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Abstract
Human genome has ten genes that are collectedly called Ras association domain family (RASSF). RASSF is composed of 
two subclasses, C-RASSF and N-RASSF. Both N-RASSF and C-RASSF encode Ras association domain-containing proteins 
and are frequently suppressed by DNA hypermethylation in human cancers. However, C-RASSF and N-RASSF are quite 
different. Six C-RASSF proteins (RASSF1–6) are characterized by a C-terminal coiled-coil motif named Salvador/RASSF/
Hippo domain, while four N-RASSF proteins (RASSF7–10) lack it. C-RASSF proteins interact with mammalian Ste20-like 
kinases—the core kinases of the tumor suppressor Hippo pathway—and cross-talk with this pathway. Some of them share 
the same interacting molecules such as MDM2 and exert the tumor suppressor role in similar manners. Nevertheless, each 
C-RASSF protein has distinct characters. In this review, we summarize our current knowledge of how C-RASSF proteins 
play tumor suppressor roles and discuss the similarities and differences among C-RASSF proteins.
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Abbreviations
APC/C  Anaphase-promoting complex
ARF6  Adenosine diphosphate ribosylation factor 6
ATM  Ataxia telangiectasia mutated
CNKR1  Connector enhancer of kinase suppressor Ras 

1
ER  Endoplasmic reticulum
HIPK2  Homeodomain-interacting protein kinase 2
JNK  c-Jun N-terminal kinase
LATS  Large tumor suppressor kinase
MAGI  Membrane-associated guanylate kinase 

inverted
MOAP1  Modulator of apoptosis 1
MST  Mammalian Ste20-like kinase
NORE  Novel Ras effector
PAR-4  Prostate apoptosis response protein-4

PKA  Protein kinase A
PKC  Protein kinase C
RA  Ras association
RCC1  Regulator of chromosome condensation 1
SARAH  Salvador/RASSF/Hippo
STRIPAK  Striatin-interacting phosphatase and kinase
TAZ  Transcriptional coactivator with PDZ-binding 

motif
TEAD  TEA domain transcription factor
TNF-α  Tumor necrosis factor-α
TRAIL  Tumor necrosis factor-like apoptosis-inducing 

ligand
XPA  Xeroderma pigmentosum A
YAP1  Yes-associated protein 1

Introduction

The human genome contains ten genes designated as Ras 
association (RA) domain family (RASSF) members [1, 2]. 
These genes encode proteins with one RA domain. Among 
them, RASSF1–6 harbor a coiled-coil motif in the C-ter-
minal region (Fig. 1). As similar sequences are detected 
in the Drosophila proteins Salvador and Hippo, this motif 
is named the Salvador/RASSF/Hippo (SARAH) domain. 
RASSF7–10 lack this motif [3]. The SARAH domain is 
involved in cross-talk with the tumor suppressor Hippo 
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pathway. Thereby, the presence of this domain distinguishes 
RASSF1–6 from RASSF7–10. Moreover, the RA domain 
resides in the N-terminus of RASSF7–10, whereas it is near 
the C-terminal region in RASSF1–6. Thus, RASSF7–10 are 
called N-RASSF proteins, whereas RASSF1–6 are known as 
C-RASSF proteins. Even though “C” generally denotes the 
C-terminus, it also indicates “classical.” Numerous reports 
have demonstrated that C-RASSFs are suppressed in human 
cancers and that the suppression of each C-RASSF is cor-
related with tumor progression [4]. Based on these reports, 
C-RASSFs, excluding RASSF1C, are regarded as tumor sup-
pressors. Various underlying mechanisms have been pro-
posed for C-RASSF-mediated tumor suppression. RASSF1 
and RASSF5 are well researched, whereas other C-RASSF 
proteins have been less thoroughly investigated. Neverthe-
less, it has been noted that C-RASSF proteins share com-
mon mechanisms of tumor suppression. Even though some 

mechanisms depend on other tumor suppressors such as p53, 
pRb, and the Hippo pathway, C-RASSF proteins also utilize 
unique mechanisms for suppressing tumors. These findings 
highlight the importance of C-RASSFs as tumor suppressors 
in cancers, especially with the dysregulation of p53, pRb, 
and the Hippo pathway. Moreover, accumulating evidence 
supports that C-RASSF proteins play roles other than in 
tumor suppression. In this review, we attempt to summarize 
the current knowledge of C-RASSF (Table 1).

Summary of the Hippo pathway

C-RASSF proteins cross-talk with the Hippo pathway. 
As this cross-talk is one of the important properties of 
C-RASSF proteins, we will briefly summarize the Hippo 
pathway (Fig. 2). For details, readers are requested to refer 

Fig. 1  Mammalian C-RASSF 
proteins. All C-RASSF proteins 
have Ras association (RA) 
and Salvador/RASSF/Hippo 
(SARAH) domains. RASSF1A 
and NORE1 carry a C1 domain. 
RASSF6 has a PDZ-binding 
motif

Fig. 2  Core architecture of 
Drosophila and the components 
of the mammalian Hippo path-
way. The core components of 
the Drosophila Hippo pathway 
are depicted (left). Unphos-
phorylated Yorkie interacts 
with Scalloped in the nucleus. 
Hippo together with Mats 
and Salvador activates Warts. 
Activated Warts phosphorylates 
Yorkie. Phosphorylated Yorkie 
is trapped in the cytoplasm, 
where it undergoes degradation. 
Mammalian homologs are listed 
(right)
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to other reviews [5–7]. Genetic studies of Drosophila mel-
anogaster revealed several mutants exhibiting cell over-
growth. One causative gene was named hpo, because the 
phenotype was reminiscent of the hippopotamus. Mutations 
of other three genes (sav, mats, and wts) resulted in the same 
phenotypes. hpo and wts encode the serine/threonine protein 
kinases Hippo and Warts, respectively. Hippo phosphoryl-
ates and activates Warts. The proteins encoded by sav and 
mats, namely Salvador and Mats, respectively, interact with 
Hippo and Warts and facilitate the Hippo-mediated acti-
vation of Warts. Yorkie, a protein that was identified as a 
Warts-interacting protein, cooperates with the transcrip-
tion factor Scalloped and upregulates cell cycle-promoting 
and anti-apoptotic genes. However, activated Warts phos-
phorylates Yorkie, and subsequently, phosphorylated Yor-
kie is segregated in the cytoplasm and degraded. That is, 
the kinase cassette formed by Hippo, Salvador, Mats, and 
Warts negatively regulates Yorkie and Scalloped. Loss-of-
function mutations of hpo, sav, mats, and wts lead to Yorkie 
and Scalloped hyperactivation and result in cell overprolif-
eration and tissue overgrowth. The pathway composed of 
these genes was named the Hippo pathway. Humans have 
homologs of these genes as follows: mammalian Ste20-like 
kinase (MST) 1 and 2 (the human genes are STK4 and STK3, 
respectively) for Hippo; Sav1 (also called WW45) for Salva-
dor; MOB1A and MOB1B for Mats; large tumor suppressor 
kinase (LATS) 1 and 2 for Warts; yes-associated protein 1 
(YAP1) and transcriptional coactivator with PDZ-binding 
motif (TAZ) (also called WW domain-containing tran-
scription regulator protein 1) for Yorkie; and TEA domain 
transcription factor (TEAD) 1–4 for Scalloped. Subsequent 
studies have continuously identified new components of the 
Hippo pathway. The entire picture of the Hippo pathway 
is complicated. It is currently obvious that YAP1/TAZ are 
regulated by other molecules than MST1/2 and LATS1/2. 
Regardless, the MST-LATS-YAP1/TAZ-TEAD axis is the 
core of the mammalian Hippo pathway, which is dubbed the 
canonical Hippo pathway. 

Human RASSF proteins

NORE1/RASSF5

Discovery of NORE1/RASSF5

As the first identified C-RASSF was mouse RASSF5 
[8], with human RASSF5 reported later [9], we will start 
this review with this protein. In the pioneering study, the 
researchers screened for a protein that bound the active 
form of HRAS, obtaining mouse RASSF5, and named it 
novel Ras effector (NORE) 1 [8]. It is unsurprising that 
only RASSF5 was detected in that screening, as the affinity O

ur
 k

no
w

le
dg

e 
of

 C
-R

A
SS

F 
pr

ot
ei

ns
 b

es
id

es
 R

A
SS

F1
A

 a
nd

 N
O

R
E1

 is
 s

til
l s

ig
ni

fic
an

tly
 li

m
ite

d.
 T

he
re

fo
re

, a
lth

ou
gh

 m
an

y 
ch

ar
ac

te
rs

 a
re

 re
po

rte
d 

on
ly

 fo
r R

A
SS

F1
A

 o
r N

O
R

E1
, i

t i
s 

no
t y

et
 

co
nc

lu
de

d 
w

hi
ch

 o
ne

s a
re

 u
ni

qu
e 

fo
r R

A
SS

F1
A

 o
r N

O
R

E1

Ta
bl

e 
1 

 (c
on

tin
ue

d)

G
en

e 
na

m
e

Ro
le

s i
n 

R
as

 si
gn

al
in

g
Ro

le
s i

n 
th

e 
H

ip
po

 p
at

hw
ay

Ro
le

s i
n 

th
e 

re
gu

la
tio

n 
of

 p
53

U
ni

qu
e 

ch
ar

ac
te

rs

R
SF

-1
 (C

. e
le

ga
ns

) [
14

4]
Lo

ss
-o

f-
fu

nc
tio

n 
of

 rs
f-1

 su
pp

re
ss

es
 

th
e 

m
ul

tiv
ul

va
 p

he
no

ty
pe

 o
f a

ct
iv

e 
m

ut
an

ts
 o

f l
et

-6
0,

 su
gg

es
tin

g 
th

at
 R

SF
-1

 w
or

ks
 d

ow
ns

tre
am

 o
f 

Le
t-6

0

N
o 

re
po

rt
N

o 
re

po
rt



1777Tumor suppressor C-RASSF proteins  

1 3

of RASSF5 for Ras proteins is high [10, 11]. The interac-
tion between RASSF5 and Ras proteins is easily detected 
in vitro, whereas the detection of the interaction between 
Ras proteins and other C-RASSF proteins depends on the 
experimental conditions. Due to the historical background, 
RASSF5 is frequently described as NORE1. We also use 
NORE1 in this review. There are two major isoforms with 
different N-terminal sequences (NORE1A and NORE1B, 
which correspond to RASSF5 isoforms A and C, respec-
tively). NORE1A is downregulated by hypermethylation in 
various cancers [4]. NORE1B is also suppressed in certain 
cancers [12]. DNA hypermethylation is not the only cause 
of this suppression. In oral cancer, miR-214 suppresses 
NORE1 [13]. NORE1 is also suppressed at the protein 
level by the E3 ligase ITCH [14]. NORE1B has been stud-
ied as a Rap1-binding protein in the field of immunology 
and described as RAPL [15]. RAPL determines the spa-
tial localization of integrin subunit 2 and mediates Rap1-
triggered integrin activation in T lymphocytes. RAPL 
regulates the localization of CDKN1B (P27KIP1), and 
its deficiency causes lymphoproliferative disorders [16]. 
These findings support that both NORE1A and NORE1B 
are tumor suppressors.

NORE1 as a target of Ras proteins

NORE1 binds Ras proteins (KRAS, HRAS, MRAS, and 
RRAS) and it is considered a typical target of RAS [8, 17]. 
The active form of Ras drives NORE1 to induce apoptosis 
and senescence [18, 19]. The SARAH domain of NORE1 
(NORE1-SARAH) interacts with the SARAH domains 
of MST kinases (MST-SARAH) [10, 18, 20]. NORE1 
attenuates the autophosphorylation at threonine 183 of 
MST1, which is essential for MST1 activity, and inhibits 
MST1 activation [20]. However, when KRAS G12V is 
coexpressed, MST1 is recruited via NORE1 to the plasma 
membrane and activated [20]. In this manner, KRAS 
induces apoptosis via NORE1-MST1. On the other hand, 
HRAS prompts NORE1 to bind to the  SCFβ-TRCP–ubiquitin 
ligase complex and induces the degradation of β-catenin 
and MDM2 [21, 22]. HRAS also induces NORE1 to bind 
and stabilize homeodomain-interacting protein kinase 2 
(HIPK2) [19]. HIPK2 phosphorylates p53 at Serine 46, 
induces p53 acetylation, and eventually upregulates pro-
apoptotic genes. HRAS and KRAS trigger the formation of 
a complex including NORE1 and protein phosphatase 1A 
(PP1A), allowing NORE1 to stabilize and bridge PP1A to 
pRb [23]. Consequently, pRb remains in its dephosphoryl-
ated active form and promotes cellular senescence. These 
findings support that NORE1 is controlled by Ras signal-
ing and that it is a target of Ras proteins.

Interaction between NORE1 and MST kinases

MST kinases are mammalian homologs of yeast Ste20 
kinases and core kinases of the Hippo pathway [24]. The 
interaction between NORE1 and MST kinases has been 
extensively studied [25–27]. The affinity of the homodimeri-
zation of MST-SARAH is weaker than that of heterodimeri-
zation between MST-SARAH and NORE1-SARAH. Thus, 
NORE1-SARAH blocks the homodimerization of MST-
SARAH and inhibits the autoactivation of MST kinases, 
which is a prerequisite for MST kinase activity. Consistently, 
NORE1-SARAH fails to inhibit MST kinases once MST 
kinases are autophosphorylated and activated [28]. Moreo-
ver, both MST-SARAH and the N-terminal kinase domain 
(MST-N) bind NORE1-SARAH, and thus, NORE1-SARAH 
is sandwiched between MST-N and MST-SARAH [27, 29]. 
Moreover, the RA domain of NORE1 (NORE1-RA) binds 
to the region between MST-N and MST-SARAH, which 
is named the regulatory region (MST-RR). These findings 
indicate that NORE1 and MST kinases interact with each 
other at multiple sites. Hence, to understand the interac-
tion between NORE1 and MST kinases, research using 
the whole molecules is important. Intriguingly, NORE1-
SARAH enhances the phosphorylation of histone H2B by 
MST1 but attenuates the phosphorylation of FoxO [29]. This 
result implies that the effect of NORE1 on MST1 depends 
on the substrate. Therefore, to discuss the effect of NORE1 
in the context of the Hippo pathway, it is essential to use 
Hippo pathway-related substrates such as MOB1 and LATS 
kinases.

By what mechanism does Ras signaling modulate the 
interaction between NORE1 and MST kinases? An experi-
ment using mouse NORE1 revealed that NORE1-RA intra-
molecularly binds to the C1 domain (NORE1-C1), but that 
RAS releases NORE1-C1 from NORE1-RA [30]. It is pre-
sumed that Ras signaling triggers a conformational change 
of NORE1 and modulates the interaction between NORE1 
and MST kinases.

RASSF1

Discovery of RASSF1

The human chromosome 3p21.3 frequently exhibits loss 
of heterozygosity in human cancers, which implies that a 
tumor suppressor is encoded in this region. Research to iden-
tify xeroderma pigmentosum A (XPA)-interacting proteins 
revealed a gene homologous to NORE1 in this region that 
was reported as RASSF1 [31]. In the first paper, three splic-
ing variants were described, one of which was suppressed 
in human cancers through methylation of the CpG island 
promoter. This variant is the well-known tumor suppressor 
RASSF1A. Thereafter, numerous papers have reported that 
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RASSF1A suppression is associated with tumor progression 
and poor prognosis in human cancers. Several splicing vari-
ants of RASSF1 are registered in the database of the National 
Center for Biotechnology Information, but most studies have 
focused on RASSF1A and RASSF1C.

RASSF1A stabilizes microtubules

Versatile mechanisms contribute to RASSF1A-mediated 
tumor suppression. Among them, microtubule stabilization 
is one of the most prominent mechanisms and one that is 
unique to RASSF1A. RASSF1A stabilizes microtubules 
via microtubule-associated proteins such as MAP1B and 
MAP1S (C19ORF5) [32–35]. The stabilization of microtu-
bules by RASSF1A also depends on RAN [36]. RAN regu-
lates nuclear transport, but it is also involved in the assembly 
of mitotic spindles. RASSF1A induces phosphorylation in 
the nuclear localization signal of regulator of chromosome 
condensation 1 (RCC1), the GDP/GTP exchanger of RAN, 
leading to RCC1 accumulation in the cytoplasm. As a result, 
RASSF1A increases the level of the GTP-bound form of 
RAN and stabilizes microtubules via RAN. Other proposed 
mechanisms underlying the stabilization of microtubules are 
the inhibition of histone deacetylase 6-mediated deacety-
lation of α-tubulin and the recruitment of protein arginine 
N-methyltransferase 5 to microtubules [37, 38]. An analy-
sis of upregulated genes in the Rassf1a-deleted mouse liver 
revealed two categories of genes [39]. One group of genes is 
involved in microtubule polymerization, which underscores 
the importance of microtubule stabilization in the function 
of RASSF1A.

RASSF1A activates the Hippo pathway

The interaction between RASSF1A and MST kinases has 
long been recognized [10, 20]. Later, proteomic studies 
further identified RASSF1A as a component of the Hippo 
pathway [40]. The SARAH domain of RASSF1A (RASSF1-
SARAH) binds MST1-SARAH similarly as NORE1-
SARAH albeit with a slight difference [29]. Whether NORE1 
activates or inhibits MST kinases depends on the context 
[28]. By contrast, RASSF1A activates MST kinases in vivo 
[41]. Several modes of activation have been proposed. 
RASSF1A stabilizes MST kinases [41]. RASSF1A prevents 
the dephosphorylation of MST kinases and maintains the 
active phosphorylated forms [42]. RASSF1A releases MST2 
from inhibition by RAF1 [43]. Thus, RASSF1A activates 
MST kinases and drives the Hippo pathway. Earlier research 
revealed the role of RASSF1A in FAS-induced apoptosis 
[43]. FAS activates MST2 via RASSF1A and MST2 in turn 
activates LATS1. RASSF1A releases YAP1 from LATS1, 
induces the accumulation of YAP1 and p73 in the nucleus, 
and promotes the YAP1-p73–mediated transcription of 

pro-apoptotic genes. In this context, YAP1 is regarded as a 
tumor suppressor that cooperates with p73. A study using 
Sleeping Beauty transposase in Rassf1a-null mice demon-
strated that YAP1 shifts from p73 to TEAD and RUNX2 in 
the Rassf1a-negative background and that additional Runx2 
depletion further enhances YAP1-TEAD complex forma-
tion [44]. Moreover, RASSF1A inhibits the TGF-β-induced 
interaction between YAP1 and SMAD2 [45]. Although 
RASSF1A is degraded by ITCH in response to TGF-β, the 
remaining RASSF1A restricts the nuclear translocation of 
SMAD2 and promotes cooperation between YAP1 and p73. 
These findings may explain the mechanism by which YAP1 
selects a binding partner among various transcription fac-
tors and behaves as a tumor suppressor or tumor promoter 
in a context-dependent manner. Another paper reported that 
under RASSF1A overexpression, YAP1 is phosphorylated 
by LATS kinases [46]. Consequently, AREG, which is a 
target of TEAD that encodes a member of the epidermal 
growth factor family, is suppressed. In all of these scenarios, 
RASSF1A drives the Hippo pathway as an upstream regu-
lator and causes apoptosis irrespective of whether YAP1 
behaves as an oncogene or tumor suppressor. However, in 
the Rassf1a-depleted mouse liver, the expression levels of 
total YAP1 and phosphorylated YAP1 are not significantly 
changed [39]. This finding suggests that RASSF1A func-
tions as a tumor suppressor through a different mechanism 
from the canonical Hippo pathway. For instance, RASSF1A 
interacts with SAV1 independently of MST kinases and 
activates p73-driven gene transcription [47]. A recent paper 
reported that RHEB, the activator of mTOR kinase, inter-
acts with RASSF1A and inactivates YAP1 through MST and 
LATS kinases [48]. Conversely, RASSF1A blocks REHB-
mediated autophagy. Consequently, RASSF1A suppresses 
RHEB-mediated anchorage-independent cell growth of 
tumor cells.

RASSF1A as a target of Ras proteins

Active KRAS induces apoptosis through RASSF1A [49]. 
KRAS also enhances RASSF1A-mediated stabilization of 
microtubules [34]. These findings support that RASSF1A 
is a target of Ras protein. However, RASSF1A has lower 
affinity for Ras proteins than NORE1 [10]. It is argued 
that RASSF1A indirectly binds Ras proteins via NORE1 
[50]. The connector enhancer of kinase suppressor Ras 1 
(CNKR1), which is reported to interact with RASSF1A and 
induce apoptosis via MST kinases, is also a candidate that 
links Ras proteins to RASSF1A [51]. Ras signaling may 
regulate RASSF1A via NORE1 or CNKR1. In addition, 
RASSF1A dissociates the complex of RAF1 and MST2, 
decreases the inhibitory phosphorylation of RAF1, and 
increases MEK activities. This observation suggests that 
RASSF1A functions as a modifier of Ras signaling [52].
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The relationship of RASSF1A with p53 and pRb

p53 and pRb are apparently involved in the tumor suppres-
sor function of RASSF1A. However, unlike NORE1, there 
is no clear evidence that RASSF1A transduces Ras signal-
ing to p53 and pRb. Ubiquitin-specific protease 7, DAAX, 
and MDM2 form a complex and enhance p53 degradation 
[53]. Upon DNA damage, RASSF1A disrupts the complex 
and enhances p53 expression [54]. However, the role of 
RASSF1A does not depend solely on p53. Rassf1a-null mice 
exhibit tumor susceptibility [55, 56]. Importantly, Rassf1a 
deletion enhances tumor development, generates more 
aneuploid cells, and shortens survival in p53-null mice. 
Thus, RASSF1A functions as a tumor suppressor even in 
the p53-negative background. Through what mechanism 
does RASSF1A suppress tumor independently of p53? 
To address this question, we are focusing on pRb, another 
major tumor suppressor. RASSF1A restricts G1 exit in 
H1299 cells expressing pRb, but when E7 papillomavirus 
protein or CCNA2 (cyclin A2) is overexpressed (the for-
mer inhibits the interaction between pRb and E2F, and the 
later directly activates CDK2 and bypasses the regulation by 
pRb), RASSF1A-induced arrest is canceled [57]. These find-
ings suggest that pRb is implicated in RASSF1A-mediated 
G1/S arrest.

RASSF1A regulates the cell cycle

In addition to stabilizing microtubules, RASSF1A regulates 
cell cycle progression by increasing the expression of cyclin-
dependent kinase inhibitors. RASSF1A upregulates p53 and 
thereby enhances CDKN1A. However, RASSF1A upregu-
lates CDKN1A even in A549 cells expressing the HPV16 E6 
protein, which destabilizes p53, and in H1299 cells lacking 
p53 [58]. Thus, RASSF1A can induce CDKN1A indepen-
dently of p53. It is proposed that RASSF1A negatively regu-
lates AKT, which suppresses CDKN1A [58]. Another group 
reported that RASSF1A suppresses HRAS-induced c-Jun 
N-terminal kinase (JNK) activation and blocks JNK-induced 
downregulation of CDKN1B [59]. Furthermore, RASSF1A 
decreases the expression of cyclin-dependent kinases and 
cyclins. RASSF1A reduces CDK4 expression by inducing 
miR-711, which targets CDK4 [60]. RASSF1A reduces 
CCNA2 and CCND1 (cyclin D1) expression. RASSF1A 
binds E4F1 and inhibits its association with the promoter of 
CCNA2 to induce its downregulation [61, 62]. RASSF1A 
affects the translation and stability of CCND1 mRNA and 
blocks the accumulation of CCND1 [57, 63].

Moreover, RASSF1A regulates cell cycle progression 
through E3 ligase complexes. Although whether RASSF1A 
directly interacts with CDC20 is controversial, one report 
argued that RASSF1 induces mitotic arrest by inhibiting 
CDC20 and anaphase-promoting complex (APC/C) [64, 

65]. MAP1S, which bridges RASS1A to microtubules, is 
believed to augment the interaction between RASSF1A and 
CDC2 [66]. Paradoxically, RASSF1A depletion impairs cell 
proliferation in certain cells. This phenomenon is explained 
by the aberrant activation of APC/C during G1/S transition 
[63]. RASSF1A blocks β-TRCP-mediated degradation of 
Emi1, the inhibitor of APC/C, and allows the accumulation 
of CCNA and CCNB, which is necessary for the G1/S transi-
tion. Thus, RASSF1A is likely to positively and negatively 
regulate the cell cycle.

RASSF1A is required for DNA repair

As RASSF1A regulates the cell cycle and checkpoints [57, 
64], it is unsurprising that RASS1A deletion impairs DNA 
repair. In this section, we present specific findings that 
directly link RASSF1A to DNA repair. RASSF1A reduces 
the CDK2-mediated phosphorylation of BRCA2, an essen-
tial component of the error-free DNA repair machinery of 
DNA double-strand breaks, through MST2 and LATS2, and 
blocks the disassembly of the recombinase RAD51 from 
BRCA2 to protect genome stability [67]. RASSF1A interacts 
with XPA and modulates the interaction between XPA and 
replication protein A [31, 68]. In this manner, RASSF1A is 
involved in homologous recombination and nucleotide exci-
sion repair.

RASSF1A regulates apoptosis

In addition to the Hippo pathway and p53, RASSF1A regu-
lates apoptosis through modulator of apoptosis 1 (MOAP1) 
[69]. Tumor necrosis factor (TNF)-α and TNF-like apop-
tosis-inducing ligand (TRAIL) induce the recruitment of 
RASSF1A and MOAP1 to the receptor complexes [70]. 
RASSF1A binds to 14-3-3 in the basal state, but when 
stimulated by TNF-α and TRAIL, RASSF1A is dissoci-
ated from 14-3-3 and binds to MOAP1. Then, RASSF1A 
releases MOAP1 from intramolecular autoinhibition and 
triggers its association with BAX, resulting in the insertion 
of BAX into the mitochondrial membrane and cytochrome c 
release. RASSF1A also transduces signaling from FAS and 
the TNF-α receptor to MST1, MOB1, and NDR (STK38 and 
STK38L) kinases and induces apoptosis via NDR kinases 
[71].

RASSF1A is regulated by phosphorylation

RASSF1A has several phosphorylation sites. As expected, 
phosphorylation modulates the interaction between 
RASSF1A and its binding partners. Phosphorylation at 
serines 175, 178, and 179 by glycogen synthase kinase 3β 
is necessary for the binding of RASSF1A to 14-3-3 [72]. 
Phosphorylation at threonine 202 and serine 203 by MST1 



1780 H. Iwasa et al.

1 3

is involved in the activation of NDR kinases in response to 
TNF-α [71]. Phosphorylation at serine 184 by checkpoint 
kinase 1 disrupts the association of RASSF1A with micro-
tubules [73, 74]. Among numerous phosphorylation sites, 
serines 131 and 203 may be most important. Serine 131 is 
phosphorylated by ataxia telangiectasia mutated (ATM) in 
response to DNA damage [75]. Phosphorylation promotes 
the dimerization of RASSF1A and the association of MST2 
and LATS1, stabilizes YAP1 and p73, and subsequently 
enhances CDKN1A expression. The polymorphism that 
converts alanine 133 to serine disrupts α helix-containing 
ATM recognition sites and compromises p53/p73 responses. 
Accordingly, RASSF1A A133S is associated with poor 
prognosis in patients with sarcoma and early onset breast 
cancer in BRCA1/2 mutation carriers [76, 77]. Serine 203 
is phosphorylated by several kinases. RASSF1A activates 
Aurora A, and it is reciprocally phosphorylated at serine 
203. Phosphorylation by Aurora A triggers the dissociation 
of RASSF1A from both microtubules and CDC20 [73, 78]. 
Serine 203 is also phosphorylated by Aurora B, the isoform 
of Aurora A, but in the late mitosis phase [79]. Subsequently, 
RASSF1A binds syntaxin 16, a component of t-SNARE, at 
the midzone/midbody. In this manner, RASSF1A is involved 
in membrane trafficking during cytokinesis. CDK4, protein 
kinase A (PKA), and protein kinase C (PKC) phosphoryl-
ate serine 203 [80–82]. Phosphorylation by CDK4 induces 
RASSF1A degradation through an interaction with Skp2, the 
subunit of the Skp1-Cul1-F-box ubiquitin ligase complex, 
and promotes G1/S progression [80]. PKC phosphorylates 
serine 197 in addition to serine 203 [82]. PKC-mediated 
phosphorylation at these sites likely prevents the regulation 
by RASSF1A of microtubules. These two findings imply that 
phosphorylation at serine 203 negatively regulates the tumor 
suppressor function of RASSF1A. However, inhibition of 
PKA-mediated phosphorylation compromises RASSF1A-
mediated apoptosis and the upregulation of CDKN2A and 
BAX, meaning that PKA-mediated phosphorylation at serine 
203 promotes the tumor suppressor function of RASSF1A 
[81]. It is difficult to elucidate the mechanism by which 
phosphorylation at the same site leads to different cellular 
consequences. We may need to consider the localization of 
RASSF1A and the combination of various phosphoryla-
tions. Temporal and spatial analyses of the phosphorylation 
of RASSF1A are essential for clarifying the mechanism 
by which RASSF1A orchestrates various cellular events in 
response to the pattern of phosphorylation.

The other mechanisms underlying the tumor suppressor 
roles of RASSF1A

RASSF1A regulates Rho signaling. The C-terminal region 
of RASSF1A binds active RHOA, whereas the N-terminal 
region interacts with Smad ubiquitin regulatory factor 1 and 

induces RHOA degradation [83]. Conversely, RASSF1A 
stimulates the cofilin/PP2A-mediated dephosphorylation of 
the guanine nucleotide exchange factor GEF-H1 and acti-
vates RHOB [84]. RHOB suppresses nuclear YAP1 and 
plays an anti-metastatic role. RASSF1A reduces estrogen 
receptor α expression through AKT and inhibits breast 
tumor growth [85]. Rac1 is activated in Rassf1-depleted 
mouse embryonic fibroblasts, suggesting that RASSF1A 
regulates Rac signaling [86]. MAP1S, which was previously 
described as a microtubule-associated protein, is involved 
in the biogenesis and degradation of autophagosomes [87]. 
As deregulation of autophagy is associated with tumo-
rigenesis, it will be necessary to study the mechanism by 
which RASSF1A affects autophagy. RASSF1A blocks the 
 SCFβ-RTRCP-mediated degradation of repressor element 1 
silencing transcription factor and, consequently, downregu-
lates the oncogenic factor miR-21, which targets various 
tumor suppressor genes such as PTEN [88]. All these prop-
erties may also contribute to the tumor suppressor function 
of RASSF1A.

RASSF1A may be implicated in non‑cancer diseases

RASSF1A restricts Toll-like receptor-stimulated NFκB 
signaling [89]. RASSF1A interacts with and inhibits Tank 
binding kinase 1, the activator of NFκB signaling [39]. Cor-
respondingly, Rassf1a-null mice displayed enhanced inflam-
matory reaction in a dextran sulfate sodium-induced colitis 
model [89]. RASSF1A and MST1 antagonize TNF-α sign-
aling in cardiac myocytes and fibroblasts and block fibrosis 
[90, 91]. RASSF1A interacts with ATP2B4 (plasma mem-
brane calmodulin-dependent calcium ATPase) in the heart 
[92]. RASSF1A depletion causes cardiac hypertrophy [90, 
91]. Interestingly, the expression of genes related to the cir-
cadian clock is altered in the Rassf1a-deleted mouse liver 
[39]. RASSF1A may have additional roles other than tumor 
suppression. Investigation of the implication of RASSF1A 
in non-cancerous diseases will have clinical significance.

RASSF1C is an oncogene

Initially, RASSF1C was considered a tumor suppressor simi-
larly as RASSF1A. It was reported that RASSF1C activates 
SAPK/JNK signaling, triggers senescence and apoptosis, 
and plays a tumor suppressor role in prostate cancer and 
renal carcinoma cells and that RASSF1C increases the sen-
sitivity to CDDP in ovarian cancer cells [93–95]. Never-
theless, accumulating evidence has overturned this belief. 
RASSF1C is upregulated in breast, lung, esophageal, and 
pancreatic endocrine tumors [96, 97]. CpG islands are not 
hypermethylated in the promoter of RASSF1C. RASSF1C 
inhibits the β-TRCP-mediated degradation of β-catenin [98]. 
RASSF1C enhances the expression of genes implicated in 
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cancer development, such as PIWIL1 [97, 99]. Furthermore, 
RASSF1A regulates lung cell transformation and tumorigen-
esis through modulating the expression of PIWI-interacting 
RNAs [100]. In cells with methylated RASSF1A, RASSF1C 
expression is alternatively enhanced, and the protein inter-
acts with SRC and YES1 and increases the tyrosine phospho-
rylation of YAP1 [101]. Furthermore, RASSF1C promotes 
the SRC-dependent phosphorylation of E-cadherin and 
destabilizes cell junctions. As a result, RASSF1C increases 
nuclear β-catenin levels. Moreover, RASSF1C induces 
MYC. These findings strongly support that RASSF1C is an 
oncogene. It is known that RASSF1A and RASSF1C play 
opposite roles in cell proliferation and apoptosis in breast 
and lung cancer cells [102]. RASSF1C expression is high 
in breast and lung tumors, whereas RASSF1A expression is 
low. The expression ratio of RASSF1A and RASSF1C may 
be an important determinant of tumor properties.

RASSF2

Identification of RASSF2 as a tumor suppressor

RASSF2 was reported as the third member of the RASSF 
protein family [103]. Enforced expression of RASSF2 
causes cell cycle arrest and apoptosis. Deletion of RASSF2 
enhances tumorigenicity and drug resistance in lung can-
cer cells. RASSF2 silencing via hypermethylation has been 
reported in various human cancers [4, 104, 105]. Cancer-
associated fibroblasts produce miR-7, which suppresses 
RASSF2 expression [106]. Enhancer of zeste homolog 
2, which is overexpressed in cancers, downregulates 
RASSF2 [107]. These data indicate that RASSF2 is a tumor 
suppressor.

The molecular mechanism underlying the tumor 
suppressor role of RASSF2

We do not yet fully understand the mechanism by which 
RASSF2 suppresses tumors. Several papers reported the 
inhibition of NFκB signaling, the activation of MST kinases 
and JNK, and the nuclear recruitment of prostate apoptosis 
response protein-4 (PAR-4) as the underlying mechanisms 
[108–111].

RASSF2 as a target of Ras proteins

Active KRAS enhances the interaction between RASSF2 
and PAR-4 [110]. Furthermore, proteomics analysis revealed 
several molecules that bind RASSF2 in the KRAS-depend-
ent manner [112]. These findings suggest that RASSF2 is a 
target of KRAS.

Other properties of RASSF2

Rassf2-null mice exhibit bone defects and hematopoietic 
abnormalities [108]. This phenotype indicates that RASSF2 
physiologically plays a role other than tumor suppression. 
As each C-RASSF displays a distinct distribution in cells, 
regulation of the subcellular localization of C-RASSF is 
an important issue to study. In this light, the finding that 
the nuclear cytoplasmic shuttle of RASSF2 is regulated by 
extracellular regulated kinase 2 is interesting [113].

RASSF3

Our understanding of RASSF3 lags far behind that of other 
C-RASSFs. RASSF3 was reported as a homolog of RASSF1A 
[114]. Rassf3 causes resistance to mammary tumor devel-
opment in neu-transgenic mice [115]. In humans, RASSF3 
downregulation is detected in non-small cell lung cancer, 
and it is correlated with disease progression [116]. We 
reported that RASSF3 regulates apoptosis and the cell cycle 
via p53 and contributes to tumor suppression [117]. These 
findings support that RASSF3 is a tumor suppressor.

RASSF4

Whether RASSF4 is a tumor suppressor is elusive. RASSF4 
suppression is observed in non-small cell lung cancer, naso-
pharyngeal carcinoma, and multiple myeloma [118–120]. 
RASSF4 overexpression induces apoptosis and inhibits pro-
liferation in HEK293 cells [121]. RASSF4 reduces β-catenin, 
MYC, and CCND1 expression in osteosarcoma cells [122]. 
These properties support that RASSF4 is a tumor suppressor. 
Unexpectedly, however, RASSF4 is upregulated in alveolar 
rhabdomyosarcoma (aRMS), in which it activates YAP1 and 
promotes tumorigenesis [123]. The researchers explained 
that RASSF4 inhibits MST1 and suppresses the phospho-
rylation of YAP1. As we will expound upon in the section 
“RASSF6”, MST kinases and some, if not all, C-RASSF 
proteins inhibit each other under the basal condition. This 
mutual inhibition may be meaningful for avoiding excessive 
cell death. However, when cells are exposed to stresses such 
as DNA damage, MST kinases and C-RASSF are released 
from inhibition, after which they mediate apoptosis in a 
parallel manner. Suppose that the downstream tumor sup-
pressive mechanism of C-RASSF proteins is impaired. In 
this situation, high expression of C-RASSF proteins may 
compromise the Hippo pathway and lead to tumorigenesis. 
If this scenario is correct, then the finding that RASSF4 
activates YAP1 in aRMS is consistent with its original prop-
erty as a tumor suppressor. However, a recent study revealed 
another possibility. RASSF4 interacts with the GDP-bound 
form of adenosine diphosphate ribosylation factor 6 (ARF6) 
and activates type I phosphatidylinositol phosphate kinase 
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to enhance phosphatidylinositol 4,5-biphosphate (PI(4,5)P2) 
levels [124]. In response to this, the endoplasmic reticulum 
(ER)  Ca2+ sensor stromal interaction molecule 1 is accumu-
lated at ER–plasma membrane junctions, and store-operated 
 Ca2+ entry is triggered. RASSF4 may contribute to tumo-
rigenesis through phosphoinositide metabolisms and  Ca2+ 
signaling.

RASSF6

Identification of RASSF6

RASSF6 was initially identified as a gene encoded in the 
bronchiolitis susceptibility locus [125]. Later, RASSF6 
was characterized as a C-RASSF protein based on its 
sequence homology [126]. RASSF6 suppression by DNA 
hypermethylation is frequently observed in various human 
cancers [127–129]. In gastric cancer, miR-181a-5p sup-
presses RASSF6 [130]. Thereby, RASSF6 is considered a 
typical tumor suppressor. We identified RASSF6 in yeast 
two-hybrid screening using membrane-associated guanylate 
kinase inverted 1 (MAGI1) as bait [131]. The MAGI family 
consists of three members, MAGI1, MAGI2, and MAGI3 
[132–134]. MAGI proteins have multiple PDZ, two WW, 
and one guanylate kinase domain. RASSF6 binds to the PDZ 
domains of MAGI proteins through the C-terminal PDZ-
binding motif, the sequence of which distinguishes RASSF6 
from other C-RASSF proteins. RASSF6 interacts with 
DLG1, which also has PDZ domains [135]. MAGI proteins 
and DLG1 are components of polarized epithelial junctions. 
MAGI2 is known as a tumor suppressor. Therefore, the inter-
action between RASSF6 and these proteins is intriguing, and 
its physiological significance must be clarified.

The molecular mechanism underlying the tumor 
suppressor role of RASSF6

RASSF6 causes apoptosis via caspase-dependent and cas-
pase-independent mechanisms [131]. Conversely, RASSF6 
depletion attenuates apoptosis caused by TNF-α, oka-
daic acid, high osmolarity, and ultraviolet radiation [131, 
136–138]. These findings indicate that RASSF6 mediates 
apoptosis under various conditions. RASSF6 activates 
BAX via MOAP1 and promotes the release of cytochrome 
c, apoptosis-inducing factor, and endonuclease G from mito-
chondria [126, 131, 136]. Mechanistically, RASSF6 inter-
acts with MDM2 and blocks the MDM2-mediated degrada-
tion of p53 [137]. KRAS augments the interaction between 
RASSF6 and MDM2 [139]. The RA domain (RASSF6-
RA) binds to the C-terminal RING domain of MDM2. 
The SARAH domain (RASSF6-SARAH) intramolecularly 
binds to RASSF6-RA and inhibits the interaction between 
RASSF6-RA and MDM2. KRAS releases RASSF6-RA 

from this inhibition and shifts it toward binding to MDM2. 
In this manner, RASSF6 mediates Ras-induced p53-depend-
ent apoptosis, supporting that RASSF6 is a target of Ras 
signaling. RASSF6 inhibits NFκB and MAPK signaling 
and promotes CDKN1A accumulation via JNK [126, 140]. 
These properties also contribute to tumor suppression.

RASSF6 cooperates with the Hippo pathway

RASSF6 is the highly pro-apoptotic protein. When RASSF6 
is exogenously expressed, most cells do not survive for a 
long period, but when MST kinases are coexpressed, 
RASSF6-induced apoptosis is remarkably suppressed [136]. 
Contrarily, RASSF6 inhibits MST kinases. This mutual inhi-
bition is mediated by the SARAH domains. Coexpression 
of full-length RASSF6 blocks the autophosphorylation of 
MST kinases in vivo and inhibits the phosphorylation of 
MOB1 in vitro. However, okadaic acid treatment dissoci-
ates RASSF6 and MST kinases from each other. Conse-
quently, RASSF6-mediated apoptosis is triggered, and the 
Hippo pathway is simultaneously activated. Based on this 
finding, we speculate that RASSF6 and the Hippo pathway 
cooperatively function as tumor suppressors. In this respect, 
RASSF6 is different from RASSF1A in that it drives the 
Hippo pathway to suppress tumors.

C‑RASSF proteins of non‑mammalian 
organisms

C‑RASSF of D. melanogaster

Drosophila melanogaster expresses one C-RASSF named 
dRASSF. Drosophila cells with Ras1 loss-of-function 
mutations exhibit growth defects, but additional mutation 
of dRASSF rescues the phenotype [141]. This implies that 
dRASSF antagonizes Ras1 and participates in Ras signal-
ing. Likewise, the relationship with the Hippo pathway is 
conserved. dRASSF physically interacts with Hippo via the 
SARAH domain. dRASSF suppresses the overgrowth phe-
notype of the kinase-negative Hippo mutant but has no effect 
on the SARAH domain-lacking Hippo mutant [141]. This 
observation is comprehensible if dRASSF suppresses Hippo 
similarly as RASSF6 inhibits MST kinases via the SARAH 
domains. Proteomic analysis revealed that dRASSF inter-
acts with the Drosophila striatin-interacting phosphatase 
and kinase (dSTRIPAK) complex and represses Hippo 
through dephosphorylation, thus functioning in contrast to 
RASSF1A, which that activates MST kinases through the 
inhibition of dephosphorylation [142]. Mutation of lethal (2) 
giant larvae, a regulator of apical-basal cell polarity, results 
in the mislocalization of Hippo, dRASSF, and dSTRIPAK 
[143]. This finding corroborates that these proteins form a 
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complex. Given that NORE1 promotes pRb dephosphoryla-
tion via PP1A and that RASSF1A blocks of MST kinase 
dephosphorylation by PP2A, the regulation of dephospho-
rylation may be one of common functions of C-RASSF pro-
teins [23, 42].

C‑RASSF of Caenorhabditis elegans

In the first paper that reported NORE1, the researchers 
identified C. elegans T24F1.3 as a homolog of NORE1 [8]. 
Later, we studied T24F1.3 in C. elegans, characterized the 
mutant, and named the gene rsf-1 [144]. RSF-1 interacts 
with CST-1/2, which are homologs of MST kinases. How-
ever, as CST-1/2 are not involved in the regulation of Wts, 
the homolog of LATS kinases, RSF-1 is irrelevant to the 
Hippo pathway, and the loss-of-function mutant of rsf-1 
does not exhibit a phenotype related to cell proliferation and 
apoptosis. Importantly, rsf-1 mutation suppresses the mul-
tivulva phenotype of active mutants of let-60, the homolog 
of RAS. This observation suggests that RSF-1 is implicated 
in Ras signaling. Moreover, RSF-1 interacts with Rab-39, a 
small GTP-binding protein [145]. rsf-1 silencing and rab-39 
mutation make worms more sensitive to oxidative stress. As 
RASSF1A binds RHOA and RASSF4 interacts with ARF6, 
we can assume that C-RASSF proteins interact with several 
GTP-binding proteins other than Ras proteins.

Perspective

The number of research papers concerning C-RASSF pro-
teins has continuously grown, but the progress has not been 
equal for all C-RASSFs. For example, regulation by phos-
phorylation is well researched for RASSF1A but not for 
other C-RASSF proteins. Nonetheless, we currently know 
several mechanisms instrumental for the tumor suppres-
sor functions of C-RASSF proteins. It is difficult to believe 
that all mechanisms work simultaneously. Moreover, it is 
unlikely that all C-RASSF proteins equally contribute to 
tumor suppression in all tissues. Research to determine 
the mechanism by which each C-RASSF functions in vari-
ous tissues, cells, and subcellular compartments and under 
various conditions will be indispensable for clarifying the 
whole picture of C-RASSF. We also need to raise a very 
naïve question. Why do mammals have so many C-RASSF 
proteins? It is unquestionable that C-RASSF proteins can 
interact with each other when they are colocalized in cells 
[135]. MST1 and MST2 form a heterodimer with lower 
kinase activity than their homodimers [146]. Accordingly, 
we can hypothesize that heterodimers of C-RASSF proteins 
have different activities and that mammals require the fine-
tuning of C-RASSF proteins to maintain tissue homeosta-
sis. Research to dissect the relationships among C-RASSF 

proteins is important. From the clinical viewpoint, reactiva-
tion of C-RASSF expression via epigenetic reactivation is a 
reasonable strategy for cancer therapy. The simple idea is to 
inhibit DNA methylation. However, if we identify a certain 
mechanism that is pivotal for C-RASSF proteins to function 
as tumor suppressors, we can develop a surrogate method 
to compensate for the function of C-RASSF in cancer cells 
with C-RASSF downregulation. Such perspectives motivate 
us to study C-RASSF.
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