TGCTs are obtained by analyzing GSE99420. c Noel et al. 
provided an expression profiling of parental and cisplatin-resistant 
TGCT cell lines under accession no. GSE14231
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(n = 15), relapsed non-seminoma (n = 12) and non-relapsed 
non-seminoma (n = 15) is included in GSE99420. Differ-
entially expressed genes (DEGs) are obtained by GEO2R 
analysis between relapsed TGCTs and non-relapsed TGCTs 
(Fig.  3b). Moreover, GSE14231 identifies significant 
changes of RNA profiling in three human TGCT cell lines 
(833 K, GCT27 and Susa) and their cisplatin-resistant vari-
ants (n = 2 each group), and these DEGs are considered to 
participate in cisplatin sensitivity or resistance of TGCT 
cells (Fig. 3c).

The Cancer Genome Atlas (TCGA) provides comprehen-
sive and multi-dimensional maps of the key genomic changes 
in 33 types of cancer, including TGCTs. The genomic infor-
mation of TCGA helps to improve the prevention, diagnosis 
and treatment of cancer. The cBioPortal for Cancer Genom-
ics (http://cbiop ortal .org/) provides visualization, analysis 
and download of large-scale cancer genomics data sets, 
including TCGA [166, 167]. A recent systematic analysis 
of TCGA database concludes that TGCTs exhibit high ane-
uploidy and a markedly low rate of somatic mutation (mean 
0.5 mutations per Mb) [73], consistent with previous exome-
wide sequencing studies [146, 168, 169]. Somatic mutation 
of only three genes (KIT, KRAS, and NRAS) achieves signifi-
cance in TGCTs, whereas large-scale copy number variation 
such as gain of chromosomal material from 12p is frequently 
observed [73]. Using TCGA and cBioPortal, a comparison 

of seminoma (n = 69) and EC (n = 31) samples obtains a 
list of differentially expressed miRNAs. Notably, miR-515 
family that lists between DPRX and NLRP12 gene in Chr 19 
accounts for approximately 55% of predominantly expressed 
genes in EC as compared with seminoma (Fig. 4). The role 
of miR-515 family in the distinction of EC from seminoma 
deserves further investigation.

Concluding remarks

In summary, we described the developmental (origin and 
progression), genetic (susceptibility loci) and molecular 
(resistance mechanisms, miRNA involvement) aspects of 
TGCTs, and discussed the emerging TGCT mouse models, 
public database resources and serum diagnostic markers 
with application prospects.

TGCTs are histologically heterogeneous and distinctly 
curable with chemotherapy. One major challenge is the 
development of therapeutic approaches for cisplatin-
refractory or multiply relapsed TGCTs. TGCTs are highly 
curable tumors in most cases, because of their exquisite 
sensitivity of seminoma and EC to DNA damaging agents; 
however, teratoma are mostly resistant to chemothera-
peutic drugs [131]. In most cases, surgical resection is 
specifically required for teratomas and identifying ways 

Fig. 4  An example of data 
analysis using TCGA and 
cBioPortal. MiRNA profiling 
data of 31 patients with EC 
and 69 patients with seminoma 
was extracted from the TCGA 
database and DEGs were 
analyzed. Notably, miR-515 
family that lists between DPRX 
and NLRP12 gene in Chr 19 
accounts for approximately 55% 
of predominantly expressed 
genes in ECs

http://cbioportal.org/
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to discern teratomas from nonviable tissues after chemo-
therapy is important to avoid unnecessary invasive sur-
geries. Malignant transformation of TGCTs into somatic 
malignancy is uncommon [170]. Patients whose primary 
TGCTs contain yolk sac tumor and seminoma have a poor 
clinical outcome, tending to undergo chemoresistance and 
somatic transformation within their metastatic lesions after 
chemotherapy [130]. Similarly, teratoma with malignant 
transformation had a worse prognosis than other types of 
TGCTs [171].

Patient-derived xenografts (PDX) are models of cancer 
where the tissue or cells from a patient’s tumor are implanted 
into immunodeficient or humanized mice. PDX provides 
unique opportunities for cancer research, treatment evalua-
tion and drug discovery. However, understanding the limita-
tions of PDX models and the difference between PDX and 
human tumors in their natural environment is required for 
optimal application. Firstly, it is vital to ensure that appropri-
ate PDX tumor model is used, because several studies sug-
gest that human tumors engrafted in immunodeficient mice 
are susceptible to the formation of lymphocytic neoplasms 
[172, 173]. Secondly, PDX undergo mouse-specific tumor 
evolution and show genomic instability; for instance, the 
copy number alteration landscapes of PDX change continu-
ously and differ from those acquired in patients [174, 175]. 
Moreover, further development and use of mouse genetic 
TGCT models will provide novel insight into the underlying 
molecular mechanisms of TGCTs, as well as useful tools 
to test therapeutic strategies. Nevertheless, whether mouse 
TGCT models precisely reflect the biology of various sub-
types of human TGCTs requires to be determined.

Targeting of tumor cells is not equivalent to targeting 
tumor tissues. Tumor cells display extensive and dynamic 
cross-talk with the microenvironment, mainly containing 
tumor-infiltrating lymphocytes, tumor-associated mac-
rophages, cancer-associated fibroblasts, surrounding stroma 
and tumor vasculature [176]. TGCTs are frequently charac-
terized by T lymphocyte infiltration [177]. Deep immune 
characterization of TGCTs shows that activated T cell infil-
tration is closely correlated with seminoma histology, early 
stage and good prognosis. Seminomas show increased T cell 
infiltration, decreased regulatory T cells, increased program 
death-ligand 1 (PD-L1) and increased program-death 1 (PD-
1)/PD-L1 spatial interaction compared with non-seminoma 
[73, 178, 179]. EMMPRIN secreted by EC cells via mem-
brane vesicles exerts its matrix metalloproteinase-inducing 
effect on fibroblasts within the tumor microenvironment to 
promote tumor invasion [180]; thus, EMMPRIN may pre-
dict an unfavorable prognosis in patients with TGCTs [181]. 
MiR-125b in TGCT tumor cells promotes TGCT xenograft 
growth through stimulating the recruitment of tumor-associ-
ated macrophages [182]. In addition to the intrinsic proper-
ties of tumor cells, more attention should be paid to tumor 

microenvironment and corresponding therapeutics directing 
against ‘tumor’ rather than ‘tumor cells’.

Anti-PD-1 is standard immunotherapy for multiple can-
cers, and the expression of its ligand, PD-L1, has been 
described in TGCTs [6, 183]. Immunotherapy using PD-1/
PD-L1 inhibitors (e.g., pembrolizumab) has been performed 
to treat platinum-refractory TGCTs [184, 185]. However, a 
phase II study of anti-PD-1 in refractory TGCTs (Clinicaltri-
als.gov, NCT02499952) was terminated due to lack of effi-
cacy. Pembrolizumab is well tolerated, but does not appear 
to have clinically meaningful single-agent activity [186]. 
brentuximab vedotin (BV) is an antibody–drug conjugate 
consisting of the chimeric anti-CD30 antibody conjugated 
to an antimitotic drug monomethylauristatin E [187–189]. 
A phase II trial of BV in refractory CD30-positive TGCTs 
(ClinicalTrials.gov, NCT01851200) has been completed; 
however, the clinical outcomes have not been reported.
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