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Abstract
The fetus is shielded from the adverse effects of excessive maternal glucocorticoids by 11β-HSD2, an enzyme which is 
expressed in the syncytial layer of the placental villi and is capable of converting biologically active cortisol into inactive 
cortisone. Impairment of this placental glucocorticoid barrier is associated with fetal intrauterine growth restriction (IUGR) 
and development of chronic diseases in later life. Ontogeny studies show that the expression of 11β-HSD2 is initiated at a 
very early stage after conception and increases with gestational age but declines around term. The promoter for HSD11B2, 
the gene encoding 11β-HSD2, has a highly GC-rich core. However, the pattern of methylation on HSD11B2 may have already 
been set up in the blastocyst when the trophoblast identity is committed. Instead, hCG-initiated signals appear to be respon-
sible for the upsurge of 11β-HSD2 expression during trophoblast syncytialization. By activating the cAMP/PKA pathway, 
hCG not only alters the modification of histones but also increases the expression of Sp1 which activates the transcription 
of HSD11B2. Adverse conditions such as stress, hypoxia and nutritional restriction can cause IUGR of the fetus. It appears 
that different causes of IUGR may attenuate HSD11B2 expression differentially in the placenta. While stress and nutritional 
restriction may reduce HSD11B2 expression by increasing its methylation, hypoxia may decrease HSD11B2 expression 
via alternative mechanisms rather than by methylation. Herein, we summarize the advances in the study of mechanisms 
underlying the establishment of the placental glucocorticoid barrier and the attenuation of this barrier by adverse conditions 
during pregnancy.
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Introduction

Glucocorticoids, the end products of the hypothalamus–pitu-
itary–adrenal (HPA) axis, are released in response to stress 
to regulate a variety of vital functions thereby maintaining 
homeostasis [1]. In many species, including amphibians, 
reptiles, rodents and birds, corticosterone is a major bio-
logically active glucocorticoid, while in humans, cortisol is 

the primary biologically active glucocorticoid. Compelling 
evidence indicates that glucocorticoids are also important in 
reproduction [2] and they are not only crucial to the estab-
lishment of pregnancy [3], but also pivotal in fetal devel-
opment [4, 5] and parturition [6, 7]. With regards to fetal 
development, glucocorticoids act as a double-edged sword 
depending on exposure time and levels [8]. Towards the 
end of gestation, appropriate exposure to glucocorticoids 
are necessary for the maturation of a number of fetal organ 
systems, particularly the respiratory and digestive systems, 
to prepare the fetus for extra-uterine life. Thus, synthetic 
glucocorticoids are widely used in pregnant women with 
threatened preterm delivery to improve neonatal viability 
by accelerating lung maturation [5, 9]. Despite of these ben-
eficial effects, excessive glucocorticoid exposure is known 
to exert a number of adverse effects on the fetus. Accumu-
lating evidence indicates that over-exposure of the fetus to 
glucocorticoids not only causes fetal growth restriction but 
also programs the development of chronic diseases such as 
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hypertension, insulin resistance and behavioral abnormali-
ties with the possibility of altered activity of the HAP axis 
in later life [8, 10]. Therefore, it is essential to control gluco-
corticoids at optimal levels in the fetal circulation to ensure 
a safe intrauterine development.

The fetus is shielded by a placental 
glucocorticoid barrier

The development of the primate fetal adrenal glands is a 
unique process. The fetal adrenal glands are relative large 
in comparison with the adult organs. A large fetal zone 
dominates the cortex throughout gestation. This fetal zone 
produces dehydroepiandrosterone (DHEA) and its sulfate 
instead of cortisol [11, 12]. Although a small amount of 
cortisol can be synthesized from progesterone in the fetal 
adrenal glands [13], limited de novo cortisol synthesis from 
cholesterol is not established until the third trimester of 
pregnancy in the fetal adrenals [11]. In contrast, the mater-
nal adrenal glands gradually become hypertrophic during 
pregnancy [14]. Although the overall weight and size do not 
change dramatically, the size of the zona fasciculata which 
produces cortisol is increased [14]. During pregnancy, there 
is a three- to eightfold increase in the levels of total cortisol 
in the maternal circulation [14]. Despite of increased syn-
thesis of corticosteroid binding protein (CBG) by the liver 
in gestation [15], a two- to fourfold elevation of free cortisol 
in maternal circulation is still seen from the second–third tri-
mesters [16–18]. Therefore, the amount of cortisol produced 
by the fetal adrenal glands is minimal compared with that 
produced by the maternal adrenal glands. However, meet the 
requirement for fetal organ maturation towards the end of 
gestation, it is still necessary for the fetus to acquire a suffi-
cient proportion of cortisol from the maternal side. It is esti-
mated that about 40–50% of fetal cortisol is derived from the 
mother towards the end of gestation [19]. Nonetheless, the 
majority of maternal cortisol is still blocked from the fetus, 
despite its lipophilic nature to create a safe environment for 
development of the fetus since excessive glucocorticoids are 
detrimental to the fetal development [8, 10]. It is estimated 
that there is only 15% of maternal cortisol crossing the pla-
centa unmetabolized in normal pregnancy [20].

It is very well recognized that biologically active corti-
sol or corticosterone is converted into biologically inactive 
cortisone or 11-dehydrocorticosterone when passing through 
the placenta in almost all studied placental mammals [20, 
21]. It has been reported that the conversion of cortisol into 
cortisone by homogenized human placental tissue dominates 
at all gestational ages, albeit a small amount of cortisone 
can also be converted into cortisol [22]. As such, cortisol 
levels in the fetal circulation are kept about tenfold lower 
than those in the maternal circulation [14, 19].

11β‑HSD2 acts as the placental 
glucocorticoid barrier

It is now widely accepted that the glucocorticoid inacti-
vating enzyme, 11β-hydroxysteroid dehydrogenase2 (11β-
HSD2), acts as the placental glucocorticoid barrier [20, 
23–25]. In addition to 11β-HSD2, a glucocorticoid regen-
erating enzyme 11β-HSD1 [25, 26] has also been identi-
fied. These two glucocorticoid metabolizing enzymes work 
in opposing ways with differential affinities for their sub-
strates. While 11β-HSD1 is a reductase converting biologi-
cally inactive cortisone or 11-dehydrocorticosterone into 
active cortisol or corticosterone with a Km value in the 
micromolar range and requiring NADPH as its cofactor, 
11β-HSD2 is an exclusive oxidase converting biologically 
active cortisol or corticosterone into inactive cortisone or 
11-dehydrocorticosterone with a Km value in the nanomo-
lar range and requiring NAD+ as its cofactor [25–30].

Table 1 summarizes the main characteristics of 11β-
HSD1 and 11β-HSD2. Examination of their distribution 
in the body revealed that the reductase 11β-HSD1 is dis-
tributed widely in the glucocorticoid-target tissues in the 
body, while the oxidase 11β-HSD2 is distributed mainly in 
the mineralocorticoid-target organs including the kidney, 
intestine, salivary glands, exocrine pancreatic gland and 
sweat glands [25, 26, 29, 30]. The distribution patterns of 
11β-HSD1 and 11β-HSD2 are in line with the distribu-
tion of glucocorticoid receptor (GR) and mineralocorti-
coid receptor (MR) in these tissues, respectively. Cortisol 
binds to GR with a relatively low affinity (Kd: 11 nM), 
while the MR has equal and high affinities for both cortisol 
and aldosterone (Kd: 0.5 nM) [31]. The reductase activity 
of 11β-HSD1 can create more biologically active gluco-
corticoids in glucocorticoid-target cells, so that adequate 
amounts of glucocorticoids can be obtained for the low-
affinity GR. Therefore, 11β-HSD1 is regarded as a pre-GR 
amplifier for glucocorticoid actions [32]. Likewise, the 
specific distribution of 11β-HSD2 in the mineralocorti-
coid target organs also has its own designated function. 
Since the MR is bound by cortisol and aldosterone with 
similar affinities, it is necessary for the mineralocorticoid 
target cells to express 11β-HSD2 to inactivate cortisol, the 
concentration of which is about 100- to 1000-fold higher 
than that of aldosterone in the circulation. This ensures 
the specificity of MR for aldosterone. Otherwise, the MR 
would be occupied by the overwhelming glucocorticoid 
concentration resulting in severe sodium and water reten-
tion [31, 33].

The placenta is generally considered a non-classical 
mineralocorticoid-target tissue, despite the presence of 
MR in human placenta [34]. Nonetheless, the placenta 
expresses abundant 11β-HSD2 [25, 35, 36], which is 



15Mechanisms for establishment of the placental glucocorticoid barrier, a guard for life﻿	

1 3

believed to function mainly as a barrier for maternal glu-
cocorticoids [37], although alternative functions such as 
regulating the local actions of glucocorticoids in the pla-
centa have also been suggested [38]. In addition, the high 
affinity of 11β-HSD2 for cortisol makes it more suited to 
serve as a placental glucocorticoid barrier guarding the 
fetus against maternal glucocorticoids [24, 28].

Distribution and ontogenesis of 11β‑HSD2 
in the placenta

Compartmentalized distribution of 11β‑HSD2 
at the fetal‑maternal interface and its implications

The human placenta is classified as hemochorial. This type 
of placenta is characterized by the direct contact of the 
maternal blood circulation with the placental villi where the 
maternofetal nutrients and gas exchanges take place. All villi 
are covered by two layers of trophoblasts. The outermost 
layer is the terminally differentiated and continuous multinu-
cleated syncytiotrophoblast, and the inner layer is composed 
of single and aggregated cytotrophoblasts which are highly 
proliferative and can differentiate into either villous syn-
cytiotrophoblast or extravillous invasive trophoblasts in the 
processes of placentation and implantation. Since the syncy-
tiotrophoblast layer lines the intervillous space, it provides 
the first line of defense for the fetus against any potentially 
harmful substances from the maternal side.

Prior to the acknowledgement of two types of 11β-HSDs 
in 1990s [25, 26], it was known for around three decades 

that the human placenta is capable of oxidizing biologically 
active 11β-hydroxycorticosteroids into inactive 11-oxo-
compounds [39]. As described above, the human placenta 
maintains a high oxidase activity at all gestational ages [20, 
40–42], albeit a minimal increase in the reductase activ-
ity with increasing gestational age in the placenta [21, 22]. 
Interestingly, in contrast to the dominant oxidase activity 
in the placenta, a reductase activity of 11β-HSD has been 
demonstrated to be dominant in the human fetal membranes 
[42–44]. Immunohistological staining of placental sections 
at both term and preterm revealed compartmentalized pat-
terns of 11β-HSD1 and 2 with distinct distributions [25, 35, 
45–48]. Specifically, 11β-HSD2 is exclusively localized to 
the syncytiotrophoblast of the chorionic villi but not to the 
extravillous trophoblasts, villous cytotrophoblasts and vil-
lous core [25, 35, 45–48] (Fig. 1). The absence of 11β-HSD2 
in the extravillous trophoblasts suggests that glucocorticoids 
are required for the invasion of extravillous trophoblasts into 
the endometrium during implantation.

Several studies have shown that glucocorticoids are impli-
cated in a number of events pertinent to the establishment 
of implantation including inhibition of the maternal immune 
intolerance of the semi-allograft embryo, enhancement of 
endometrial stromal cell decidualization and stimulation 
of human chorionic gonadotropin (hCG) production by the 
trophoblasts [3]. The specific distribution of 11β-HSD2 in 
the outer continuous syncytial layer of the chorionic villi 
can be traced back to as early as the 3rd week post-concep-
tion [46, 47], when remodeling of maternal spiral arteries 
and blood supply to the placenta is fully accomplished and 
the process of placentation is completed [49]. This early 

Table 1   Characteristics of 11β-HSD1 and 11β-HSD2 in humans

11β-HSD1 11β-HSD2

Gene HSD11B1 HSD11B2
Chromosome 1q32 16q22
Number of exons 6 5
Promoter Consensus CAAT box, no TATA box Rich in CpG, no TATA box
Molecular weight 34 kD 44 kD
Number of amino acids 292 406
Reaction type Reductase Oxidase
Co-factor NADPH NAD+

Affinity Low (Km: μM) High (Km: nM)
Substrate Cortisone Cortisol
Product Cortisol Cortisone
Effect on glucocorticoids Amplification Inactivation
Distribution in the body Glucocorticoid-target tissues Mineralocorticoid-target tissues
Co-localization Glucocorticoid receptor Mineralocorticoid receptor
Distribution in the intrauterine 

tissues
Amnion and chorion of the fetal membranes; stromal and epithelial cells of 

the decidua, endothelial cells of the fetal blood vessels in the villous core
Placental villous syncytiotroph-

oblast, decidual epithelial 
cells
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appearance of 11β-HSD2 on the surface of chorionic villi 
suggests a critical role of 11β-HSD2 in the protection of 
embryo development even at this very early stage of ges-
tation. Unfortunately, it is unclear whether the expression 
of 11β-HSD2 is already initiated in the trophoblasts of the 
trophectoderm of the implanting embryo. If so, the shield 
against maternal glucocorticoids might already be estab-
lished even before the completion of placentation. Notably, 
the formation of the trophoblast plug in the erosive spi-
ral artery can prevent the implanting embryo from direct 
maternal blood flushing and this plug is not removed until 
the end of the 6th week after conception [50]. Nonetheless, 
the implanting embryo is still immersed and nourished by 
secretions from the endometrial cells [51], which may con-
tain relatively high concentrations of glucocorticoids. Our 
immunohistochemical staining of the first trimester endo-
metrium shows that abundant 11β-HSD1 is present in the 
endometrial stromal cells, glandular and endometrial epi-
thelium [46] (Fig. 1), which suggests that, on the one hand, 
cortisol regeneration is required for the implantation, and 
that, at the same time, cortisol regeneration may heighten 
the concentration of cortisol in the endometrial secretion, 
thus imposing threats to the developing embryo. Therefore, 
it is very likely that 11β-HSD2 expression is already set up 

in the trophectoderm layer for the protection of the implant-
ing embryo.

Ontogeny of 11β‑HSD2 expression in the placenta

Examination of the ontogeny of placental 11β-HSD2 expres-
sion reveals that 11β-HSD2 mRNA and activity increase 
with gestational age until late gestation [52–55]. McTer-
nan et al. reported 12- and 56-fold increases in 11β-HSD2 
mRNA abundance in the villous tissue by early third tri-
mester (27–34 weeks) and term, respectively, in comparison 
with the levels observed at 4–6 weeks after conception [52]. 
Schoof et al. reported similar increases in 11β-HSD2 mRNA 
abundance in the placenta from 16 to 40 weeks of gestation 
[53]. In addition, Murphy et al. found that there was no fur-
ther change in 11β-HSD2 mRNA abundance in the placenta 
around term (36, 37, 38 and > 38 weeks) [56].

11β-HSD2 activity studies reveal a similar pattern of 
increases across gestational age [54, 55] but there also 
appeared to be a decline after 36  weeks [56]. Similar 
declines are observed close to term in other animal spe-
cies as well, including rats [57], mice [58–60], rabbits [61] 
and guinea pigs [62]. Therefore, a decline in 11β-HSD2 
activity in the placenta around term may be a generalized 

Fig. 1   Distribution of 11β-
HSD1 and 2 in human decidua 
and chorionic villous tissues 
during early gestation. Top 
panel: Decidual epithelial cells 
are cytokeratin 7 positive and 
stromal cells are vimentin 
positive. Bottom panel: Villous 
trophoblasts are HLA-G nega-
tive while extravillous tropho-
blasts are HLA-G positive. CT 
cytotrophoblast; ST syncytio-
trophoblast; EVT extravillous 
trophoblast; FBV fetal blood 
vessels. Based on the work pre-
sented in the Ref. [46]. Human 
tissue collection was approved 
by the Ethics Committee of Ren 
Ji Hospital, Shanghai Jiao Tong 
University School of Medicine 
with informed consent
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phenomenon across species and it indicates the requirement 
of maternal glucocorticoids for fetal organ maturation as 
well as parturition. In addition, the presence of 11β-HSD1 
in the endothelium of the fetal blood vessels in the villous 
core and in the umbilical cord [63] may also assist in the 
acquisition of maternal glucocorticoids for this purpose. 
Indeed, a placental perfusion study shows that a consider-
able amount of cortisone perfused into the intervillous space 
on the maternal side is converted into cortisol when passing 
through the placenta into the fetal circulation [21].

Pathways signaling the establishment 
of the placental glucocorticoid barrier

Does DNA methylation matter in the setup 
of placental glucocorticoid barrier?

As described above, 11β-HSD2 exhibits cell-specific expres-
sion in mineralocorticoid target cells. This cell-specific 
expression of 11β-HSD2 is now known to be attributed to 
the epigenetic modification of HSD11B2, the gene encod-
ing 11β-HSD2. The human HSD11B2 gene, which is local-
ized to chromosome 16q22, consists of five exons spreading 
across 6.2 kb which are separated from each other by small 
introns [64]. RNase protection assays identified the presence 
of tissue-specific transcriptional start sites. In the placenta, 
transcription starts mainly at − 74 nucleotides (nt) and to a 
lesser extent at − 116 nt. In contrast, the kidney utilizes the 

− 116 nt almost exclusively [65]. The promoter of the human 
HSD11B2 gene lacks a TATA box but has a highly enriched 
GC core, suggesting that the gene may be regulated tran-
scriptionally by factors such as Sp1 which recognize GC-
rich sequences [65].

Using luciferase reporter constructs, Agarwal et al. identi-
fied that the region from − 2 to − 330 nt relative to the initial 
ATG codon was an essential region for the basal transcrip-
tion of the HSD11B2 gene [65]. Foot printing or gel shift 
experiments show that this region contains two GC-rich 
domains ( − 278 to − 257 nt and − 215 to − 194 nt) which 
harbors the canonical binding sites for Sp1 [65]. Apart from 
the CpG island in the promoter, another three CpG islands 
are found spanning the promoter and exon 1 ( − 77 to + 460 
nt), in exon 5 (+ 5569 to + 5721 nt) and in the downstream 
region (+ 7367 to + 7515 nt) [66] (Fig. 2). Of these four 
CpG islands, the two downstream ones are fully methylated 
in either mineralocorticoid or non-mineralocorticoid target 
tissues, while the methylation levels of the CpG island in the 
promoter region are low in mineralocorticoid target tissues, 
but high in non-mineralocorticoid target tissues [66] (Fig. 2). 
Of note, the CpG island spanning the promoter and exon 
1 is only slightly methylated in both mineralocorticoid or 
non-mineralocorticoid target tissues [66] (Fig. 2). These data 
suggest that the methylation level of the CpG island in the 
promoter is a determining factor as to whether the expres-
sion of HSD11B2 is repressed or not, and hypermethylation 
of this CpG island is responsible for the muted expression 
in non-mineralocorticoid-target cells [66].

Fig. 2   Locations of the four CpG islands in HSD11B2 gene and the 
methylation levels in mineralocorticoid and non-mineralocorticoid 
target tissues, and in cytotrophoblast and syncytiotrophoblast. Based 

on the data presented in references 25 and 66. Boxes in red either 
filled or blank are indications of CpG islands
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Of interest, Alikhani-Koopaei et al. found that the meth-
ylation levels of the CpG island in HSD11B2 promoter 
were low in human placental tissue. Consistent with this, 
a recent study by Hu et al. also reported that almost no 
11β-HSD2 methylation was detected in both normal and 
preeclamptic placental tissues [67]. These findings not 
only explain why the placental syncytiotrophoblast can 
maintain such high levels of 11β-HSD2 expression, but 
also raise an issue as to why 11β-HSD2 is barely expressed 
in the cytotrophoblasts [46, 47, 63], the progenitor cells 
for the syncytiotrophoblast. Can DNA methylation be 
excluded from the mechanisms underlying the silencing 
of 11β-HSD2 expression before syncytialization?

DNA methylation plays a crucial role in defining cell 
fate in mammalian development, which provides an epi-
genetic barrier that reduces developmental potential of a 
particular cell while helping to establish its distinct cel-
lular identity. The DNA methylation marks in the parental 
gametes are erased on a global scale in the zygote imme-
diately following fertilization to restore the developmental 
totipotency [68]. The re-establishment of DNA methyla-
tion marks starts during the segregation of the inner cell 
mass and trophectoderm of the embryo with the commit-
ment towards a distinct cell fate [68, 69]. While the inner 
cell mass eventually gives rise to the definitive structures 
of the fetus, the trophectoderm gives rise to the placenta 
including the cytotrophoblasts, the progenitor cells for 
both extravillous trophoblasts and villous syncytiotropho-
blast. Because low methylation levels of the CpG island in 
the HSD11B2 promoter are detected in the placenta tissue 
[66], it is conceivable that the low methylation levels of 
the CpG island in the HSD11B2 promoter is already set up 
when the trophoblast fate is determined during the segre-
gation of the trophectoderm and inner cell mass. We com-
pared the methylation levels of the CpG domain (− 244 
to + 16) in the HSD11B2 promoter in human placental 
cytotrophoblasts and syncytiotrophoblasts, and found no 
differences in the methylation levels in this region between 
these two types of cells [70]. Although no difference in 
the methylation level of the CpG island in the HSD11B2 
promoter was found between cytotrophoblasts and syncy-
tiotrophoblasts, sporadic methylated cystines were never-
theless observed in this region in both cytotrophoblasts 
and syncytiotrophoblasts [70]. Currently, we are not clear 
about the meaning of these sporadic methylations in the 
regulation of HSD11B2 expression in the trophoblasts.

Our data support the fact that the methylation pattern 
of the HSD11B2 promoter is already established when the 
cytotrophoblast fate is determined in the trophectoderm. If 
it is not a matter of methylation, the question remains as 
to what is the signaling pathway that underlies the upsurge 
of HSD11B2 expression during syncytialization. Our stud-
ies demonstrate that histone modification and transcription 

factors activated by hCG during syncytialization might play 
a critical role in this process [45, 48, 70].

Role of hCG‑activated signaling pathways 
in the setup of the placental glucocorticoid barrier

HCG is the first hormone produced by the trophoblasts 
of the implanting blastocyst. There are two major forms 
of hCG in pregnancy: the classical and hyperglycosylated 
hCG. The classical hCG is produced primarily by differ-
entiated syncytiotrophoblasts, while the hyperglycosylated 
hCG is produced by the extravillous trophoblasts [71, 72]. 
The hyperglycosylated hCG is believed to drive the invasion 
of extravillous trophoblasts into the myometrium possibly 
through the TGFβ receptor thereby assisting in the implan-
tation process. The best characterized role for the classical 
hCG is to maintain the function of corpus luteum for the 
production progesterone and estrogen through the cAMP/
PKA pathway coupled with the hCG/LH receptor until the 
steroidogenic activity of the placenta is fully established 
around the 3rd and 4th weeks of gestation [72]. Intriguingly, 
the secretion of hCG continues to increase even after this 
mission is accomplished and peaks of hCG production are 
observed around the 10th week of gestation. The concentra-
tion of hCG declines after this, but it is still maintained at a 
high level which is about 18% of the peak value [72]. This 
pattern of hCG production in gestation strongly indicates a 
role of hCG beyond the mere regulation of implantation and 
maintenance of corpus luteum functions in early gestation. 
Accumulating evidence indicates that hCG is involved in 
multiple functions that maintain gestation, including pro-
moting angiogenesis in the uterine endothelium, maintain-
ing myometrial quiescence and enhancing syncytialization, 
a process that continues throughout pregnancy [72, 73].

Our study indicates that hCG is also essential in the 
upsurge of HSD11B2 expression during syncytializa-
tion [74]. We found that hCG reduced the phosphoryla-
tion of retinoblastoma protein (pRB) via activation of 
the cAMP/PKA pathway, which sequesters E2F tran-
scription factor 1 (E2F1). This is the transcription fac-
tor for EZH2 expression which results in the inactivation 
of the pRB–E2F1–EZH2 pathway and removal of the 
repressive marker trimethylation of histone H3 lysine 
27 (H3K27me3) at the HSD11B2 promoter [48] (Fig. 3). 
The removal of H3K27me3 renders H3K27 available for 
acetylation (H3K27Ac) by p300, which transforms the 
chromatin from a compact structure into a loose form, 
allowing access of the HSD11B2 promoter to the tran-
scription factor, Sp1, which enhances its transcription 
[48] (Fig. 3). Consistently, the hCG-activated cAMP path-
way during syncytialization causes a dramatic decrease 
in EZH2 expression in addition to the reduction in pRB 
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phosphorylation, and increases in Sp1 and p300 along with 
the robust 11β-HSD2 expression [45, 48, 70]. Concomi-
tantly, the enrichment of H3K27me3 is decreased while 
the H3K27ac is increased at the HSD11B2 promoter dur-
ing syncytialization [45, 48]. Consistent with these find-
ings, a recent study demonstrated that inhibition of histone 
deacetylase can indeed promote 11β-HSD2 expression in 
JEG3 cells, a choriocarcinoma cell line [75].

Other signaling pathways involved in the regulation 
of 11β‑HSD2 expression in the placenta

In addition to the above-described hCG-activated signal-
ing pathways and transcription factor, a number of other 
hormones produced by the syncytialized trophoblasts, 
signaling pathways and transcription factors may also be 
involved in the regulation of HSD11B2 expression in pla-
cental trophoblasts. For instance, in addition to hCG, 

Fig. 3   Diagram illustrating the regulation of HSD11B2 expression by 
human chorionic gonadotropin (hCG)-triggered cAMP/PKA pathway 
during syncytialization of the trophoblasts. Panel A shows the syn-
cytialization of human primary placental trophoblasts under cultured 
conditions in DMEM containing 10% fetal calf serum. Panel B illus-
trates the mechanism underpinning the upregulation of HSD11B2 
expression during syncytialization. Before syncytialization, phos-
phorylation of retinoblastoma protein (pRB) frees the E2F transcrip-
tion factor 1(E2F1) which drives the expression of the enhancer of 
zeste homolog 2 (EZH2) in cytotrophoblasts. Subsequently, EZH2 
together with cofactors embryonic ectoderm development (EED) 
and suppressor of zeste 12 homolog (SUZ12) cause trimethylation 

(Me3) of histone H3 lysine 27 (H3K27) associated with HSD11B2 
promoter resulting in diminished expression of HSD11B2. Upon syn-
cytialization, hCG is produced in large quantities and activates the 
cAMP/PKA pathway, which indirectly blocks the phosphorylation 
of pRB. Dephosphorylation of pRB sequesters E2F1 thereby reduc-
ing the expression of EZH2 and resulting in the attenuation of the 
down-stream H3K27 methylation. Attenuated H3K27 methylation 
predisposes H3K27 to acetylation (Ac) by p300, which transforms 
the condensed chromatin into a more relaxed structure allowing the 
enrichment of the transcription factor specificity protein 1(SP1) at the 
HSD11B2 promoter resulting in increased transcription of HSD11B2. 
This diagram is based on the work described in Refs. [45, 48, 70, 74]
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corticotropin-releasing hormone (CRH) is also produced 
in large quantities and activates the cAMP/PKA pathway 
during syncytialization. It has been shown that CRH indeed 
increases the abundance of 11β-HSD2 in primary human 
placental trophoblasts [76]. Of note, binding sites for poten-
tial transcription factors including nuclear factor 1 (NF1), 
Arnt1, Ah-Arnt, AP2, AP4 and Ik2 have been revealed in the 
methylated CpG sites in the HSD11B2 promoter by in silico 
analyses [66]. Methylation of these CpG sites is shown to 
diminish the binding activities of not only Sp1 but also NF1 
and Arnt [66]. Moreover, inhibition of the mitogen-activated 
protein kinases, ERK1/2, increases HSD11B2 expression 
[77], while suppressing p38 decreases 11β-HSD2 activity 
[78]. Moreover, activation of both peroxisome proliferator-
activated receptor delta (PPARδ) and the hedgehog sign-
aling pathways are associated with increased HSD11B2 
expression [79, 80]. Emerging data also indicate that these 
signaling pathways appear to form a complex network in 
the regulation of HSD11B2 expression during syncytializa-
tion. For example, the cAMP/PKA pathway activated by 
hCG has been shown to interact with the ERK1/2 and p38 
pathways [81], while activation of the PPARγ pathway has 
been shown to be associated with Sp1 in the regulation of 
HSD11B2 expression in placental trophoblasts [82]. How-
ever, the exact interactions among the complex repertoire of 
signaling pathways in the regulation of HSD11B2 expression 
during syncytialization await further investigation.

Effects of adverse conditions on HSD11B2 
expression in the placenta

The epigenetic modifications are very susceptible to envi-
ronmental signals and can be altered at critical periods of 
development [83]. Accumulating evidence indicates that 
adverse conditions in pregnancy such as stress and nutri-
tional restriction can result in intrauterine growth restriction 
which is possibly associated with the increased methyla-
tion levels of the CpG island in the promoter of HSD11B2 
gene. The increased methylation levels lead to decreased 
expression of HSD11B2, which can then compromise the 
placental glucocorticoid barrier, resulting in overexposure 
of the fetus to maternal glucocorticoids. Overexposure to 
glucocorticoids causes fetal growth retardation and can 
cause permanent changes in the expression pattern of the 
genes associated with the development of chronic diseases 
in later life.

Intrauterine growth restriction

Intrauterine growth restriction (IUGR) is a condition defined 
as a fetus being less than 10% of its estimated fetal weight 
for a particular gestational age. The causes may vary but 

most often involve nutrition restriction, hypoxia and stress. 
Epidemiological evidence indicates that IUGR is associated 
with an increased risk of hypertension, diabetes and obesity 
in later life, and overexposure of the fetus to maternal glu-
cocorticoids has been identified as a potential underlying 
mechanism [8, 84, 85]. A considerable body of evidence 
has been building up in recent years for the correlation 
between reduced placental 11β-HSD2 expression and IUGR 
in human pregnancies [52, 54, 86, 87]. Catch-up growth is 
often seen after IUGR in the first year of extra-uterine life. 
Interestingly, Tzschoppe et al. showed that the expression of 
11β-HSD2 in the placenta correlated not only positively with 
the birth weight but also inversely with the growth velocity 
in the first year of extra-uterine life of the IUGR baby [88], 
further indicating a crucial role of placental 11β-HSD2 in 
the protection from IUGR. The enhancement of methylation 
levels in the HSD11B2 promoter is emerging as the major 
mechanism underlying the reduced 11β-HSD2 abundance 
in IUGR [89–92]. Marsit et al. reported that the extent of 
methylation of the HSD11B2 promoter in the placenta was 
greatest in infants with the lowest birth weights [92]. Unfor-
tunately, there is little information regarding the precise 
mechanisms underlying the methylation of the HSD11B2 
promoter. The mechanisms involved may differ depending 
on the causes of IUGR.

Stress

Different stressors can be encountered in pregnancy. Notably, 
both human and animal studies have shown that acute and 
chronic stress may have differential effects on the expression 
of 11β-HSD2 in the placenta [93–97]. While acute stress 
stimulates the expression of 11β-HSD2, chronic stress inhib-
its the expression of 11β-HSD2 in the placenta [93–97]. In 
agreement with these findings, acute treatment of cultured 
placental trophoblasts with glucocorticoids also increased 
the expression of HSD11B2 [74, 98]. It is likely that the up-
regulation of placental 11ß-HSD2 by acute stress may be an 
immediate protective measure adopted by the fetus against 
the sudden elevation of maternal glucocorticoids, while the 
inhibition of placental 11ß-HSD2 by chronic stress may be a 
strategy adopted by the fetus for its survival because chronic 
stress is a risk factor for preterm birth [99]. For this reason, 
the inhibition of placental 11ß-HSD2 by chronic stress ena-
bles more cortisol to pass into the fetal circulation thereby 
promoting the maturation of vital fetal organs for its survival 
in extra-uterine life. However, this survival strategy occurs 
at the expense of growth restriction and therefore increases 
the risk of chronic diseases in later life.

The mechanisms underpinning the differential regula-
tion of placental 11ß-HSD2 expression by acute and chronic 
stress are not fully understood. However, studies have shown 
that the stimulation of placental 11ß-HSD2 expression by 
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glucocorticoids occurs at both transcriptional and post-
transcriptional levels and is mediated by glucocorticoid 
receptors [74, 98]. At the transcriptional level, glucocor-
ticoid-stimulated hCG production may account, at least in 
part, for the stimulation of HSD11B2 expression by these 
hormones [74]. Accumulating evidence has demonstrated 
that chronic stress-induced reduction in placental 11ß-HSD2 
expression may be associated with the hypermethylation of 
the HSD11B2 gene promoter [91, 97, 100]. Although the 
detailed mechanisms underlying the hypermethylation of the 
HSD11B2 gene promoter by chronic stress is not known, 
increased expression of the DNA methyltransferases may 
be involved in this process [97, 101]. Interestingly, chronic 
stress-induced hypermethylation of the HSD11B2 gene pro-
moter appears to be sexually dimorphic affecting mainly the 
female offspring [101–104].

Hypoxia

Maternal hypoxia is a common perturbation that can dis-
rupt placental function and slow down fetal development, 
thus contributing to neonatal impairment. A study in mice 
showed that maternal hypoxia during mid- to late gestation 
not only changed the placental morphology but also reduced 
fetal birth weight with altered gene expressions including 
reduced MR and GR as well as HSD11B2 expression in the 
placenta [105]. Human studies also demonstrated that the 
expression of HSD11B2 was decreased when fetal asphyxia 
is present in the late phase of IUGR pregnancies [106].

In vitro studies using human placental trophoblasts also 
showed that when the cells were exposed to hypoxic condi-
tions, both the induction of 11ß-HSD2 and syncytialization 
of trophoblasts were prevented [107, 108]. A further study 
revealed that hypoxia may induce an initially rapid down-
regulation of 11ß-HSD2 protein synthesis at the translation 
level, and a later down-regulation of HSD11B2 gene tran-
scription [109]. However, it is not clear whether this tran-
scriptional mechanism involves epigenetic modification of 
the HSD11B2 gene.

Preeclampsia is characterized by shallow trophoblast 
invasion with subsequent hypoxemia. Studies in preec-
lampsia demonstrated no significant change in the meth-
ylation level in HSD11B2 gene promoter [67, 110], despite 
the decrease of 11ß-HSD2 abundance seen in the placental 
tissue in this condition [53, 67, 82, 111]. These data sug-
gest that hypoxia may affect placental HSD11B2 expres-
sion through mechanisms other than modification through 
methylation.

Nutrition

The effect of nutritional restriction on birth weight and 
subsequent disease during adulthood is well demonstrated 

in studies of exposure to famine, most notably seen during 
the Dutch Hunger Winter [112, 113] as well as by stud-
ies in animals [114–116]. Overexposure to glucocorticoids 
during the critical window of fetal development is believed 
to be the critical mechanism underlying the early life pro-
gramming of adult diseases in maternal nutritional restric-
tion [117], suggesting that lack of nutrition can reduce the 
expression of HSD11B2 in the placenta. Indeed, a number 
of studies in animals have demonstrated that maternal die-
tary intake restriction [118, 119] or protein content restric-
tion [120–122] during early- to mid-gestation can result in 
decreased placental HSD11B2 expression.

An in vitro study using BeWo cells, a trophoblast cell 
line, revealed that low levels of amino acids might decrease 
11β-HSD2 abundance through leptin-activated JAK-STAT 
and MAPK signaling pathways [123]. However, an alterna-
tive mechanism for this phenomenon involves the possibility 
of modification of DNA methylation which remains a highly 
probable option in nutritional restriction because this pro-
cess depends on the availability of methyl group donors and 
cofactors produced by methionine and folate metabolism or 
is provided by dietary-derived vitamins B6 and B12 [124]. 
However, limited data are available at present regarding the 
effect of dietary components on the methylation modifica-
tion of the HSD11B2 gene in the placenta. Of the few studies 
addressing this issue, investigation of the effect of dietary 
folic acid on the methylation level of the HSD11B2 gene in 
the placenta is in favor of the methylation modification of 
HSD11B2 gene in the placenta by dietary components [104]. 
In a similar experimental paradigm, folate supplementation 
during pregnancy was shown to be able to prevent much of 
the adverse programming effects of maternal protein restric-
tion on the cardiovascular system in the offspring [125], sug-
gesting that folate component in the diet may play a critical 
role in the modification of HSD11B2 gene methylation in 
the placenta.

Summary and future perspectives

The placenta is equipped with a glucocorticoid barrier 
for the protection of the fetus from the adverse effects of 
excessive maternal glucocorticoids in almost all placental 
mammals including humans. This barrier is enforced by 
the expression of 11β-HSD2 in the syncytial layer of the 
placental villi, which converts biologically active cortisol 
into inactive cortisone. Impairment of this placental gluco-
corticoid barrier is associated with fetal IUGR and develop-
ment of chronic diseases in later life. Ontogeny studies show 
that the expression of 11β-HSD2 is initiated at a very early 
stage after conception and increases with gestational age but 
declines around term. The promoter of HSD11B2, the gene 
encoding 11β-HSD2, has a highly GC-rich core. However, 
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the pattern of methylation marks on HSD11B2 may have 
already been set up when the trophoblast identity of the 
blastocyst is committed. Instead, pregnancy hormones, 
such as the hCG-initiated signaling pathway, appear to be 
responsible for the upsurge of 11β-HSD2 expression during 
trophoblast syncytialization. By activating the cAMP/PKA 
pathway, hCG not only alters the modification of histones 
but also increases the expression of Sp1 which activates the 
transcription of HSD11B2.

Different causes of IUGR such as stress, hypoxia and 
nutritional restriction can be encountered in pregnancy. 
Available studies indicate that different causes of IUGR 
may attenuate HSD11B2 expression in the placenta by dif-
ferential mechanisms. While stress and nutritional restric-
tion may reduce HSD11B2 expression by increasing its 
methylation, hypoxia may decrease HSD11B2 expression 
via an alternative mechanism rather than methylation. How-
ever, the detailed mechanisms underlying the attenuation of 
HSD11B2 expression by adverse conditions have yet to be 
elucidated. We are unclear about how the methylation pat-
tern of the HSD11B2 promoter is changed by these adverse 
conditions and neither do we know the exact alternative 
pathways underpinning the reduction of HSD11B2 expres-
sion by other conditions in the placenta. In addition, it still 
remains a puzzle when and where HSD11B2 expression 
is initiated in the blastocyst before the 3rd week of gesta-
tion. We believe that elucidation of these issues may help 
to develop strategies to provide a safer intrauterine environ-
ment for the development of fetus.
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