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Abstract
With dual capacities for unlimited self-renewal and pluripotent differentiation, pluripotent stem cells (PSCs) give rise to 
many cell types in our body and PSC culture systems provide an unparalleled opportunity to study early human development 
and disease. Accumulating evidence indicates that the molecular mechanisms underlying pluripotency maintenance in PSCs 
involve many factors. Among these regulators, recent studies have shown that long non-coding RNAs (lncRNAs) can affect 
the pluripotency circuitry by cooperating with master pluripotency-associated factors. Additionally, trans-spliced RNAs, 
which are generated by combining two or more pre-mRNA transcripts to produce a chimeric RNA, have been identified as 
regulators of various biological processes, including human pluripotency. In this review, we summarize and discuss current 
knowledge about the roles of lncRNAs, including trans-spliced lncRNAs, in controlling pluripotency.

Keywords Trans-spliced RNA · Pluripotency · Human embryonic stem cells · Long non-coding RNAs · Induced 
pluripotent stem cells

Introduction

Pluripotent stem cells (PSCs) categorically include both 
embryonic stem cells (ESCs) and induced PSCs (iPSCs). 
Both these subcategories of human PSCs (hPSCs) are able 
to give rise to many cell types from our body [1, 2] and 
this broad differentiation potential, known as pluripotency, 
makes hPSCs a valuable platform for studying early events 
in human embryonic development. Moreover, the capac-
ity for unlimited self-renewal makes hPSCs a feasible cell 
source for use in regenerative medicine. The molecular 
pluripotency circuit in hPSCs is composed of and main-
tained by multilayered, coordinated gene expression net-
works. Thus, the core components of this circuitry are 

transcription factors, especially including NANOG, OCT4 
and SOX2. Collectively, these transcription factors provide 
a point of integration for extracellular signals and orchestrate 
with epigenetic modifications on histones or chromatin to 
maintain hESCs and iPSCs in a long-term, proliferative state 
while suppressing differentiation. Recent studies have shown 
that, in addition to protein-coding genes, lncRNAs (> 200 
nucleotides) are vital to various regulatory mechanisms of 
pluripotency maintenance and reprogramming. As such, the 
expression of lncRNAs has been shown to affect promoter-
driven gene transcription [3, 4], epigenetic modification of 
histones and chromatin [5, 6], post-transcriptional regula-
tion [7], miRNA availability through sponge function [8, 
9], and imprinting [10, 11]. Several previous reviews have 
comprehensively discussed the expression and function of 
lncRNAs in pluripotency maintenance, reprogramming and 
lineage differentiation, including the mechanisms by which 
lncRNA regulates these biological events [12–14].

Both protein-coding mRNAs and lncRNAs are spliced 
and poly-adenylated to generate mature transcripts. How-
ever, splicing can occur either in cis or in trans [15, 16]. 
Cis-splicing joins exons from a single precursor mRNA 
(pre-mRNA), while trans-splicing joins exons from two or 
more distinct pre-mRNAs [17–20]. The best-characterized 
example of trans-splicing involves spliced-leader (SL) RNA 
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in trypanosomes and nematodes. In SL trans-splicing, an 
identical 5′ capping exon is spliced onto various pre-mRNAs 
by a process that is dependent on canonical spliceosome 
function and the secondary structure of the SL RNA. This 
form of trans-splicing plays a pivotal role in processing the 
polycistronic transcriptional units of trypanosomes [18, 21] 
and is involved in the growth recovery of nematodes [22]. 
However, trans-splicing events in higher eukaryotes are not 
SL-type, and the functions and mechanisms of trans-splicing 
in these organisms are still unclear. In higher eukaryotes, 
trans-spliced RNAs have been shown to regulate apoptosis 
and axon guidance decisions in Drosophila [23, 24] and are 
associated with cancer development in humans [25]. With 
recent advances in next-generation sequencing technology, 
a continuously increasing number of trans-splicing events 
have been discovered in human cells or tissues. These events 
have many functions and recently a functional role for trans-
spliced RNAs in human pluripotent stem cells has been 
described [5].

In this review, we summarily describe the molecular cir-
cuity underlying pluripotency maintenance in pluripotent 
stem cells and then highlight new discoveries that demon-
strate a critical role for lncRNA in regulating pluripotency. 
Furthermore, we provide a summary of known trans-splic-
ing events and describe how these events function in various 
biological process. Finally, we discuss how trans-spliced and 
non-trans-spliced lncRNAs are coordinated with transcrip-
tion factors, epigenetic modification complexes and signal-
ing molecules to constitute a molecular pluripotency net-
work in hPSCs, focusing on pluripotency maintenance in 
ESCs and the establishment of pluripotency through repro-
gramming in iPSCs.

Human pluripotent stem cells (hPSCs): hESCs 
and iPSCs

During preimplantation stages, a fertilized egg undergoes a 
series of cleavage divisions and forms a compact embryonic 
sphere, known as a morula, which consists of blastomeres. 
The human morula further develops into a blastocyst, which 
contains an inner cell mass (ICM) and a fluid-filled cavity 
surrounded by a thin layer of trophectodermal epithelium. 
The ICM eventually gives rise to the embryo and the tropho-
blasts contribute to placenta formation. At this preimplanta-
tion stage, hESCs may be derived from the ICM and these 
cells will retain the pluripotency that is characteristic of the 
blastocyst. The successful derivation of hESCs has facili-
tated studies of regulatory mechanisms that operate during 
early embryo development and has also benefited studies on 
regenerative medicine. However, the generation of hESCs 
critically compromises the integrity of human embryos, thus 
raising the ethical question of whether it is acceptable to 

destroy human embryos for the purpose of hESC deriva-
tion. Fortunately, in 2007, Shinya Yamanaka’s group first 
demonstrated that iPSCs can be reprogrammed from human 
somatic cells by the expression of four transcription fac-
tors, OCT4, SOX2, KLF4 and c-MYC [26]. These iPSCs 
possess functional characteristics that are similar to hESCs, 
but unlike hESCs, the derivation of human iPSCs does not 
involve human embryos. Therefore, the use of iPSCs avoids 
the complex ethical issues surrounding the derivation and 
use of hESCs, while providing a viable source of hPSCs for 
experimentation and potential clinical application. Various 
in vitro and in vivo studies have shown that iPSCs are able to 
give rise to cell types representing all three embryonic germ 
layers [27–29], including endodermal hepatocytes [30], mes-
odermal cardiomyocytes [31], and various neuronal subtypes 
found in brain [32, 33] or spinal cord [27] (ectoderm). As 
such, iPSC technology provides an easy and efficient means 
to generate hPSCs from individuals with familial or sporadic 
forms of disease, as well as unlimited numbers of specific 
types of human cells that are not otherwise accessible for 
disease modeling and drug discovery. Moreover, iPSCs can 
be derived from any individual, providing immune-com-
patible, person-specific iPSCs for medical use. The iPSC 
reprogramming process also offers an opportunity to explore 
how the molecular circuity of pluripotency is established and 
maintained [34]. Overall, hESCs and iPSCs represent two 
valuable, but distinct, platforms for regenerative medicine 
and basic research on pluripotency circuitry.

The transcriptional regulatory network 
in pluripotency maintenance

OCT4/Oct4 (homeodomain transcription factor), SOX2/Sox2 
(HMG-box transcription factor) and NANOG/Nanog (home-
odomain transcription factor), which are all highly expressed 
in the ICM, the epiblast and undifferentiated PSCs, are the 
core molecules of a transcriptional regulatory network that 
controls pluripotency maintenance [35–38]. The functional 
roles of OCT4/Oct4, SOX2/Sox2 and NANOG/Nanog in 
pluripotency were first revealed in vivo by creating null 
mutations in mouse embryos. Knockout of Oct4 in mice pre-
vented the formation of a pluripotent ICM population within 
blastocysts [39], and knockout of Sox2 expression caused a 
similar phenotype [38]. Ablation of Nanog is lethal in early 
embryonic stages, suggesting that its role is also critical in 
early development [36, 40]. In agreement with these find-
ings, in vitro studies of mouse ESCs (mESCs) showed that 
disruption of Oct4 or Sox2 expression results in the loss 
of pluripotency and promotes trophoblastic differentiation 
[39, 41]. On the other hand, overexpression of Oct4 or Sox2 
in mESCs can perturb the pluripotent state and, respec-
tively, promote differentiation toward primitive endoderm 
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or neuroectoderm [42, 43]. Perturbing Nanog expression in 
mESCs causes the loss of pluripotency and promotes in vitro 
differentiation toward an extraembryonic endoderm lineage 
[36]. Similar to the mouse studies, knockdown of OCT4 
expression in hESCs induces trophectoderm differentiation 
[44, 45]. Additionally, overexpression of OCT4 in hESCs 
does not necessarily induce autonomous differentiation or 
an exit from pluripotency, but under certain conditions may 
promote in vitro differentiation toward an endodermal line-
age [46]. Knockdown of NANOG expression induces neu-
roectodermal subsets of genes with anterior–posterior iden-
tities, while overexpression does not induce differentiation, 
but instead completely prevents neuroectodermal differentia-
tion [47]. Functional studies in both mESCs and hESCs have 
revealed that OCT4/Oct4, SOX2/Sox2 and NANOG/Nanog 
can bind their own promoters/enhancers and the promot-
ers of other genes encoding pluripotency-associated factors 
to activate expression [37, 41, 48–52]. Further, these three 
transcription factors are known to occupy the promoters of 
genes that specify differentiation of extra-embryonic, endo-
dermal, mesodermal and ectodermal lineages, and inactivate 
expression [37].

Collectively, the previously mentioned studies have 
revealed a mechanism in which OCT4/Oct4, SOX2/Sox2 and 
NANOG/Nanog can bind together at their own promoters 
and promoters of genes encoding other core pluripotency-
associated transcription factors, forming an interconnected 
auto-regulatory loop to activate downstream pluripotency-
associated effectors and repress lineage-associated gene 
expression.

Signaling pathways that regulate 
pluripotency in hPSCs

The convergence of extracellular signaling events acting on 
intrinsic core pluripotency-associated transcription factors, 
OCT4, SOX2 and NANOG, to regulate gene expression at 
promoters and enhancers is a common theme in the literature 
describing pluripotency maintenance [53–55]. Interestingly, 
while hPSCs and mESCs share the same core pluripotency-
associated transcription factors, the supporting signaling 
pathways have proven to be quite different. In mESCs, it 
known that activation of LIF and BMP signaling pathways 
is essential for pluripotency maintenance [53, 54]. How-
ever, LIF and BMP do not promote human pluripotency, 
and, alternatively, activation of Activin/Nodal, FGF, and 
WNT signaling pathways is critical regulators [56–59]. 
These findings have led to the discovery of two distinct 
pluripotency states, namely naïve and primed pluripotency, 
which describe ICM-derived mESCs and epiblast-derived 
epiblast stem cells (EpiSCs), respectively [60, 61]. Since 
mouse EpiSCs and hPSCs have similar growth requirements, 

as well as similar cellular and molecular characteristics, it 
is believed that hPSCs are in a primed pluripotency state 
and, thus, are likely to originate from human epiblasts [59].

The roles of Activin/Nodal and FGF signaling pathways 
in maintaining pluripotency of hPSCs were first described 
by Vallier et al. and Ludwig et al., who demonstrated that 
inhibition of Activin/Nodal signaling pathway in hESCs 
promotes in vitro differentiation [55, 62]. Further studies 
showed that activation of the Activin/Nodal signaling media-
tor, SMAD2/3, promotes NANOG expression [56, 57] and 
inhibits differentiation-related BMP signaling by compet-
ing with the common mediator, SMAD4 [63] (Fig. 1a). 
However, neither Activin nor Nodal alone is sufficient to 
sustain hESCs in an undifferentiated state for an extended 
period. FGF2 can contribute to pluripotency maintenance in 
hESCs by activating the MAPK/ERK signaling cascade as 
a competence factor, which is necessary to cooperate with 
Activin/Nodal signaling [55] (Fig. 1b). FGF2 may also act to 
stimulate PI3K/AKT signaling and enhance SMAD2/3 occu-
pancy on the promoters of pluripotency-associated genes 
[64, 65]. In addition to facilitating pluripotency-related gene 
transcription, both FGF-activated MAPK/ERK and PI3K/
AKT signaling cascades can repress differentiation-related 
BMP signaling pathways to further promote pluripotency 
[57, 66, 67] (Fig. 1b).

Wnt ligands are secreted glycoproteins that are involved 
in regulating diverse biological processes, such as cell 
proliferation, differentiation, migration, and asymmetric 
cell division. It is established that Wnt ligands exert their 
functions through the canonical Wnt/β-catenin cascade, or 
non-canonical Wnt/JNK and Wnt/Calcium-related pathways 
[68]. The activation of canonical Wnt/β-catenin signaling 
protects β-catenin from degradation by inhibiting the APC/
AXIN/GSK-3β complex (Fig. 1c). Subsequently, stabilized 
β-catenin can translocate to the nucleus, where it interacts 
with TCF/LEF family transcription factors to regulate gene 
expression. Activation of canonical Wnt/β-catenin signaling 
maintains the naïve pluripotency state of mESCs [69], but 
the role of canonical Wnt/β-catenin signaling is less clear in 
hPSCs. Sato et al. reported that activation of Wnt/β-catenin 
signaling by either WNT3A or GSK-3β inhibitor, BIO, can 
maintain pluripotency in hESCs [70]. In contrast, Bone 
et al. and Nakanishi et al. demonstrated that WNT3A or 
BIO induces primitive and definitive endoderm differentia-
tion of hESCs [71, 72]. Other studies further showed that 
the activation of canonical Wnt/β-catenin signaling may 
maintain the expression of pluripotency markers but does 
not support the long-term maintenance of hESCs [73–75]. 
Therefore, the role of canonical Wnt/β-catenin signaling in 
the maintenance of pluripotency or promotion of differentia-
tion in hESCs will require further study.

Unlike canonical Wnt/β-catenin signaling, non-
canonical Wnt signaling is usually recognized as a 
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differentiation-related pathway. For example, the non-canon-
ical Wnt/JNK cascade is known to regulate cell polarity 
during morphogenesis processes, such as gastrulation and 
neural tube closure during early embryonic development 
[76–78]. On the other hand, non-canonical Wnt/Calcium-
related cascades control differentiation to specific cell line-
ages, as well as migration. This non-canonical pathway oper-
ates via activation of heterotrimeric G proteins to promote 
phospholipase C-mediated release of calcium from intracel-
lular stores, which in turn activates downstream effectors 
such as PKC, CamKII and NFAT [79, 80].

LncRNA regulation of pluripotency circuitry

lncRNA, which refers to non-coding RNA transcripts longer 
than 200 nucleotides, is an emerging category of molecules 
that function in a variety of biological processes, including 
X-chromosome inactivation [81], imprinting [82], epige-
netic modifications [5, 83], transcriptional regulation [84, 
85], miRNA sequestration [8], nuclear trafficking [86] and 
nuclear body formation [2, 87]. The development of plat-
forms for screening lncRNAs, such as targeted microarrays 
or next generation sequencing, has accelerated the discovery 
of lncRNA functions in various cell types. Accumulating 
evidence shows that lncRNA also functions in pluripo-
tent stem cells. Dinger et al. were the first to show that the 
expression of a set of lncRNAs is controlled by NANOG, 

OCT4 and SOX2 during mESC differentiation and directly 
confirmed the regulatory role of NANOG and OCT4 on 
lncRNA promoters by chromatin immunoprecipitation 
(ChIP) [88]. Sheik Mohamed et al. demonstrated that modu-
lation of lncRNA-AK141205 expression induced the loss of 
pluripotency and promoted differentiation of mESCs, sug-
gesting a functional role for lncRNA in pluripotency main-
tenance [89].

The roles of lncRNAs in hPSCs have also been studied. 
Loewer et al. first discovered over 100 lncRNAs with sig-
nificantly higher expression levels in hPSCs, as compared 
to fibroblasts [9]. Among these hPSC-enriched lncRNAs, 
lncRNA-ROR was shown to modulate NANOG, OCT4 
and SOX2 expression in hESCs by competing with miR-
145/181a/99b [8, 9], while lncRNA-HPAT5 counteracted 
let-7 activity to protect hESCs from differentiation [90]. 
Furthermore, Xu et  al. demonstrated that the lncRNA, 
GAS5, can act as an miR-2467/3200/let7e sponge to regulate 
NODAL signaling and maintain hESC pluripotency [91]. 
These findings are summarized in Fig. 2a.

In addition to functioning as a miRNA sponge, lncRNAs 
can also form complexes with proteins to regulate pluri-
potency maintenance. For example, Rana’s group demon-
strated that lncRNA-TUNA forms a complex with RNA-
binding proteins, PTBP1, hnRNPK and NCL, to regulate 
NANOG, SOX2 and FGF4 expression through promoter 
occupancy [92] (Fig. 2b). Ng et al. identified 36 lncRNAs 
with expression profiles that mirrored expression of OCT4 

Fig. 1  Signaling pathways in human pluripotency maintenance. In 
hPSCs: a Activin/Nodal signaling molecules induce SMAD2/3 phos-
phorylation and interaction with SMAD4. The SMAD2/3–SMAD4 
complex then translocates to the nucleus, where it promotes NANOG 
expression. NANOG cooperates with OCT4 and SOX2 to maintain 
pluripotency in hPSCs. b FGF2 activates phosphorylation of PI3K/
AKT or MAPK/ERK signaling cascades, which cooperate with 

SMAD2/3–SMAD4 complexes to promote pluripotency in hPSCs. c 
Canonical Wnts inhibit the activity of the APC/AXIN/GSK-3β com-
plex, by which β-catenin is protected from degradation. β-Catenin 
translocates to the nucleus, where it cooperates with TCF/LEF family 
members to regulate expression of target genes. Whether the canoni-
cal Wnt/β-catenin cascade maintains pluripotency or promotes differ-
entiation of hESCs remains controversial
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and NANOG during hESC differentiation. The authors fur-
ther demonstrated that impaired expression of three of the 
identified hESC-enriched lncRNAs (lncRNA-ES1, lncRNA-
ES2 and lncRNA-ES3) in hESCs resulted in upregulation 
of early lineage-associated genes and downregulation of 
pluripotency-associated genes by a process dependent on 
interaction with SUZ12, a PRC2 repressive complex compo-
nent, and SOX2 [83]. Yu et al. reported that a trans-spliced 
lncRNA, lncRNA-tsRMST interacts with NANOG and PRC2 
complex to repress differentiation-associated genes and sign-
aling pathways to promote pluripotency maintenance [5, 93] 
(Fig. 2c). Further, a recent report showed that lncRNA-SRA 
can interact with both the MLL1/SET1 activating complex 
and the PRC2 repressive complex, suggesting that lncRNA 
may also be involved in bivalent domain formation, which 
is functionally important in the balance of pluripotency 
and differentiation [94] (Fig. 2d). Finally, lncRNA has 
also been shown to contribute to pluripotency reprogram-
ming. For instance, disruption of lncRNA-SRA was found to 
decrease the number of reprogrammed iPSC colonies [95], 
and lncRNA-ROR and lncRNA-HPAT5 act as miRNA sponge 

to promote pluripotency reprogramming and iPSC genera-
tion [9, 90]. In contrast, lncRNA-p21 hampers pluripotency 
reprogramming of iPSCs by interacting with SETDB1 and 
DNMT1 to sustain H3K9me3 modifications and CpG meth-
ylation [96]. Based on this mounting evidence, lncRNA can 
be considered as an emerging player in pluripotency main-
tenance and reprogramming. For further detailed examples 
regarding the expression, function roles and the mechanism 
by which lncRNA regulates pluripotency and reprogram-
ming, readers are referred to the review by Ghosal et al. [14] 
and Chakrabarti et al. [97].

Trans‑spliced RNA (tsRNA)

RNA splicing removes introns from pre-mRNA and joins 
exons to generate mature and functional mRNA. Cis-splic-
ing combines exons from the same pre-mRNA transcript, 
whereas trans-splicing uses two or more pre-mRNA tran-
scripts to form chimeric, non-colinear transcripts, which may 
either encode new protein products or serve as regulatory 

Fig. 2  The roles of lncRNAs in regulating hPSCs pluripotency. a 
lncRNAs (lncRNA-ROR, lncRNA-HPAT5 and lncRNA-GAS5) act as 
miRNA sponges to inhibit miRNA activity, promoting pluripotency 
maintenance of hPSCs. b lncRNA-TUNA interacts with PTBP1, 
hnRNPK, and NCL1 to regulate NANOG and SOX2 expression 
through promoter occupancy. c lncRNAs (tsRMST and lncRNA-ES1/

ES2/ES3) interact with the PRC2 complex and pluripotency-associ-
ated factors (NANOG or SOX2) to inhibit expression of linage-asso-
ciated genes. d lncRNA-SRA interacts with MLL1 complex, PRC2 
complex and the pluripotency-associated factor, NANOG, to promote 
bivalent domain formation
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non-coding RNAs. Trans-splicing can occur within a single 
gene or between different genes [15, 16] and was first discov-
ered in Trypanosoma brucei and other trypanosomes, where 
the process entails a short-SL RNA being spliced onto the 
5′ termini of all mRNAs [98–100]. SL-type trans-splicing 
was later found to occur in nematodes, such as Caenorhab-
ditis elegans and Panagrellus redivivus [20, 101]. Intrigu-
ingly, SL-type trans-splicing can be processed by HeLa cell 
extracts, suggesting that the machinery is broadly conserved 
in eukaryotes [20, 102–104]. However, no observations of 
SL-type splicing events have been reported in higher eukar-
yotes. In higher eukaryotes, the most well-known trans-
spliced RNAs are Mod4, which regulates apoptosis, and 
Lola, which regulates axon guidance, in Drosophila [23, 24, 
105–107]. In a global exploration of trans-splicing events 
in insect linages by Kong et al., Mod4 trans-splicing was 
found to be conserved in two Diptera and two Lepidoptera 
species [108]. Interestingly, Kong et al. also showed that 146 
trans-spliced RNAs resemble cognate genes in different spe-
cies, suggesting that trans-splicing may function as a buffer 
system to preserve the function of genes that have undergone 
“breakup” during the evolution of insect linages [108].

In contrast with the numerous trans-splicing events that 
have been identified in insects or lower eukaryotes, only 
around 20 have been identified in humans to date. Moreover, 
more than half of the known human trans-splicing events 
were identified in cancer cell lines or tissues, and the func-
tions of most human trans-splicing events are still not well 
characterized (Table 1). The most prominent examples of 
known functional trans-splicing in normal human cells are 
JAZF1-JJAZ1 and tsRMST. JAZF1-JJAZ1 is translated into a 
chimeric protein with anti-apoptotic function and is believed 
to be a prerequisite for chromosomal exchange [16, 109, 
110], while tsRMST recruits the PRC2 complex to repress 
differentiation-associated genes in hESCs [5].

The function of tsRMST in human 
pluripotency

RMST (ENSG00000255794.6) is located on the q arm of 
chromosome 12 (chr12:97431653-97565015). The entire 
linear RMST transcript contains 13 exons and is ~ 2.6 kb in 
length. RMST was first identified as a cancer marker in alve-
olar-subtype rhabdomyosarcoma [129], and a subsequent 
study in mice showed that Rmst is also expressed in the ven-
tral mesencephalic floor plate and anterior dorsal midline 
cells [130]. The transcript was then identified as a neuro-
genic lncRNA that is important for neural differentiation. 
This discovery was based on genome-wide profiling and 
functional screening of lncRNAs with differential expression 
during in vitro differentiation of hESCs [83]. Importantly, a 
further mechanismic study showed that RMST expression is 

important for the binding of SOX2 to neurogenic genes, such 
as ASCL1, NEUROG2, HEY2, and DLX1 [131].

tsRMST is the trans-spliced isoform of RMST, in which 
the 3′ terminus of RMST exon 11 is joined to the 5′ termi-
nus of exon 3, forming a linear RNA with scrambled exon 
order (Fig. 3a). The enrichment of tsRMST in the oligo-dT 
purified mRNA fraction indicated that tsRMST is polyade-
nylated. Furthermore, tsRMST was found to be degraded 
by RNaseR treatment, which confirmed that tsRMST is 
not a circular RNA (circRNA) with scrambled exon order 
[5]. When the tsRMST sequence was examined by a cod-
ing potential calculator [132], it showed low protein coding 
potential, suggesting that tsRMST is likely to be a trans-
spliced lncRNA. Furthermore, the conserved exon–intron 
boundaries in both RMST and tsRMST suggest that conven-
tional splicing machinery is involved in the trans-splicing 
process, and the downregulation of tsRMST in differentiated 
hESCs suggests that trans-splicing is tightly regulated. It 
has been demonstrated that splicing factors and complemen-
tary sequences in flanking introns regulate the biogenesis of 
circRNAs, another type of alternatively spliced RNA with 
scrambled exon order. Therefore, it will be interesting to 
explore whether trans-splicing events are regulated through 
similar mechanisms [133–135].

tsRMST is highly expressed in hPSCs, including hESCs 
and human iPSCs, as compared to differentiated somatic 
cells. The disruption of tsRMST expression in hESCs ham-
pers pluripotency-associated gene expression, suggest-
ing a role in pluripotency maintenance. Mechanistically, 
tsRMST interacts with pluripotency factor, NANOG, and 
PRC2 complex component, SUZ12, which acts to sup-
press lineage differentiation and promote pluripotency. 
These interactions suggest that tsRMST may act as a co-
repressor of NANOG and the PRC2 complex to maintain 
pluripotency. Interestingly, a study by our group found that 
tsRMST does not interact with SOX2; however, an inter-
action between SOX2 and the colinear RMST transcript 
was shown by Ng et al. [83]. Therefore, trans-splicing 
may modify the protein interactome of RMST or other 
lncRNAs. Considering that tsRMST and RMST contain 
highly similar nucleotide sequences with the only differ-
ence being in the trans-splice junction, it is reasonable to 
suspect that trans-splicing may alter the RNA structure to 
modulate the protein interactome of lncRNAs in humans. 
ChIP-Seq-based global analysis of gene occupancy by 
SUZ12 and NANOG indicated that NANOG and the PRC2 
complex co-occupy inactive genes, such as early lineage-
associated transcription factors PAX6, GATA4 and GATA6, 
as well as the signaling ligand, WNT5A [5, 93]. In hESCs 
with impaired tsRMST expression, NANOG and the PRC2 
complex are not associated with PAX6, GATA4, GATA6 
and WNT5A promoters, suggesting that tsRMST promotes 
NANOG and PRC2 complex occupancy on inactive genes 
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in hESCs (Fig. 3b). With these results in mind, we pro-
posed a model for regulation of hESCs, wherein tsRMST 
interacts with NANOG and the PRC2 complex to repress 
expression of signaling ligands and early lineage-associ-
ated transcription factors to promote pluripotency. Along 
these lines, we observed that downregulation of tsRMST 

disrupted the repressive complex and activated GATA4, 
GATA6, PAX6 and WNT5A expression during in  vitro 
differentiation of hESCs. Moreover, the expression of 
WNT5A in differentiated hESCs further activated epithe-
lial–mesenchymal transition to promote endoderm differ-
entiation (Fig. 3c). Thus, tsRMST blocks differentiation by 

Table 1  Summary of trans-splicing events identified in human

RPA RNase protection assay

Trans-splicing Biological func-
tion

Cell types Validation Read through References

RT-PCR Sequencing Northern, RPA 
Western or 
FISH

Genome 
rearrange-
ment

TMEM79-SMG5 Cancer marker LNCaP cells
Cancer tissue

Yes Yes No No No [111]

TSNAX-DISC1 Cell growth Endometrial carci-
nomas

Yes Yes Western No Unknown [112]

hER-α May modulate 
hER-αbinding

MCF7, T47D, 
ZR75, cells, 
mammary gland, 
ovary, liver, 
endometrium

Yes Yes RPA No – [113]

SP1 May modulate the 
activity of SP1

Hep2 cells Yes Yes RPA No – [114]

RGS12TS Induction of 
nuclear abnor-
malities

COS-7, HEK293T 
cells

Yes Yes Western No – [115]

PAX3-FOXO1 Activates MYOD 
and MYOG

Rhabdomyosar-
coma

Yes Yes FISH, Western No No [116, 117]

PJA2-FER Cancer maker Non-small cell 
lung cancer

Yes Yes No No No [118]

JAZF1-JJAZ1 Anti-apoptotic Endometrial stro-
mal cells

Yes Yes FISH No No [25]

ZC3HAV1l-
CHMP1A

Onset of chromo-
somal transloca-
tion

Mammary epithe-
lial cells

Yes Yes No No No [119]

AF4, AF9, ELL, 
ENL, MLL

Onset of chromo-
somal transloca-
tion

PBMCs Yes Yes No No No [120]

CYP3A43-3A4 
CYP3A43-3A5

May alter cellular 
location

HepG2 cells and 
normal Liver 
tissue.

Yes Yes RPA No No [121]

CYCLIND1-
TROP2

Cell growth OVCA-432, 
MCF7 cells

Yes Yes Northern, RPA No No [122]

CoAA-RBM4 Regulates CoAA 
activity

Wild range of cell 
lines and normal 
tissues

Yes Yes Western Unknown Unknown [123]

CDC2L2 Unknown Testis Yes No FISH Unknown – [124]
CAMK2G-SRP72 Unknown Islet cells Yes Yes Western Unknown No [125]
ACAT1-Amp Unknown THP-1, HEK293 

cells
Yes Yes Northern Unknown No [126–128]

SLC45A3-ELK4 Cancer maker (Benign) prostate 
cancer tissues 
and LNCaP cells

Yes Yes FISH No No [124]

tsRMST Pluripotency 
maintenance

hESCs Yes Yes RPA No No [5]
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affecting multiple layers of the pluripotency maintenance 
machinery, specifically repressing both core transcription 
factors and signaling ligands.

Conclusions and perspectives

In hPSCs, the pluripotency circuitry is tightly regulated at 
multiple layers to orchestrate self-renewal, cell differen-
tiation and pluripotency. Master pluripotency-associated 
transcription factors (i.e., NANOG, OCT4, SOX2) form 
the core network that promotes the pluripotency program 
and suppresses differentiation programs. Meanwhile, an 
additional layer of regulation centers around signaling mol-
ecules, such as FGF2, NODAL/ACTIVIN and WNTs, which 
support the pluripotency core network by activating kinase 
cascades. The role of lncRNA as an additional regulatory 
layer in pluripotency circuitry is an emerging concept and 
is supported by recent findings that individual lncRNAs can 
inhibit differentiation-associated miRNAs, such as miR-145 
and miR-34a, to promote the expression of core transcrip-
tion factors.

Our exploration of the functions of trans-splicing in 
humans has only just begun and many unanswered questions 

remain. How many trans-splicing products can be found in 
human transcriptome? Are there unknown functions for 
tsRMST and other trans-splicing events? How are trans-
splicing events regulated? What splicing machinery is 
utilized in human trans-splicing and does it resemble the 
canonical splicing machinery? With so many central ques-
tions remaining, it will be interesting and fruitful to continue 
exploring the unknown field of trans-splicing in humans.
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