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Abstract
The immune system has evolved to protect hosts from pathogens. T cells represent a critical component of the immune system 
by their engagement in host defence mechanisms against microbial infections. Our knowledge of the molecular recognition 
by T cells of pathogen-derived peptidic antigens that are presented by the major histocompatibility complex glycoproteins 
is now well established. However, lipids represent an additional, distinct chemical class of molecules that when presented 
by the family of CD1 antigen-presenting molecules can serve as antigens, and be recognized by specialized subsets of T 
cells leading to antigen-specific activation. Over the past decades, numerous CD1-presented self- and bacterial lipid-based 
antigens have been isolated and characterized. However, our understanding at the molecular level of T cell immunity to 
CD1 molecules presenting microbial lipid-based antigens is still largely unexplored. Here, we review the insights and the 
molecular basis underpinning the recognition of microbial lipid-based antigens by T cells.
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Introduction

During the course of evolution, the immune system of verte-
brates has consistently and remarkably developed to provide 
protection from pathogens such as bacteria, yeast, viruses, 
and parasites. To achieve this, the immune system of ver-
tebrates comprises a complex network of cells, organs, tis-
sues, proteins, and other molecules that collectively defend 
the organism against various pathogens. The immune sys-
tem consists of two major interconnected types of defence 
mechanisms to counter these microbial threats, namely, the 

innate and adaptive immune responses. The innate immune 
response is triggered by pathogen-associated molecular pat-
terns and typically represents a rapid first line of defence that 
does not retain any long-lasting immunological memory. The 
weaponry of the innate arm includes physical epithelial bar-
riers, antimicrobial peptides and enzymes, mast cells, innate 
lymphocytes, neutrophils, and macrophages. The molecular 
targets of the adaptive immune response are called antigens 
(Ags) that can consist of proteins, carbohydrates, metabo-
lites, and a wide range of chemically distinct lipids. Upon 
exposure to Ags, the adaptive immune response develops 
more slowly than the innate immune response, but will last 
longer. Two key immune cell populations within the adap-
tive arm of the immune system recognize Ags: T cells and 
B cells. T cells express T cell receptors (TCRs) on their cell 
surface that recognize small Ags or antigenic fragments from 
larger Ags. In T cell immunity, Ags are presented on the cell 
surface of professional antigen-presenting cells by specific 
antigen-presenting molecules. The subsequent recognition 
by T cells leads to a cascade of immune responses that ulti-
mately results in the clearance of the harmful pathogens. 
Presently, studies in the field of T cell-mediated immunity 
have largely focused on understanding the molecular presen-
tation of antigenic peptides by the major histocompatibility 
complex (MHC) proteins in humans and mice, and their sub-
sequent molecular recognition by the TCR. MHC molecules 
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are highly polymorphic glycoproteins that are able to bind 
peptides within their large and charged binding groove. The 
two classes of MHC molecules, class I and II MHC, bind 
small (8–13 residues long) or long (> 15 residues) peptides, 
respectively. To cope with the wide array of pathogens that 
are encountered by the host, the immune system has enor-
mous diversity in the TCRs expressed on T cells and com-
prises two main classes of T cells, the αβ and γδ T cells. It 
was conventionally considered that αβ TCRs only recog-
nized antigenic peptides complexed to the MHC (pMHC). 
The information gleaned from structural investigations on 
αβ TCR–pMHC complexes has been extremely informative 
in understanding how the TCR simultaneously, and specifi-
cally, focuses on host MHC and fragments of foreign pep-
tide Ags [1, 2]. However, peptides are not the only class of 
antigens that TCRs are able to recognize; indeed, lipids [3] 
and the recently discovered small vitamin B metabolites [4, 
5] can also activate T cells. In addition to MHC molecules, 
it is now clear that there are other Ag-presenting molecules 
(termed MHC class I-like) [6] of the immune system that 
play a vital role in protective immunity, including the MR1 
molecule and the cluster of differentiation 1 (CD1) fam-
ily of glycoproteins that present the vitamin B metabolites 
[4] and lipid-based Ags to specialized subsets of T cells, 
respectively [7–9]. The CD1 family represents an important 
cluster of largely monomorphic genes that have been classi-
fied, based on sequence identity and expression pattern, into 
two main groups of Ags-presenting molecule, namely, group 
1 (CD1a, CD1b and CD1c) and group 2 (CD1d) (Fig. 1). 
CD1e forms a third group and its function is still unclear, 
but is believed to be involved in lipids transfer [10]. All CD1 
molecules share structural similarities with the classical 
MHC-I molecules, but they have evolved to accommodate 
a chemically distinct class of Ags, namely, lipid-based Ags 
[11, 12]. Typically, lipid-based Ags are amphipathic mol-
ecules with polar headgroups (e.g. carbohydrates, sulphates, 
and phosphates) and hydrophobic tails. The CD1 molecules 
present these lipid Ags by sequestering the tails within a 

hydrophobic groove, while the polar headgroup is exposed 
at the CD1 surface for TCR recognition. Each CD1 isoform 
varies in terms of tissue distribution, intracellular trafficking, 
and factors that modulate expression levels, signifying a spe-
cific function for each type of CD1 Ag-presenting molecule. 
For instance, while CD1c can be found in the splenic mar-
ginal zone of B cells, the mantle zone of B cells of the lymph 
nodes and the tonsil [13], human skin is the site of high 
density CD1a protein expression on Langerhans cells [14, 
15], the target of CD1a autoreactive T cell responses [16, 
17]. Further, each CD1 isoform possesses distinct binding 
groove architecture and solvent accessibility that determines 
the repertoire of foreign and self-lipids that can be presented 
(Fig. 1). For instance, the large CD1b antigen-binding cleft 
(volume ~ 2200 Å3) (Fig. 1) can accommodate lipid-based 
antigens possessing long alkyl chains up to 80 carbons in 
length, whereas CD1a possesses a more constricted binding 
groove (volume ~ 1350 Å3) that limits the size and diversity 
of antigens that it can bind (reviewed by [18]). These dif-
ferences between the CD1 isoforms manifest in their abil-
ity to bind differing arrays of lipids, and their subsequent 
recognition by the TCRs. Here, we review the fundamen-
tal principles underscoring the molecular presentation of 
microbial lipid-based Ags by the family of CD1 molecules 
and their subsequent molecular recognition by specialized 
T cell subsets.

Recognition of microbial lipid‑based Ags 
by group 2 CD1‑restricted T cells

Natural killer T cells (NKT)

NKT cells are CD1d-specific innate-like T cells that, when 
specifically activated via their TCR, produce an array of 
cytokines, including Th1-, Th2-, and Th17-type cytokines, 
which enables them to influence immune outcomes in a 
broad range of diseases including a number of microbial 

Fig. 1   The antigen-binding cleft architecture of CD1 glycoproteins. 
Cartoon representations of CD1a, light orange; CD1b, light blue; 
CD1c, pink; CD1d, light green; CD1e, cyan. For clarity, only the α1- 
and α2-domains for each CD1 are shown. The CD1 antigen-binding 
clefts are shown as surface representations and have been generated 
using the CASTp program [124]. The A′-, F′-, C′- and T′-pockets 

are coloured in blue, yellow, magenta, and red respectively. The 
published calculated volumes (V, Å3) of the individual CD1 anti-
gen-binding pocket are indicated [18]. This figure and all molecular 
graphics in subsequent figures were created with the PyMOL molecu-
lar visualization system [125]
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infections [19, 20]. Two main classes of NKT cells exist, 
namely, type I and II, which are distinguished by their 
TCR gene usage and Ag specificity [21]. Typically, the 
human type I NKT cells express an invariant TRAV10+ 
(T cell receptor alpha variable) TRAJ18+ (T cell receptor 
alpha joining) rearranged TCR α-chain and most express 
a TRBV25-1+ (T cell receptor beta variable) TCR β-chain. 
Type I NKT cells are also present in other mammalian spe-
cies, including mice, whereby the NKT cells express an 
invariant TCR α-chain rearrangement TRAV11+TRAJ18+, 
and generally use one of three different TCR β-chain vari-
able genes (TRBV13, TRBV29, or TRBV1). The type I NKT 
TCRs are also defined by their ability to recognize the proto-
typical glycosphingolipid α-galactosylceramide (α-GalCer) 
as originally isolated from the marine sponge Agelas mauri-
tianus [22] (Fig. 2). As opposed to the type I NKT TCRs, the 
type II NKT TCRs are defined by their inability to respond 
to α-GalCer and are characterized by the expression of a 
more diverse TCR gene repertoire, but they share their speci-
ficity for CD1d with type I NKT cells [23–25].

Molecular presentation of microbial CD1d‑restricted 
lipid‑based Ags

Together, the CD1d molecule from the different mammalian 
species form the group 2 CD1 family (Fig. 1) and presents 
lipid-based antigens to the aforementioned invariant type 
I NKT cells that can express αβ TCRs [26] and clonally 
diverse T cell subsets expressing αβ, γδ, and δ/αβ TCRs 
[24, 25, 27–31]. Structurally, CD1d exhibits a medium-sized 
antigen-binding groove that comprises two main antigen-
binding pockets, namely, the A′- and F′-pockets (Fig. 1) [32, 
33]. Here, whilst the A′-pocket is large, deeply buried, and 
can accommodate acyl chain of lipids up to 29 carbons in 
length, the F′-pocket is smaller and thus has restricted capac-
ity to bind sphingosine chains to only ~ 18 carbons in length. 
However, its specialized binding groove architecture and 
size has enabled CD1d to present a diverse range of exoge-
nous lipid-based antigens to NKT cells that comprise chemi-
cally distinct classes of microbial lipids such as glycosphin-
golipids, glycerol-based lipids (DAG), phospholipids, and 
lysolipids (Fig. 2) [34–36]. As such, the phosphatidylinositol 
mannoside (PIM) (Fig. 2) and a lipophosphoglycan (LPG) 
isolated from the Mycobacterium bovis cell wall and Leish-
mania donovani, respectively, represented the first reported 
microbial lipid antigens recognized by NKT cells [37, 38]. 
However, it was later shown that a chemically synthesized 
PIM4 failed to stimulate type I NKT cells [39]. Microbial 
glycosphingolipids (Fig. 2) also represent a well-character-
ized class of lipid Ags for NKT cells. In particular, ana-
logues of the prototypical iNKT antigen, α-GalCer, that 
comprise α-GalCerBf and Agelasphin-9b isolated from the 
gut bacterium Bacteroides fragilis and the marine sponge 

Agelas spp., respectively, were shown to be antigenic ligands 
for NKT cells [40, 41]. Furthermore, the Gram-negative 
bacteria Sphingomonas spp. [42] α-glucuronosylceramides 
(α-GlcACer), and α-galacturonosyl ceramides (α-GalACer) 
were also shown to be stimulating ligands for NKT and 
thereby inducing an increased production of IFN-γ and 
IL-4 [34, 42–45]. Further studies identified the glycosphin-
golipid GalA-GSL produced by Sphingomonas spp. to 
activate NKT cells, albeit to a lesser extent compared to 
α-GalCer. The numerous available crystal structures of the 
bound glycosphingolipid α-GalCer into CD1d in human and 
mouse [46, 47] demonstrated a conserved mode of binding, 
whereby its galactose headgroup protrudes out of the CD1d-
binding cleft to be exposed for interactions with the NKT 
TCRs, while the phytosphingosine and the fatty acid chains 
(Fig. 2) are typically buried within the F′- and A′-pockets of 
CD1d, respectively (Fig. 3). The binary crystal structure of 
the Sphingomonas spp. GalA-GSL lipid bound to mCD1d 
[48] provided further molecular insights into the mode of 
binding of microbial glycosphingolipid into CD1d. Here, 
while α-GalCer and GalA-GSL differ by the chemical nature 
of their headgroup (galactose vs. galacturonic acid, respec-
tively) and their sphingosine chains (Fig. 2), their overall 
positioning within the CD1d-binding groove was highly 
conserved (Fig. 3a).

The important protective role played by NKT cells in 
microbial-mediated immunity was also highlighted by Olson 
et al, who demonstrated clearance of the Gram-negative 
bacteria Borrelia burgdorferi (the causative agent of Lyme 
disease) from mice through an NKT-dependent activity, 
including the secretion of IFN-γ [49]. Further studies pro-
vided molecular insights into the nature of the B. burgdor-
feri CD1d-presented Ags through the characterization of a 
new chemical class of activating microbial lipid-based Ags 
(diacylglycerol or DAG) for NKT cells (Fig. 2) [39]. Indeed, 
two isolated glycoglycerol lipids (BbGL-2c and BbGL-2f) 
that structurally shared a galactose headgroup, but differed 
in the chemical nature of their two fatty acid chains (Fig. 2), 
were both able to stimulate mouse and human NKT cells, 
albeit with different levels of potency [39]. In particular, 
BbGL-2c was significantly more potent than BbGL-2f for 
mouse invariant NKT cells. This latter intriguing observa-
tion led to suggest a possible role played by the different 
fatty acid chains into directing a different overall position-
ing of the DAG lipids into CD1d and thereby affecting their 
subsequent molecular recognition by the NKT TCRs. The 
binary crystal structures of mouse CD1d presenting BbGL-
2c and BbGL-2f (Fig. 3a and Table 1) [50] subsequently 
supported this initial interpretation, whereby the DAG 
adopted two distinct binding configurations within CD1d 
(Fig. 3b). Here, the A′- and F′-pockets of CD1d accommo-
dated the sn1-linked oleic acid (C18:1) and sn2-linked pal-
mitic acid (C16:0) chains (Fig. 2) of BbGL-2c, respectively, 
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while BbGL-2f was sequestered within the CD1d cleft in a 
complete reverse orientation whereby the sn2-linked oleic 
acid (C18:1) and sn1-linked linoleic acid (C18:2) (Fig. 2) 
were bound within the A′- and F′-pockets of CD1d, respec-
tively (Fig. 3b). Thus, this remarkable rearrangement of the 
fatty acid chains within CD1d also impacted on the overall 

positioning of the exposed galactose headgroup shared by 
both DAG lipid structures (Fig. 3c) and which represents the 
key structural motif enabling NKT recognition. Collectively, 
these findings remarkably highlight how fine chemical modi-
fications of the fatty acid chains of lipids such as the number 
of carbon unsaturations can drastically impact on their mode 

Fig. 3   Molecular presentation of microbial lipid-based Ags by CD1d. 
a Cartoon representation of the crystal structure of mouse CD1d–
microbial lipids binary complexes. For clarity, only the α1- and 
α2-domains of mouse CD1d (mCD1d) (light green) are shown. The 
microbial glycolipids GalA-GSL (cyan) from Sphingomonas spp., 
GlcDAG-s2 (brown) from S. pneumoniae, BbGL2c (dark green) and 
BbGL2f (bright green) from B. burgdorferi are shown as spheres. For 
mCD1d–GalA-GSL, a spacer lipid is present in the A′-pocket and 
is shown as black spheres. b Superposition of the glycosphingolip-

ids GalA-GSL (cyan) and α-galactosylceramide (α-GalCer) (black). 
c Superposition of mCD1d presenting the diacylglycerol glycolipids 
BbGL2c (dark green) and BbGL2f (bright green). d Superposition 
of mCD1d presenting the diacylglycerol glycolipids αGlcDAG-s2 
(brown) and BbGL2f (bright green). For clarity, only the α1- and 
α2-domains of mouse CD1d (mCD1d) (light green) are shown and 
the lipids are shown as spheres. The oxygen and nitrogen atom are 
coloured in red and blue, respectively

Table 1   Three-dimensional crystal structures of CD1 molecules in complex with microbial lipid-based Ags

Lipid-based Ags Microbial origin CD1 isoform PDB codes References

Mycobactin lipopeptide Mycobacterium spp. CD1a 1XZ0 [113]
Diacylsulfoglycolipid (Ac2SGL) Mycobacterium tuberculosis CD1b 3T8X [114]
Glucose monomycolate-C54 (GMM-C54) Nocardia spp. CD1b 1UQS [113]
Glucose monomycolate-C32 (GMM-C32) Rhodococcus spp. CD1b 5L2J [112]
Mannosyl-β1-phosphomycoketide (MPM) Mycobacterium tuberculosis CD1c 3OV6 [120]
Phosphomycoketide (PM) Mycobacterium tuberculosis CD1c 4ONO [121]
α-Galacturonosylceramide (GalA-GSL) Sphingomonas spp. CD1d 2FIK [48]
α-Galactosyldiacylglycerols (BbGL-2c and BbGL-2f) Borrelia burgdorferi CD1d 3ILQ

3ILP
[50]

α-Glucosyldiacylcerol (αGlcDAG-s2) Streptococcus pneumoniae CD1d 3T1F [51]



1628	 S. Gras et al.

1 3

of presentation by CD1d and consequently influence their 
level of immunogenicity towards NKT cells. More recently, 
the repertoire of antigenic microbial DAG-derived lipids for 
type I NKT cells was extended to other bacterial species 
through the isolation and characterization of glucose-based 
DAG Ags (α-glucosyl-diacylglycerol) from Streptococcus 
pneumoniae (Fig. 2) [51]. As observed for the B. burgdor-
feri galactose-based DAG Ags, the antigenic potency for 
NKT cells of the glucose-based DAG Ags was also greatly 
affected by the chemical nature and length of the aliphatic 
tails of the lipid Ags [51]. The binary crystal structure of 
the mouse CD1d in complex with α-GlcDAG-s2 (Fig. 3a) 
revealed a very unusual orientation of the sn2-linked oleic 
acid (C18:1) bound within the A′-pocket, whereby the ali-
phatic tail swirled around in the opposite direction to what 
has been previously observed in other CD1d-Ags binary 
crystal structures [31, 52–54] (Fig. 3d).

Pathogenic lipopeptidophosphoglycans from Enta-
moeba histolytica (EhLPPG), the causative agent of 
amoebiasis, were also reported to exhibit stimulatory 
effects for NKT cells through both TCR and Toll-like 
receptor (TLR)-mediated pathways. Two phosphatidylino-
sitol-based lipids (EhPIa and EhPIb) (Fig. 2) were identi-
fied from the EhLPPG active fraction and interestingly, 
only EhPIb had the ability to produce IFN-γ [55]. Finally, 
cholesteryl α-glucoside (αCAG) from the gastric patho-
gen Helicobacter pylori [56] (Fig. 2) was also shown to 
be presented by CD1d and to activate NKT cells in both 
mice and humans [57, 58].

Whilst it is now clear that type I NKT cells play a cen-
tral role in microbial-mediated immunity, experimental 
evidence for type II NKT cells to fulfil a similar function 
is much more limited. However, Tatituri et al. recently 
reported that lipids isolated from the cell wall of Myco-
bacterial spp. that comprised phospholipids such as phos-
phatidylglycerol (PG) and phosphatidylinositol (PI) were 
able to activate a range of type II NKT cell hybridomas 
(Fig. 2) [59]. Similarly, PG isolated from the cell wall of 
Listeria monocytogenes exhibited reactivity towards type 
II NKT cells [60]. In both cases, IL-2 cytokine was pro-
duced upon the activation of type II NKT cell hybridomas 
by the bacterial PGs.

While it is becoming evident that the number of char-
acterized microbial CD1d-presented lipid Ags is con-
stantly growing (Fig. 2), our current crystallography-
based molecular insights into their presentation by CD1d 
have been essentially limited to two classes of lipids (gly-
cosphingolipids and diacylglycerol glycolipids) (Fig. 2 
and Table 1) [48, 50, 51]. There is therefore significant 
scope to explore the molecular presentation of other rel-
evant classes of microbial lipid-based Ags.

Molecular basis for the recognition of microbial 
lipid‑based Ags by type I NKT TCRs

The molecular mechanism that underpins the recognition of 
microbial lipids by NKT TCRs has been rather surprisingly 
unexplored so far. Indeed, the crystal structures of the mouse 
type I NKT TCR in complex with mouse CD1d (mCD1d) 
presenting the lipids α-GalA-GSL, α-GalDAG-s2 [61], and 
BbGL-2c [62] (Fig. 4 and Table 2) only recently provided 
the first detailed insights into the molecular recognition of 
microbial lipid-based Ags by NKT TCRs. As observed pre-
viously in the crystal structures of type I NKT TCR–CD1d-
lipids ternary complexes [23, 47, 63, 64], the NKT TCR 
adopted a docking strategy whereby the TCR positioned in a 
parallel fashion over the F′-pocket of the CD1d binding cleft 
(Fig. 4a). Here, at the NKT TCR/CD1d–microbial Ags inter-
face, the CDR loops (complementary determining region) of 
the TCR α-chain (CDR1α and CDR3α) were the main con-
tributors to the molecular interactions [46].The carbohydrate 
headgroups of the Ags protruded from the CD1d binding 
cleft and were exclusively contacted by residues belonging 
to the CDR1α and CDR3α loops (Asn30α, Arg95α, and 
Gly96α). Interestingly, upon NKT TCR engagement, the 
overall orientation and positioning of the carbohydrate head-
groups of the three microbial Ags was largely conserved and 
was similar to α-GalCer (Fig. 4b). Furthermore, the position 
of all the NKT TCR CDR loops and particularly the CDR1α 
and CDR3α that are key contributors to the recognition of 
α-GalCer were also highly preserved between the 4 NKT 
TCR–CD1d-Ags ternary complexes (Fig. 4b, c). However, 
as opposed to the conserved position of α-GalCer, upon TCR 
ligation, the orientation and positioning of the DAG-based 
microbial lipids were markedly affected. For instance, the 
acyl chain of α-GalDAG that encircles the A′-pocket of the 
CD1d binary structure in the clockwise direction preferred a 
counterclockwise direction in the ternary structure [48, 61]. 
Furthermore, the carbohydrate headgroups of the microbial 
DAG lipids were all repositioned towards the centre of the 
antigen-binding cleft in the ternary structures [61] adopt-
ing an overall position similar to α-GalCer (Fig. 4c) and 
thereby suggesting an “induced fit” molecular mechanism 
as an attributing feature for the type I NKT TCR recognition 
of microbial lipid-based antigens.

Recognition of lipid‑based Ags by group 1 
CD1‑restricted T cells

Intracellular trafficking and loading of microbial 
lipids

The intracellular trafficking pattern of CD1 molecules dif-
fers markedly from the classical MHC molecules, such that 
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the MHC-I glycoproteins are typically loaded with peptidic 
Ags during their synthesis in the endoplasmic reticulum 
(ER). The MHC-II is blocked with the CLIP peptide (Class 
II-associated invariant chain peptide) directly after synthe-
sis, which is then replaced in the late lysosome by exog-
enously captured peptidic antigens. Thus, MHC molecules 

generally do not travel to the cell surface before they have 
gone through a cellular compartment where foreign peptides 
are loaded. By contrast, all the CD1 molecules are initially 
loaded with self- lipids that are present in the ER during 
synthesis, and before they are exposed to lipids from other 
cellular compartments the newly synthesized CD1 molecules 

Fig. 4   Molecular recognition of CD1d presenting microbial lipid-
based Ags by NKT TCR. a Crystal structures of NKT TCR–mCD1d–
GalA-GSL (left panel), NKT TCR–mCD1d–αGlcDAGs2 (middle 
panel), and NKT TCR–mCD1d–BbGL-2c (right panel) ternary com-
plexes. The mCD1d and β2-microglobulin molecules are coloured in 
light green and light grey, respectively. The NKT TCRα and TCRβ 
are coloured in pink and yellow, respectively. The microbial glycolip-
ids GalA-GSL (cyan), αGlcDAGs2 (brown), and BbGL-2c (dark 
green) are shown as spheres. b View from the top of an overlay of 
the three NKT TCR–mCD1d–microbial lipids crystal structures and 

NKT TCR–mCD1d–α-GalCer. For clarity, only the CDR loops are 
shown and coloured as for the respective lipids in each structure, 
GalA-GSL (cyan), αGlcDAGs2 (brown), BbGL-2c (dark green), and 
α-galactosylceramide (α-GalCer) (black). The lipids are shown as 
spheres. c Overlay of three NKT TCR–mCD1d–microbial lipid crys-
tal structures and NKT TCR–mCD1d–α-GalCer. For clarity, only the 
CDR1α and CDR3α loops are shown and coloured for the respec-
tive lipids in each structure, GalA-GSL (cyan), αGlcDAGs2 (brown), 
BbGL-2c (dark green), and α-galactosylceramide (α-GalCer) (black). 
The lipids are shown as sticks
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travel to the cell surface where they encounter lipids from 
the cellular environment [65, 66]. Thus, the antigen loading 
into CD1 molecules seems to take place by replacement of 
self-lipids. The lipids that are present in the ER and that are 
known to bind CD1 are phosphatidylinositol, phosphatidy-
lethanolamine, phosphatidylcholine, phosphatidylserine and 
ceramides [67]. Lipid loading of CD1 at the cell surface is 
possible [68, 69], but it is unclear what the physiologic role 
of this process is [70]. After this initial surfacing, each CD1 
isoform travels to a specific cellular compartment, guided 
by signals in its cytoplasmic tail that interact with adap-
tor proteins [71–74]. While CD1a travels to the early endo-
some, CD1b and CD1c travel to the late endosome and the 
intermediate endosome, respectively. Each of these compart-
ments differs by their pH, and the nature of the enzymes 
and lipid transfer molecules that are present. Whereas the 
MHC molecules are completely dependent on the digestion 
of proteins to liberate antigenic peptides, most known lipid 
antigens do not need to be chemically cleaved or modified 
by the APC before they can be presented by CD1 molecules 
to T cells, and this includes glucose-6-O-monomycolate 
(GMM) [75]. There are three examples of chemical cleavage 
of lipids Ags that are essential for antigenicity. The first one 
is the removal of a mannose moiety from mannosyl phos-
phomycoketide (MPM) to form phosphomycoketide (PM), 
which is absolutely required to enable the recognition by 
the T cell clone DN1 [76]. However, the mannose moiety is 
required for the recognition of mannosyl phosphomycoke-
tide (MPM) by another T cell clone, CD8-1 [76–78]. The 
second example of cleavage of larger lipids to release anti-
genic lipid is the removal of two acyl chains from mycobac-
terial tetra-acylated phosphatidylinositol mannoside, as well 
as up till four mannosides to generate antigenic dimannosyl 
phosphatidylinositol mannoside with two acyl chains [79, 
80]. The third example is a chemically designed antigen: 
dihexosylceramide is dependent on the removal of a carbo-
hydrate moiety to turn into antigenic α-GalCer [81]. Aside 
from these chemical alterations of lipids, the key factors that 
contribute to CD1 lipid loading and presentation are pH and 
lipid transfer molecules. Low pH of the late endosomal com-
partment enables CD1b to undergo conformational changes 
that facilitate the insertion of long lipids [82]. Lipid transfer 
molecules are thought to enable the extraction of lipids from 
lipid aggregates (membranes and cell walls) and to facilitate 

their transport through the aqueous environment of the cell. 
In the ER, the microsomal triglyceride transfer protein per-
forms these functions [83], while in the endocytic pathway 
saposins are active [84–86]. The lysosomal lipid transfer 
molecule CD1e has been demonstrated to be required for 
the presentation of phosphatidylinositol mannoside as well 
as its chemical modification [79, 87].

Group 1 CD1‑restricted T cell repertoire

The hallmarks of the MHC system are the high level of poly-
morphism among the MHC molecules associated with the 
high diversity of the TCR repertoire due to random genetic 
recombination. Somatic recombination generates TCRs that 
can interact with all possible allelic variants of MHC and an 
enormous diversity of pathogen-derived peptides. Invariant 
NKT cells also make use of the TCR recombination machin-
ery, but in a different way: their TCR α-chains are formed 
by recombinations without or with very few insertion/dele-
tions of nucleotides (N) that occur at such high frequency 
that all human beings form these NKT TCRs. Since they 
recognize a non-polymorphic molecule that is expressed in 
all humans, NKT cells are positively selected and activated 
in all humans. However, the monomorphic nature of the 
antigen-presenting molecule does not inherently limit the 
TCR repertoires to TCRs lacking N nucleotides, and in fact 
many examples have emerged of CD1-specific TCRs with 
extensive N regions [88, 89]. The question that is still unan-
swered is: how common is TCR conservation among non-
polymorphic antigen-presenting systems? This question is 
important to address because knowledge of invariant, micro-
bial lipid-specific TCRs could potentially lead to diagnos-
tics of microbial infections based on detection of expanded 
invariant TCRs in antigen-exposed humans. The discovery 
of invariant NKT TCRs took place long before the tetramer 
technology was available, and was facilitated by the rela-
tive abundance of NKT cells. Currently, lipid-loaded CD1 
tetramers are available and allow for direct isolation and 
TCR sequencing of lipid-specific T cells from blood. This 
technique was first applied to study TCRs that interact with 
CD1b–GMM tetramers [90, 91] and led to the discovery of 
GEM (germline-encoded mycolyl lipid-reactive) TCRs and 
LDN5-like TCRs as groups of TCRs that share structural 
features and that can be found in many blood donors.

Table 2   Three-dimensional crystal structures of TCR–CD1–microbial lipid-based Ags ternary complexes

Lipid-based Ags Microbial origin CD1 isoform PDB codes References

Glucose monomycolate-C32 (GMM-C32) Mycobacterium tuberculosis CD1b 5L2K [112]
α-Glucosyldiacylcerol (αGlcDAG-s2) Streptococcus pneumoniae CD1d 3TA3 [62]
α-Galactosyldiacylglycerol (BbGL-2c) Borrelia burgdorferi CD1d 3O9W [61]
α-Galacturonosylceramide (GalA-GSL) Sphingomonas spp. CD1d 3O8X [61]
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GEM T cells express an invariant α-chain defined as iden-
tical or nearly identical sequences derived from different 
clones and different blood donors, and a β-chain that typi-
cally uses TRBV6-2 or TRBV30, but without any apparent 
CDR3β length and sequence conservation. Expression of 
an invariant TCR chain is called type 3 TCR bias [92], and 
shared V gene usage without CDR3 conservation is called 
type 1 bias. Thus, type I NKT cells and GEM T cells each 
express a defining, invariant (type 3-biased) α-chain, and 
a β-chain repertoire that consists of one or two Vβ genes 
without CDR3 conservation (type 1-biased).

LDN5-like cells were discovered alongside GEM T cells 
as a result of analysis of TCRs that recognize CD1b–GMM 
tetramers. The first CD1b–GMM-specific TCR that was ever 
sequenced, LDN5, was initially considered to represent a 
single example of a diverse TCR repertoire for this antigen, 
mainly because it utilized many N nucleotides in α- and 
β-chain [88], but when many more TCRs with this specific-
ity were sequenced using tetramers, the LDN5-like TCR pat-
tern became apparent. LDN5-like expressed TRAV17 and/or 
TRBV4-1, which are the Vα and Vβ genes that are also used 
by LDN5, but did not share CDR3 sequences. Therefore, 
LDN5-like cells have type 1-biased α- and β-chains.

As described above, many well-characterized group 1 
CD1–microbial lipid-specific T cells belong to the αβ T cell 
lineage. However, it is also established that group 1 CD1 
molecules presenting self-lipid Ags can be bona fide ligands 
for specific γδ T cell populations [93, 94], and thus raising 
an important question: does this elusive subset of T cells 
also play a key role in the group 1 CD1-mediated micro-
bial surveillance? A recent report by Roy et al. [95] identi-
fied and biophysically characterized CD1c–Mycobacterium 
tuberculosis (Mtb) lipid-specific γδ TCRs, and thus provided 
the first emerging insights into the microbial lipid reactivity 
of group 1 CD1-restricted γδ T cells.

Because additional working CD1 tetramers loaded with 
microbial lipids have recently been developed, new invariant 
or biased αβ and γδ TCRs can now be discovered. Micro-
bial lipid–CD1 combinations that have not yet been used 
to systematically study the human TCR repertoire are: 
CD1a–dideoxymycobactin [96], CD1b–sulfoglycolipid, 
CD1b–mycolic acid [97], and CD1c–phosphomycoketide 
[76]. Though more sensitive to the bystander effect and 
to immunostimulatory properties that are independent of 
TCR activation, an alternative to tetramer-based identifi-
cation of antigen-specific T cells is T cell isolation based 
on cytokine expression after stimulation with lipid antigen 
and CD1-expressing antigen-presenting cells [98]. With 
two available, independent methods of detection of group 
1 CD1–microbial lipid-specific T cells, it is now possible to 
follow these T cells in humans and answer basic questions 
about their expansion and activation during disease. These 
questions could previously only be addressed using guinea 

pigs or mice transgenic for human group 1 CD1 molecules 
[99, 100].

Molecular presentation of microbial lipid‑based Ags 
by group 1 CD1

The most well-characterized microbial lipid antigens pre-
sented by the group 1 CD1 molecules are found within 
Mycobacterium tuberculosis (Mtb) [101], and those include 
free mycolic acids [3] and its derivatives, mannophospho-
isoprenoids [102], mannosylated lipoarabinomannan [103], 
lipomannan [103], and phosphatidyl-myo-inositol manno-
sides [104]. The extreme complexity of the lipid-rich cell 
wall of mycobacterial species is rather unique and repre-
sents an ideal source for a wide range of chemically distinct 
class of lipids to be presented by group 1 CD1 molecules. 
Mycolic acid, a key component of the Mtb cell wall, was 
the first characterized lipid antigen presented by CD1b [3]. 
Mycolic acids are high molecular weight lipids that com-
prise two main components: A β-hydroxy fatty acid and 
a long branched α-alkyl lipid tail [105] (Fig. 2). Though 
not yet analysed at the molecular level, two groups have 
reported the influence of the lipid tail length or composition 
of mycolic acids on T cell responses against CD1b–mycolic 
acid [97, 106].

The list of CD1b-presented lipid Ags was further 
extended to derivatives of mycolic acids, whereby additional 
headgroup moieties were incorporated, such as in GMM 
(Fig. 2) and glycerol monomycolate [107–110]. Mycobac-
terial GMM is characterized by the presence of a glucose 
linked to the 6-position with a mycolyl β-hydroxy chain. 
Three forms of GMM, with varying mycolyl unit lengths 
of C32 (GMM-C32), C54 (GMM-C54) and C80 (GMM-
C80), have been shown to activate GMM-reactive CD1b-
restricted αβ T cell lines and clones isolated from blood of 
patients infected with Mtb [111]. To date, the crystal struc-
tures of CD1b presenting the GMM-C32 [112] and GMM-
C54 [113] isoforms have been determined (Fig. 5). In both 
crystal structures, the β-hydroxy fatty acid and the α-alkyl 
lipid tail are bound within the C′-channel and A′-pockets, 
respectively. The β-hydroxy fatty acids are 10 carbons and 
16 carbons in length for the GMM-C54 and GMM-C32 
derivatives, respectively, and thereby enabling the GMM-
C32 to be sequestered deeper into the C′-pocket of CD1b. 
By contrast, the α-alkyl lipid tails for GMM-C54 and GMM-
C32 are 50 and 20 carbons in length, respectively, and CD1b 
is able to accommodate the entirety of the 50-carbon tail 
of GMM within its T′-tunnel and F′-pockets. Interestingly, 
whilst GMM-C32 does not extend throughout the entirety of 
the CD1b antigen-binding pockets, a hydrophobic scaffold 
lipid is bound within the T′-tunnel to maintain the structural 
integrity of the glycoprotein. This scaffold lipid originated 
from the expression system that was utilized to produce the 
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recombinantly expressed CD1b molecule; the presence of 
spacer lipids in CD1b has been previously reported [67, 
114], but the precise chemical natures of these scaffold 
lipids and their possible immunogenic roles remain unclear. 
In both crystal structures, the GMM glucose headgroup 
protrudes out of the CD1b-binding groove to be exposed 
for GMM-restricted TCR recognition [112]. The exquisite 
specificity of the TCR for the glucose moiety explains the 
absence of an effect of mycolic acid chain length on the 
activation of GMM-specific T cells [107].

Two other classes of unique mycobacterial lipids pre-
sented by group 1 CD1s are the lipopeptides and the sul-
foglycolipids that are presented by CD1a [115–117] and 
CD1b [114, 115], respectively. The identified lipopeptides 
belong to an iron-chelating subfamily of siderophores named 
mycobactins. CD1a can present to T cells a naturally occur-
ring modified form of mycobactins that lacks two hydroxyl 
groups, named didehydroxymycobactin (DDM) (Fig. 2) 
[118]. The structural characterization of CD1a presenting 
a synthetic mycobactin lipid analogue (JH-02215) [117] 
reveals that, in clear contrast to the CD1b–GMM structure, 
the lipopeptide is fully buried within the antigen-binding 

groove (Fig. 5). Here, whilst the single acyl chain is bound 
within the A′-pocket, the peptidyl moiety and the lysine 
branch are bound along and into the F′-pocket, respectively 
[117]. The hydrophilic N-aryl group of the lipopeptide is 
solvent exposed and is proximally positioned to Arg73 at 
the A′-roof [117]. Interestingly, DDM represents the sole 
identified CD1a-presented lipid-based Ag from Mtb.

Sulfoglycolipids form a group of compounds that are 
found only within Mtb, and not in other mycobacterial spe-
cies [119]. The sulfoglycolipids (Fig. 2) contain two to four 
acyl tails that are linked by a polar trehalose group har-
bouring a sulphate group that has been found to be essen-
tial for the immunogenic property of the Ag [115]. CD1b 
presents the diacylated form of sulfoglycolipid (Ac2SGL), 
whereas forms with one, three, or four acyl chains are not 
[115]. The three-dimensional structure of CD1b in com-
plex with Ac2SGL (Fig. 5) revealed that the C16-palmitoyl 
and hydroxyphthioceranic acid tails were bound within the 
C′- and A′-pockets, respectively [114]. CD1c has also the 
ability to present microbial lipid antigens to generate a T 
cell-mediated immune response. A major defining char-
acteristic of microbial lipids presented by CD1c is their 

Fig. 5   Molecular presentation of microbial lipid-based Ags by group 
1 CD1. Cartoon representation of the crystal structure of group 1 
CD1–microbial lipids binary complexes. For clarity, only the α1- and 
α2-domains of CD1a (light orange), CD1b (light blue), and CD1c 
(pink) are shown. The microbial lipid antigens Ac2SGL (purple), glu-
cose monomycolate (GMM C32) (light blue), GMM C54 (dark blue), 

synthetic dideoxymycobactin (JH-02215) (red), phosphomycoketide 
(PM) (brown), and mannose-phosphomycoketide (MPM) (pink) are 
represented as spheres. The spacer lipids are shown as black spheres. 
The oxygen, nitrogen, sulphur, and phosphate atoms are coloured in 
red, blue, yellow, and orange, respectively
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significantly methylated alkyl tails [78, 108] and includes 
the mycobacterial lipids phosphomycoketide (PM) [76] and 
mannosyl-β1-phosphomycoketide (MPM) (Fig. 2) [78, 102]. 
Both lipid classes comprise a C32 methylated carbon tail 
and a phosphate polar headgroup, with the most significant 
difference between the two lipids being the addition of a 
mannose sugar at the β1 position of the phosphate ion in 
MPM [76, 120, 121]. Structural characterization of CD1c 
presenting both PM and MPM (Fig. 5) shows that the lipid 
tail is bound within the A′-pocket, and penetrates in the D′/E′ 
back portal of CD1c [120, 121]. Presentation of the polar 
headgroup differs between the two lipids, with the MPM 
headgroup being solvent exposed due to the presence of a 
C12 spacer lipid in the F′-pocket [120]. Studies performed 
on CD1c-restricted T cells that are specific for PM, MPM, or 
both lipids show that a mixture of CD4+, CD8+ and double 
negative T cells are able to recognize those Ags presented 
by CD1c. Although there is no available crystal structure of 
a TCR–CD1c–PM or MPM ternary complex yet, the CD1c 
mutagenesis study revealed that despite a shared TRBV7-9 
gene among the different TCRs, the latter may adopt differ-
ent docking strategy to recognize the CD1c molecule pre-
senting the PM or MPM lipid-based Ags [121]. Aside from 
the mycobacterial lipid-based antigens, lipids presented by 
group 1 CD1 molecules have been identified in several other 
bacteria, including Salmonella typhimurium, Staphylococcus 
aureus, and Brucella melitensis [122]. CD1b conjugated to 
dextramers presenting whole cell lipid extract from each of 
the bacterial species demonstrated significant binding to pol-
yclonal T cell populations, which were also found to stimu-
late cytokine production [122]. In each case, the identified 
immunodominant lipid-based Ag was phosphatidylglycerol 
(PG) (Fig. 2), which, while being highly abundant in these 
bacterial species, is also found within mammalian cells in 
very low amounts. The PG species identified in both bacte-
rial and mammalian cells that induce an immune response 
all retain the same phosphoglycerol headgroup, yet varied 
in acyl tail saturation levels, with carbon lengths limited to 
lengths of C15–C18 [59]. In the case of PG presentation by 
CD1b, variations in lipid tail were not distinguished by the 
T cells [122], while in the case of PG presentation by CD1d 
the different forms were distinguished by NKT cells [59]. 
Whilst binary crystal structures of CD1b presenting self-
phospholipids have been determined [66, 123], the structural 
characterization of CD1b presenting bacterial PG is yet to 
be conducted.

Molecular basis for the recognition of CD1b–GMM 
by GEM TCRs

A structural characterization at atomic level of TCR recogni-
tion of a group 1 CD1 molecule presenting microbial lipid 
antigen is currently limited to a single example [112]. For 

microbial and non-microbial lipid Ags, the molecular basis 
of group 1 CD1 molecule antigen presentation and their sub-
sequent TCR recognition has been understudied and there-
fore limited information is available. Recently, the crystal 
structure of the GEM42 TCR–CD1b–GMM ternary complex 
(Fig. 6a and Table 2) provided the first fundamental insights 
into the molecular mechanism that underpins the recogni-
tion of the mycobacterial lipid GMM by the GEM TCRs 
[112] (Fig. 6a). Here, the structure of a GEM TCR, called 
GEM42, solved in complex with CD1b–GMM–C32 show 
how the high-affinity TCR “caged” the sugar moiety of the 
microbial lipid Ag. The solvent-exposed glucose moiety of 
the Ag is stabilized by the GEM42 CDR3 loops that form a 
“tweezers-like” structure around the carbohydrate (Fig. 6b). 
Interestingly, the CDR3 loops are positioned underneath the 
lipid headgroup, thus enabling the entire glucose moiety 
and a section of the acyl tail to be contacted by the TCR. 
This high shape complementarity between the lipid and 
the GEM42 TCR might be responsible for the high affinity 
exhibited by those TCRs. In stark contrast to the previously 
determined crystal structures of TCR–CD1d–microbial 
lipids, the GEM42–CD1b–GMM ternary crystal structure 
remarkably revealed that the lipid Ag contribution (27%) to 
the overall interface was more than double. In addition to 
the stabilization of the conformation of the lipid headgroup, 
upon GEM42 TCR binding, the cleft of CD1b was “bull-
dozed” by the TCR allowing it to have a better grip on the 
Ag (Fig. 6c). Now, it remains to be determined whether the 
LDN5-like TCRs will adopt distinct strategies to recognize 
the CD1b–GMM complex, resulting in a weaker affinity, and 
whether the observed “tweezers-like” mechanism is unique 
to the GEM TCRs.

Conclusions

While lipid-reactive T cells were first identified 25 years 
ago, understanding the general molecular basis of lipid 
antigen recognition and their role in human T cell immu-
nity has lagged behind that of the MHC-restricted T cells. 
Indeed, CD1-restricted T cells have only recently emerged 
as central players in host protection. In the context of 
group 2 CD1, we have gained fundamental insights in 
recent years into the molecular basis that underpins the 
recognition of two main classes of microbial lipid-based 
Ags by NKT cells. However, the growing list of newly 
identified CD1d-presented microbial lipids offers oppor-
tunities to further investigate the mode of recognition of 
microbial lipids by NKT TCRs. In the context of the CD1 
group 1 system, the lack of mouse-based models coupled 
with the difficulty in working with, and identifying, lipid-
based Ags, has hampered progress in this exciting field. 
However, the development of the tetramers and dextramers 
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technology has been key to the identification of group 1 
CD1-restricted T cell subsets and thus enabled to further 
advance our understanding of the role played by group 1 
CD1 molecules and restricted T cells in human antimicro-
bial immunity. Our understanding of the molecular basis 
that underpins the recognition of microbial lipid Ags by 
group 1 CD1-restricted TCRs is emerging with the first 
crystal structure of a TCR–CD1b–microbial lipid Ag 
recently determined. Finally, unlike the genetically diverse 
MHC molecules, CD1a, CD1b, CD1c, and CD1d proteins 
exhibit limited polymorphism, allowing CD1 proteins to 

be targeted pharmacologically with lipid ligands or small 
molecules. Therefore, the pursuit of our efforts to gain 
general molecular insights into their mode of binding to 
CD1 and TCRs offers exciting perspectives to design novel 
therapeutics to augment the protective immune response 
against microbial infections.
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view of the “tweezers-like” motif. The GEM42 TCR CDR3 loops, 
with CDR3α in pink and CDR3β in blue, surrounding the GMM rep-
resented as orange spheres. c Structural changes in the CD1b–GMM 
upon GEM42 TCR binding. The free CD1b–GMM is coloured in 
light blue, while the CD1b–GMM in complex with the GEM42 TCR 
is coloured in orange
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