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Abstract
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or super-
fluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of 
types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be 
discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular 
mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-
related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light 
on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs 
to improve targeted cancer therapy.

Keywords Autophagy · Tumor-suppressive · Tumor-promoting · Small-molecule compound · Targeted cancer therapy

Introduction

Autophagy, a highly evolutionarily conserved process, is 
responsible for degradation and recycling of intracellu-
lar components by lysosome system. Under physiological 
conditions, autophagy is maintained at basal levels which 
contributes to the successive degradation of superabundant, 
abnormal, damaged or risk factors [1]. Three major types 
of autophagy have been characterized: macroautophagy, 
microautophagy, and chaperone-mediated autophagy. 
Among them, macroautophagy depends on specialized 

double-membraned vesicles known as autophagosomes to 
progressively package autophagic cargo and then deliver 
them to the lysosomes by membrane fusion. Microautophagy 
relies on the direct uptake of cytoplasmic material through 
lysosomal membrane invaginate. And chaperone-mediated 
autophagy involves the lysosomal-associated membrane 
protein 2 (LAMP2)-dependent translocation of autophagic 
substrates bound to cytosolic chaperones of the heat shock 
protein family across the lysosomal membrane [2]. Although 
different kinds of autophagy are all closely related to cancer, 
macroautophagy is the best-characterized form of autophagy 
and is more closely tied to cancer progression. Interestingly, 
many signaling pathways related to tumor transformation 
and progression can dramatically regulate autophagy ini-
tiation; thereby making their relationship more fascinating. 
In this review, autophagy refers to macroautophagy, unless 
otherwise specified (Fig. 1).

The process of classical autophagy mainly consists of 
five successive subtle steps, including (I) induction, (II) 
vesicle nucleation, (III) vesicle elongation and comple-
tion, (IV) docking and fusion, and finally, (V) degradation 
and recycle [3]. Autophagy could be directly rhythmically 
regulated by various autophagy-modulating genes and 
proteins (Fig. 2a). In the initiation step of autophagy, the 
widely accepted sensor is the mechanistic target of rapa-
mycin complex I (mTORCI) and many autophagy inducers 
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trigger autophagy by initiating signal transduction cascades 
to tactfully inhibit mTORCI [4]. Except for mTORCI, ULK 
complex members Unc51-like protein kinase 1(ULK1), 
mATG13, FIP200, and ATG101 are also crucial for the ini-
tiation of autophagic responses. AMPK, the sensor of ATP/
AMP, is of great importance in this step by directly regulat-
ing mTORCI and ULK1 [5]. At the stage of vesicle nuclea-
tion, the most important complex is the Vps34 complex and 
Beclin1. The process of autophagy is mainly dependent on 
two ubiquitin-like conjugation systems to process the link-
age of ATG5 to ATG12 and ATG16L1, and phosphatidyle-
thanolamine to proteins of the microtubule-associated pro-
tein 1 light chain 3 (LC3). ATG7 is vital for the formation 

of ATG5–ATG12–ATG16L complex and the maturation of 
LC3II [6]. In the last step of autophagy, Lysosome-associ-
ated membrane protein 1 and 2 play a crucial role for the 
regulation of lysosomal motility [7].

Baseline autophagy is the basis for maintaining the 
health of organisms [1]. Autophagy, which always sus-
tains an adaptive response to stress, is stimulated by a 
lot of factors. Autophagy maintains organisms on an 
energetic homeostasis at the starvation state and plays a 
fatal role when encountering diverse stress conditions, 
such as oxidative damage, damaged organelles aggrega-
tion, dangerous stimulator aggregation, microbial infec-
tion [8], etc. Defective autophagy is always accompanied 

Fig. 1  Some oncogenic and tumor suppressive signaling pathways 
related to tumor progression and autophagy initiate. a Oncogenic 
and tumor suppressive signaling pathways play important roles in the 
development of the tumor. Of which MAPK, PI3K-AKT and Notch 
signaling promotes the malignant process while p53 signaling inhib-
its it. NF-κB signaling responds to inflammation and ROS to inhibit 
tumor progression. b Oncogenic and tumor suppressive signaling 

pathways are closely related to autophagy initiate. MAPK signaling 
can activate autophagy through AMPK activation and promotion of 
autophagy-related gene translation. PI3K-AKT signaling inhibits 
autophagy through mTOR activation and p53 inhibition. Notch sign-
aling inhibits autophagy via p53 and PTEN inhibition. NF-κB signal-
ing inhibits ROS aggregation thus to inhibit autophagy
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by multiple diseases, such as immunodeficiency disease, 
geriatric disease, senescence, and cancer [9]. Compared 
to normal cells, cancer cells commonly display dysregula-
tion of autophagy. It has been demonstrated that BECN1, 
the pivotal autophagy gene, is deficient in ovarian, breast 
and prostate cancer cells [10]. Autophagy deficiency 
commonly results in malignant transformation and poor 
prognosis of cancer. Heterozygous disruption of BECN1 
also increases the risk of malignant transformation and 
rapidly progress to premalignant lesions. Mice lacking 
Ambra1 show a higher genetic susceptibility to cancer 
than wild-type ones [11]. Somatic mutations in ATG genes 
are frequently observed in malignant cancers [12] and the 
deficiency of Atg5 or Atg7 also increases the risk of the 

malignant transformation [13]. Additionally, autophagy 
suppresses the carcinogenesis through several strategies 
[14] (Fig. 2b). It is thought that autophagy prevents cancer 
development, but once cancer is established, autophagy 
always promotes cancer cells survival, especially in those 
malignant types. Moreover, autophagy often promotes can-
cer progression and resistance to treatment, which makes 
the cancer treatment more difficult [14, 15]. In this review, 
we focus on providing an exquisite insight into the context-
dependent role of autophagy including cancer-suppressive 
or tumor-promoting roles and elucidating related signaling 
pathways. Meanwhile, we illustrate a number of small-
molecule compounds directly targeting autophagy execu-
tors. Together, these inspiring findings may shed light on 

Fig. 2  Autophagy process and the key roles in cancer. a The form of 
autophagy consists of several successive steps, including (1) induc-
tion, (2) vesicle nucleation, (3) vesicle elongation and completion, (4) 
docking and fusion, and (5) degradation and recycling. Each step can 
be positively or negatively regulated by key autophagy-related pro-

teins. b On one hand, autophagy helps cancer cell proliferation and 
maintains carcinogenesis (red) in different stages of cancer. On the 
other hand, it suppresses its malignant transformation and promotes 
cancer cell death (blue). In general, autophagy plays a double-edged 
sword to control the cancer cell fate
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targeting autophagy with small molecular compounds to 
improve cancer therapy.

Tumor‑promoting role of autophagy 
in cancer

Autophagy is crucial to support organismal fitness, which 
also applies to cancer cells. Indeed, autophagy does pro-
mote tumor progression or protect tumor cells from stress 
especially in established cancer. In many aggressive cancers, 
autophagy often involved in chemotherapy resistance [16]. 
Herein, we mainly focus on the role of autophagy in stress 
resistance, necrosis and apoptosis resistance.

Resistance to stress

Energy and nutrients stress

Energy and nutrient stress is the most common but consider-
able threat to cancer cells. Because of their uncontrolled pro-
liferation, cancer cells require more nutrient and energy than 
normal cells. Under starvation, autophagy acts as the first 
protector to avoid energy shortage. Autophagy is activated 
under energy and nutrient stress by several mechanisms 
(Fig. 3a). AMPK, the salient energy sensor to maintain 
energy homeostasis under nutrient starvation, can stimulate 

autophagy through mTOR in a TSC1/2 dependent pathway 
[17]. Another key autophagy regulator is mTOR. Induction 
of autophagy can be easily triggered by mTOR inhibition. 
Atg1/ULK1 is a central component in autophagy and the 
autophagy regulator ULK complex is formed by ULK1, 
ATG13, FIP200, and ATG101. [18]. mTORC1 and ULK1 
can be regulated by AMPK through direct phosphorylation. 
After the induction of autophagy by AMPK, many other key 
autophagy factors are involved in the latter process. Among 
them, the Vps34 complex is the most critical one and AMPK 
can directly regulate Vps34 complex through phosphoryla-
tion to initiate autophagy [19]. AMPK and mTOR can acti-
vate or regulate autophagy to protect cells from the stress of 
energy and nutrition under physiological and pathological 
conditions. During the occurrence of a tumor, higher levels 
of autophagy may help the malignant growth of tumor cells, 
so that the inhibition of autophagy can be an effective strat-
egy for the therapy at this stage.

Hypoxia stress

Hypoxia in the tumor microenvironment is the most popular 
phenomenon during cancer progression and it has been con-
sidered as a poor prognosis marker for years. Recent reports 
show that hypoxia-inducible factors are closely related to 
cancer invasion and progression in metastatic breast can-
cer [20]. Tumor cells regulate the hypoxia-inducible factor 

Fig. 3  Autophagy helps cancer cell response to stress. a Under energy 
and nutrients stress, autophagy can be activated by several mecha-
nisms. b When cancer cells are exposed to hypoxia, autophagy can be 
stimulated via HIF1a-regulated pathways. c Cells can remove abnor-

mal mitochondria to keep mitochondria maintenance via mitophagy 
mechanism, and mitophagy mainly dependent on the PINK1-Parkin 
pathway



1807Mechanisms of autophagy and relevant small-molecule compounds for targeted cancer therapy  

1 3

family of transcription factors (HIFs) to adapt to hypoxia 
stress. HIFs are always over-expressed in multiple cancers 
and are associated with tumor resistance and poor prognosis 
[21]. The HIFs consist of three isoforms, HIF-1, -2 and -3. 
HIF-1 is ubiquitously expressed, while HIF-2 and -3 are only 
selectively expressed in most mammalian cells. HIF-1 is a 
heterodimer formed by HIF-1α and -1β. Under the hypoxia 
condition, the accumulation and nucleus translocation of 
HIF-1α contribute to the activation of several transcription 
factors participating in different biological processes [22].

Autophagy could help tumor cells adapt to hypoxia. It 
has been demonstrated that autophagy could promote angio-
genesis of bone marrow-derived mesenchymal stem cells 
under hypoxia [23]. And autophagy facilitates the invasion 
of salivary adenoid cystic carcinoma under the condition 
of hypoxia [24]. Autophagy increases hypoxia-induced 
IL6 to promote malignant glioma progression [25]. And 
the chemotherapy sensitivity in hepatocellular carcinoma 
cells could be reduced by autophagy induced by hypoxia 
[26]. Hypoxia induces autophagy mainly via the activa-
tion of HIF-1α (Fig. 3b). When HIF-1α is activated under 
hypoxia, it will induce autophagy via directly up-regulating 
the expression of BNIP3, which will successively lead to 
the disruption of Beclin1/Bcl-2 complex, resulting in the 
releasing of Beclin1 to stimulate autophagy. And hypoxia-
sustained tumor cells can maintain their vitality by the deg-
radation of p62 in autophagy [27]. Hypoxia also induces 
autophagy through microRNAs. For instance, miR-155 can 
target members of mTOR signaling to promote autophagy 
in several human cancer cells [28]. And miR-301a/b targets 
N-myc downstream regulated gene 2 (NDRG2) to increas-
ing cell autophagy which contributes to the survival of 
prostate cancer cells under hypoxia [29]. Hypoxia induces 
miR210 up-regulation to enhance autophagy and reduces 
radio-sensitivity in colon cancer cells [30]. It is worth noting 
that hypoxia can induce or enhance autophagy via several 
other pathways. ERK1/2, mTOR, unfolded protein response 
(UPR) and p38/JNK-dependent pathways are also involved 
in Hypoxia-induced autophagy [31–34]. The highly acti-
vated HIF-1α pathway can help tumor cells resist hypoxia 
due to the rapid proliferation.

Mitochondria damage

Cells could remove abnormal mitochondria to keep mito-
chondria in maintenance through mitophagy (Fig.  3c). 
And the selective degradation of damaged mitochondria 
via autophagy was first reported as mitophagy in the year 
of 2007 [35]. The elimination of damaged mitochondria 
starts with the overexpression of BNIP3L. BNIP3L directly 
interacts with LC3 at the mitochondrial membranes and 
causes the dissipation of mitochondrial membrane poten-
tial [36]. What is more, it has been confirmed that BNIP3 

competitively disrupts the formation of BCL-2/Beclin-
1complex to induce mitophagy. PINK1 and Parkin are two 
famous Parkinson’s disease-related genes and also key 
mitophagy regulators. PINK1 cooperates with Parkin to sus-
tain mitochondrial in maintenance. PINK1 could directly 
target the mitochondria with its N-terminus. When mito-
chondria are damaged, the mitochondrial membrane poten-
tial will be decreased, resulting in the accumulation and the 
activation of PINK1. Activated PINK1 could respond to the 
decrease in mitochondrial membrane potential by recruit-
ing Parkin from the cytosol to the outer mitochondria mem-
brane [37]. Additionally, PINK1 could recruit the autophagy 
receptors (such as p62, NBR1, NDP52, Tax1BP1) to induce 
mitophagy [38]. Newly report identified PHB2 as a crucial 
mitophagy receptor in Parkin-induced mitophagy. PHB2 
binds to LC3 through an LC3-interaction region domain 
upon mitochondrial depolarization and proteasome-depend-
ent outer membrane rupture [39]. Key autophagy factors 
such as ULK1 [40], Beclin1 [41], ATG5–ATG12–ATG16L 
[42], VDAC1 [43] are involved in regulating this process. 
Beclin-1 could activate Parkin and PINK1 to maintain the 
level of mitophagy and control the process of autophagy at 
the same time. LC3 and ATG5–ATG12–ATG16L locate the 
mitochondrial membrane, then form the structural compo-
nents of the double-membraned cisterns after conjugation. 
Other crucial autophagy factors, such as p62 and ATG7, play 
irreplaceable roles in eliminating the ubiquitinated damaged 
mitochondria by mitophagy [44].

The function of mitophagy is closely related to tumor 
stage [45]. Mitophagy could be suppressed to a certain 
extent during cancer progression, resulting in a decrease 
of removal of the damaged mitochondria which increased 
the aggregation of tumor-promoting ROS or other tumori-
genic mitochondrial signals. But what is noteworthy is that 
mitophagy could conduce to stress adaptation and survival 
of established tumors. The key mitophagy modulator BNIP3 
could be upregulated to impair anti-angiogenic therapy in 
xenograft glioma models [46]. Additionally, oncogenic 
K-Ras could trigger the up-regulation of mitophagy to elimi-
nate dysfunctional mitochondria, contributing to the rapid 
proliferation of tumors [47].

In established cancer, tumor cells can often respond to 
stress through autophagy regulation in conditions of energy 
and nutrients, hypoxia stress and mitochondria damage. 
Therefore, inhibition of autophagy in established cancer 
might a promising strategy that prevents malignant progres-
sion of tumor cells. Thus, small molecule inhibitors targeted 
to autophagy will have a good application prospects.

Resistance to necrosis

The necrosis of tumor cells has been a huge barrier to can-
cer progression. Necrosis has always been considered as 
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the passive and unregulated form of cell death [48]. During 
necrosis, the increasing levels of ROS and intracellular cal-
cium will eventually lead to cell death [49]. Recent years, 
scientists have recognized that necrosis could be regulated 
by certain factors. For instance, RIP1-dependent regulated 
necrosis exhibits RIP1 activation and can be suppressed by 
RIP1 inhibitors [50]. Necroptosis is a programmed necrotic 
cell death. During necroptosis, one signaling is dependent on 
RIP activation [51]. PARP-1, a nuclear poly (ADP-ribose) 
polymerase involved in DNA repair, has been reported as a 
regulator in TRAIL-induced necroptosis [52].

Necrosis could crosstalk with autophagy through multiple 
cell metabolism and death pathways such as MAPK, AKT, 
TGFβ and NF-κB pathways [53, 54] (Fig. 4a) and tumor 
cells can avoid necrosis by inducing autophagy. Lim et al. 
discovered that the activation of DR4/JNK pathway-medi-
ated autophagy made tumor cells acquire TRAIL resistance 
to escape from TRAIL-mediated cell death in HepG2 cells 
[55]. In human lung cancer cells, AGM130 induced slight 
autophagy to resist necrosis [56]. Autophagy induced by the 
ring-DIMs and DIM has a cell protective function to resist 
necrosis in prostate cancer cells [57]. Thus, autophagy could 
be a protector for cancer cells to escape from necrosis.

Resistance to apoptosis

Apoptosis, also known as type I programmed cell death, 
is the most widely studied form of cell death. Caspases, 
a family of cysteine proteases, are the central executor of 

apoptosis. Death receptor signaling and mitochondrial con-
trol of apoptosis are the two classical mechanisms of apop-
tosis (Fig. 4b). Death receptor signaling mainly relies on the 
activation of death receptors and their respective ligands. 
The induction of mitochondrial control of apoptosis mainly 
relies on Bcl-2 family proteins [58]. Since it plays a crucial 
role in cell death, apoptosis is a big threat to the survival 
of cancer cells and targeting apoptosis for developing the 
cancer therapy has been concerned and carried out for years.

Apoptosis could directly crosstalk with autophagy 
through several key proteins (Fig. 4c) and autophagy could 
regulate apoptosis by means of some strategies (Fig. 4d). In 
many cases, autophagy indeed can help cancer cell escape 
from apoptosis or at least decrease the degree of apoptosis. 
Wei et al. discovered that autophagy could play a positive 
role in promoting the resistance to apoptosis which induced 
by photodynamic therapy in colorectal cancer stem-like cells 
[59]. In 2011, it was reported that autophagy was involved 
in protecting breast cancer cells from apoptosis induced by 
epirubicin and promoting epirubicin-resistance [60]. Mean-
while, ovarian cancer cells were more susceptible to cispl-
atin-induced apoptosis when autophagy was down-regulated 
[61]. Autophagy inhibition could enhance apoptosis in dif-
ferent cancer cells, including breast cancer and lung cancer 
cells.

Autophagy resists to apoptosis through several pathways. 
Autophagy could induce degradation of apoptotic compo-
nents including activation of caspase-8 11 [62] and contrib-
ute to the degradation of damaged mitochondria to prevent 

Fig. 4  Autophagy helps cancer cell resistance to necrosis and apop-
tosis. a Necrosis could crosstalk with autophagy through multiple 
cell metabolism patterns and death pathways. When damage factors 
stimulate cancer cells, necrosis can be initiated mainly through RIP-
dependent pathways. To escape from necrosis, cancer cells initiate 
autophagy via MAPK, AKT, TGF-β and NF-κB pathways. b Two 
classical apoptosis pathways. Death receptor signaling mainly relies 

on the activation of death receptors including Fas, TNFα, and TRAF2 
by their respective ligands. And the induction of mitochondrial con-
trol of apoptosis mainly relies on Bcl-2 family proteins. Blue: anti-
apoptosis Bcl-2 family proteins; yellow: pro-apoptosis Bcl-2 family 
proteins. c Apoptosis could directly crosstalk with autophagy through 
several key proteins. d The strategies of autophagy positively or nega-
tively regulate apoptosis
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defective mitochondria-mediated apoptosis. The elimination 
of ROS by autophagy could block the activation of apopto-
sis-related factors such as AIF (apoptosis-inducing factor) 
[63]. Key autophagy regulator Beclin1 could inhibit tBid 
translocation to the mitochondrial membrane, resulting in 
apoptosis reverse [64]. In addition, apoptosis could be inhib-
ited by autophagy-related releasing of HMGB1 [65]. Thus, 
autophagy has the function of supporting tumor cell to sur-
vive by apoptosis antagonist. Collectively, autophagy plays a 
significant role in maintaining tumor cell surviving by stress 
resistance, necrosis inhibition, and apoptosis antagonist.

Tumor‑suppressive role of autophagy 
in cancer

Autophagy can be tumor-suppressive role by preventing can-
cer initiation and progression. Several recent studies have 
demonstrated that autophagy can inhibit malignant transfor-
mation in a variety of models by different mechanisms such 
as maintaining genomic stability, as well as reducing harm-
ful mutations and carcinogenic damage [14]. Autophagy 
can also inhibit tumor metastasis through a multitude of 
mechanisms, which we discussed in our previous review in 
2016 [66]. Here, we mainly focus on cytotoxic and cytostatic 
autophagy, anti-inflammation and its synergistic effect in 
immunotherapy.

Cytotoxic and cytostatic autophagy in cancer

Cytotoxic and cytostatic autophagy are closely associated 
with grow inhibition and cell death which could increase 
sensitivity to cancer therapy. Cytotoxic autophagy is the 
form of autophagy which promotes cell death when induced, 
and the cell death may be associated with subsequent 
apoptosis or reduced sensitivity to therapy when blocked. 
Cytostatic autophagy is the form of autophagy which can 
mediate growth inhibition, survival reducing or association 
with senescence [67]. Of all the cytotoxic and cytostatic 
autophagy, we mainly focus on autophagic cell death and 
autophagy-dependent cell death in cancer.

Autophagic cell death in cancer

Autophagic cell death or type II cell death is independent 
of apoptosis or necrosis, which is mediated by autophagy 
and also can be blocked by autophagy inhibition [68]. 
Autophagic cell death can be initiated through several fac-
tors and pathways (Fig. 5), of which AKT-mTOR pathway, 
Vps34 complex and p53 are widely studied.

AKT‑mTOR pathway

Autophagic cell death is always trigged through AKT-mTOR 
inhibition. In MCF7 cells, PI3K-AKT-mTOR-depend-
ent autophagic cell death is involved in enhancing breast 
cancer cells sensitivity to fulvestrant and tamoxifen [69]. 
Autophagic cell death induced by carnosic acid in HepG2 
cells resulted from Akt/mTOR inhibition [70]. Autophagic 
cell death can improve the sensitivity of apoptosis-resistant 
cancer cells. mTOR dependent autophagic cell death con-
tributes to cell death induced by liensinine and dauricine in 
multiple apoptosis-resistant cells [71].

Vps34 complex

The Vps 34 complex is also the key regulator of autophagic 
cell death. Up-regulation of Beclin-1 expression is signifi-
cant in the JNK- and XAF1-mediated autophagic cell death 
[72, 73]. Oncogenic Ras-induced up-regulation of autophagy 
regulator Beclin-1 could promote autophagic cell death 
which threatens the survival of cells [74]. And sorafenib was 
reported to induce autophagic cell death through Beclin1 
activation in hepatocellular carcinoma cells [75].

p53

p53 is one of the most famous tumor suppressors and it has 
an outstanding role in promoting autophagic cell death. It 
has been reported that radiation induces autophagic cell 
death through the activation of p53-DRAM in breast cancer 
cells [76]. c-Met inhibitor SU11274 induces autophagic cell 
death in human lung cancer A549 cells via the p53-ERK-
Beclin1 signaling [77]. Autophagic cell death could be 
induced by p53/AMPK up-regulation after Fangchinoline 
treatment in human hepatocellular carcinoma cells [78].

In many cases, autophagic cell death is widely involved 
in cancer therapy, and autophagic cell death modulated by 
small target molecules has been a promising strategy for 
decreasing the side effects of chemotherapy.

Autophagy‑dependent cell death in cancer

Autophagy-dependent cell death is the type of cell death 
when it is proven that autophagy is a pre-requisite for the 
occurrence of cell death, but it is not proven that autophagy 
mechanistically mediates the switch to cell death [79]. Here, 
we mainly discuss the autophagy-dependent apoptosis. 
Autophagy and apoptosis occur in the same cell, and under 
most circumstances, autophagy precedes apoptosis. In this 
context, autophagy is sensitive to cellular stress, especially 
if the level of stress is not lethal to initiate apoptosis. When 
autophagy can resist the stress, it would inhibit apoptosis 
to prevent cell death. When autophagy cannot prevent cell 
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death, autophagy may activate apoptosis. It has been con-
firmed that key autophagy proteins are involved in the induc-
tion of apoptosis. Over-expression of autophagy-related 
genes such as Atg3, Atg4, Atg12, and Atg8 could activate 
apoptosis through specific signaling pathways [80]. Calpain-
mediated Atg5 cleavage generates an ATG5 fragment which 
could be transported to the mitochondrial membrane to initi-
ate the releasing of Cytochrome C, which leads to the loss of 
MMP and ultimately mitochondrial apoptosis [81]. ATG12 

could bind to anti-apoptosis protein Bcl-2 to promote mito-
chondrial apoptosis [82]. And c-src could stimulate apopto-
sis via the activation of caspase-9 [83]. Furthermore, Bec-
lin1 could be regulated by ser/thr kinase, such as DAPK, 
JNK, and AKT to regulate apoptosis [84].

Except for its suppressive role of autophagy on apoptosis 
we mentioned above, autophagy does promote apoptosis in 
many cases. Autophagy could effectively enhance apoptosis 
in human breast cancer cells after oridonin treatment [85]. 

Fig. 5  Key signaling pathways in autophagic cell death. Several 
growth factors signaling pathways are involved in cancer progression 
and have close relationships with autophagic cell death. Key growth 
factor signaling such as EGFR, Akt, MAPK/ERK signaling can nega-
tively regulate autophagic cell death by inhibiting key autophagy fac-

tors such as Beclin-1 and AMPK. BNIP3, Bax, Bcl-2 can also partici-
pate in autophagic cell death modulation by disturbing Beclin1–Bcl-2 
complex. Tumor suppressor p53 can facilitate autophagic cell death 
directly through beclin1 activation
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LC3 silencing could abolish activation of apoptosis in A549 
cells after cisplatin treatment [86]. In TPC-1 cells, the block 
of autophagy by ATG7 siRNA could desensitize the cells 
to apoptosis induced by TRAIL [87]. Since the significant 
role of apoptosis in cancer therapy, modulating autophagy-
dependent apoptosis could be another promising adjuvant 
therapy for cancer.

Anti‑inflammation

Inflammation is an important host response to homeostasis 
imbalance. It plays vital roles in host defense, tissue remod-
eling, metabolism regulation and cancer development [88]. 
Inflammatory conditions promote cancer, on the one hand, 
by promoting oxidative stress and cancer-causing mutations. 
And on the other hand, inflammation aggregate in tumor 
microenvironment promotes tumor progression. Inflam-
mation contributes to the maintenance of the cell viability 
and promotion of angiogenesis, metastasis, insensitive to 
immune responses and so on [89]. Recently, tumor-associ-
ated inflammation has become a potential prognostic tool in 
some type of cancers.

During inflammation in cancer, autophagy could resist 
inflammation to control the tumor process (Fig.  6a). 
First, autophagy could rapidly remove dead cells to pre-
vent unwanted inflammation [90]. It was reported that 
autophagy-deficient  Atg5−/− embryos were susceptible to 
plentiful inflammation and unable to remove apoptotic cells 
[91]. Second, autophagy could also remove the damaged 
mitochondria, which leads to the decrease in the release of 
inflammation activators such as ROS and mitochondrial 
DNA thereby resist inflammation. Additionally, autophagy 
could eliminate the aggregation of inflammasome struc-
tures to inhibit pro-inflammatory responses [92]. The most 
important effect of autophagy on inflammation is to inhibit 
the inflammasome activation and IL-1β release. Inhibi-
tion of autophagy shows higher IL-1β production and the 
promotion of autophagy presents lower IL-1β production 
[93]. Lacking ATG16L1 presents higher IL-1β and IL-18 
levels in Mice [94]. Autophagy inhibits IL-1β and IL18 
production through decreasing ROS release, first. Then 
autophagy hampers the cleavage of pro- IL-1β and pro-IL18. 
Finally, autophagy thoroughly removes pro- IL-1β proteins. 
Autophagy could regulate the activation of caspase1 through 
regulating NLRP3 inflammasome [95]. Autophagy could 
inhibit necrosis to prevent the release of inflammatory mol-
ecules, such as ATP/UTP, uric acid, HMGB1 and several 
damage-associated factors [96]. Given the close relationship 
between autophagy and inflammation, a lot of therapies tar-
geting autophagy-modulating are on its way and some cer-
tain achievement have been made, of which immunotherapy 
is now an emerging and impressive one.

Autophagy in immunotherapy

Autophagy can stimulate tumor antigen cross-presenta-
tion [97], which provides another potential mechanism of 
autophagy in immunotherapy. Nowadays, immunotherapy 
has become more and more promising in the cancer treat-
ment, and several cancer immunotherapies have been 
developed, including vaccines, chimeric antigen recep-
tor (CAR)-expressing T cells, bispecific antibodies, and 
immune checkpoint inhibitors [92, 98]. For instance, 
inhibitors of programmed death 1 (PD-1) show good thera-
peutic activity for a variety of cancers [99]. However, can-
cer cells could escape from immune destruction by various 
ways, which results in tumor progression.

Recent studies suggest that autophagy as an important 
regulator of cellular immune response is closely related to 
the modulation of immunotherapy (Fig. 6b). Some stud-
ies show that the stimulation of autophagy could enhance 
cancer immunotherapy. Autophagy could promote antigen-
specific T cell responses by potentiating the processing 
and presentation of tumor antigens [100], which is a vital 
requisite for immunogenic cell death (ICD) and autophagy 
enhancers may increase the efficacy of cancer immunother-
apy [101]. It was reported that the knockout of autophagy 
genes (ATG5, ATG7, and BECN1) resulted in a significant 
decrease of chemotherapy-induced immunosurveillance 
owing to the inhibition of releasing ATP in several human 
and murine cancer cell lines, which could be reversed by 
addition of ecto-ATPase inhibitors [102]. Several Onco-
lytic viruses (OVs) have been utilized in immunotherapy 
for several cancers. During the process, autophagy stimu-
lates immune responses by promoting antigen presentation 
[103]. Conversely, autophagy is also regarded as a pro-sur-
vival mechanism in some cases. Autophagy was activated 
after targeting CD47 by SIRPαD1-Fc, which resulted in 
immunotherapy drug resistance by inhibiting the Akt/
mTOR signaling pathway in non-small cell lung cancer 
[104]. It also impairs cancer immunotherapy by inhibit-
ing iNKT cell activation which plays a key role in can-
cer immunotherapy [105]. PD-L1/PD1 engagement could 
induce autophagy in nearby T cells, resulting in decrease 
effect of immunotherapy and tumor resistance [106].

Cancer immunotherapy has shown great promise for 
several cancers, and most studies demonstrated autophagy 
did synergistic in immunotherapy. But we should notice 
the role of autophagy in cancer immunotherapy remains 
controversial and the mechanism remains to be investi-
gated. When we use autophagic modulators to improve 
immunotherapy, a lot of factors should be considered, such 
as tumor type, staging and immunotherapy agents. Never-
theless, we believe that targeting autophagy is an increas-
ingly attractive strategy for immunotherapeutic.
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As mentioned above, there are intractable problems 
using autophagy regulators to improve cancer therapy: 
should we try to enhance or inhibit autophagy? When 
to enhance and when to inhibit it? And how to judge the 
correct situation? Although these problems are difficult 
and frustrating, we believe that the proper regulation of 

autophagy can bring new hope for cancer treatment, and 
small-molecule compounds targeting autophagy are on 
their way.

Fig. 6  Autophagy, inflammation and immunogenic cell death in can-
cer. a Autophagy resists inflammation to decrease cancer progression. 
Autophagy inhibits inflammation mainly in four ways. (1) Resistance 
to necrosis which decreases the production of inflammation factors. 
(2) Promotion of the degradation of dead cells to remove unwanted 
inflammation. (3) Promotion of the degradation of damaged mito-
chondria. Damaged mitochondria produce a large amount of mtDNA 
and ROS which could induce inflammation through IL-1β and IL-18 
activation. (4) Promotion of the degradation of inflammasome and 
IL-1β. b Autophagy plays a positive role in immunogenic cell death. 

Several chemotherapeutic agents could induce the autophagy-depend-
ent release of tumor antigens by tumor cells and will lead to the mat-
uration and the activation of antigen-presenting cells. Autophagy in 
antigen-presenting cells can promote antigen presentation by both 
MHC class II and I molecules thus initiating immunogenic cell death. 
Autophagy can also promote the survival of activated T cells. The 
inhibitory receptors CTLA-4 and PD-1 will limit the activation of 
 CD8+ T cells. Immune checkpoints inhibitors inhibit the inhibitory 
receptors thus promoting effective CTL-mediated tumor eradication
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Targeting autophagy by small‑molecule 
compounds in cancer therapy

The step-by-step autophagy pathway provides potentially 
druggable targets to regulate autophagy. Current efforts 
in the clinic of autophagy-modulating are mainly focused 
on inhibitors of mTOR and inhibiting the lysosome using 
chloroquine (CQ) or the related hydroxychloroquine (HCQ). 
Other autophagy regulators such as ULK1, ATG4B and 
VPS34, have been reported to be new druggable targets 
as small-molecular compounds targeting them showed 
potential anti-tumor activity. Here, we mainly focus on 
these small-molecule compounds that can directly target 
autophagy-related proteins or autophagy process in cancer 
cells (Fig. 7; Table 1). 

Small‑molecule compounds targeting mTORC1 
in cancer

The best-characterized regulator of autophagy is mTORC1 
and it can be activated or inhibited by different strategies 

[4, 107]. Many mTOR inhibitors have been discovered and 
tested in clinical trials for years [108].

Rapamycin analogues

Rapamycin is the most widely studied inhibitor of mTOR but 
with unfavorable pharmacokinetic properties. To improve its 
practicality, some rapamycin analogues have been designed 
and discovered, of which Temsirolimus (CCI-779) and 
Everolimus (RAD001), are two typical compounds [108]. 
Temsirolimus shows an amazing anti-tumor effect across 
a wide variety of tumor in preclinical models, particularly 
those with defective PTEN. Notably, Temsirolimus, as a 
mTOR inhibitor has received Food and Drug Administration 
(FDA) approval for Advanced Renal-Cell Carcinoma as first-
line therapy since 2007 [109]. Everolimus already has an 
established role in the United States in oncology. Everolimus 
now is under phase II trial and Temsirolimus is under phase 
I trial of non-small-cell lung cancer (NSCLC), respectively. 
Of note, Everolimus and Temsirolimus are under phase I 
trial for some advanced solid tumors and metastatic solid 
tumors, respectively [108].

Fig. 7  Small-molecule compounds directly target autophagy-related 
proteins or autophagic process in cancer. Several autophagy-targeted 
small molecular compounds have been discovered in cancer therapy. 
mTOR inhibitors and ULK1 activator can promote autophagy induc-
tion, the ATG4 activator can promote vesicle elongation and com-
pletion to up-regulate autophagy. ULK1 inhibitors inhibit autophagy 

induction, the Vps34 inhibitors hinder vesicle nucleation, the ATG4 
inhibitors inhibit vesicle elongation and completion, and lysosome-
targeted inhibitors inhibit the normal function of lysosomes to inhibit 
autophagy. The compounds in green frame represent autophagy acti-
vators and in red represent autophagy inhibitors
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Table 1  Small-molecule compounds targeting autophagy-related proteins or autophagic process in cancer therapy

Compound Target Structure Cell type Reference

Rapamycin mTORC1

 

HEI193,08031-9,ESC-FC1801 [108, 153]

Temsirolimus mTORC1

 

MDA-MB-468, MDA-MB-435, 
MDA-MB-231, MCF-7, T-47D, 
SKBR-3, BT-474

[108, 109, 154]

Everolimus mTORC1

 

HEY, SKOV3, OVCAR5, IGROV1, 
OV433

[108, 155]

Ridaforolimus mTORC1
 

MCF-7 [156]

PI103 mTOR/PI3K

 

PC-3, DU145, LNCaP [108, 157]
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Table 1  (continued)

Compound Target Structure Cell type Reference

PI540 mTOR/PI3K

 

– [112, 157]

PI620 mTOR/PI3K

 

– [112, 157]

NVPBEZ235 mTOR/PI3K

 

NCI-N87, SNU216, MCF-7, BT47, [158, 159]

GSK2126458 mTOR/PI3K

 

CNE-1, CNE-2, 5-8F, 6-10B [108, 160]

BGT226 mTOR/PI3K

 

Hep3B, HepG2, SNU449, SNU475 [108, 161]

XL765 mTOR/PI3K

 

CLL [108, 162]
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Table 1  (continued)

Compound Target Structure Cell type Reference

GDC0980 mTOR/PI3K

 

LNCaP, Vcap, 22Rv1 [108, 163]

SF1126 mTOR/PI3K  Hep3B, HepG2, SK-Hep1, Huh7 [108, 164]

PP242 mTOR

 

OVCAR-3 [114, 165]

AZD8055 mTOR

 

L3.6pl, MV4-11 [117, 166, 167]

AZD2014 mTOR

 

MCF7, SCC4, SCC25, HCCLM3, 
Huh-7, SMMC-7721, HepG2, 
HL-7702

[117, 168–170]

OSI027 mTOR

 

Panc-1, BxPC-3, CFPAC-1 [118, 171]

INK128 mTOR

 

CHLA-255, SK-N-AS, SH-SY5Y, 
IMR32, LA–N-6, CHLA-255, 
Miapaca-2, Panc1, PSN1, 
MRC9, RAW264.7,MCF7, SUP-
B15,MCC-2, MCC-3, MCC-5

[115, 116, 
172–177]
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Table 1  (continued)

Compound Target Structure Cell type Reference

Palomid 529 mTOR  CWR22R-2152, CWR22R-2272, 
CWR22R-2274, LnCaP-104S, 
LnCaP-104R1, C4-2B, DU145, 
PC3, VCaP, DuCaP

[119, 126]

LYN-1604 ULK1  MDA-MB-231 [123, 124]

SBI-0206965 ULK1

 

A549 [125]

Compound 6 ULK1

 

– [126]

MRT67307 ULK1

 

– [127]

MRT68921 ULK1
 

– [127]

SAR405 Vps34

 

HeLa, H1299 [130]
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Table 1  (continued)

Compound Target Structure Cell type Reference

PI3KD/V-IN-01 Vps34

 

AML, CLL [134]

VPS34-IN1 Vps34

 

U2OS [131]

PIK-III Vps34

 

H4, HeLa, PSN-1, Panc10.05, RKO [132]

Flubendazole Atg4

 

MDA-MB-231 [135, 136]

NSC185058 Atg4

 

293T, HuH7, Saos-2 [137]

Chloroquine Lysosome

 

Hs578t, MDA-MB-231, SUM159, 
SW1116, HCT116, HT-29, SW480, 
NCM460, RT4, T24, PC3, SV-
Huc-1

[140–142]

Hydroxychloro-
quine

Lysosome

 

MCF-7, HDFs, RT4, 5637, T24, 
PC3, SV-Huc-1

[142, 143]

Au(I)-loaded NPs Lysosome

 

MCF-7 [144]
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Dual mTOR/PI3K inhibitors

The dual mTOR/PI3K inhibitors have been developed for 
years and most of them are in early phases or Phase I/II of 
clinical trials [110, 111]. For instance, PI103, the first new 
generation of dual mTOR/PI3K inhibitor, has an outstanding 
performance in mTOR inhibiting but disappointing for its 
poor in vivo pharmacokinetic properties [108]. To improve 
its physicochemical attributes, the second generation of 
mTOR inhibitors PI540 and PI620 have been designed and 
developed [112]. Structure-based designed mTOR inhibitor 
NVPBEZ235 showed limited anticancer activity but per-
forms well in combination with established cancer drugs 
for cancer therapy [113] Other dual mTOR/PI3K inhibitors 
such as BGT226, XL765, GDC0980, SF1126 are also been 
explored and have encouraging performance in cancer treat-
ments [108].

Pan‑mTOR inhibitors

PP242 is the first reported comprehensive inhibitor of both 
mTORC1 and mTORC2. It is effective in both suppress-
ing tumor growth and combination with other anti-tumor 
drugs [114]. INK128, a derivative of PP242, is currently in 

Phase I trials in advanced solid tumors as well as multiple 
myeloma and its combination usage is now in Phase tri-
als [115, 116]. AZD8055 and AZD2014 are now in trials 
on advanced solid tumors [117]. OSI027 shows promising 
activity against leukemia [118]. Palomid 529 performs well 
as a cell proliferation inhibitor as well as in combination 
with other anti-tumor drugs [119].

mTOR inhibitors are effective in treating tumors harbor-
ing alterations in the mTOR pathway, no matter alone or in 
combination [109, 120]. As time went by, some tumors get 
acquired resistance to mTOR inhibitors [121], although the 
mechanisms of resistance remain undefined, mTOR muta-
tion might bear the main responsibility. Thus, except for 
developing new-generation mTOR inhibitor to overcome 
mTOR resistance mutations [122], the combination with 
immunotherapy or other targeted therapy, such as ERK1/2 
inhibitors and EGFR inhibitors, might be more feasible.

Small‑molecule compounds targeting ULK1 
in cancer

ULK1, the mammalian homolog of ATG1, has been well 
known as the autophagic initiator that may decide the 
subsequent cell fate. Recently, accumulating evidence has 

Table 1  (continued)

Compound Target Structure Cell type Reference

VATG-027 Lysosome

 

U2OS [145]

VATG-032 Lysosome

 

U2OS [145]

Lys05 Lysosome

 

HT29 [146]

Matrine Lysosome

 

SGC7901 [147]
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revealed that down-regulation of ULK1 is often found in 
most breast cancer tissues, suggesting that ULK1 may be 
a novel anti-TNBC target [123]. And a ULK1 activator 
LYN-1604 has been reported to induce triple-negative 
breast cancer cell death through ULK1 activation [124]. 
SBI-0206965, a highly selective ULK1 inhibitor, could 
suppress ULK1-mediated phosphorylation to inhibit 
autophagy and decrease cell survival [125]. Compound 
6, a chemically synthesized small molecular compound, 
has been identified to induce conformational changes 
within the ULK1 kinase domain to inhibit ULK1 activity 
but lack of selectivity for cellular use [126]. MRT67307 
and MRT68921 show the autophagy-inhibiting capac-
ity through ULK1 inhibition and they could disrupt 
autophagosome maturation in MEFs [127]. Although 
ULK1 is critical in autophagy initiation, there is no 
approved ULK1 targeted therapy in cancer up to now. Its 
frustrating, but it also has huge potential for development. 
No mater autophagy activation or inhibition, ULK1 is an 
irreplaceable shiny target.

Small‑molecule compounds targeting VPS34 
in cancer

The class III phosphatidylinositol-3 kinase, Vps34, 
which could convert the phosphatidylinositol (PI) mem-
brane lipid to PI3P, thereby controlling PI3P-mediated 
intracellular vesicular trafficking and initiate autophagy 
by forming different complexes. Core components of 
the Vps34 complexes include Vps34, Vps15, Beclin1, 
Atg14L/Barkor and UVRAG [19]. Full body deletion 
of Vps34 is embryonically lethal [128] and deletion of 
Vps34 inhibits autophagosome formation in different tis-
sue types [129]. In 2010, the structure solution of Vps34 
shelled new light on the development of selective Vps34 
inhibitors. SAR405, a structure-based designed selective 
ATP-competitive inhibitor of Vps34, prevents autophagy 
in HeLa and H1299 cells [130]. VPS34-IN1 can inhibit 
the phosphorylation of PtdIns in U2OS tumor cells [131]. 
PIK-III inhibits the catalytic function of VPS34 thus to 
inhibit autophagy in different tumor cells [132].

Since the significant role of the Vps34 complex in 
autophagy and tumorigenesis [133], more small-molecule 
compounds targeting Vps34 are on their way to cancer 
therapy. Nowadays, some research has demonstrated that 
Vps34 inhibitor synergized with mTOR inhibition in 
tumor cells [134]. For instance, combining Vps34 inhibi-
tor SAR405 with mTOR inhibitor everolimus may have a 
significant synergy on the reduction of cell proliferation 
using renal tumor cells. Thus, targeting Vps34 would be 
a good potential strategy for future cancer therapy.

Small‑molecule compounds targeting ATG4 
in cancer

ATG4B, a key autophagy protein, cleaves Atg8 to regulate 
the bind or releases of Atg8-PE into the membrane to control 
autophagy. It has been reported that abnormal expression 
levels of some human Atg4 proteins occur in several types 
of cancer cells, which may be closely related to tumor pro-
gression, tumor suppression and cancer therapy resistance 
[135]. Flubendazole, a potential Atg4B agonist, could induce 
autophagic cell death and ROS release in breast cancer cells 
[136]. Except for ATG4B activator, ATG4B inhibitors have 
been considered to promote the inhibition of autophagy. 
NSC185058 inhibits autophagy in several different tumor 
cells by inhibiting ATG4B [137]. To date, a series of highly 
potent FMK-based covalent ATG4B inhibitors have been 
discovered with the lack of biological activity data [138]. 
As the key supervisor of LC3 conjugation system, ATG4B 
controls the progress of autophagy. The development of 
ATG4B-targeted small molecular compounds is still in its 
infancy, but we believe targeting ATG4B would be also a 
promising strategy.

Small‑molecule compounds affecting the lysosome 
or autophagosome

The formation of autophagosome and autolysosome is two 
crucial processes during autophagy. Strategies to inter-
fere and prevent these autophagic processes have been 
proposed to negatively affect tumor growth. Chloroquine 
(CQ), developed as an antimalarial drug, was discovered 
that could suppress autophagy through inhibiting lysosomal 
protease and blocking the fusion of autophagosomes–lyso-
some [139, 140]. It was reported that CQ could be used to 
treat colorectal cancer, breast cancer, bladder cancer and 
so on [140–142]. Hydroxychloroquine (HCQ), the analog 
of CQ, was also approved to enter the clinical trial phase 
of many types cancers, such as estrogen receptor positive 
breast cancer, prostate cancer, non-small cell lung cancer 
and so on [143]. Au(I)-loaded NPs, a compound that com-
bines pH-sensitive polymeric nanoparticles with gold(I) 
compound Au(I), can block autophagy to induce cell death 
[144]. VATG-027 and VATG-032 function through lyso-
somal deacidification mechanisms and ultimately disrupt 
autophagosome turnover in U2OS cells [145]. Lys05 inhib-
its autophagy by deacidifying the Lysosome in HT29 cells 
[146]. Matrine blocks trafficking and the proteolytic activa-
tion of lysosomal proteases to inhibit autophagy in SGC7901 
cells [147].

The function of lysosomes is essential to a perfect 
autophagy process. As the final link to affect autophagy, 
the inhibition of autophagy by their functional defects 
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is significant, thus small-molecule compounds affect-
ing the lysosome or autophagosome as autophagy inhibi-
tors are very talented, and clinical trials of CQ or HCQ as 
autophagy inhibitors have demonstrated the safety of target-
ing autophagy for cancer therapy.

Conclusions

Alterations in multiple signaling pathways reflect a power-
ful means of adjusting the development, maintenance and 
overall adaption of cancer cells. Accumulating studies have 
revealed that nearly all major oncogenic signaling pathways 
are found to be deregulated and most of which are closely 
associated with the defective autophagy. Tumor cells often 
present unusual levels of autophagy that contributes to the 
survival mechanisms in tumor cells. In cancer cells, con-
tent dependent autophagy acts both tumor suppressive and 
tumor-promoting roles, while how to choose the appropri-
ate regulation to treat a tumor is still a scientific problem. 
Moreover, autophagy has also been implicated in resist-
ance to multiple standard chemotherapeutic agents [148]. 
It has also been involved in the survival of dormant tumor 
cells and may be crucial for their recurrence. Thus, the 
autophagy-targeted therapy seems to be indispensable and 
more promising.

With the rapid development of research on autophagy, the 
mechanism of autophagy controlling cancer cells fate has 
been gradually unveiled. Modulation of autophagy has been 
accepted as novel therapeutic approaches for cancer therapy. 
Since the role of autophagy helps tumor cells respond to dif-
ferent stress conditions, including energy stress, hypoxia and 
cellular damage, development of autophagy inhibitors is an 
attractive strategy for cancer therapy. Except for the classi-
cal autophagy inhibitors for cancer treatment, CQ and HCQ, 
several new kinds of autophagy inhibitors, such as ULK1 
inhibitors (SBI-0206965, MRT68921), as well as an ATG4B 
inhibitor (NSC185058) and Vps34 inhibitor (SAR405), have 
exhibited the promising potential for cancer therapy. Consid-
ering the tumor-suppressive role of autophagy, several acti-
vators have been applied to improve cancer therapy, of which 
mTOR inhibitors is the most famous kind. What is more, 
some classic cancer targets, such as BRD4 and ERK1/2, 
are closely associated with autophagy. Recently, a small-
molecule inhibitor targeting BRD4 could induce AMPK 
modulated autophagy-associated cell death in breast cancer 
[149]. It suggests that autophagy-related protein could be 
the candidate of dual-target cancer therapy. Moreover, some 
autophagy-modulating compound database or webserver 
[150, 151], may help us to discover more potential small-
molecule drugs targeting autophagy.

The content-dependent role of autophagy in cancer cell 
fate has provided an insight into the development of novel 

strategies for cancer therapy; however, we should take care 
of identifying the conditions which autophagy inhibition 
will be beneficial or harmful. For example, it has been 
reported in many cancer cell lines with activated RAS are 
highly dependent on autophagy for survival [152], in this 
type of tumor, autophagy inhibition will be beneficial, and 
autophagy inhibitors combine with ERK1/2 inhibitors will 
be effective. While in many cancer cell lines lacking the 
expression of Beclin1, autophagy activation seems advanta-
geous, and autophagy activators combine with chemother-
apy drugs might be beneficial.

A new hope of utilizing autophagy for targeted cancer 
therapy may lie in discovering candidate small-molecule 
compounds that modulate tumor-promoting or tumor-sup-
pressive autophagic pathways and even the entire autophagic 
signaling network (the autophagic multiple-target strategy), 
rather than an individual (single target). On the basis of this 
viewpoint, further elucidation of the intricate mechanisms 
of autophagy will be regarded as a promising strategy for 
the discovery of more and more new small-molecule drugs 
targeting the autophagic signaling network in future cancer 
therapy.
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