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Abstract
Dihydrosphingolipids refer to sphingolipids early in the biosynthetic pathway that do not contain a C4-trans-double bond 
in the sphingoid backbone: 3-ketosphinganine (3-ketoSph), dihydrosphingosine (dhSph), dihydrosphingosine-1-phosphate 
(dhS1P) and dihydroceramide (dhCer). Recent advances in research related to sphingolipid biochemistry have shed light on 
the importance of sphingolipids in terms of cellular signalling in health and disease. However, dihydrosphingolipids have 
received less attention and research is lacking especially in terms of their molecular mechanisms of action. This is despite 
studies implicating them in the pathophysiology of disease, for example dhCer in predicting type 2 diabetes in obese indi-
viduals, dhS1P in cardiovascular diseases and dhSph in hepato-renal toxicity. This review gives a comprehensive summary 
of research in the last 10–15 years on the dihydrosphingolipids, 3-ketoSph, dhSph, dhS1P and dhCer, and their relevant roles 
in different diseases. It also highlights gaps in research that could be of future interest.
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Abbreviations
3-KR  3-Ketosphinganine Reductase
4-HPR  N-(4-Hydroxyphenyl) retinamideFenretinide
γ-TE  γ-Tocotrienol
ACER3  Alkaline ceramidase 3
ACSL5  Acyl-coenzyme A synthase

ACSL5  Δ20 acyl-coenzyme A synthase lacking exon 
20

ADH  Adiponectin hormone
AHA  American Heart Association
Akt  Protein kinase B
AMPK  AMP activated protein kinase
BMI  Body mass index
CAD  Coronary artery disease
cAMP  Cyclic adenosine 3ʹ,5ʹ-monophosphate
cDase  Ceramidase
cdk2  Cyclin dependent kinase 2
Cer  Ceramide
CERKL  Ceramide like kinase
CERK  Ceramide kinase
CerS  Ceramide synthase
CFTR  Cystic fibrosis transmembrane conductance 

regulator
COX-2  Cyclooxygenase 2
CRF  Cardiorespiratory fitness
CTGF  Connective tissue growth factor
CVD  Cardiovascular disease
Des1  Dihydroceramide desaturase 1
Des2  Dihydroceramide desaturase 2
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DhCer  Dihydroceramide
DhSph  Dihydrosphingosine/Dihydrosphinganine
DhS1P  Dihydrosphingosine 1 phosphate/dihy-

drosphinganine 1 phosphate
EAP  Ethanolamine phosphate
ER  Endoplasmic reticulum
ERK  Extracellular signal regulated kinases
FAK  Focal adhesion kinase
FB1  Fumonisin B 1
FFA  Free fatty acid
HDAC2  Histone deacetylase 2
HDL  High density lipid
HepG2  Human hepato-carcinoma cell
HIF1-α  Hypoxia inducible factor 1-α
HOMA-IR  Homestasis model of insulin resistance
HSP27  Heat shock protein 27
HUVEC  Human umblical endothelial cell
FTY720  Fingolimod
IL-1  Interleukin 1
IL-6  Interleukin 6
JNK  c-Jun N terminal kinase
LDL  Low density lipid
LPS  Lipopolysaccharide
LRS  Lipidomic risk score
MAPK  Mitogen activated protein kinases
MI  Myocardial infarct
MnTBAP  Manganese(III) tetrakis (4-benzoic acid) 

porphyrin
MTORC1  Mammalian target of rapamycin complex 1
NADH  Nicotinamide adenine nucleotide
NADPH  Nicotinamide adenine nucleotide phosphate
NAFLD  Non-alcoholic fatty liver disease
NFATC   Nuclear factor of activated T cells
NK-kβ  Nuclear factor kappa light chain enhancer of 

B cell
Nrf2  Nuclear factor erythroid related factor 2
PDGF  Platelet derived growth factor
PDT  Photodynamic therapy
PeIF2α  Phosphorylated eukaryotic translation initia-

tion factors 2α
PERK  PKR like endoplasmic reticulum kinase
PKCα  Protein kinase Cα
PLD  Phospholipase D
PPARγ  Peroxisome proliferator-activated receptor γ
RAR   Retinoic acid receptor
RMC  Renal mesengial cell
ROS  Reactive oxygen species
S6K  Ribosomal protein S6 kinase
SAFHS  San Antonio Family Heart Study
SEK-1  Dual specificity mitogen activated protein 

kinase kinase 1
SD  Sprague Dawley
SK 1 and 2  Sphingosine kinase 1 and 2

S1P  Sphingosine 1 phosphate
S1PP  Sphingosine 1 phosphate phophatase
S1PR1–5  Sphingosine 1 phosphate receptor 1–5
SPL  Sphingosine 1 phosphate lyase
SPT  Serine palmitoyltransferase
SPLTC1  Serine palmitoyltransferase long chain base 1
SPTLC3  Serine palmitoyltransferase long chain base 3
STEMI  ST-segment elevation myocardial: infarct
SCC19  Squamous cell carcinoma cell
T2DM  Type 2 diabetes mellitus
TNF-α  Tumour necrosis factor α
VEGF  Vascular endothelial growth factor
WC  Waist circumference

Background

Since their discovery in the 1800s, sphingolipids have been 
shown to play key roles in physiological and pathological 
states by functioning as mediators or effectors of cellular 
signals. They are integral components of all eukaryotic cell 
membranes. It is now known that sphingolipids play a role in 
cell apoptosis, autophagy, oxidative stress and inflammation 
[1, 2, 3] and in disease states such as cancer, multiple sclero-
sis and diabetes [4, 5, 6]. These cellular events are effected 
through activation and interaction of the sphingosine 1 phos-
phate receptors (S1PR1–5), enzymes such as sphingosine 
kinases (SK 1 and 2), ceramide synthases (CerS1–6) or 
sphingolipids such as sphingosine 1 phosphate (S1P), and 
ceramides (Cers) [7]. Accordingly, there is significant inter-
est in targeting the enzyme of sphingolipid metabolism and 
S1PRs in the discovery of new therapies. The term sphin-
golipids extends to a lot of other lipids and enzymes within 
the sphingolipid de novo biosynthesis pathway (Fig. 1). 
These include 3-ketoSph, dhSph, dhS1P and dhCer, as 
well as enzymes such as serine palmitoyltransferase (SPT), 
dihydroceramide desaturases (Des 1 and 2), and cerami-
dases (CDases). Here we, attempt to give a comprehensive 
review of literature focusing on the evidence for the role of 
the aforementioned dihydropshingolipids in relevant disease 
states and the associative effects they may have or the pos-
sible roles they may play. The information presented in this 
review was derived through data searches in Ovid, Medline 
and Embase using the MeSH terms (dihydrosphingosine 
1-phsophate, sphinganine 1 phosphate, 3-ketosphinganine, 
dihydroceramide, dihydrosphinganine and dihydrosphingo-
sine) and keyword searches of the same. The articles derived 
from the search were limited to human and animal studies 
and the English language. It is hoped that this review will 
also shed light on much needed areas of research on the 
relevance of dihydrosphingolipids and their roles in diseases.
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De novo synthesis of sphingolipids

Briefly, apart from the de novo synthesis pathway (Fig. 1), 
sphingolipids are also synthesized through the salvage path-
way and the sphingomyelin pathway. Regulation of plasma lev-
els of sphingolipids generally occurs through the de novo syn-
thesis pathway [8]. The backbone of the sphingolipids are Sph 
and dhSph, which are composed of an amino alcohol, from 
which all the other sphingolipids are derived by the enzymatic 
activity of a number of enzymes along the pathway. Most of 
the enzymatic activities along the de novo synthesis pathway 
are reversible except a few, including the conversion of dhCer 
to Cer. Thus, the enzymes responsible for this, Des-1 and -2, 
have now been described as gatekeepers [9].

The segment of the pathway that begins at Des-1 and -2 to 
S1P which includes Cer, Sph and S1P has been studied the 
most and their relevance in disease is well documented by 
other reviewers [10–13]. Therefore, in this review, the focus 
is on highlighting dhCer, dhS1P, dhSph and 3-ketoSph; dihy-
drosphingolipids; and the possible regulatory and contributory 
effects of these dihydrosphingolipids in diseases.

DhCer in disease

Overview and structure

DhCers lack the C4-double bond observed in Cers (Fig. 2); 
however, they also serve as precursors of complex sphin-
golipids such as dihydrosphingomyelins and dihydrogan-
gliosides. For years, dhCers were thought to be biologi-
cally inactive due to them being less abundant, compared 
to Cers. This perception changed with the development of 
fenretinide [(N-(4-hydroxyphenyl)retinamide]-(4-HPR), 
which was found to inhibit Des-1 by the Merill Group 
[14]. Des-1 is found in all tissues, whereas Des-2 has been 
found in skin, intestine and kidney [15]. A later study fur-
ther showed that the ablation of Des-1 and 2 shifts sphin-
golipid synthesis pathway toward the sphingolipid lacking 
the double bond introduced by Des-1 and -2, such as dhS1P, 

Fig. 1  De novo sphingolipid biosynthesis pathway. In the de novo 
pathway, the condensation of palmitoyl-CoA and serine by the 
enzyme SPT forms 3-ketoSph. This is then reduced by 3-KR to 
dhSph. The acylation and phosphorylation of dhSph by CerS1-6 and 
SK 1 and 2 leads to the formation of dhCer and dhS1P, respectively. 
Des-1 and -2 then catalyze the desaturation of dhCer to Cer, which is 

a non-reversible reaction. The metabolization of Cer by CDase pro-
duces Sph. The production of S1P from Sph is exclusively phospho-
rylated by SK 1 and 2. S1P is then degraded to ethanolamine phos-
phate (EAP) and trans-2-hexadecenal by S1P lyase (SPL). DhS1P and 
S1P can be converted back to dhSph and Sph by S1P phosphatase 
(S1PP) and dhSph and Sph to dhCer and Cer, respectively, by cDase

Fig. 2  Comparison of C2-ceramide with C2-dihydroceramide, with-
out the double bond
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dhSph, dhsphingomyelin (dhSM) and especially dhCer [16]. 
Together, these discoveries led to new functional discoveries 
for dhCers in apoptosis, autophagy, hypoxia and cell prolif-
eration, as reviewed by Siddique et al. [17].

In the conventional sphingolipid synthesis pathway, dhC-
ers are produced as a result of the addition of fatty acyl-
CoAs of differing chain lengths to dhSph by the enzyme 
CerS. The six isoforms of CerS expressed in mammalians 
are encoded by different chromosomes and exhibit pref-
erence for a defined chain length of fatty acyl-CoA [18], 
therefore portraying different functional, structural and bio-
chemical attributes [19]. The dhCer chain lengths that are 
mentioned in this review are summarized in Table 1, except 
for the studies in cancer cells. It should be noted that most 
of the studies referenced in the table also had alterations in 
the Cer levels; however, they have not been mentioned due to 
the focus of the review in highlighting dhCers and the other 
dihydrosphingolipids. The majority of the studies in which 
dhCer has been mentioned, from 1990s to 2009, used cell 
penetrant dhCer bearing short acyl chains as negative con-
trols in experiments tailored toward elucidating the effects 
of Cers in biological systems or disease conditions [20–22]. 
Due to the way in which these were used, most reported no 
effects and thus will not be included here. However, evi-
dence contained in more recent studies paint a different pic-
ture of longer chain dhCers in terms of diseases.

DhCer in brain diseases

Research on sphingolipids in the brain has focussed on the 
glycolipids which include the cerebrosides, gangliosides 
and ceramide oligosaccharides as well as on Cers. Though 
Sun et al. [60] give a comprehensive review of the role of 
sphingolipids in stroke, the review does not highlight dihy-
drosphingolipids, which may be due to most of the studies 
focussing on other sphingolipids. Here, we highlight studies 
that have mentioned dhCer levels in brain-related diseases.

A study investigating the effects of hypoxia on sphin-
golipid metabolism in human cerebral endothelial cells 
found that dhCers (long chains) were increased together 
with other sphingolipids [23]. In addition, increased dhCer 
levels were also seen after subarachnoid haemorrhage [24]. 
Both of these studies allude to the involvement of dhCer 
in the mechanisms of disease in oxygen deprivation states 
such as stroke. Not only this, but dhCer levels have also 
been noted to be altered in studies related to certain neuronal 
diseases such as luekodystrophia [26], Alzheimer’s [61], 
Huntington’s disease (HD) [62] and in episodic migraineurs 
[25]. Though the cause of migraines is not so clear, genetic 
anomalies in the enzymes could have played a part in the 
reduced levels of dhCer seen in the migraine study, as shown 
by Matesanz et al. [63]. This study hypothesized that the 
splice variant of the acyl-coenzyme A synthase 5 (ACSL5) 

gene which lacked exon 20 (ACSL5-Δ20), could have led 
to the decrease in CerS, and thus dhCer levels. On the other 
hand, genetic mutations in other enzymes such as ACER3, 
which is an alkaline ceramidase (CDase), have been linked 
to elevated dhCer (C18:1 and C20:1) levels observed in the 
plasma of childhood leukodystrophic twin patients with a 
genetic mutation at p.E33G, responsible for the catalytic 
activity of ACER3. In Alzheimer’s disease, the inhibition 
of the gatekeeper enzyme, Des-1 byXM461 and XM462, 
increased dhCer levels in Alzheimer’s transgenic mice, 
which led to the induction of autophagy and reduced amy-
loid secretion by neuronal cells through loss of ribosomal 
protein S6 kinase (S6K) activity due to reduced mamma-
lian target of rapamycin complex 1 (MTORC1) activity [64].
The autophagy effect exerted by increased dhCer observed 
in this study is corroborated by studies in cancer cells that 
have shown similar effects [65, 66]. However, clinically, 
others have shown that increased plasma dihydroshingomy-
elin/dhCer and sphingomyelin/Cer ratios are predictive of 
slower progression among Alzheimer’s disease patients [61]. 
In addition, reduced dhCer (C18:0) including dhSph and 
dhS1P levels and mRNA expression of the enzymes CerS1 
and serine palmotyltransferase long chain base 1 (SPLTC1) 
have been observed in transgenic mice brains manifesting 
HD. These reductions may be a result of the reduced level 
of SPLTC1, which impacts the entire de novo sphingolipid 
synthesis pathway. These studies show an association of 
dhCer with the progression of degenerative brain diseases 
as well as in other brain-related diseases, which makes it a 
potential target as a biomarker. There are also conceivable 
genetic associations of the enzymes in the sphingolipid path-
way with neurodegenerative diseases. However, whether or 
not dhCer has a causal effect is an area that warrants further 
research.

DhCer in diabetes

It is now known that dyslipidaemia commonly occurs in 
diabetes [67], which is a major risk factor for developing car-
diovascular diseases (CVDs) [68]. The main characteristic of 
dyslipidemia in diabetes is high triglyceride levels, reduced 
high-density lipids (HDL) and slightly elevated low-density 
lipids (LDL)-cholesterol, with a dominance of the athero-
genic small dense LDL [69]. Studies have shown that the 
sphingolipid, S1P, is bound to HDL in plasma and its distri-
bution is shifted to other non-HDL carriers in the plasma, 
when HDL levels are low [70]. A number of studies also 
support the role of Cer and Cer16:0 in particular, in insulin 
resistance and glucose intolerance [71–74]. These evidences 
show that sphingolipid metabolism and transport, including 
dhCer, can be altered in diabetes affecting insulin resistance 
and mitochondrial and adipose tissue homeostasis.
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Table 1  Summary of the dhCer acyl chain length-specific effects in the different pathologies mentioned in the review

Effects Study type Type of cell, animal or 
sample

Pathways involved dhCer acyl chain length Levels References

Brain disease and dhCer
 Hypoxia In vitro Cerebral endothelial cells Long chain (unspecified) ↑ [23]
 Subarachnoid haemor-

rhage
Human CSF Unspecified ↑ [24]

 Episodic migraine Human Plasma Very long chain (unspeci-
fied)

↑ [25]

 Leukodystrophia Human Plasma Unspecified ↑ [26]
Diabetes, aging and dhCer
 Insulin inhibition by 

palmitate
In vitro C2C12 muscle cell Inhibition of Akt/PKB 

pathway
Unspecified ↑ [27]

 Gluoco-lipotoxicity In vitro β-Islet cells C16:0, C18:0, C22:0, 
C24:1

↑ [28]

In vitro Isolated β-islet cells C16:0 ↑ [29]
 Reduced mitochondrial 

respiration
In vitro C2C12 myotubes Long chain (unspecified) ↑ [30, 31]

 Cer channel formation in 
mitochondria

In vitro Isolated mitochondria C16:0, C2:0 ↑ [32]

 Increased dhCer In vitro Mature adipocytes Nutrient stress pathway 
involving AMPK

Unspecified ↑ [33]

 Increased insulin sensi-
tivity by overexpress-
ing adiponectin

In vitro Rat single muscle cells C20:0 ↓ [34]

 Inhibition of plasma 
insulin signalling and 
amino acid transport

In vitro Primary human tropho-
blast cells

Unspecified ↑ [35]

 Insulin resistance in high 
fat and high fructose 
diet

In vivo Rhesus monkeys Unspecified ↑ [36]

In vivo Rat single muscle cells C20:0 ↓ [37]
 Insulin resistance due to 

adiposity
In vivo Lactating cows Unspecified ↑ [38]

 Associated with BMI 
and increased waist to 
hip ratio

Human Plasma Unspecified ↑ [39, 40]

 Associated with higher 
plasma cholesterol and 
statin use

Human Plasma C20:0 ↑ [40]

 Correlated with waist 
circumference

Human Plasma C18:0, C20:0, C22:0, 
C24:1

↑ [41]

 Obesity and type 2 
diabetes

Human Plasma C24:1, C18:0 ↑ [42–44]

 Increased insulin sensi-
tivity due to diet and 
exercise and antidiabe-
tes therapy

Human Plasma Unspecified, C18:0, 
C24:1

↓ [45, 46]

 Associated with lower 
cardio-respiratory 
fitness in older adults 
(< 55 years)

Human Plasma C20:0 ↑ [47]

 Hypoxia In vivo Right ventricles of rats C16:0 ↑ [48]
Cardiovascular disease and dhCer
 Induced apoptosis in 

the presence of high 
concentrations of 
saturated fat

In vivo Cardiac myocytes C16:0 ↑ [49]
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Insulin resistance

Insulin resistance is an important factor in type 2 diabetes 
and pre-diabetes [75], while chronic exposure to free fatty 
acids (FFA), such as palmitate, causes insulin resistance. In 
cellular models (C2C12 myotubes and isolated β-islet cells) 
of insulin resistance induced by palmitate, increased dhCer 
(C16:0), Cer (C16:0) and dhSph have been noted [27, 29]. 
The study in C2C12 myotubes also indicated the inhibition 
of the Akt/PKB pathway in promoting the insulin resistance 
[27], which is similar to how Cer has been shown to antago-
nize insulin signalling [72]. Others have shown that pal-
mitate causes an increase in specific dhCer (C16:0, C18:0, 
C22:0, C24:1) and Cer chain lengths, resulting in glucolipo-
toxicity in beta cells [28]. These studies denote the changes 
in dhCer as associative effects, rather than a causal effect. 
There are recent studies which imply that dhCer and the de 
novo sphingolipids could have an additive effect to that of 
Cers. For example, Reali et al. [71] showed in their model 
of ob/ob mice macrophage that increases in the enzymatic 
activity of CerS6 led to increased Cer C16:0 and that the 
impairment of insulin signalling in these model occurred 
at 16 weeks when the levels of all the sphingolipids were 
upregulated. This increase in all sphingolipids provides a 
link to the clinical [76] and animal [36] studies that have 
shown increases in both dhCer and Cer levels. This is fur-
ther supported by findings that the enzymes SPT, CerS 
and Des-1 are not specific to one type of sphingolipid in 
their sensitivity but quite diffuse [71], implying that they 
contribute towards balancing the regulation of sphingolip-
ids. Perhaps, this is one of the reasons for the insignificant 
changes in Cer levels seen in the same cohort of patients 

with significant increase in dhCer levels [76]. Moreover, 
the type of abundant saturated fats available in the system 
could also determine the type of dhCer species produced. 
For example, when SPT is induced by high saturated fats, it 
has been shown to switch substrate specificity (palmitate to 
myristate), producing different dhCer C16:0 species [49]. In 
terms of therapy, increasing the expression of adiponectin 
receptors in single muscles of rats fed a high fat diet did 
increase the insulin sensitivity and also reduced the level 
of dhCer and Cer [77], which may be occurring through the 
adiponectin/AMP-activated protein kinase (AMPK) path-
way. Activation of the adiponectin–AMPK pathway leads to 
inhibition of manoyl-CoA resulting in the increase of car-
tinine palmitoyltransferase 1 (CPT1), the rate-limiting step 
in fatty acid oxidation [78]. Furthermore, two other studies 
have also noted increase in the levels of dhCer and Cer in 
primary human trophoblasts (PHT) [35], and in cows tran-
sitioning from gestation to lactation [38], implicating these 
sphingolipids in gestational diabetes.

These studies show that the changes in dhCer levels in 
lipid-driven insulin signalling are directly related to it being 
a precursor to Cers and that Cer is involved in insulin resist-
ance. However, it should be noted that these studies were 
aimed at Cer; therefore, the question of the effect that dhCers 
has on insulin signalling still remains unanswered.

Mitochondrial homeostasis

The clinical complications associated with type 2 diabetes 
such as dyslipidaemia, hyperglycaemia and insulin resist-
ance are linked to mitochondrial defragmentation [79]. 
Mitochondrial homeostasis is maintained through a balance 

Table 1  (continued)

Effects Study type Type of cell, animal or 
sample

Pathways involved dhCer acyl chain length Levels References

 Coronary artery disease In vivo Atherosclerotic plaques Induced IL-6 Unspecified ↑ [50, 51]
Lung disease and dhCer
 Cystic fibrosis In vitro Lung epithelial cells C16:0 ↑ [52]
 Effect of inhibition of 

CerS by FTY720
In vitro Human lung epithelial 

cells
Defective expression of 

CFTR gene
Unspecified ↓ [53]

 Emphysema, autophagy 
in hypoxic state, 
decreased lung cell 
proliferation

In vivo SD rat lung, lung epithe-
lial cells

Reduced HIF-1α and 
VEGF protein expres-
sion

Unspecified ↑ [54] [55]

Liver disease and dhCer
 Inflammation In vitro HeG2 Cells Unspecified ↑ [56]
 Knock down of Des-1 In vitro Huh7 hepatocyte cells Unspecified ↑ [57]
 Raised in hepato cell 

carcinoma than hepatic 
cirrhosis

Human plasma Unspecified ↑ [58]

 Raised in non-alcoholic 
fatty liver disease

Human plasma C16:0, C18:0, C24:0, 
C24:1

↑ [59]
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of fusion and fission, mitochondrial biogenesis and degrada-
tion. Increased longer chain dhCer due to ablation of Des-
1−/− in mouse embryonic fibroblasts and Des-1 inhibition 
in C2C12 myotubes reduced mitochondrial respiration and 
complex IV (cytochrome c oxidase) expression in the pres-
ence of lipopolysaccharides (LPS) [31, 80]. Complex IV 
catalyses the final step in the mitochondrial electron transfer 
chain and is thought to be a major regulation site for oxida-
tive phosphorylation [30]. A reduction in complex IV would 
impair ATP synthesis. Introduction of LPS to the C2C12 
myotubes caused an increase in Cers and had opposite effect 
to dhCers. LPS also increased oxidative stress and mito-
chondrial fission through dynamin-related protein 1 (DRP1) 
which was inhibited when SPT was inhibited by myriocin. 
Increase in DRP1 and oxidative stress leads to increased 
mitochondrial defragmentation and insulin resistance [81]. 
Another study has shown that dhCer (C2, 95% and C16, 
51%) can inhibit Cer channel formation in mitochondria 
[32], inhibiting apoptosis. The study in mouse embryonic 
fibroblasts also found the Des-1−/− cells to be resistant to 
apoptosis through the Akt/PkB pathway, but had increased 
autophagy through AMPK activation as a result of the 
impaired ATP synthesis. These studies show that dhCer can 
disrupt the processes of mitochondrial biogenesis and deg-
radation, and contribute towards improving mitochondrial 
function by increasing autophagy and decreasing apoptosis, 
inhibiting mitochondrial respiration and possibly inhibiting 
DRP1 and oxidative stress.

Apidose tissue homeostasis

A number of researchers have shown how the selective 
manipulation of Des-1 and its substrates may be a patho-
physiologically advantageous strategy to improve adipose 
tissue homeostasis and ameliorate the burden of obesity-
associated metabolic complications. For example, Barbar-
roja et al. [33] showed that an ablation in expression of 
Des-1 or the pharmacological inhibition of Des-1 in 3T3-L 
cells led to an increase in dhCer/Cer ratio with concurrent 
increases in oxidative stress, cell death and inhibition of 
cell differentiation. Their results also showed an increase 
in the protein expression of GLUT4, which facilitates the 
uptake of glucose from the plasma. Moreover, 5- to 16-fold 
increases in dhCer with activation of p38-MAPK, protein 
phosphorylated eukaryotic translation initiation factor 
2α (PeIF2α) and autophagy markers (Beclin1 and LC3B 
II) have been observed in mature adipocytes treated with 
4-HPR-fenretinide [34]. PeIF2α is involved in the nutrient 
stress response pathway, which has been shown to contrib-
ute to the pathogenesis of diabetes. In this study, 4-HPR-
fenretinide was shown to utilize both retinoic acid receptor 
(RAR)-dependent and -independent pathways to regulate 
adipogenesis and prevent obesity in mice fed a high fat diet. 

The RA-dependent pathway results in increased Cer despite 
the presence of 4-HPR-fenretinide, an example of which is 
given by Bikman et al. [37]. 4-HPR-fenretinide is a structural 
derivative of retinoic acid, and research in cancer cells has 
also shown that this compound and dhCer are associated 
with the activation of cellular stress responses and induction 
of autophagy [65, 82]. In fact, a recent study in kidney cells 
has shown that 4-HRP-fenretinide induced polyubiquitina-
tion of Des-1, which exhibited “gain of function” and acti-
vated pro-survival pathways, p38 MAPK, JNK and X-Box 
Protein-1s [83]. In addition, dhCers directly suppressed the 
transcriptional activity of peroxisome proliferator-activated 
receptor gamma (PPARγ) similar to that seen in Degs1 
(Des-1 regulatory gene) ablation, which also suppressed cyc-
lins (D1, D3 and E) and cyclin-dependent kinase 2 (cdk2), 
thus impairing adipocyte programming in pre-adipocytes 
[33]. PPARγ plays a central role in adipogenesis and lipid 
metabolism [84]. We would like to note that the inhibition or 
ablation of Des-1 led to feedback inhibition and downregu-
lation of SPLTC1 and CerS6, a systemic counter balancing 
mechanism which could be triggered by the increased dhCer 
levels.

These studies showed that dhCer could be involved in 
the disruption of adipogenesis and cause cell death either 
as a direct result of Des-1 inhibition or by itself. Since the 
inhibition of Des-1 certainly leads to dhCer accumulation, 
it is possible that it disrupted adipogenesis early on through 
inhibition of PPARγ transcription, which is necessary 
for the terminal differentiation of the adipocytes, and the 
increased oxidative stress and cell death through autophagy 
can be attributed to dhCer. However, whether it functions as 
a ligand or has lipid–protein interactions or lipid–enzyme 
interactions is elusive since these studies focussed on Des-1.

Epidemiological findings

Epidemiological studies aimed at decoding the associations 
between sphingolipids and known risk factors [42, 43, 85] or 
markers for diabetes [39, 40] show increases in dhCer to be 
precedent of increases in Cer, with concomitant reductions 
seen when diet, exercise and anti-diabetics are introduced 
[45, 46]. While others found it to have no longitudinal or 
cross-sectional association with pre-diabetes or diabetes, 
Cer (C18:0, C22:1) did [39]. This can be attributed to the 
progression of the de novo synthesis pathway towards Cer. 
However, there are at least two studies which show dhCer 
levels to be opposite to that of Cers. One study found dhCer 
to be genetically correlated with waist circumference [41], 
while Cer was not, even after adjusting for confounders such 
as age and sex, and accounting for genetic differences by 
using polygenic models. The other study found dhCer to 
be elevated in the abdominal adipose tissue of obese and 
non-obese diabetics when compared to lean non-diabetics 
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[39, 41, 86], with negative correlation between homeostasis 
model of insulin resistance score (HOMA-IR) and Cer. It is 
possible that sampling differences (plasma vs. adipose tis-
sue from abdominal area) could account for the differences; 
however, the latter study did not adjust for patients taking 
the anti-diabetic metformin, which could have had an effect 
on the HOMA-IR scores. Despite these, there is evidence 
for dhCer to be used as a predictor for developing type 2 
diabetes. A study showed dhCer C18:0 to be the single best 
predictor for progression to diabetes, with those progressing 
from non-diabetic to diabetic within 10 years having higher 
dhCer C18:0 at baseline [87]. Furthermore, researchers in 
the USA have recommended that the lipidomic risk score 
(LRS) assessment criteria—dhCer (C18:0) included in the 
criteria—be used in conjunction with metformin supplemen-
tation for individuals with high risk of developing type 2 
diabetes [88]. The LRS score predicted future type 2 diabe-
tes independently of prediabetes with an accuracy of 76%. 
Therefore, dhCer lipid profiling in obese patients could be 
a tool for predicting the onset of pre-diabetes and diabetes 
in this population.

In summary, apart from the epidemiological evidence 
showing its value as a predictor for developing type 2 dia-
betes, the in vitro and in vivo studies show a possible thera-
peutic potential in targeting the Des-1 enzyme and elevating 
dhCer, which could increase autophagy, reduce adipogenesis 
and lipid accumulation, leading to increased insulin sensitiv-
ity and glucose uptake as summarized in Fig. 3.

DhCer in aging and disease

As age increases, lipid dysregulation increases also and gives 
rise to the risk of developing CVDs. A current epidemio-
logical report released by the American Heart Association 
(AHA) highlighted that 48.6% of adults aged ≥ 40 years in 
the USA are eligible for statin “lipid-lowering” therapy [89]. 
Chronological aging has a tremendous effect on cardiorespi-
ratory fitness (CRF) and low levels are representative of risk 
factors for CVDs, dyslipidaemia and hypertension [90–92]. 
CRF refers to the ability of the cardiac and respiratory sys-
tems to supply oxygen to skeletal muscles during sustained 
physical activity. Increased C20:0 dhCer was found to be 
strongly associated with lower CRF in both men and women 
aged 54–96 years [47], while C24:0 dhCer was not. This 
connection of dhCer to hypoxia is supported by evidence 
in mice hypoxia models, which showed elevated levels of 
dhCer C16:0 in the right ventricles [48] and in the heart 
[93] from week 4 to week 8, with a concomitant decrease in 
Cer and expression of Des-1. The latter study identified that 
the Des-1 promoter harbours overlapping sites for HAND2 
and nuclear factor of activated T cell (NFATC) transcrip-
tion factors, which have been shown to be important in the 
development of cardiac systems. Both of these factors were 

required for upregulation of Des-1, while the re-activation 
of HAND2 in failing hearts due to co-operation between 
NFATC and miRNA-125 has been shown to aid cardiac dys-
function [94]. Whether the hypoxia-induced dhCer is a pro-
tective mechanism even in reduced CRF through autophagic 
flux remains to be answered. Furthermore, increased local 
dhCer levels were shown to be associated with reductions in 
thymocyte apoptosis and age-associated thymic involution 
in aged mice, when growth hormones were introduced [95]. 
This most likely fostered autophagy in thymic epithelial 
cells, which shapes the T cell repertoire and tolerance. These 
contrasting effects of hypoxia and autophagy point to tissue-
specific associations of dhCer. However, this remains incon-
clusive due to the lack of evidence with regard to dhCer in 
aging. Therefore, including dhCer and dihydrosphingolipids 
in future lipidomic profiling studies in the elderly should be 
encouraged.

DhCer in cardiovascular disease

Though cholesterol is vital for healthy bodily functions, 
excess amounts in the blood due to increased dietary intake 
of saturated fats can lead to buildup of atherosclerotic plaque 
and coronary artery disease (CAD), increasing the risk for 
heart attacks. Cers are known to be associated with cho-
lesterol in terms of lipid rafts formation [96], which serve 
as the basis for signal transduction during inflammatory 
responses. In human atherosclerotic plaques [50] and rat 
models of hypercholesterolaemia [97], dhCers were found 
to be increased. Both dhCer and Cer correlated with the 
release of the inflammatory cytokine interleukin 6 (IL-6), 
but only dhCer correlated with macrophage inflammatory 
protein 1β (MIP-1β) release [50]. Elevated IL-6 levels in 
atherosclerosis results in effects on endothelial cells (acti-
vation), platelets (prothrombotic effect), muscle cells (pro-
liferation) and macrophages (lipid accumulation) that are 
involved in lipid processing and plaque formation [98], 
while increased MIP-1β (also known as chemokine CC motif 
ligand 4—CCL4) in patients was linked to atherosclerosis 
and plaque instability [99]. What role this increase in dhCer 
plays in plaque stability is still debatable, since the extracel-
lular addition of dhCer to human aortic smooth muscle cells 
did not cause apoptosis, whereas Cer did [50]. Apoptosis of 
cells in the vessel walls increases plaque instability. Apart 
from these CAD-related studies, dhCer levels have also been 
found to be elevated in patients with rheumatoid arthritis 
[100], patients with “HeartWare” left ventricular assist 
devices [101], hypertensive rats [102] and in doxorubicin-
induced cardiac toxicity [103]. These studies point to the 
possible role of dhCer as a marker for cardiac pathology. 
The correlation between MIP-1β and dhCer should also be 
investigated further, since MIP-1β is also implicated in type 
2 diabetes. However, there is a lack of mechanistic studies 
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that are directed at determining whether dhCer has an asso-
ciative or causal effect in CVDs.

DhCer in lung disease

Studies in lung diseases investigating dhCer were outnum-
bered by studies investigating Cer, S1P and Sph. As can be 
seen below, the few studies that did mention dhCer compared 

its role in hypoxia as opposed to Cer. 4-HPR-fenretinide 
treatment of Sprague–Dawley (SD) rat lungs with emphy-
sema showed that there was increase in the dhCer levels 
with a decrease in hypoxia-inducible factor1-α (HIF1-α) and 
vascular endothelial growth factor (VEGF) protein expres-
sion [54], which was rescued with concurrent S1P treatment. 
Additionally, it is now known that dhCer does accumulate 
in states of hypoxia through the induction of autophagy and 

Fig. 3  Possible effects of dhCer on adipocytes. The ablation or inhibi-
tion of Des-1 by drugs such as Fen (4-HRP-fenretinide) in adipocytes 
leads to increased dhCer, (1) reducing adipogenesis and (2) increas-
ing autophagy and resulting in increased insulin sensitivity and glu-
cose uptake. (1) Increased dhCer reduces adipogenesis by (a) caus-
ing endoplasmic reticulum (ER) stress or nutrient stress which then 
phosphorylates eIF2alpha downstream of PERK (Protein Kinase 
R-like Endoplasmic Reticulum Kinase), resulting in cell cycle arrest 
at G1, and (b) the increased dhCer also inhibits ligand activation of 
PPARγ. Both of these lead to reduced differentiation of adipocytes 
due to reduced expression of cyclins D1, D3 and E and cdk2. (2) 

DhCer also increases autophagy by reducing mitochondrial respira-
tion and complex IV, which results in reduced ATP synthesis. The 
impaired ATP synthesis leads to increased AMPK, activating the 
phosphorylation of ULK1 (unc-51 like Autophagy Activating Kinase 
1), Beclin 1 and LC3B II, which are involved in the initiation and for-
mation of autophagomsomes. This leads to increased expression of 
autophagy genes such as atg7 and E1-like, thus increasing autophagy. 
An increase in AMPK also increases GLUT4 translocation to the 
cell membrane, leading to increased glucose uptake. The hypothesis 
of dhCer acting as a ligand to activate RARα thus inhibiting PPARγ 
remains to be deciphered (light blue dotted line)



1116 R. R. Magaye et al.

1 3

inhibits proliferation of primary rat lung-transformed cells 
[55]. These researchers proposed that the dhCer desaturation 
step acts as an oxygen sensor, based on the amplitude and 
kinetics of increased dhCer at physiological alterations of 
oxygen concentration. This can be explained by the require-
ment for oxygen by Des-1 and -2 to convert dhCer to Cer 
in the reaction involving nicotinamide adenine dinucleotide 
phosphate (NADPH) and nicotinamide adenine dinucleotide 
(NADH) [15]. In immortalized lung epithelial cells (IB3, 
A549 and C38) with defective expression of the cystic fibro-
sis transmembrane conductance regulator (CFTR) gene, the 
levels of C16:0 dhCer, Sph, SM and Cer (C22, C24 and 
C26) were increased [52]. The use of 4-HPR-fenretinide and 
fumonisin  (FB1) reduced the level of these sphingolipids 
(individual species measurement not given) without affect-
ing the level of CFTR, showing that CFTR could function 
in a feedback loop manner, sequestering sphingolipids and 
or altering the membrane structure. The increase in dhCer 
in mice with defective CFTR gene expression is comparable 
to the increase seen in those with emphysema, since both 
pathologies have an underlying hypoxic condition. How-
ever, in states of infection, the response differs, as shown by 
the increased airway sensitivity caused by reduced levels of 
de novo sphingolipids including dhCer (due to deletion of 
SPLTC2) in mice lung infected with rhinovirus [104], show-
ing that sphingolipids may be protective in lung hypersensi-
tivity reactions. These studies show regulating dhCer levels 
by targeting the enzymes involved in its modulation could be 
potential therapeutic targets for hypoxia-related disorders in 
the lung. However, whether the increased dhCer contributes 
to the disease or occurs as a coping mechanism is yet to be 
deciphered.

DhCer in liver disease

The excessive accumulation of lipids within hepatocytes is 
one of the factors listed in the pathogenesis of fatty liver 
or non-alcoholic fatty liver disease (NAFLD), which can 
progress to hepatic fibrosis and cancer if not managed well. 
Raised dhCer levels together with Cer have been observed 
in both NAFLD and hepatocellular carcinoma patients when 
compared to hepatitis C infection and cirrhosis patients, 
respectively [58, 59, 105]. However in diabetic patients with 
NAFLD, up to 12% of increase in dhCer has been noted, 
with negative correlations with insulin resistance [106]. 
However, cell and animal studies show some conflicting 
results. For example, reductions in the de novo sphingolipid 
pathway (knockout of SPTLC1) led to the occurrence of 
fatty liver, insulin resistance and elevated fasting glucose 
in mice [107], while knockdown of Des-1 in Huh7 hepato-
cyte cells led to increased dhCer, FFAs and diacylglrcerol 
[57]. This study also showed that silencing SPLTC1–3 
showed positive effects such as increased nutrient uptake 

and reduction in lipid synthesis, whereas Des-1 silencing 
led to prominent changes in amino acid, sugar, and nucleo-
tide metabolism and vesicle trafficking between organelles 
in Huh7 hepatocyte cells. These contrasting effects may be 
reconciled if SPLTC2 and 3 are considered to be still func-
tional in the former study. This also implies that the ablation 
of Des-1 in hepatocytes may be detrimental, since increas-
ing levels of FFA and diacylglycerol can cause lipotoxicity 
which activates a chain of events that eventually leads to 
hepatocyte death.

In human hepatocarcinoma (HepG2) cells, interleukin 1 
(IL-1)-mediated sterile inflammation downregulated oro-
scomucoid like protein 3 (ORMDL3), a key regulator of 
SPT, leading to increased dhCers, dhSph and Cers [56]. 
Also, an integrated lipidomics and transcriptomics study in 
balb/c mice showed that the anti-inflammatory and immu-
nosuppressive drug triptolide caused reductions in dhCer 
C18:0, C18:1, C20:0, C22:0 and C24:0 in the liver, and 
C22:0, C24:0, and C24:1 in plasma [108]. These studies 
suggest that inflammatory processes can also affect altera-
tions in the level of individual species of dhCer in the liver 
and contribute to liver pathologies.

In the liver, dhCer together with sphingolipids seems to 
be part of the lipid pool that accumulates in disease states. 
However, due to the limited amount of studies specifically 
targeting dhCer in the liver, whether it has any effect remains 
to be answered.

DhCer in cancer and cancer therapy

As the investigation on Cer increased in cancer cells for 
combination therapy with various cancer treatments, due to 
its apoptotic property [109] it became apparent that dhCer 
could be bioactive. Most studies have regarded dhCer as 
a precursor to Cer [110–112]. However, there are studies 
that have demonstrated dhCer’s potential role in cancer cell 
autophagy [14, 66, 113], in cancer induced bone pain [114] 
and cell cytotoxicity [115]. The changes in the levels of 
dhCer and Cer in cancer cells also seem to differ according 
to the site of origin of the cancer. For example, in melanoma 
cells, dhCers (d18:0/16:0) and Cers were significantly low-
ered compared to non-malignant melanocytes [116], while 
in cancerous tissue of human endometrial cells the level of 
dhCer was increased 3- to 4.6-fold, and Cer and S1P were 
increased 1.6- to 1.9-fold [117]. The most effective way to 
understand the effects of dhCer on a biological system is 
through the inhibition of the gatekeeper enzyme, Des-1, 
which is now a target for cancer therapy.

DhCer induced autophagy as a result of Des‑1 inhibition

The Des-1 inhibitor, 4-HPR-fenretinide, is currently under 
clinical trial for use in breast cancer therapy [118]. The 
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anti-cancer effects of 4-HPR-fenretinide are thought to occur 
through the modulation of endogenous sphingolipids. A 
study by Rahmaniyan et al. [119] showed that 4-HPR-fen-
retinide does directly inhibit Des-1 with an  IC50 of 2.32 µM 
in SMS-KCNR neuroblastoma cells. Others have shown that 
inhibiting SK sensitizes cells to 4-HPR-fenretinide’s cyto-
toxic effects due to increased dhCers [120]. These show that 
there is possible interaction between 4-HPR-fenretinide inhi-
bition of Des-1 and SK activity, which has also been noted 
by others [113, 121–123]. Apart from these pharmacological 
agents, oxidative stress can also inhibit Des-1 in cancer cell 
lines such as HEK293, MCF 7, 549 and SMS-KCNR cells, 
leading to increased dhCers [124]. The raised exogenous 
dhCer levels seems to be capable of inducing autophagy; as 
shown inT98G, U87MG glioblastoma cells [66] and DU145 
cells [14] and also reduce the proliferation of castration-
resistant prostate cancer cells [125]. In the prostate cancer 
cells, reduction in proliferation occurred without inducing 
apoptosis and autophagy, perhaps through effects on the cell 
cycle. Additional support for dhCers autophagic effects in 
cancer cells is found in a study on human gastric cancer 
cell line, HGC-27, where the inhibition of Des-1 by XM462 
and resveratrol led to the accumulation of dhCer at 16 h 
with induction of autophagy, whereas Cer was increased 
only slightly [113]. In addition, another study on U937 
cells showed that dhCer did not induce apoptosis through 
DNA fragmentation, compared to Cers and tumour necro-
sis factor-α (TNF-α) [126]. The autophagy effect of dhCer 
seems to occur only when the de novo sphingolipid bio-
synthesis pathway is altered. This is because in studies 
where dhCer levels increased together with Cers, apopto-
sis occurred rather than autophagy. For instance, the anti-
tumour effect of TNF-α in MCF-7 cells occurred through 
increased activity of CerS, which then drove the de novo 
sphingolipid synthesis forward, leading to accumulation of 
dhCers (C16:0, C18:0, C20:0, C22:0, C24:0, C24:1) and 
Cers [127] and thus regulating focal adhesion kinase (FAK) 
and apoptosis. Since the role of autophagy in tumours is 
highly context driven and can lead to either regression or 
advancement of tumours [128], this could also apply to tar-
geting Des-1 inhibition as an anti-cancer therapy. This is 
evident in a recent study in leukaemia cells which found that 
dhCer accumulation and ROS generation were distinct and 
non-essential events in 4-HPR-fenretinide-induced cell death 
[129]. This is further confounded considering that 4-HPR-
fenretinide can have both retinoic acid (RA)-dependent and 
-independent effects [34], and that it induces polyubiquitina-
tion of the enzyme [83]. Apart from these, Des-1 inhibition 
is also promising in terms of restraining metastasis. Studies 
have linked Des-1 to promotion of metastasis in prostate 
cancer cells [130], and oesophageal carcinoma [131]. It is 
worth mentioning that this promotional effect was regulated 
by RA without affecting the proliferative potential of the 

cell [130], maybe because Des-1 also increases cyclin D1 
expression as a result of NF-кB activation [131].

In an effort to beat resistance to Foscan photodynamic 
therapy (PDT), some have studied its combination with 
4-HPR-fenretinide. Their findings showed that the apoptotic 
effect was greater when combined, compared to either alone 
in SCC19 cell by increasing dhCer C16:0 and not Cer [132]. 
This combination also enhanced mitochondrial depolariza-
tion. PDT alone has been shown to induce accumulation 
of dhCer in SCC cells [133, 134] and was thought to effect 
the resistance by inhibiting the formation of ceramide chan-
nels in the mitochondria [133]. The reason for the enhanced 
effect when combined may be due to enhanced CerS activity 
and mitochondrial dysfunction [132]. This is supported by 
two different studies by Separovic et al. [135], which showed 
that SCC cells with silenced CerS1 or knockout of CerS6 
genes treated with PDT had reduced levels of global Cers, 
dhCers (C18:0, C18:1 and C20:0) and decreased apoptosis. 
These findings also imply ROS as a mediator between Des-1 
and CerS, since PDT induces cell cytotoxicity through ROS 
generation.

These studies contribute to the evidence that raised dhCer 
levels could potentially mean increased autophagic flux. 
Collectively, increasing dhCer levels to increase autophagy 
and inhibiting metastasis through Des-1 inhibition are prom-
ising targets for cancer therapy.

DhCer induced ER stress

Vitamin E, γ-tocotrienol (γ-TE), has been demonstrated to 
confer its anti-cancer effects through modulation of dhCer. 
A study by Jiang et al. [136] showed that γ-TE induced 
autophagy, necrosis and apoptosis in prostate cancer cells 
by increasing intracellular dhCer and dhSph, suppressing 
Akt phosphorylation. Suppression of the PI3K/Akt signal-
ling pathway which leads to inhibition of NF-кB is a known 
target for γ-TEs anti- breast cancer effects [137]. In fact, 
in RAW264.7 macrophages, the shorter chain dhCer, C8:0, 
was linked to the anti-NF-кB effects of γ-TE, by enhanc-
ing ER stress and attenuating TNF-α-triggered increase in 
NF-кB [138]. What is interesting to note in this study is 
that dhCer C8:0 mimicked the effects of γ-TE by increas-
ing the expression of the zinc finger protein A20, which is 
a negative feedback regulator of NF-кB. This also led to 
increased phosphorylation of eIF2α, cJun N-terminal kinase 
(JNK) and NF-кB inhibitor α (IкBα). Phosphorylation of the 
ER stress marker, eIF2α, has also been noted in adipocytes 
treated with 4-HPR-fenretinide [34]. In contrast, increased 
A20 in adipocytes has been shown to enhance adipogenesis 
by supressing NF-кB even in the presence of TNF-α [139]. 
These differences may be due to different NF-кB pathways 
being activated: canonical (involves TNF-α) vs. non canoni-
cal, apart from cellular differences. It is also possible that 
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γ-TE may be inhibiting Des-1 or even the expression of cer-
tain CerS. Interference of the expression of CerS2, 5 and 
6 has been shown to increase dhCer C16:0 and hexosyl-
ceramide which also promoted ER stress [140]. This study 
also noted that the observation of the expression levels of 
individual CerS in MCF-7 cells leads to counter regulation 
of non-targeted CerS species with no significant differences 
in total sphingolipids.

DhCer in other diseases

In the kidney, Cer triggers the mitogen-activated protein 
kinase (MAPK/ ERK) cascade in glomerular mesangial 
cells [141] and the stress-activated protein kinase (SAPK/
JNK) cascade in the endothelial cell; however, dhCer was 
not able to trigger the SAPK/JNK cascade [142] and whether 
it triggers the MAPK/ERK is yet to be deciphered. Der-
matological studies have indicated dhCer’s possible role in 
heterogeneity of the stratum corneum layer [143]. In addi-
tion, others have found altered expressions of the enzymes 
CerS, cDase and SPT in the skin disease, “hidradenitis sup-
purativa” [144]. However, lack of measurement of the dif-
ferent sphingolipids was a limitation in this study. In the 
eye, increased dhCer (C18:1, C16:0) has been indicated as 
a possible contributor to cataracts in 64–70 year old [145].

Collectively, dhCers’ association with hypoxia possibly 
triggering autophagy is a recurrent finding in the brain, dia-
betes, aging, lung and cancer. The relevance of this effect 
depends on the pathophysiology of the disease, therefore 

indicating its potential applications as a biomarker or thera-
peutic target. The mechanistic aspects of this link between 
dhCer and hypoxia remain to be elucidated. Figure 4 gives a 
summary of the possible effects of increased dhCer as high-
lighted in this review.

DhS1P in disease

Overview and structure

DhS1P is derived from the phosphorylation of dhSph by 
SK1 and 2, and it is known to accumulate when CerS is 
inhibited [146]. It differs from S1P in that its backbone 
structure is composed of dhSph instead of Sph. The role 
of its chemical analog, S1P, as a signalling molecule in the 
regulation of cellular processes such as cell proliferation 
[147, 148] and neuroprotection [149] are now known and 
are being targeted for therapy. As in the case of the other 
dihydropshingolipids, research into the relevance of dhS1P 
in the cellular mechanisms of disease is fairly new and quite 
limited.

DhS1P in cerebrovascular disease

DhS1P has been shown to activate S1PRs [150] in neuronal 
progenitor cells, and the orphaned receptor GPR63 in the 
thalamus and nuclear-caudatus of the brain [151]. Recent 
studies have demonstrated reduced dhS1P levels in the 

Fig. 4  DhCer in diseases. A summary of the potential effects of increased dhCer as highlighted in this review
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brains of rat models of Alzheimer’s disease [152] and HD 
[62]. The reduced availability of dhSph due to a perturba-
tion in the de novo synthesis pathway may led to reduced 
dhS1P levels, since it occurred in conjunction with reduced 
levels of dhSph and dhCer and the enzymes SPTLC1 and 
CerS1. Raised DhS1P may have a protective role in HD, 
since the accumulation of nuclear dhS1P has been shown to 
inhibit histone deacetylases (HDAC) [146], which is being 
targeted for HD therapy [153, 154]. The inhibition of HDAC 
results in increased gene expression that leads to increased 
cell proliferation, migration and decreased cell apoptosis. 
In addition, studies in neuronal cells also found that dhS1P 
increases Smad phosphorylation compared to S1P [150]. 
Smads are involved in neuronal precursor proliferation and 
differentiation. However, in nerve cells (PC12), dhS1P did 
not protect the cells from apoptosis, whereas S1P did [155]. 
The different cellular microenvironments could be the rea-
son for this difference. This is exemplified by the inhibition 
of TGFβ-induced Smad 2/3 phosphorylation by dhS1P in 
dermal fibroblasts [156], which is opposite to the effects 
seen in neuronal cells. Other studies have also shown that 
the pharmacological inhibition of Des-1 in cerebellar neuron 
cells [157], hypoxia in cerebellar endothelial cells [23], and 
CerS inhibition by FB1 in neuronal progenitor cells [158] 
can raise the dhS1P levels. In addition, dhS1P has been iden-
tified as a potential marker in FB1–neural tube defect risk 
assessment [158]. These studies show that the inhibition of 
Des-1 or CerS reverses the sphingolipid metabolism reac-
tion towards the dihydrosphingolipids and that of dhS1P, 
possibly by interfering with the activity levels of SPT and 
S1P lyase. It is obvious that DhS1P does have some form of 
influence on neuronal cells proliferation and differentiation, 
and could be a potential therapeutic target for neurodegen-
erative diseases such as HD.

DhS1P in cardiovascular disease

Similar to S1P, plasma erythrocyte and platelet levels of 
dhS1P differ in physiological states. In states of physical 
strain such as exercise, the dhS1P levels differ according to 
the type of activity, duration and training [159–161]. For 
example, in untrained man, the erythrocyte levels of dhS1P 
at 60 min of pedalling were elevated and remained markedly 
elevated post-exercise [159]. Thus, these differences are also 
most likely to be present in pathophysiological states.

Both in animal models of cardiomyopathies and patients 
with cardiomyopathies, altered sphingolipid levels have been 
noted. Having a major cardiac event such as a myocardial 
infarct (MI) has been shown to alter the levels of dhS1P in 
plasma (reduced at 1–6 h), erythrocytes (increased at 6 and 
24 h), and platelets (reduced) in rats [162]. Reduced dhS1P 
and S1P have also been observed in left ventricular tissue of 
Wistar rats subjected to tachycardia [163]. Similar trends in 

plasma (reduced early on) and erythrocytes (increased early 
on) have been observed in patients with acute ST-segment 
elevation myocardial infarct (STEMI) [164], and MI [165]. 
It has been suggested that reduced plasma S1P enables 
erythrocytes to increase S1P production by increasing SK1 
protein expression and activity [166]. Hypothetically, this 
may also be the case for dhS1P, since both were inciden-
tally increased or decreased. Samples from patients in the 
Copenhagen City Heart Study (CCHS) showed that there 
was an inverse relationship between reduced dhS1P, S1P and 
Cer C24:1, and the occurrence of ischaemic heart disease 
(IHD) in the plasma fraction containing HDL [167]. This 
may be due to the decreased availability of HDL, implying 
that dhS1P may be bound to HDL just as S1P [168]. S1P is 
known to be positively and negatively correlated to CAD 
depending on the plasma HDL or non-HDL fraction it is 
bound to [70], while S1P released from activated platelets 
preferentially binds to the non-HDL fraction—Albumin 
[169]. Studies that have investigated dhS1P together with 
S1P have shown that dhS1P is found in non-activated plate-
lets [170, 171], and it was increased in and released by acti-
vated platelets [170, 172]. Whether albumin-bound dhS1P 
and S1P influenced the outcomes observed in the CCHS 
study was not investigated.

Moreover, a shift in the balance between dhS1P, S1P and 
Cer within the platelets rather than erythrocytes may be aid-
ing the cross talk in CAD, as observed in patients with multi-
vessel CAD [171]. Together with the findings of reduced 
dhS1P contributing to reduced endothelial barrier [173], its 
positive correlation with increased miRNA-122 and 126 in 
improved endothelial barrier function [174], and dhS1P as a 
potent inducer of S1PR1-dependent endothelial barrier func-
tion and endothelial cell migration [167], it can be inferred 
that dhS1P may promote plaque stability. Even in human 
umbilical vein endothelial cells (HUVEC), dhS1P has been 
shown to inhibit chemotaxis and Rac activation stimulated 
by platelet-derived growth factor (PDGF) [175], which is 
known to promote atherosclerosis. Furthermore, dhS1P has 
been shown to induce matrix metalloproteinase 1 (MMP1) 
in dermal and scleroderma fibroblasts [176, 177], which 
is involved in plaque stability [178] and linked to reduced 
risk of coronary heart disease [179]. The downregulation 
of MMP1 is also a known marker for cardiac fibrosis. The 
study on scleroderma fibroblasts showed that dhS1P not only 
normalized MMP1 expression through the upregulation of 
phosphatase and tensin homolog (PTEN), but also inhibited 
factors known to promote fibrosis such as phosphorylated 
Smad3 (pSmad3), and collagen [177]. In the dermal fibro-
blasts, dhS1P induced the ERK 1/2-Etsl pathway, leading to 
increased MMP1 through one of its pertussis toxin-depend-
ent receptors. In the setting of atherosclerosis, this pathway 
facilitates and promotes vascular smooth muscle cell prolif-
eration, thus promoting fibrous cap stability, while S1P led 
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to the induction of the inflammatory factor, cyclooxygenase 
2 (COX-2) in the same study. However, MMP1 activation or 
reduction by dhS1P in endothelial cells is not known, It is 
possible to hypothesize from these studies that dhS1P may 
also play a role in vascular fibrosis. Considering the common 
factors involved in fibrosis in the cardiac and circulatory 
system such as the renin–angiotensin–aldosterone system 
(RAAS), the effects of dhS1P in the cardiac system needs 
to be investigated. Furthermore, raised dhS1P levels were 
demonstrated to have a strong relationship with survival 
from cardiac arrest in SK1-knockout mice, while S1P did 
not [180]. The increase in dhS1P can be attributed to the 
increased activity of the enzyme SK2, which is localized in 
the nucleus [181]. Taking into account the inhibitory effects 
of dhS1P on HDAC in the nucleus [146], the potential for 
it to impact on survival through increased proliferation is 
highly likely. Another area that warrants further research 
is studies detailing what impact commonly prescribed car-
diac medications may have on dhS1P’s role in CVDs, since 
dhS1P levels were shown to be reduced in plasma of healthy 
subjects taking a 300 mg loading dose of aspirin [182].

These animal and clinical studies clearly show that 
dhS1P may be involved in the pathophysiology of CVDs 
and that platelets and erythrocyte levels of dhS1P influence 
the plasma levels of dhS1P and S1P for that matter. Apply-
ing this to CAD, hypothetically, there could be increased 
albumin-bound dhS1P. However, how this may influence 
the outcome of the disease is unknown, especially since the 
studies also show that dhS1P may promote plaque stabil-
ity through improved endothelial barrier function. Another 
area that warrants further research is dhS1P’s role in cardiac 
fibrosis.

DhS1P in lung disease

In terms of lung diseases, sphingolipids and sphingolipid 
metabolism have been suggested as potential contributors 
to the pathogenesis of asthma [183], especially in relation 
to the interactions between ORMDL3 and SPT. A recent 
study has shown that the inhibition of ORMDL3 increased 
SPTLC1 and S1P, which then increased smooth muscle con-
traction rather than inflammation, causing airway hypersen-
sitivity (AHR) [184]. Increases in both S1P and dhS1P have 
been noted in relation to dust mite allergy, increasing AHR 
and the asthmatic phenotype [185]. However, it is likely 
that the prominent increase in S1P led to the effects. The 
immunomodulatory molecule FTY720, which is known to 
reduce ORMLD3 leading to reduced AHR and inflammation 
[186], was able to inhibit CerS4 and increase SK1, leading 
to decreased S1P and increased dhS1P levels in human lung 
endothelial cells [53]. This suggests that therapeutic agents 
such as FTY720 could be more useful than those that inhibit 
ORMDL3 alone, assuming dhS1P potentially has a different 

effect than S1P. Furthermore, Berdyshev et al. [187] have 
shown in their study that the increase in SK1 derails the met-
abolic pathway of sphingolipids towards that of dhS1P gen-
eration, rather than S1P in respiratory syncytial virus (RSV) 
infection of human bronchial epithelial cells (HBEpC) and 
HPAEC. They also suggested that SK1 forms a substrate 
membrane enzymatic complex that impacts on this derail-
ment. Additionally, dhS1P has been shown to compete for 
cystic fibrosis transmembrane receptor uptake with S1P in 
C127 cells [188], while in the setting of radiation-induced 
pulmonary fibrosis both S1P and dhS1P, and the expression 
of SK1 were increased [189]. Considering the contrasting 
findings in dermal cells and neuronal cells in terms of dhS1P 
in activating or inhibiting certain fibrotic factors, and those 
of S1P in cardiac fibrosis, the role of dhS1P in pulmonary 
fibrosis needs to be investigated. What is apparent in these 
latter studies is the regulation of dhS1P and S1P by SK1 
increase may be stimulus, cell type, and complex dependent 
as hinted by Berdyshev et al. [187].

DhS1P in liver and kidney disease

Studies have demonstrated the protective effects of dhS1P 
against ischaemic–reperfusion injury (IRI) in mice hepatic 
and renal tissues [190, 191]. DhS1P was able to confer 
protection against IRI by activating S1PR1, which led to 
phosphorylation of MAPK/ERK, Akt, and heat shock pro-
tein 27 (HSP27) [190]. Exogenous treatment of the mice 
subjected to hepatic IRI with low doses of dhS1P led to 
reduced hepatic and renal necrosis and apoptosis, neutrophil 
infiltration, preserved endothelial cell integrity and reduced 
pro-inflammatory mRNA [191]. It should be noted that there 
were no changes observed in S1P levels and S1P conferred 
protection through S1PR3. DhS1P has also been recom-
mended as a marker for FB1 toxicity [192]. This is supported 
by studies in cells [193], ducks [194] and human [195] serum 
or tissue, which showed an increase in dhS1P after exposure 
to FB1. Apart from it being a marker for toxicity, it may also 
contribute to cell proliferation. The accumulation of dhS1P 
due to FB1 toxicity in renal cells led to transient activation 
of PKCα within 5 min of exposure, compared to dhSph, 
Sph, S1P and Cer [193]. PKCα mediates the mitogenic effect 
of PDGF in renal mesangial cells (RMC) [196]. PDGF has 
been shown to induce increased expression of SK1 mRNA 
[197], which diverts dhSph towards phosphorylation to 
give dhS1P instead of Cer, promoting cell survival [198]. In 
addition, both S1P and dhS1P were able to stimulate similar 
gene expression waves as PDGF in RMC [199]. In dhS1P-
stimulated cells, the angiotensin II receptor type 2 (AT2R) 
expression was lower than in S1P-stimulated cells, implying 
that dhS1P has a higher mitogenic effect. In fact, this study 
also showed that dhS1P had a greater degree of intracellular 
calcium mobilization than S1P, which explains the transient 
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activation of PKCα seen in FB1 toxicity [193]. The calcium/ 
PKC pathway is one of the signal transduction pathway for 
growth factors such as PDGF. Both dhS1P and S1P also 
induced growth factors such as heparin-binding EGF-like 
growth factor (HB-EGF) and connective tissue growth fac-
tor (CTGF), a fibrotic protein, which was not induced upon 
stimulation with PDGF [199].

It can be summarized from these studies that dhS1P is 
able to activate proliferation either on its own through the 
calcium/ PKC pathway or by interacting with other signal-
ling molecules, including ERK, MAPK and Akt, and HSP27 
in the kidney and liver at lower doses while conferring toxic 
effects at higher doses. How this may impact upon the long-
term systemic effects such as fibrosis and in the setting of 
different pathologies needs to be evaluated.

DhS1P in cancer and cancer therapy

In terms of cancer therapy, dhS1P may help promote sur-
vival of neuronal cells [200], inhibit migration, invasion 
of melanomas through S1PR2 activation [201] and could 
even be harnessed as a therapeutic tool for tumours [202]. 
In C6 glioma cells, dhS1P was able to activate the ERK/
early growth factor response 1 (EGR-1)/fibroblast growth 
factor 2 (FGF-2) pathway through S1PR1 [200]. FGF-2 is a 
neurotrophic factor involved in neuronal differentiation and 
survival. DhS1P also activated phospholipase D (PLD), a 
mitogenic factor, through S1PR2 but at lower levels than 
S1P. The activation of S1PR2 by dhS1P and S1P in B16 
melanoma cells led to inhibition of cell migration through 
regulation of RhoA and Rac which are involved in cell motil-
ity [201]. One of the limitations to cancer treatment has been 
the systemic immune suppression caused by tumour-asso-
ciated inflammation effected through myeloid lineage cells. 
Barth and colleagues showed that a recent therapeutic tool 
targeted at this phenomenon, termed “Photo-ImmunoNano-
Therapy”, improved the outcome in mice models as a result 
of dhS1P (S1P to a lesser degree) abrogating myeloid line-
age cells and allowing the expansion of anti-tumour lympho-
cytes [202]. The increase in dhS1P was attributed to increase 
in SK2, which is known to have epigenetic effects [203], 
rather than SK1. They also injected tumour-bearing mice 
with dhS1P and found it to have anti-tumour effect, while 
S1P promoted tumour growth. Incubation of T cells stimu-
lated with the immune-suppressive drugs anti-CD3 and anti-
CD28 with dhS1P induced the release of interleukin 2 (IL-2) 
and interferon-γ (INF-γ), respectively [204]. Thus, dhS1P 
inhibits T cell proliferation which could suppress tumour 
growth and survival. However, this may not be true for all 
types of cancers, since patients with hepatocellular carci-
noma were found to have raised serum dhS1P levels. Despite 
this, it can be surmised that dhS1P is a potential anti-cancer 
biomolecule that needs to be further investigated (Fig. 5).

DhSph in disease

Overview and structure

Sphinganine or dihydrosphingosine (dhSph) forms the 
backbone of dihydrosphingolipids. It has a molecular 
weight of 301.5 g/mol and is produced mostly in the endo-
plasmic reticulum. DhSph serves as a precursor to dhS1P 
synthesis by SK1 and 2 and dhCer by ceramide synthases. 
In biological systems, early studies in the 1990s seem 
to have used dhSph as a protein kinase C (PKC) inhibi-
tor with regard to cell proliferation and vasoconstriction 
studies [205–207]. Here, we look at its role in different 
diseases.

DhSph in hepatic and renal diseases

Much relevance has been given to the enzymes involved 
in dhSph metabolism, thus overlooking its role in patho-
physiology. Only a few studies have considered dhSph, 
especially in terms of FB1 toxicity which increases the 
dhSph and dhSph/Sph ratio. The extent of FB1 toxic-
ity in humans has been reviewed by Voss et al. [208]. A 
number of studies have found raised dhSph levels due to 
FB1 exposure in the liver and kidney [209], the brain of 
calves [210], gastrointestinal tract (GIT) of chickens [211], 
pregnant mice and fish (with no fetal toxicity) [212, 213], 
and in urine samples from humans [214]. Apart from FB1 
toxicity, dhSph was also increased in the plasma in other 
instances, such as in hepatotoxicity due to Guynuria Sege-
tum, Fabry’s disease, endemic nephropathy, hepatitis C 
infection, type 2 diabetes-induced NAFLD, disease models 
of glucocorticoid-induced osteoporotic rats and dyslipi-
daemia, remote ischaemic preconditioning (RIPC) strategy 
for IRI, and genetic ablation of CerS2 in the liver [106, 
215–222]. The key factor in all of these increases is the 
inhibition of the CerS enzyme which catalyses the acyla-
tion of dhSph to dhCer. FB1 competitively inhibits CerS 
due to it being structurally similar to dhSph and differing 
only in the free amino group at  C1 [223]. This inhibition 
not only raises dhSph levels, but also the levels of dhS1P 
which is known to have autocrine–paracrine functions on 
the S1PRs, further complicating the mechanistic pathways 
of FB1 toxicity. Whether or not the increased dhS1P is 
also able to inhibit CerS2 by directly interacting with the 
S1P receptor-like motif on CerS2 is unknown [224]. FB1 
toxicity is accompanied by an increase in TNF-α expres-
sion causing increased cell apoptosis and induction of 
cytokines such as IL-12 p40 and IFNγ [225, 226]. How-
ever, He et al. [227] stated that this is not directly related 
to the increase in dhSph or Sph as shown by the continuous 
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expression of TNF-α despite the inhibition of SPT in the 
presence of FB1 in kidney cells. However, earlier studies 
by Sharma et al. [228] in TNF-α receptor knockout mice 
showed that there was some increase in dhSph in the liver 
and kidney, but these were lower than in the wild types. 
These studies imply that there may be partial interactions 
between TNF-α and dhSph or the de novo pathway.

Reduced dhSph levels have been noted in the seminal 
plasma of infertile male patients with Kidney–Yang syn-
drome [229], adenine-induced chronic renal failure in rats 
[230], and in type 2 diabetes-induced diabetic nephropathy 
[231]. These studies were metabolomics and metabonomics 
studies aimed at discovering biomarkers for these disease 
conditions. Their findings showed the sphingolipid metabo-
lism may be perturbed, the mechanisms of which remain 
unknown. Regardless, it is likely that the beginning of the 
de novo pathway is perturbed in these disease conditions, 
causing the reduced levels seen. DhSph has also been men-
tioned as a possible biomarker for kidney cancer [232]. It 
is worth considering the causal increase in dhS1P levels in 
these studies which could influence the outcomes observed. 
Therefore, to explore the effect of dhSph, research that takes 
into account this aspect would be valuable.

DhSph in cardiovascular disease

Elevated levels of dhSph have been noted in the hearts of 
rats exercising to exhaustion in 30 min [233], or pacing for 
60 min [234], both of which show that increased cardiac 
workload not only affects SLs levels, but dhSLs as well.

Cardiomyopathies

In terms of cardiomyopathies, various other researchers 
have shown altered dhSph levels. For example, raised levels 
of dhSph were shown in plasma and tissues from rat MI 
models [162, 235–237], in the right ventricle after 60 min 
of tachycardia [163] and in cardiac muscle of male Wistar 
rats with drug-induced hyperthyroidism [238]. DhSph and 
phytosphingosine were identified as biomarkers in rela-
tion to the efficacy of traditional Chinese medicine (TCM) 
therapies in two of the MI studies [236, 237]. Phytosphin-
gosine is derived from dhSph (as characterized in yeast) 
and causes apoptosis of cancer cells by caspase 8 activa-
tion and Bcl-2- associated X protein (Bax) translocation 
[239]. However, another study employing similar analyti-
cal methods and experimental conditions for MI indicated 
phytosphingosine as a biomarker and not dhSph [240]. The 
reason for this may lie in the rate of metabolism of dhSph 
in the tissue and plasma. The latter study was carried out 
on heart tissue. Reducing solid tissue de novo synthesis of 
sphingolipids were also shown to affect the level of dhSph 
in plasma (decreased) and platelets (increased) [241]. The 

disruption of the sphingolipid metabolic pathway showing 
increases in dhSph in cardiomyopathies has also been shown 
in the plasma of young (STEMI) patients [164, 242]. This 
study showed that dhSph had high specificity and sensitiv-
ity to the prognosis related to major adverse cardiovascular 
events after patients were discharged [242]. Prior to this 
study, 25–27% reductions in plasma dhSph were reported 
in chronic systolic heart failure patients, independent of the 
underlying cause of heart failure [243], with no changes 
observed in the plasma level of S1P and dhS1P, perhaps 
due to metabolic clearance as noted in another study where 
urine levels of dhSph and phytosphingosine were increased 
in HF patients [244]. Disease onset and duration could have 
also influenced these findings. For example, the STEMI 
study reported elevated levels upon admission, which were 
reduced at 1, 5, and 30 days after admission, while oth-
ers have shown no changes in plasma dhSph levels in MI 
patients at the time of admission and 5 days after [165].

Coronary artery disease

Raised dhSph levels have been indicated in the progression 
of atherosclerotic dyslipidaemia [245], in spontaneously 
hypertensive rats [246], and has also been investigated as 
a biomarker for atherosclerosis in a rabbit model [247]. In 
patients with multi-vessel CAD, the level of dhSph and Sph 
in platelets has been shown to be higher than in the con-
trols, whereas their levels in plasma and erythrocytes were 
stable or similar [171]. In addition, a study in patients with 
temporary coronary occlusion found that 1 min after PCI in 
the coronary sinus, dhSph levels were raised to 614%, and 
272% in peripheral blood, but dropped below baseline at 
12 h [248]. The inhibition of SPT by myriocin in apolipo-
protein E (ApoE)-deficient mice led to significant reductions 
in dhSph and other sphingolipids levels, with a stable plaque 
formation and reductions in cholesterol and LDL [249], but 
in ApoE null mice fed with a high fat diet, dhSph levels were 
raised which positively correlated with total cholesterol and 
LDL-C [245]. Thus, inhibition of the sphingolipid de novo 
synthesis pathway may be beneficial to lowering athero-
genic plasma lipids and encourage stable plaque formation. 
However, studies that could inform the mechanisms of this 
interaction between cholesterol and dhSph or sphingolipids 
are lacking. Therefore, these findings are speculative at this 
time.

DhSph in other diseases

The intracellular increase in dhSph is either as a result of 
overall increase in the de novo sphingolipid synthesis lead-
ing to effects similar to that of Cer, or due to inhibitions at 
the CerS enzymes, the effects of which are still elusive. The 
extracellular addition of dhSph also leads to Cer-type effects 
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such as apoptosis in cancer cells [250]. De novo sphingolipid 
synthesis can be perturbed by inhibiting or overexpressing 
the enzyme SPT. The yeast orthologues of ORMDLs have 
been shown to inhibit SPT by forming a conserved complex 
with SPT reducing sphingolipids such as dhSph [251, 252]. 
Lowering the level of the enzymes at both ends of the de 
novo pathway such as that seen HD rat models [62]: SPLTC1 
and CerS1, results in reductions in dhSph, dhCer and dhS1P. 
However, dhSph could be a promising target for therapy in 
dermatological diseases such as atopic dermatitis, where Sph 

and dhSph ratios were found to influence barrier abnormali-
ties observed in human stratum corneum (SC) [253]. For 
example, dhSph was found to play a role in contributing to 
the formation of more rigid lattice of lipids in the SC [254]. 
It has also been suggested as a biomarker in neurodegenera-
tive disease and diabetes. The altering of dhSph levels in 
diabetic disease states and models by the inhibition of the 
sphingolipid pathway or anti-diabetics that regulate lipid 
and cholesterol also supports dhSph being a possible bio-
marker for diabetes and diabetes therapy [255–258]. Such 

Table 2  List of sporadic studies on different disease models of SPT or CerS interventions with effects on dhSph levels

a Metabolomics or metabonomics studies that show the de novo synthesis pathway may be perturbed, indicating dhSph as a biomarker. However, 
the mechanisms of this perturbation are less understood

Disease or disease event 
studied

Target organ/tissue Experimental model Method of de novo pathway 
perturbation

Changes in dhSph References

Hypoxic state Brain Human cerebral endothelial 
cells

CerS inhibition Increase [23]

Colitis GIT Mice CerS2 knockout mice Increase [259]
Gastric smooth muscle 

dysfunction
GIT Mice CerS2 null mice Increase [260]

Pancreatitis Pancreas Human plasma De novo synthesis  pathwaya Increase [261]
Myopia Eye Human aqueous humour De novo synthesis  pathwaya Increase [262]
Rheumatoid arthritis Joints Human Plasma De novo synthesis  pathwaya Increase [263]
Pre-eclampsia Uterus Human plasma/placenta De novo synthesis  pathwaya Increase [264]
Rhino virus infection Lungs Rat Deletion of SPLTC2 Decrease [104]
Wolfram syndrome Brain Human plasma De novo synthesis  pathwaya Decrease (C17:0) [265]

Fig. 5  DhS1P in disease. A summary of the potential effects of increased dhS1P as highlighted in this review
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applications could allow for early detection of insulin resist-
ance and patient response to therapy, because it is a neces-
sary step in the de novo pathway that leads to Cers. Overall, 
studies in which dhSph is implicated are sporadic, which 
makes them difficult to discuss; therefore we have collated 
them in Table 2.

3‑Ketosphinganine in disease

3-KetoSph is the product of the condensation of palmitoyl-
CoA and serine catalysed by the enzyme SPT in the ER, 
which is the rate-limiting enzyme in the de novo sphin-
golipid metabolism pathway. The inhibition of the enzyme 
SPT in relation to disease seems to be studied more than the 
effects of the product 3-ketoSph, due to it being metabolized 
rapidly. In fact, an increasing number of studies are reporting 
links of mutations in the gene that encodes SPT, SPLTC1 
and 2, to hereditary peripheral neuropathies [266–268]. 
There are also reports of new novel SPT inhibitors for cancer 
that have shown to reduce 3-ketoSph in human lung adeno-
carcinoma cells [269]. Mutations or missense in the enzyme 
that reduces 3-ketoSph, 3-ketodihydrosphingosine reductase 
(KDSR), have been linked to recessive progressive sym-
metric erythrokeratoderma [270], keratinization disorders 
associated with thrombocytopaenia [271] and bovine spinal 
muscular atrophy [272]. Long-term exposure of cancer cells 
(HGC27, T98G and U87MG) to 3 ketoSph has been shown 
to induce autophagy and overexpression of Des-1 [273].

The evidence for 3 ketoSph in disease is quite scarce 
owing to its rapid metabolism in the de novo sphingolipid 
synthesis pathway; however, the enzymes involved in its syn-
thesis and metabolism are targets for further studies.

Conclusion and perspectives

Collectively, the evidence for dihydrosphingolipids in dis-
ease is spatial across the board and thus requires a lot more 
research in terms of their roles in disease, especially the 
mechanistic pathways through which they could contrib-
ute to disease. There are a number of areas that have been 
examined in this review that should be the focus of further 
research. These include: (1) the value of dhCers in predict-
ing type 2 diabetes in relation to obesity, (2) the possible role 
of dhCer in reducing adipogenesis and increasing autophagy 
in adipocytes, (3) the reoccurring theme of dhCer in associa-
tion with hypoxia, (4) the role of dhS1P and dhSph in plaque 
stability, (5) the anti-tumour effects of dhS1P conferred 
through suppression of T cell proliferation, (6) the binding of 
dhS1P to albumin and the effects of this in terms of IHD, (7) 
the possible therapeutic effect of dhS1P in terms of HD, and 
(8) the stimulus, cell type and complex-dependent regulation 

of dhS1P by SK1. There are also a number of studies in 
terms of CVDs showing alterations in sphingolipid levels; 
however, what is lacking are mechanistic studies to show if 
these alterations can contribute to the pathophysiology of 
the disease. The role of dhSph as a biomarker in cardiomyo-
pathies, drug-induced toxicities, as well as liver and kidney 
toxicity due to FB1 is imperative, especially in determining 
if the de novo sphingolipid synthesis pathway is perturbed. 
Future studies applying current lipidomics tools should be 
encouraged, together with studies that take into considera-
tion both the metabolites and the enzymatic interactions of 
the de novo pathway. The use of more potent and selective 
Des-1 inhibitors should be encouraged for investigating the 
effects of dhCer or Des-1 inhibition in light of the recent 
polyubiquitination findings for 4-HRP-fenretinide. Finally, 
the altering role of dihydrosphingolipids in the different 
organs seems to depend not only upon the initial insults and 
the disease processes, but also the key players along the de 
novo sphingolipid pathway.
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